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1 I N T R O D U C T I O N

Liquid democracy is a new approach to collective decision making. As an
innovative form of representative democracy, it combines the features of direct
democracy and traditional representative democracy.

In recent years, the representative quality of existing institutions of representa-
tive democracy has come under scrutiny. For example, in 2022, the right to have
an abortion was overturned in the U.S. by the Supreme Court, while this decision
appeared to be disapproved by the majority of the citizens [18]. Against this
backdrop, researchers have started to focus on innovations, among which liquid
democracy is one. Though having its roots already in work on representation
from the 19th century [27], it is in the last few years that liquid democracy has
been attracting increasing attention from the public as well as from researchers in
both political and computer science.

In this chapter, we provide an overview of this recent line of research in liquid
democracy. This overview provides the context of the dissertation.

1.1 background and history
Liquid democracy is a form of proxy voting [1, 21, 39, 58, 67]. In proxy voting,
instead of casting a ballot, a voter may delegate her voting right to a proxy, who
will represent her in the collective decision-making process. Therefore, the set
of voters is naturally divided into two exclusive subsets: active voters, who act
as proxies and actually cast ballots, and inactive voters, each of whom delegates
to an active voter. Proxies vote with weight equal to the number of delegations
obtained from the voters. Liquid democracy extends proxy voting by allowing
proxies to also delegate. That is, a proxy may pass the votes she has accrued
further to yet another, thereby giving rise to so-called transitive delegations. The
voters who retain their votes cast their ballots, which now carry the weight given
by the number of delegations they accrued. Therefore, liquid democracy is a
form of proxy voting with transitive delegations.

main features of liquid democracy Conceptually, a voting system equipped
with the following four components is considered in the political science literature
to be a liquid democracy system [12].

朳



朴 introduction

1. Direct democratic component: Each voter can directly use their vote for any
issue.

2. Flexible delegation component: Each voter can delegate her vote to a proxy on
(1) a singular issue, (2) all issues in one or more political areas, or (3) all
issues in all political areas.

3. Meta-delegation component: Each voter who receives delegation can in turn
decide to (1) cast her ballots which now carry the weight given by the
number of delegations she accrued, or (2) delegate further to yet another
proxy.

4. Instant recall component: Each voter can terminate her delegation at any time.

Example 1. A group of 5 persons, Elina, Sarah, Jan, Renske and Ineke, are to decide
which restaurant to go to for dinner. Elina suggests to go to a Chinese restaurant while
Sarah would like a French one. Jan believes that Elina always has a good food taste,
therefore, he delegates to Elina to make the decision on behalf of him. Renske and Ineke
are good friends, and Ineke asks Renske to decide for her because Ineke is indifferent on
both options.

Subsequently, Renske first decides to delegate to Sarah, and thus Sarah collects two
more votes and the majority (Sarah, Renske and Ineke) would support to go to the French
restaurant (Figure 1.1, left). But when Ineke knows she would also follow the decision of
Sarah, she decides to retrieve her delegation (to Sarah through Renske) because she had
bad experiences before when she followed Sarah to choose restaurants. Hence, Ineke finally
delegates her vote to Elina (Figure 1.1, right). The result is then reversed, such that they
would go to the Chinese restaurant since the majority (Elina, Jan and Ineke) votes for it.

Example 1 intuitively shows how a liquid democracy system works: Each of the
5 persons in the example can choose to vote directly or to delegate to another to
make the decision. The delegations are further transferable, for instance, initially,
Ineke delegates to Renske and Renske further delegates to Sarah (Figure 1.1 left).
During the process, each person can also change her delegation (e.g., Ineke) by
terminating the delegation or changing her proxy. If the group would also make
decisions on other issues, people may choose their proxies differently for each
issue.

Ineke

Jan Elina (2 votes)

Renske

Sarah (3 votes) Ineke

Jan Elina (3 votes)

Renske

Sarah (2 votes)

Figure 1.1: The change of the delegation structure in Example 1.
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historical notes Liquid democracy has been implemented in decision-
support tools like LiquidFeedback1 [9]. With the help of such online tools,
several grassroots campaigns and local parties have used liquid democracy
in their internal decision making, e.g., Piratenpartei2 and LiquidFriesland3 in
Germany, Demoex4 in Sweden. Behrens [8] provides a comprehensive overview
of the historical development of liquid democracy upon which we base the brief
historical overview of liquid democracy that follows.

Liquid democracy originated from the concept of transitive votes, which was
first proposed by Dodgson [27]5. The author proposed to allow voters to transfer
their votes to representatives when selecting members of a house of representa-
tives. Dodgson [27] proposed to endow representatives with the following three
rights:

• directly use accrued delegations;

• further transfer received delegations to other representatives;

• leave votes unused.

Almost a century later, Tullock [66] discussed such a system in which each voter
can choose herself or another voter as a representative as a form of representative
democracy, and observed that it combines the characteristics of direct democracy
and representative democracy. Tullock [66] also first suggested that such a
democratic system can only become feasible by utilizing digital technology.

Two years later, Miller [58] extended the proposal of Tullock [66] by assuming
that voters may choose different proxies for different issues, and they may also
retract previous delegations at any time. However, the system proposed by Miller
[58] is still closer to proxy voting, since he did not explicitly state that delegations
could be further delegable.

In 1995, Lanphier [52] proposed to add the feature that each delegator can,
at any time, change her proxy, or override the proxy’s vote by retrieving her
delegation and using the vote directly. Like Miller [58], Lanphier [52] did not
explicitly consider delegations to be further delegable.

In the early 2000s, Ford [34] and Green-Armytage [38] were the first to explicitly
propose the concept of transitive delegations, i.e., that proxies can further delegate
the delegations they accrued to other voters, thereby explicitly identifying a key
feature of the definition of liquid democracy currently in use.

1 https://liquidfeedback.org/
2 https://www.piratenpartei.de/
3 https://www.liquidfriesland.de/
4 http://demoex.se/en/
5 Charles Lutwidge Dodgson, also known by his pen name Lewis Carroll, was the author of the famous

children’s book Alice in Wonderland.
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1.2 recent research in liquid democracy
In this section, we summarize the main on-going research lines in liquid democ-
racy. We base our overview on [62].

1.2.1 Truth Tracking

One of the main lines of research on liquid democracy concerns its performance
on collective truth tracking, i.e., the ability of a group of voters to identify (for
instance, via majority rule) the ”correct” alternative in a set of two (or more)
alternatives, which is one of the standard settings in the study of wisdom of the
crowd phenomena [24]. The typical example is jury decision making, where a jury
needs to decide whether a defendant is guilty or not. In these settings, a tradition
on "jury theorems" [24] has shown that if jurors are sufficiently competent and
sufficiently independent, crowds are "wise" in the sense of becoming infallible if
the group becomes large enough.

Research has shown that liquid democracy may undermine the wisdom of
the crowd by correlating voters’ errors via delegation. Kahng et al. [46] focus on
liquid democracy’s truth-tracking performance under certain classes of delegation
mechanisms, i.e., mechanisms that describe how voters delegate. They mainly
address two truth-tracking related properties: Do No Harm (DNH), i.e., a liquid
democracy mechanism is not worse than direct voting with high probability,
and Positive Gain (PG), i.e., a liquid democracy mechanism can outperform
direct voting with high probability. The authors draw relatively pessimistic
conclusions in terms of these two properties, especially when voters decide
delegation strategies based only on the information of their neighbors in a social
network. However, the truth-tracking performance can be improved by adding
to delegation mechanisms a centralized component which restricts the number
of delegations each voter receives. We will present this model with more details
later in Chapter 2.

Motivated by the centralized component in [46], Gölz et al. [37] study the
problem which selects for each voter at most one proxy given a set of potential
proxies, so to minimize the maximum of agents’ accrued number of delegations.
They show that it is NP-hard to solve this problem. However, it becomes feasible
when using some delegation mechanisms with a mixed delegation model.

Caragiannis & Micha [16] extend the model of [46] by assuming that mis-
informed agents may delegate to even more mis-informed ones, and further
strengthen the pessimistic conclusions of [46]. They then show that it is computa-
tionally intractable to find the delegation structure that maximizes truth-tracking
performance when voters’ delegations are restricted by a social network. Becker
et al. [7] provide further evidence to support the results of [16], however, Becker
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et al. [7] also show that under specific conditions, polynomial time algorithms
exist to find some optimal delegation structures.

While the above-mentioned literature mainly sketches a pessimistic perspective
on liquid democracy’s truth-tracking performance, Halpern et al. [41] provide a
more optimistic picture. They study natural delegation mechanisms for liquid
democracy, where they assume that each agent may choose to directly vote or
to delegate with some probability, according to their expertise on the issue. If
the agent chooses to delegate, she chooses her proxy by a stochastic strategy
based on the expertise of her potential proxies. The authors prove that, with high
probability, the DNH and PG properties proposed by Kahng et al. [46] are satisfied
under specific conditions to characterize crowd wisdom in liquid democracy of
[16].

Butterworth & Booth [15] then further provide philosophical arguments to
address this optimistic perspective with practical considerations. They specify
that crux settings in [46] and [16] do not happen frequently in the real world, i.e.,
delegations are usually motivated by trust and reputation but not by seeking for
a better decision. Moreover, they also point out that examples in [16] are extreme
cases and it is not necessary to maximize the truth-tracking performance if the
collective decision making is guaranteed to be correct in many cases.

Alouf-Heffetz et al. [2] study the truth-tracking performance of liquid democ-
racy empirically by simulating voters’ delegating behaviour in generated social
networks as well as real-world social networks sampled from Facebook users.
Due to the computational hardness of finding the best delegation profile with re-
spect to truth tracking [16], Alouf-Heffetz et al. [2] use a simulated annealing (SA)
algorithm to approximate the best delegation profile in a given social network.
They show that when a high ratio of voters delegate, even delegation mechanisms
where voters can only noisily delegate to a better neighbor can perform similarly
to the SA algorithm. Their simulation results support the claim that delegation
can considerably improve voters truth-tracking performance, especially when the
variance of voters’ individual competences is high. Interestingly, their results do
not reflect significant influence of network structure on liquid democracy’s truth-
tracking performance, except that liquid democracy’s truth-tracking performance
is weakened in extremely sparse social networks.

1.2.2 Ballot Consistency

Liquid democracy can also be applied to preference aggregation settings when
there are more than two alternatives. For example, when ballots are ordinal
rankings of alternatives, the flexible delegation component of liquid democracy
may allow voters to delegate different pairwise comparisons to different voters.
This flexibility can in turn introduce inconsistency into the liquid democracy
system, by violating the transitive property of ballots.
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i

1 : a ≻ b

2 : b ≻ c

3 : c ≻ a

a

b

c

1 : a ≻
b

2
: b
≻

c

3 : c ≻ a

Figure 1.2: Inconsistency introduced in Example 2. Left: Voter i delegates the pairwise
comparisons to three different voters. Right: The aggregated ballot of voter i
becomes a cyclic preference (inconsistency introduced).

Example 2. Consider a voting with three alternatives {a, b, c}. Voter i delegates the
decisions on the pairwise comparisons of these three alternatives to three different voters,
say the comparison between a and b to voter 1, the comparison between b and c to voter 2,
and the comparison between a and c to voter 3. Then inconsistency occurs, for example,
if voter 1 submits a ≻ b, voter 2 submits b ≻ c, while voter 3 submits c ≻ a. This makes
the ballot of voter i a cyclic ranking of a, b and c, as shown in Figure 1.2.

Brill & Talmon [14] formalize the inconsistency problem as pairwise delegative
systems, and show that it is computationally intractable to detect an inconsistent
ballot. They further propose several methods to cope with the inconsistency
problem, e.g., modifying delegations, or using voting rules to aggregate ranked
delegations. Inconsistency problems in liquid democracy have also been studied
in other voting settings, such as participatory budgeting [45] and judgement
aggregation [20, 23].

Christoff & Grossi [20] propose to resolve inconsistencies by treating liq-
uid democracy as a process of ballot copying rather than of vote delegation.
Individuals would then refrain from copying ballots when these give rise to
inconsistencies.

Colley & Grandi [23] propose two polynomial time algorithms to resolve
inconsistent ballot profiles by allowing voters to submit ranked delegations
(which are also proposed in the aforementioned [14]) over issues, such that, in
order to meet the constraints, the algorithms can modify voters’ delegations/votes
according to their priorities.
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1.2.3 Game-theoretical Analysis

From a different viewpoint, Bloembergen et al. [11] formalize liquid democracy
in a game-theoretic model and define so-called delegation games. They assume
that, under a costly binary voting setting, each agent benefits from only one of
two alternatives but the agent does not necessarily know which one. To correctly
identify the best alternative for them, agents incur a cost. They can then choose
to vote directly incurring that cost, or to delegate to a proxy at no cost, hoping
that the proxies can cast a more accurate ballot for them. Bloembergen et al. [11]
then study the existence of Nash equilibria in this type of interactions, i.e., a
delegation profile such that no agent can obtain a better outcome by deviating
from it, in general and for several subclasses of delegation games. We will present
this model in more details later (in Chapter 2).

Escoffier et al. [31] extend the above game-theoretic model. They assume that
each agent has an ordinal preference over all the other agents. This preference
denotes to whom the agent prefers to delegate. They study the existence of Nash
equilibria in such preference profiles. Escoffier et al. [31] show that generally,
Nash equilibria cannot be guaranteed to exist, and it is intractable to verify the
existence of a Nash equilibrium given a preference profile. However, they prove
that if the social network is a tree, it costs polynomial time to verify the existence
of Nash equilibria and whether a Nash equilibrium satisfies certain properties,
such as minimizing the dissatisfaction of voters and minimizing the maximum
voting power of a voter who does not delegate.

1.2.4 Delegation Cycle

Delegation cycles, in which agents delegate back to themselves through other
proxies, is a much debated issue in liquid democracy since it introduces a lack of
representation for the agents in the cycle and those delegating to them.

Example 3 (Example 1 continued). We continue to consider the original delegation
structure (left in Figure 1.1) in Example 1. If Sarah changes her mind to delegate to
Ineke, a delegation cycle is formed: Ineke delegates to Renske, Renske delegates to Sarah,
and Sarah further delegates back to Ineke. This results in that none of Ineke, Renske and
Sarah votes (loss of representation).

Christoff & Grossi [20] treat cycles precisely as a loss of representation in that
they induce abstentions by all agents involved in delegation cycles and those
delegating to them. They propose to solve delegation cycles by overruling them
with default values agents would be requested to cast even when delegating.

Several other researches approach this problem by allowing agents to point to
multiple other agents as their potential proxies and provide rankings over them.
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Given this information, so-called delegation mechanisms are then used to select
one proxy for each agent to avoid forming cycles in the final delegation structure.

To determine better delegation for each agent, Kavitha et al. [48] study the
branching problem which aims at finding a subgraph where each node has at
most one in-degree (therefore the tail node is the proxy) for a given directed
graph. They show that given a preference over in-degrees for each node, it is
polynomial-time computable to verify the existence of a popular branching, i.e.,
no majority of nodes prefer another branching, and find it.

Kotsialou & Riley [50] study two classes of such delegation mechanisms: Depth-
first mechanisms (DFMs) and Breadth-first mechanisms (BFMs). DFMs assign
delegations to agents that are as preferred by them as possible, while BFMs
prioritize shorter delegation chains (i.e., the transitive chains from delegators to
the agents who eventually use the delegations). The authors show that BFMs can
resolve delegation cycles.

Brill et al. [13] further specify more general classes of delegation mechanisms,
of which DFMs and BFMs are special cases. Then, the authors investigate these
mechanism classes by verifying the axioms that the mechanisms satisfy. Lastly,
Brill et al. [13] also develop an axiomatic characterization for DFMs and BFMs,
respectively.

1.2.5 Data-driven Analysis

Kling et al. [49] is, to date, the only study of liquid democracy based on real-world
data. They investigate delegating behaviour by analysing long-term data from the
platform LiquidFeedback, which was in use by the German Pirate Party during
2009-2013. The authors are mainly interested in the voting power distribution
resulting from delegations, especially the emergence of super-voters (i.e., voters
accruing high levels of voting power).

They show that super-voters do appear frequently. However, most of those
super-voters vote in accordance with the majority. That is, although super-voters
exist, they usually do not manipulate the system by abusing their voting power.
To measure the power accrued by voters, Kling et al. [49] develop variants of
voting power indices, such as the Banzhaf index [5] and the Shapley-Shubik
index [64], inspired by their empirical findings. We will discuss these indices in
Chapter 2.

1.3 research contributions
Taking inspiration from some of the above lines of research, in this dissertation,
we address three questions:

1. How can we measure voting power in liquid democracy?
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2. Can we improve liquid democracy’s truth-tracking performance if we allow
agents to split their delegations across several proxies?

3. How do agents behave in delegation games when they care about power or
are allowed to split delegations?

We turn now to a more detailed presentation of these questions.

1.3.1 How Can We Measure Voting Power in Liquid Democracy?

Voting power is a controversial issue in liquid democracy, as the system may
suffer from manipulation if a small subset of agents accrue a large number of
delegations due to the flexibility endowed by the system. As mentioned above,
Kling et al. [49] propose to adapt existing voting power indices, the Banzhaf power
index [5, 63] and the Shapley-Shubik power index [64], to liquid democracy in
order to measure the voting power of the agents that do not delegate.

However, their analysis does not capture the instant recall component (recall
Section 1.1) of liquid democracy. Since agents are allowed to change their
delegations during the process leading to a vote, delegators may still exert
significant influence on the voting results.

The first contribution of this dissertation is to develop a novel voting power
index, which is a strict generalization of the Banzhaf power index, for liquid
democracy. By using this power index, we can capture the influence of both
delegators and voters who eventually cast ballots. We provide an axiomatic
characterization of this power index, and study its properties.

1.3.2 Can We Improve Liquid Democracy’s Truth-tracking Performance If We
Allow Agents To Split Their Delegations Across Several Proxies?

As reported above, whether liquid democracy helps or hinders the wisdom of
the crowd is an open issue in the literature.

Shapley & Grofman [65] prove that the wisdom of the crowd is maximal if
voting weight can be re-distributed among agents in a way dependent on their
individual accuracies. Inspired by their work, we study liquid democracy as
a mechanism to redistribute voting weight through delegations in a way that
approaches the optimal voting weight distribution shown in [65].

In order to achieve such an aim, we assume that agents may divide their voting
weight and delegate it to multiple proxies. Based on this assumption, we propose
two ways to interpret the agents’ apportioning of weights, and design centralized
delegation mechanisms, which output the optimal voting weight distribution in
specific classes of social networks.
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1.3.3 How Do Agents Behave in Delegation Games When They Care About
Power or Are Allowed To Split Delegations?

We incorporate the proposals answering questions in Section 1.3.1 and Sec-
tion 1.3.2 into the game-theoretic model of [11], and investigate their influence on
agents’ delegation strategies from a game theory point of view.

In the delegation games defined by Bloembergen et al. [11], agents aim at
delegating to more accurate agents, i.e., agents with higher probability to make
the correct decision, so as to rely on them to vote correctly. We investigate two
types of games based on that work:

1. Delegation games sensitive to power. In these games, we assume that, while
agents try to delegate to more accurate agents, they also have incentives to
retain voting power in the liquid democracy system. This extra motivation
considerably changes agents’ delegating behavior, and we obtain consider-
ably different results from those in [11]. We analyze the existence of Nash
equilibria in these delegation games and find that Nash equilibria are not
guaranteed to exist in general, but they can be shown to exist in several
special classes of delegation games.

2. Delegation games with weighted delegations. In these delegation games, we
assume that agents can partition their voting weight and delegate it to
multiple proxies. Since agents are allowed to take weighted delegation
strategies, equilibria are always guaranteed to exist [59]. We look at the
delegation structures in equilibria under this new assumption, as well as
the quality of such equilibria in terms of truth-tracking accuracy.

Finally, for specific classes of the game-theoretic models at points 1 and 2

above, we study how agents behave in random social networks, by computer
simulations.

1. Experiments on delegation games sensitive to power. We investigate agents’
delegation behavior by manipulating their incentives to retain voting power
in the delegation games. To model agents’ behavior, we utilize standard
equilibrium computation dynamics (such as better response dynamics [59])
by adding the power-sensitive motivation into the model of [11]. We find
that, in general, delegations are less frequent when the connectivity of the
social network is sparse or agents’ incentives to retain voting power are
strong.

2. Experiments on delegation games with weighted delegations. We use the similar
equilibrium computation dynamics as above to simulate agents’ behavior in
the weighted delegation game model generalizing [11]. We observe that in
the dynamics, agents may distribute their weighted delegations over proxies
differently: from uniform distributions to concentrations on high-accuracy
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proxies. Subsequently a variety of measures, including one concerning
truth-tracking performance, are computed to compare the performance
of weighted delegations. We find that the truth-tracking performance of
liquid democracy is improved when the distribution of delegations is less
concentrated.

1.4 outline of the dissertation
This dissertation consists of three parts: Part I Background (Chapter 1 and
Chapter 2), Part II (Chapter 3 and Chapter 4), and Part III (Chapter 5 and
Chapter 6). In Chapter 2, we introduce the thesis background and details on
the existing research on liquid democracy, upon which we base our research. In
Chapter 3, we present our voting power index for liquid democracy and study
its axiomatic properties. Then, in Chapter 4, the proposed voting power index is
incorporated into delegation games, and both theoretical and empirical results
on the resulting game-theoretic model are presented.

In Chapter 5, we present our theory of weighted delegations, where agents
can partition their voting weights and delegate to multiple proxies. Two ways
of interpreting weighted delegations are provided, and we show that optimal
delegations in terms of truth tracking become possible unlike in the standard
case. Then, in Chapter 6, we conduct a similar game-theoretic analysis as in
Chapter 4 on delegation games with weighted delegations.

Finally, Chapter 7 concludes the dissertation by summarizing its findings and
outlining an agenda for future research.

The structure of the dissertation is shown in Figure 1.3.

1.5 sources of chapters
The contents in this dissertation are based on the following papers:

1. Yuzhe Zhang and Davide Grossi. Power in liquid democracy. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 35, no. 6, pp.
5822-5830. 2021.

2. Yuzhe Zhang and Davide Grossi. Power in Liquid Democracy: Theory and
Computational Experiments, to be submitted (extended improved version of
1).

3. Yuzhe Zhang and Davide Grossi. Tracking Truth by Weighting Proxies in
Liquid Democracy. the 8th International Workshop on Computational Social
Choice, 2021.
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Introduction

Preliminaries: notations
& basic models (Chapter 2)

Theory: power in liquid
democracy (Chapter 3)

Theory: weighting proxies
in liquid democracy (Chapter 5)

Game-theoretic analysis
incorporating new theoretical
insights (Chapters 4 & 6)

Experiments: simulations of
rich delegation games (Chapters 4 & 6)

Figure 1.3: Dissertation structure and main contributions: different theories of liquid
democracy are developed in Part II and Part III, however, similar game-
theoretic analysis and empirical study are conducted in both parts.
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4. Yuzhe Zhang and Davide Grossi. Tracking Truth by Weighting Proxies in
Liquid Democracy. In Proceedings of the 21st International Conference on
Autonomous Agents and Multi-agent Systems, pp. 1482-1490. 2022.

5. Yuzhe Zhang and Davide Grossi, Weighted Delegations in Search for the
Truth: Liquid Democracy by Weighting Proxies, to be submitted (extended and
improved version of 3 and 4).

The material presented in Chapters 3 and 4 is collected in paper 2, which is an
extended version of paper 1.

The material presented in Chapters 5 and 6 is collected in publication 5, which
is an extended version of papers 3 and 4.

Papers published during my Ph.D. trajectory but not included in this disserta-
tion are:

• Takamasa Suzuki, Akihisa Tamura, Kentaro Yahiro, Makoto Yokoo, and
Yuzhe Zhang. Strategyproof Allocation Mechanisms with Endowments and
M-convex Distributional Constraints. Artificial Intelligence 315 (2023): 103825.

• Kentaro Yahiro, Yuzhe Zhang, Nathanaël Barrot, and Makoto Yokoo. Strate-
gyproof and fair matching mechanism for ratio constraints. Autonomous Agents
and Multi-Agent Systems 34, no. 1 (2020): 1-29.

• Anisse Ismaili, Naoto Hamada, Yuzhe Zhang, Takamasa Suzuki, and
Makoto Yokoo. Weighted matching markets with budget constraints. Jour-
nal of Artificial Intelligence Research 65 (2019): 393-421.
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In this chapter, we first introduce the basic model of liquid democracy, based on
which we develop all theoretical and simulation results in this dissertation. Then
we introduce the theory of power indices and wisdom of the crowd, which are
the basis of our proposed theory. Finally, we review two lines of research that
form the background of our contribution to liquid democracy: one assumes that
agents’ ultimate goal is to delegate to agents with good expertise; while in the
other, the focus is on the overall accuracy of group decisions.

2.1 a liquid democracy model in binary voting
Our model is based on the binary voting setting for truth-tracking [24, 30, 40]. The
setting has already been applied to the study of liquid democracy by Bloembergen
et al. [11], Caragiannis & Micha [16], and Kahng et al. [46].

In binary voting, a finite set of agents N = {1, 2, . . . , n}, initialized with a voting
weight profile w = (w(1), . . . , w(n)) ∈ RN

≥0,1 has to vote on whether to accept
(1) or reject (0) an issue. The vote is supposed to track the correct state of the
world—that is whether it is “best" to accept or reject the issue. Let θ denote this
correct state, which we call the truth. Then we assume that both alternatives have
equal prior of being the truth, i.e., Pr(θ = 1) = Pr(θ = 0) = 0.5.

Let v = (v1, . . . , vn), where vi ∈ {0, 1}, denote the ballot profile, which records
the ballot cast by each agent i ∈ N. Then an agent’s ability to make the correct
choice (i.e., the agent’s error model) is represented by the agent’s accuracy qi =
Pr(vi = x | θ = x), where x ∈ {0, 1}, and we call the vector q = (q1, . . . , qn) ∈ RN

the accuracy profile. We assume that qi ∈ (0.5, 1], i.e., each agent is strictly more
accurate than a random decision (q = 0.5). Agents’ accuracies are also assumed
to be independent, that is, for any pair of agents i, j ∈ N, the probability that they
both cast the correct ballot is Pr(vi = 1, vj = 1) = qiqj.

In this model, we divide the mechanism of liquid democracy into two phases:
the delegation phase and the voting phase. In the delegation phase, all agents
decide to whom to delegate their vote (delegation strategy), and then in the voting
phase, all agents who do not delegate vote with weight corresponding to their
accrued delegations.

1 We normally call the setting one-person-one-vote when w(i) = 1 for all i ∈ N.

朱朷
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delegation profiles The choices made in the delegation phase determine
what we call a delegation profile. When agent i ∈ N delegates to agent j ∈ N
we write di = j. Then d = (d1, d2, . . . , dn) is called a delegation profile (or simply
profile) and is a vector describing each agent’s delegation strategy. Equivalently,
delegation profiles can be usefully thought of as maps d : N → N, where
d(i) = di. When di = i, agent i votes on her own behalf. We call such an agent
a guru. On the other hand, any agent who is not a guru is called a delegator.
For profile d, and C ⊆ N, let Gu(C, d) denote all gurus in C in profile d, i.e.,
Gu(C, d) = {i ∈ C | di = i}. We simply write Gu(d) instead of Gu(N, d) to
denote all gurus in N. A delegation profile in which all agents are gurus (i.e., for
all i ∈ N, di = i) is said to be trivial.

chains and cycles Any profile d can also be represented by a directed
graph ⟨N, E(d)⟩. An edge from agent i to j (i → j) exists whenever di = j, i.e.,
E(d) = {(i, j) ∈ N × N | d(i) = j}. Given a profile d, we call such a directed
graph the delegation graph of profile d. Consider then a profile d where a path
exists from i1 to ik, i.e., i1 → i2 → · · · → ik. We call such paths delegation chains.
When such a chain from agent i1 to guru ik exists, every agent on this delegation
chain (indirectly) delegates to ik, and we denote i1’s guru by d∗i1 = d∗(i1) = ik. In
delegation graphs, the gurus are linked to themselves via a loop, i.e., a delegation
chain with length of 1 and coincident head and tail. Note that we sometimes do
not draw these loops in delegation graphs when the context is clear. Additionally,
the set of agents between any pair of agents on a delegation chain are called the
intermediaries between the two agents. For example, suppose the above delegation
chain occurs in profile d. Then the set of intermediaries between i1 and ik is
{i2, . . . , ik−1}, and it is denoted by δd(i1, ik). Between agents i1 and ik, the number
of intermediaries plus the terminal ik, is called the delegation distance from i1 to ik
and is denoted by ∆d(i, j) = |δd(i1, ik) ∪ {ik}|.

A delegation cycle is a delegation chain with a length more than 1 where the
first and last agents coincide, e.g., i1 = ik in the above delegation chain. In such a
case, no agent in the chain is linked to a guru unless the chain is a one-element
loop from i1 to herself. Therefore neither does any agent linked via a delegation
chain to an agent in a delegation cycle have a guru. For C ⊆ N, we write
De(C, d) = {j ∈ N | d∗j ∈ Gu(C, d)} to denote the set of delegators that directly
or indirectly delegate to a guru in C, and all gurus in C. If C = {i} we simply
write De(i, d) for the set of agents whose guru is i.

The weight accrued by an agent via delegations in d is:

w(i, d) =

∑j∈De(i,d) w(i) if i ∈ Gu(d)

0 otherwise
(2.1)
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As gurus are the only ones voting in d, they accrue the weight transferred by
delegators through delegation chains. Observe that because of delegation cycles,
∑i∈N w(i, d) may be smaller than n. That is, voting weight is lost if some agents
are caught in delegation cycles. This is in line with the intuition that agents not
linked to a guru fail to relay their votes to the voting mechanism.

underlying network Finally, for the delegation phase, we assume dele-
gations to be constrained by a network represented by an undirected graph
R = ⟨N, E⟩, where N is the set of agents, and E ⊆ N × N. For i ∈ N, R(i)
denotes the neighborhood of i, i.e., R(i) = {i} ∪ {j ∈ N | (i, j) ∈ E}. Agents are
able to delegate only to agents in their neighborhoods. We write R′(i) to denote
R(i)\{i} and RN to denote all networks with vertices N.

An alternative representation of networks is based on directed graph, which
are a generalization of undirected graph. We can also denote a directed graph
by a tuple R = ⟨N, E⟩, where each agent is a node in the network and for any
i, j ∈ N (i ̸= j), (i, j) ∈ E if there is an directed edge from i to j. Then j is called
a neighbor of agent i. We also use R′(i) to denote all neighbors of agent i, i.e.,
R′(i) = {j ∈ N | (i, j) ∈ E} and R(i) = R′(i) ∪ {i}. Note that we will be working
with this more general network representation in Part II.

In the rest of this dissertation, we use a few specific classes of networks. A
complete network of the undirected graph class is a network R = ⟨N, E⟩ where
all pairs of nodes are linked. In the directed graph class, this requires that
between each pair of nodes, there exist two edges with different directions. A
connected network of the undirected graph class is a network R in which for each
pair of nodes, we can always find an undirected path linking them. However,
in the directed graph class, in a connected network, from each node, we can
always find a directed path to each of the other nodes. In the experiments of this
dissertation (i.e., in Section 4.3 and Section 6.2), we generate random networks
as the underlying networks. A random network is generated by specifying a
probability p, such that for any agent i ∈ N, she is linked with any other agent
j ∈ N \ {i} with probability p.

voting with accrued weight Once delegations are settled, liquid democracy
results in weighted voting where only gurus (Gu(d)) vote, in the following voting
phase, with the sum of weights they accrued from direct or indirect delegations
in profile d, i.e., w(i, d) for all i ∈ Gu(d) by Equation 2.1.

Then we assume that the weighted majority rule is utilized to determine the
result. That is, the issue is accepted if

∑
i∈Gu(d)

w(i, d)vi >
n
2

, (2.2)
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otherwise the issue is rejected. Notice that Equation 2.2 decides whether to
accept or reject an issue deterministically, and the decision is biased towards
rejecting the issue. Sometimes, we also assume that ties are randomly broken
when ∑i∈Gu(d) w(i, d)vi =

n
2 , i.e., in case of a tie, the issue is rejected or accepted

uniformly at random. We use both random and deterministic versions in the
dissertation depending on the context. Note also that delegation cycles make it
harder to accept an issue, since they lead to loss of voting weight. Notice that
when d is trivial, i.e., each agent is a guru, the voting phase reduces weighted
voting, where each agent votes with their initialized voting weight.

We use the following example to briefly illustrate the above concepts.

Example 4. Consider a set of agents N = {1, 2, 3, 4, 5, 6, 7} with initialized weight
w(i) = 1 for all i ∈ N and assume the delegation profile d in Figure 2.1. Observe
that the only gurus in the profile are Gu(d) = {1, 7}, and agents 3 and 2 delegate to
1 on a delegation chain 3 → 2 → 1. Therefore d∗(3) = d∗(2) = 1 and 2 is the only
intermediary between agent 1 and 3, i.e., δd(1, 3) = {2}.

In the middle component of the delegation graph, agents 4 and 5 form a delegation
cycle. Hence they have no guru to represent them. Since agent 6 delegates to agent 5,
who is in the delegation cycle, agent 6 is also caught in the cycle and does not have a
guru.

Then in the voting phase, gurus 1 and 7 vote, with weight w(1, d) = 3 and w(7, d) =
1. Therefore in this weighted voting, the issue can be accepted if and only if both 1 and 7
vote for accepting it since n = 7 and w(1, d) + w(7, d) = 4 > n

2 .

1 2 3 4 5 6 7

Figure 2.1: Delegation graph of Example 4

2.2 measures of voting power
From a voting perspective, gurus are the only agents who retain voting power
after the delegation phase. To study voting power in our model (Part II), we
introduce here two well-known power indices, the Banzhaf index [5, 63] and
Shapley-Shubik power index [64], which measure agents’ (different) ability to
influence the final voting result.

To introduce these power indices, we first introduce the notion of simple
games [19].

simple games A simple game is a tuple G = ⟨N, f ⟩, where f is the character-
istic function f : 2N → {0, 1}. For all C ⊆ N, if f (C) = 1 the coalition C is called
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winning, otherwise it is called losing. An agent i (i ∈ C) is called a swing agent for
coalition C if f (C)− f (C\{i}) = 1. Normally, such characteristic functions are
assumed to be monotone, i.e., for all C1, C2 ⊆ N such that C1 ⊆ C2, f (C1) ≤ f (C2).

banzhaf power index Given a simple game G, for all i ∈ N, i’s Banzhaf
index is

Bi(G) =
1

2n−1 ∑
C⊆N\{i}

( f (C ∪ {i})− f (C)), (2.3)

where n = |N|. Intuitively i’s Banzhaf index is the probability that i is a swing
agent for a uniformly random coalition.

shapley-shubik power index Instead of considering a random coalition
in N, the Shapley-Shubik index measures an agent’s probability to swing in a
random permutation sequence of N. That is, agent i’s Shapley-Shubik index in
simple game G is given as

SSi(G) = ∑
C⊆N\{i}

c!(n− c− 1)!
n!

( f (C ∪ {i})− f (C)), (2.4)

where c = |C|. Observe that the Shapley-Shubik index computes the proportion
of permutation sequences in which i swings for the coalition consisting of herself
and all her predecessors.

Example 5. Consider agents N = {1, 2, 3, 4} and initial voting weight w = (3, 4, 2, 2),
so for example, agent 1 can cast 3 votes for an alternative. Assume that the winner is
decided by weighted majority, i.e., alternative 1 wins if and only if ∑i∈N viw(i) ≥ 6,
otherwise it loses.

We first compute the Banzhaf index of agent 3 as an example. She is swing for coalitions
C0 = {2, 3} and C1 = {1, 3, 4}, therefore, B3(G) = 2

23 = 1
4 .

To compute SS3(G), we check whether 3 is swing for all permutation sequences of N.
For instance in sequence (1, 2, 3, 4), we count agents’ weight in a round-robin order:

1. The coalition consisting of the first agent is {1}, and w(3) = 3, indicating {1} is
losing;

2. The coalition consisting of the first and second agents is {1, 2}, and w(1)+w(2) =
7, therefore {1, 4} is already winning.

Hence we conclude that agent 3 is not a swing agent for this sequence.
However, for sequence (2, 3, 1, 4), since {2} is a losing coalition, while {2, 3} is

winning, agent 3 swings for this sequence. The set of sequences for which agent 3
swings is then {(2, 3, 1, 4), (2, 3, 4, 1), (1, 4, 3, 2), (4, 1, 3, 2)}, by which we obtain that
the Shapley-Shubik index of agent 3 is SS3(G) = 4

4! =
1
6 .
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2.3 wisdom of the crowd
In the truth-tracking perspective on binary voting, we are concerned about a
group of agents’ ability to reveal the truth using majority voting. That is, what is
the probability that at least half of the agents choose the correct alternative? Note
that in this dissertation we assume that agents are initially pairwise independent,
i.e., for any pair of agents i, j ∈ N, the probability that they both choose the true
state is Pr(vi = vj = θ) = qiqj. Then, based on the assumption of independence,
the concept of group accuracy is formulated as follows.

Definition 1 (Group accuracy). Given a set of agents N and an accuracy profile q, we
call group accuracy, denoted as qN , the probability that the (weighted majority) winner
is θ, i.e.,

qN = ∑
C∈W

∏
i∈C

qi ∏
i∈N\C

(1− qi), (2.5)

where W is the set of winning coalitions. A coalition C ⊆ N is winning if its weight is
larger than the weight of its complement coalition N \ C, or if its weight is equal to its
complement coalition and it is selected uniformly at random.

That is, when deciding whether a coalition is a winning coalition, we break
ties (∑i∈C w(i) = ∑i∈N\C w(i)) uniformly at random. We also say that a specific
coalition C’s accuracy is ∏i∈C qi ∏i∈N\C(1− qi), where C ⊆ N.

condorcet theorem The Condorcet theorem [24] is the simplest formulation
of the wisdom of the crowd. The theorem assumes that each agent has the same
individual accuracy. It then states that when each agent is well-informed, i.e.,
with individual accuracy that is higher than 0.5, a group of agents who have the
same accuracy always make a better decision than each individual, and the group
accuracy monotonically increases with the group size. However, when each agent
is mis-informed, i.e., with individual accuracy lower than 0.5, a group of agents
who have the same accuracy always make a worse decision than each individual,
and the group accuracy monotonically decreases with the group size. Note that
the Condorcet theorem also assumes that |N| is odd to avoid ties.

Theorem 1 (Condorcet jury theorem [24]). Let |N| be odd and w(i) = 1 for all i ∈ N.
Then:

1. if qi = q ∈ (0.5, 1], we have qN ≥ q, and qN monotonically increases in N and
lim|N|→∞ qN = 1.

2. if qi = q ∈ [0, 0.5), we have qN ≤ q, and qN monotonically decreases in N and
lim|N|→∞ qN = 0.
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condorcet theorem for heterogeneous agents A natural generalization
of Theorem 1 is then to consider the group accuracy in a heterogeneous setting,
where each agent has a different individual accuracy.

Feld & Grofman [32] provided several results on the group accuracy of the
combined group when adding one agent to an existing set.

Theorem 2 ([32]). Given a set of agents N, where |N| = n is odd, and w(i) = i and
qi ∈ (0.5, 1] for all i ∈ N, and a single agent j /∈ N, with qj ∈ (0.5, 1], for the combined
set N′ = N ∪ {j}, we have qN′ ≥ qN if either of the following conditions holds:

1. The average individual accuracy, 1
n ∑i∈N qi, of N is lower than qj.

2. qj > qN .

Berend & Paroush [10] developed a general result for the asymptotic part of
Theorem 2.

Theorem 3 ([10]). limn→∞ qN = 1 holds if and only if at least one of the following
conditions holds:

1. limn→∞
∑n

i=1 qi−n/2√
∑n

i=1 qi(1−qi)
→ ∞.

2. For every sufficiently large n, |{i ∈ N | qi = 1}| ≥ n
2 .

condorcet theorem for weighted voting Based on the above setting of
heterogeneous agents, Shapley & Grofman [65] further extended the Condorcet
theorem to investigate weighted voting, instead of the one-person-one-vote setting
in the above theorems of group accuracy. They provided an optimal way of
assigning voting weight among agents based on the agents’ individual accuracies.
We also provide the proof for the following theorem, which is relevant for our
results in Part III.

Theorem 4 ([65]). For a set of agents N such that qi ∈ (0.5, 1] for all i ∈ N, qN
is maximal if for each agent i ∈ N, w(i) ∝ log( qi

1−qi
), i.e., the weight of agent i is

proportional to log( qi
1−qi

).

Proof. First by this weight allocation, we have that for each agent i ∈ N, the
voting weight w(i) ∝ w log( qi

1−qi
), where w is a constant.

Then for any winning coalition N1 ⊆ N, we have that

∑
i∈N1

w(i) > ∑
i∈N\N1

w(i), (2.6)

which can be rewritten as

∑
i∈N1

w log(
qi

1− qi
) > ∑

i∈N\N1

w log(
qi

1− qi
). (2.7)
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Figure 2.2: Plot of the optimal voting weight, i.e., log( qi
1−qi

), as a function of qi.

Then we further obtain

∏
i∈N1

qi
1− qi

> ∏
i∈N\N1

qi
1− qi

, (2.8)

and then from Equation 2.8, we have

∏
i∈N1

qi ∏
i∈N\N1

(1− qi) > ∏
i∈N1

(1− qi) ∏
i∈N\N1

qi. (2.9)

Equation 2.9 indicates that under the voting weight allocation rule, each winning
coalition’s accuracy is always higher than that of the coalition’s complement
set (which is therefore a losing coalition). Therefore we conclude that qN is
maximal.

Intuitively, this weight allocation rule guarantees that for each winning coalition,
the group accuracy is higher when the coalition chooses the true state other than
when its complement chooses the true state. The optimal voting weight log( qi

1−qi
)

is plotted in Figure 2.2 as a function of qi.
Note that this weight allocation is not the unique one to achieve this maximal

group accuracy. If any coalition satisfying Equation 2.6 is a winning coalition,
the same maximal group accuracy can be obtained. The intuition is shown in
Example 6.

Example 6 ([65]). Consider five agents with accuracies (0.9, 0.9, 0.6, 0.6, 0.6). Then
by the weight allocation rule in Theorem 4, we obtain the normalized weight allocation
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(0.392, 0.392, 0.072, 0.072, 0.072). However, if the inequality system in Equation 2.10 is
satisfied, the set of winning coalitions is consistent, i.e., corresponding to the same group
accuracy.

w(1) + w(2) > w(3) + w(4) + w(5)

w(1) + w(3) + w(4) > w(2) + w(5)

w(1) + w(3) + w(5) > w(2) + w(4)

w(1) + w(4) + w(5) > w(2) + w(3)

w(2) + w(3) + w(4) > w(1) + w(5)

w(2) + w(3) + w(5) > w(1) + w(4)

w(2) + w(4) + w(5) > w(1) + w(3)

(2.10)

For example, weight allocations (0.47, 0.47, 0.02, 0.02, 0.02) and (0.26, 0.26, 0.16, 0.16, 0.16)
can both achieve the maximal group accuracy.

This extension of the Condorcet theorem is the starting point of our contribution
in Part III, since liquid democracy can be viewed as a mechanism which re-assigns
voting weights among the agents. That is, in Part III, we aim at (approximately)
achieving the voting weight distribution proposed in Theorem 4, by liquid
democracy, in order to achieve the maximal group accuracy.

Since in liquid democracy, the weight re-allocation process is realised via
delegation, we re-define the group accuracy for liquid democracy by introducing
an additional input, the delegation profile d.

Definition 2 (Group accuracy under delegation). Given a group of agents N, an
individual accuracy profile q and a delegation profile d, the group accuracy under d is:

qN,d = ∑
C∈W

∏
i∈C

qi ∏
i∈N\C

(1− qi), (2.11)

where W = {C ⊆ N | ∑i∈C w(i, d) > ∑i∈N\C w(i, d)} is the set of winning coali-
tions. Ties are broken uniformly at random.

We simply call “group accuracy under delegation” group accuracy in the rest of
the dissertation.

In the following two sections of this chapter, we review the two main recent
lines of research in liquid democracy upon which we build our contributions.

The first one focuses on agents’ motivation to delegate and assumes that agents
seek to delegate to experts on whom the delegators can rely to make better
decisions. This research line takes a decentralized perspective. The second one
focuses on the effects of liquid democracy on group accuracy. It assumes that
agents decide their delegations through mechanisms, and studies the group
accuracies achieved by various mechanisms.
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In Section 2.4, we first introduce the game-theoretical model by [11], in which
agents aim to delegate to more accurate agents, and the resulting equilibrium
analysis. Thereafter, in Section 2.5, the algorithmic analysis on group accuracy
optimization problem is introduced, and it provides more insight into under-
standing the challenge imposed on this optimization problem.

2.4 rational delegations
Bloembergen et al. [11] apply game theory [59] to study agents’ rational delegation
strategy in liquid democracy. Other than in the truth-tracking model (Section 2.1),
this model belongs to a more general class, which we call type tracking, where each
agent benefits from one and only one of the two alternatives in the binary voting
setting, and the preferred alternative of an agent is called her “type". In this
model, each agent belongs to a type probabilistically, and is also initialized with
an accuracy: agents can only imperfectly recognize their types. The truth-tracking
model above is a special case of the type-tracking model where all agents have
the same type.

The focus of [11] is the decision-making problem that the voters face: choosing
for direct voting, which determines a cost in terms of effort invested to acquire
information of the issue being voted for; or choosing to delegate to another voter
so as to avoid the cost.

2.4.1 From Truth Tracking To Type Tracking

In the model by Bloembergen et al. [11], agents seek to delegate to gurus, who
tend to make better choices for them. Instead of truth tracking in binary votings,
each agent i ∈ N is initialized with a type τ(i) ∈ {0, 1}, such that i benefits from
the candidate consistent with her type. Agents’ types are probabilistic, i.e., τ(i)
is a random variable drawn from a distribution P. Then for any pair of agents
i, j ∈ N, let pi,j denote the likelihood that they are of the same type, i.e., pi,j =
P(τ(i) = τ(j)) = P(τ(i) = 1)P(τ(j) = 1) + (1−P(τ(i) = 1))(1−P(τ(j) = 1)).
Note that the truth-tracking model is a special case, where all agents are of type
θ with probability 1.

Then an agent’s accuracy is expressed as the probability that the agent votes
according to her type. That is qi = Pr(vi = x | τ(i) = x), where x ∈ {0, 1}.

Each agent i can then choose between: (i) voting on her own behalf with
accuracy qi and pay effort ei ∈ [0, 0.5), or (ii) delegating to a neighbor in the
underlying network, and inherit the accuracy of the neighbor’s guru. Based on a
delegation profile d, we can compute the individual accuracy of agent i as:

q∗i (d) = qd∗i
pi,d∗i

+ (1− qd∗i
)(1− pi,d∗i

), (2.12)
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if i is not caught in a delegation cycle, otherwise 0.5, i.e., as accurate as a random
decision. Intuitively, if i delegates to guru d∗i , the probability that her vote is used
according to her type equals the probability that her guru votes correctly when
they are of the same type, plus the probability that the guru makes a wrong
decision when they have different types.

2.4.1.1 Delegation Games

Based on these concepts, we define a delegation game as follows.

Definition 3. A delegation game is a tuple G = ⟨N, P, R, Σi, ui⟩, with i ∈ N, where
N is the set of agents, P is the probability distribution on the types {0, 1}, R is the
undirected graph representing the underlying network, Σi ∈ N is the strategy space of
agent i (i.e., her neighborhood R(i) in the underlying network), and the utility function
ui of i is:

ui(d) =

q∗i (d) if di ̸= i

qi − ei if di = i
. (2.13)

Observe that, in the above definition, i’s utility equals the accuracy inherited
from her guru if i is a delegator, otherwise it equals her own accuracy minus the
effort, ei, spent in order to vote with accuracy qi. Note that qi − ei is assumed to
be in range (0.5, 1], otherwise the agent would prefer to choose randomly without
effort. Additionally, agents caught in a delegation cycle are assumed to obtain a
utility of 0.5, i.e., they make random decisions, due to their loss of representation.
In such cases, agents fail to express their opinions (see also [20]).

Among the general delegation games, some special classes can be specified.
We call those delegation games with deterministic types where all agents have
a type with probability 1. Moreover, when all agents have the same type, it is
called a delegation game with homogeneous agents, i.e., the same setting as the
truth-tracking model of Section 2.1. When, for all agents, the effort to directly
use their vote is 0, we call it a delegation game with effortless voting.

Bloembergen et al. [11] studied the existence of (pure strategy) Nash equilibria
(NE), which, in some subclasses of the delegation games, may be achieved by best
response dynamics.

Definition 4 (Nash Equilibria). Let G be a delegation game. A delegation profile d is a
Nash equilibrium of G if for any agent i ∈ N, no profile d′ (d′ ̸= d) exists such that for
all j ∈ N \ {i}, d’(j)=d(j), and ui(d′) > ui(d).

Intuitively, in a Nash equilibrium, no agent has incentive to unilaterally change
her delegation strategy.

Definition 5 (Best Response). Given a delegation game G and a delegation profile d,
for any agent i ∈ N, delegation strategy d′i ∈ Σi is called a best response of agent i to
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profile d if d′i ∈ arg maxd′′i ∈Σi
ui((d−i, d′′i )), where (d−i, d′′i ) is the profile in which all

agents take the delegation strategy in d, except that i takes d′′i .

In other words, given a delegation profile, an agent’s best response is a delega-
tion strategy which maximizes the agent’s utility. We use the following example
to intuitively illustrate the above concepts.

Example 7 (Homogeneous two-agent delegation game [11]). Consider two agents
N = {1, 2} in a complete underlying network R = ⟨N, E = N2⟩, with deterministic
homogeneous type, e.g., Pr(τ(1) = τ(2) = 1) = 1. Then the delegation game can be
described by the payoff matrix in Table 2.1.

vote delegate (to 1)

vote q1 − e1, q2 − e2 q1 − e1, q1

delegate (to 2) q2, q2 − e2 0.5, 0.5

Table 2.1: The delegation game with homogeneous agents in Example 7

A situation can arise such that for some i, j ∈ N (i ̸= j), qj > qi − ei. That is, each of
the two agents prefers to delegate. However, by the above assumption that both q1 − e1
and q2 − e2 are always weakly larger than 0.5, agents need coordination to avoid acting
with the same strategy, i.e., both vote or both delegate (to form a delegation cycle). Notice
that there are two NE in this example, i.e., (d1 = 2, d2 = 2) and (d1 = 1, d2 = 1), since
no single agent can improve by unilaterally changing her own strategy.

Whether Nash equilibria exist in delegation games is an open question. How-
ever, Bloembergen et al. [11] show that Nash equilibria exist in two special classes
of delegation games: delegation games with deterministic types and delegation
games with effortless voting.

deterministic type delegation games This class restricts agents’ type
to be deterministic, that is, each agent i has type 0 or 1 with probability of 1
(P(τ(i)) = 1). Then the existence of a pure NE can always be guaranteed in this
class.

Theorem 5 ([11]). Delegation games with deterministic type agents always have a pure
strategy NE.

Intuitively, to converge to a NE, for each type of agents, we only consider a
sub-network of R, which consists of all agents of that type and connected by
edges in R. Then in each connected component, all agents delegate to the one
with the highest accuracy, and this delegation structure forms a NE, since each
delegator inherits the maximal accuracy so that she has no incentive to deviate
while, also, the gurus cannot deviate, otherwise a delegation cycle would be
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formed. Note that, in this structure, the optimal strategy of the highest-accuracy
agent in each connected component is to be a guru even though voting might cost
her high effort, otherwise a delegation cycle would be formed if she delegates.

This result immediately establishes the existence of NE in the truth-tracking
setting of Section 2.1, where all agents are of the same deterministic type. This is
the class of delegation games we will focus on in this dissertation.

effortless voting This situation corresponds to ei = 0 for all i ∈ N. Here
the existence of a pure strategy NE can also be guaranteed.

Theorem 6. Delegation games with effortless voting always have a pure strategy NE.

Different from the above, the proof is by showing convergence of a process
of best response: agents iteratively choose their best response to the delegation
profile at that moment. It is shown that each agent’s best response does not do
harm to the other agents’ utility, therefore the process converges to a stable state
corresponding to a NE [11].

price of anarchy Later in Chapter 6, we will also be investigating the quality
of NE by using the price of anarchy [51]. To provide the general definition, we
will be using the social welfare of the delegation games. Let Dp be the set of all
pure profiles. û : Dp → R is the social welfare which takes a pure profile and
outputs a real number. An example of social welfare is the utilitarian welfare,
which equals the sum of each agent’s individual utility: ∑i∈N ui(d). The price of
anarchy based on pure strategy is defined as follows.

Definition 6 (Pure Price of anarchy). Given a delegation game G with utility function
û, the price of anarchy of G is as follows:

PoApure =
maxd∈Dp û(d)

mind∈E p(G) û(d)
, (2.14)

where E p(G) is the set of pure strategy Nash equilibria of delegation game G.

Intuitively, the PoApure of a delegation game reflects the game’s efficiency. That
is, it measures ratio of social welfare lost in order to achieve the worst Nash
equilibrium for selfish agents.

In Chapter 6, we will be working with forms of mixed PoA, where agents are
allowed to delegate weightedly.

2.5 liquid democracy v.s. direct democracy
Instead of pursuing to inherit high individual accuracy, in the second research line
relevant for us, agents are motivated to delegate in order to better reveal the true
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state under the setting of truth-tracking binary votings, i.e., to achieve high group
accuracy. By the Condorcet theorem and its extensions, it is known that direct
voting, especially when most agents are well-informed (e.g., with individual
accuracies higher than 0.5), performs well in terms of truth tracking. Literature in
liquid democracy has asked the natural question: can liquid democracy perform
even better than direct voting?

2.5.1 Delegation Mechanisms

Kahng et al. [46] provide a relatively pessimistic answer. They defined two
classes of delegation mechanisms (that is, processes constructing delegation
profiles): local and non-local, where in a local mechanism, agents’ delegation
strategies only depend on their neighbors, while global information is needed to
determine delegations in a non-local mechanism. Observe that these mechanisms
are not game-theoretic. Kahng et al. [46] mainly study whether two properties
are satisfied: the positive gain (PG), i.e., the delegation mechanism can outperform
direct voting in terms of group accuracy (Definition 1), and do not harm (DNH),
i.e., the loss of group accuracy on the delegation mechanism from the direct
voting is asymptotically bounded to zero. They showed that no local mechanism
is PG and DNH, but non-local mechanisms that satisfy PG and DNH do exist.

delegation mechanisms In this model, given a set of agents N, a delegation
mechanism M is a function which takes the underlying network which is repre-
sented as a directed graph R = ⟨N, E⟩ and an accuracy profile q and outputs a
probability distribution on a set of delegation profiles. Mechanism M is said to
deterministically output a delegation profile if the output distribution is degener-
ated on this delegation profile. Then we define the accuracy of the delegation
mechanism as follows.

Definition 7 (Mechanism Accuracy). Given the underlying network R and an accuracy
profile q, the accuracy of delegation mechanism M, qM(R, q), is the probability that the
decision made by the following 4 steps is correct:

1. Apply M to R and q.

2. Sample a delegation profile from the above output distribution.

3. In the profile, each guru votes with her accrued weight computed by Equation 2.1
and individual accuracy.

4. A decision is made by weighted majority rule (Equation 2.2) with a random tie
breaker.

Notice that the group accuracy under delegation (Definition 2) is a special case
of the mechanism accuracy, where in qN,d, the profile can be seen as a mechanism
which outputs a profile d deterministically.
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Then any mechanism is either local or non-local. Given an underlying network
R and an accuracy profile q, agent i approves her neighbor j ∈ R′(i) if qj > qi + α
for some parameter α ∈ [0, 1). Intuitively agent i approves agent j if j’s accuracy
exceeds i’s to a strictly greater extent than α. Let AR,q(i) denote all i’s approval
neighbors, i.e., AR,q(i) = {j ∈ R′(i) | i approves j}. Then by a local mechanism,
i’s delegation strategy only depends on AR,q(i), for example, a local mechanism
is that each agent uniformly at random chooses an approval neighbor to delegate.

gain Let Di denote the direct voting mechanism, i.e., Di(R, q) is the trivial
delegation profile, under which the decision is made by simple majority in the
one-person-one-vote setting. The gain of mechanism M is then defined as:

gain(M, R, q) = qM(R, q)− qDi(R, q). (2.15)

Intuitively, the gain of mechanism M on network R measures the extent to which
mechanism M outperforms Di in terms of mechanism accuracy.

Then the desired axioms are formally defined as:

• A mechanism M satisfies positive gain if there exist γ > 0, n0 ∈N, such that
for all n ≥ n0, there exists a network Rn (with q) on n vertices such that
gain(M, Rn, q) ≥ γ.

• A mechanism M satisfies do not harm if for all ϵ > 0, there exists n1 ∈N such
that for all networks Rn (with q) on n ≥ n1 vertices, gain(M, Rn, q) ≥ −ϵ.

Kahng et al. [46] verify that liquid democracy can easily lead to undesirable
situations from the viewpoint of truth tracking, as illustrated in Example 8.

Example 8 ([46]). Consider a network R = ⟨N, E⟩, such that E = {(i, 1) | i ∈
N \ {1}}, individual accuracy q1 = 4

5 and qi =
2
3 for all i ∈ N \ {1}, and α = 1

10 . That
is, the network is a star, where each agent in N \ {1} has and only has one neighbor 1.
Then a local mechanism M, by which any agent delegates to the highest-accuracy approval
neighbor, outputs delegation profile d, in which d1 = 1 and di = 1 for all i ∈ N \ {1}.
Hence the group accuracy degenerates to the individual accuracy of agent 1, which is 4/5.
However, by Di, as |N| → ∞, the accuracy qDi(R,q) → 1 due to the Condorcet theorem,
and the gain(M, R, q) approaches − 1

5 .

They further prove that no “smart” local mechanism exists.

Theorem 7 ([46]). For any α0 ∈ [0, 1), there is no local mechanism that satisfies the PG
and DNH properties.

Theorem 7 indicates that, to achieve better performance on truth tracking,
a centralized mechanism is needed to coordinate agents’ delegation strategies.
Hence Kahng et al. [46] propose a non-local mechanism called GreedyCap (Algo-
rithm 1), in which a cap on accrued delegation weight is imposed on each agent.
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Algorithm 1 GreedyCap

input: underlying network: R, accuracy profile q, cap C : N→N

1: N′ ← N
2: while N′ ̸= ∅ do
3: let i ∈ argmaxj∈N′ |A−1

R,q(j) ∩ N′|
4: J ← AR,q(i) ∩ N′

5: if |J| ≤ C(n)− 1 then
6: J′ ← J
7: else
8: let J′ ⊆ J such that |J′| = C(n)− 1
9: end if

10: vertices in J′ delegate to i
11: N′ ← N′ \ ({i} ∪ {J′})
12: end while

In words, this algorithm takes as input the underlying network, the accuracy
profile and the cap C : N→N, which is a function taking the number of agents
n = |N| and outputting the cap. In each iteration, the algorithm selects an agent
with the most approvals as a guru, and lets at most C(n) neighbors delegate to
the agent. Those delegators do not further change their delegation strategies,
therefore the output delegation profile only contains one-hop delegation chains.

It can be observed that GreedyCap is PG. However, it violates DNH as shown
in Example 9.

Example 9 ([46]). Assume that α < 1/3. For any odd n = 2k + 1, consider the
underlying network R = ⟨N, E = {(1, 2)}⟩, that is, there is only one edge, from agent
1 to 2. The individual accuracies are: q1 = 1/3, q2 = 2/3, there are k agents with
accuracy 1, and the other k− 1 agents with accuracy 0. Even with cap C(n) = 2, by
GreedyCap, agent 1 would delegate to agent 2. Then the true state will be selected if and
only if agent 2 makes the correct choice, i.e., with probability 2/3. However, by direct
voting, it is sufficient that at least one of agents 1 and 2 vote for the true state, i.e., with
probability 7/9. Hence the loss of GreedyCap is 1/9, which indicates that it violates
DNH.

Kahng et al. [46] show that if all agents’ accuracies are bounded away from
0 or 1, i.e., they do not always make a correct/wrong decision, GreedyCap can
guarantee both properties.

Theorem 8 (Theorem 2, [46]). Assume that there exists β ∈ (0, 1/2), such that qi ∈
[β, 1− β] for all i ∈ N. Then for any α ∈ (0, 1− 2β), GreedyCap with cap C : N→N,
such that C(n) ∈ ω(1) (loose upper bound of C(n)) and C(n) ∈ o(

√
log n) (loose

lower bound of C(n)) satisfies the PG and DNH properties.
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Intuitively, the GreedyCap algorithm limits the accrual of delegations. In doing
so, it limits the effects of delegations on voters’ independence.

2.5.2 Optimal Delegation Profiles Are Hard To Find

Caragiannis & Micha [16] provide further reasons for objecting to local mecha-
nisms.

They first fix a local mechanism, called α-delegation in their work, to a di-
chotomous scheme: a misinformed agent i, i.e., with individual accuracy less
than 0.5, would approve a neighbor j if qj < qi − α since she, in practice, might
consider a high-accuracy agent as misinformed. Observe that this goes against the
assumption in the Condorcet theorem (Theorem 1). Then Caragiannis & Micha
[16] show that a local mechanism M utilizing such α-delegation is considerably
worse than two extreme mechanisms: Di (direct voting) and FD (Full Delegation,
i.e., all agents delegate to one guru).

Theorem 9 ([16]). Let M be a local delegation mechanism, α ≥ 0 and δ > 0. There
exists a pair (R, q) such that max{qDi(R, q), qFD(R, q)} − qM(R, q) ≥ 1

2 − α− δ.

While local delegation mechanisms appear undesirable, centralized coordi-
nation cannot easily direct delegations to achieve high performance in terms of
group accuracy either. The following example shows that, counter to intuitions,
delegating to low-accuracy agents may even result in better group accuracy.

Example 10 ([16]). Consider a case with 5 agents, with individual accuracies and
underlying network shown in Fig. 2.3. Note that this underlying network is represented

1 (q1 : 1) 2 (q2 : 0.5) 3 (q3 : 0.7)

4 (q4 : 0.6) 5 (q5 : 0.5)

Figure 2.3: The underlying network and individual accuracy.

as a directed graph, i.e., the tail agent can delegate to the head agent but not vice versa.
We list 6 mechanisms that output all possible delegation profiles, as well as the group
accuracy of the output delegation profiles.

Di: Since agent 1 always chooses the correct alternative, the true state is selected with
the probability that at least 2 among {2, 3, 4, 5} make the correct choice. This yields
the group accuracy of qDi(R, q) = 0.795.
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M1: Agent 4 delegates to agent 2. Then the true state wins when agent 2 votes for it or
agent 2 votes for the wrong alternative and both agents 3 and 5 vote for the truth,
by which we obtain qM1(R, q) = 0.675.

M2: Agent 4 delegates to agent 3. Now the true state is selected when agent 3 votes for
it or agent 3 votes for the wrong alternative and both agents 2 and 5 vote for the
true state. Then the group accuracy is qM2(R, q) = 0.775.

M3: Agent 5 delegates to agent 3. Similarly, when agent 3 votes for the true state
or agent 3 votes for the wrong alternative and both agents 2 and 4 vote for the
true state, the set of agents can successfully select the true state, and this gives
qM3(R, q) = 0.79.

M4: Agents 4 and 5 delegate to agent 3. Now the true state can be selected if and only
if agent 3 votes for it. Therefore we obtain qM4(R, q) = q3 = 0.7.

M5: Agent 4 delegates to agent 2 and agent 5 delegates to agent 3. By this delegation
profile, when at least one of agents 2 and 3 vote for the true state, it will win. Hence
qM5(R, q) = 0.85.

This example conveys the intuition that liquid democracy can achieve bet-
ter group accuracy by introducing appropriate correlation, sometimes even by
delegating to non-optimal neighbors. However this intuition also reflects the
high complexity of the optimization problem: given the underlying network and
individual accuracy, can we coordinate agents’ delegations to maximize the group
accuracy? Caragiannis & Micha [16] show that it is NP-hard in terms of the size
of the input network to solve this question.

2.6 outline of contribution
Based on these preliminaries, the dissertation proceeds in two parts. In Part II, we
first propose a novel power index to measure the influence of agents, including
delegators, on the final voting result. Then we incorporate this power index
into the game-theoretical model of [11]. In doing so, we study delegation games
where agents do not only consider to delegate to accurate agents, but also want
to retain power in the system.

In Part III, inspired by Theorem 4, we seek methods which allow agents to
partition their voting weight and redistribute it continuously among the network,
in order to achieve better group accuracy and counter the negative results in
[46] and [16]. We also consider these weighted delegation methods in the more
decentralized game-theoretical model of [11], and provide insights into the
influence brought by weighted delegation.
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This chapter develops a theory of power for liquid democracy systems. Under-
standing voting power is crucial in liquid democracy since, due to the flexibility
of liquid democracy, a small set of agents might accrue too much voting weight,
i.e., become super-voters. A straightforward application of the Banzhaf index (see
Section 2.2) allows us to quantify the voting power of gurus. However, note also
the fact that agents can terminate the delegation of their votes at any time due to
the instant call component, which is one of the four fundamental components in
the definition of liquid democracy (recall Section 1.1 and [12]). Delegators can
also be pivotal: they might change the voting result by altering their delegations.

chapter contribution In this chapter, we aim at capturing the instant call
component in the measure of voting power for liquid democracy. We define a
power index able to measure the influence of both gurus and delegators on voting.
We then axiomatically characterize the power index we define and further study
several intuitive properties of the index. The part presents and extends material
from [68].

3.1 a power index for liquid democracy
To measure agents’ voting power in liquid democracy, we generalize the well-
known Banzhaf power index (Equation 2.3) in the context of liquid democracy.
Specifically, given a delegation profile, we study the influence imposed by agents,
including both gurus and delegators, on the voting phase. Our method could be
fairly easily adapted to obtain similar generalization of other power indices such
as Shapley-Shubik power index (recall Equation 2.4).

3.1.1 Liquid Democracy Election (LDE)

In this chapter we will be working with the general setting introduced in Sec-
tion 2.1: each agent is initialized with a (possibly different) non-negative weight
w(i) ∈ R>0 for all i ∈ N; and the voting result is decided by the quota rule defined
as follows. Let w = ∑i∈N w(i), then the quota rule Q is formally defined as:
given a quota β ∈ (w

2 , w] and a ballot profile v, the issue voted for is accepted if

朳朷
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and only if the total weight of agents who vote accept (e.g., alternative 1) matches
or exceeds the quota (see Chalkiadakis et al. [19]), i.e.,

Q(v) =

1, if ∑i∈N w(i)vi ≥ β

0, otherwise
. (3.1)

Notice that the quota β is assumed to be strictly larger than half of the total
weight. Otherwise the quota rule would not be resolute: the case is possible that
both alternatives meet the quota. Notice also that the rule uses a deterministic
tie-breaking and is biased towards one of the two alternatives.

It is worth mentioning that the above quota rule uses the absolute quota rule,
i.e., β is an absolute threshold between ∑i∈N w(i)/2 and ∑i∈N w(i). However,
another form of quota is the relative quota, i.e., the issue is accepted if the ratio
between the weight of agents who vote for 1 and the “entire weight” exceeds
a threshold in interval [0.5, 1]. Using a relative quota is a potential extension
of our work, since there are two alternatives of the “entire weight” in LD: (1)
the weight of all agents ∑i∈N w(i), or (2) the weight of all gurus ∑i∈De(N,d) w(i)
given a profile d. Notice that the latter alternative is dynamic with respect to d
because of abstention, where the corresponding agents’ guru is 0 (see following
description).

Note that in Section 4.2.2, we also study the LDEs with a quota less or equal to
w
2 , which lays out of the range in the above definition.

Example 11. Some specific quota choices yield frequently used voting rules. For in-
stance, when β = ∑i∈N w(i)

2 + ϵ (where ϵ is a sufficiently small positive real number),
Equation 3.1 defines the deterministic version of the weighted majority rule shown in
Equation 2.2. That is, alternative 1 wins if more than half of the total voting weight
supports it.

When β = ∑i∈N w(i), Equation 3.1 defines the rule, where the issue is accepted if and
only if all agents accept it.

Definition 8 (Liquid Democracy Election). We call a liquid democracy election
(LDE) the tuple V = ⟨N, w, d, β⟩, where N is the set of agents with weight profile
w = (w(1), . . . , w(n)), d is a delegation profile, and β is a quota.

Note that in a given delegation profile d, any guru i ∈ Gu(d) now accrues
voting weight w(i, d) = ∑j∈De(i,d) w(j). That is, guru i accrues the voting weight
of all agents who delegate to i through delegation chains as introduced in
Equation 2.1. Recall also that w(j) is the voting weight of agent j. Then, in LDEs,
we modify the quota rule of Equation 3.1 by replacing the individual weight w(i)
by the accrued weight through delegations w(i, d) for all gurus i ∈ Gu(N). Let
then V denote the set of all LDEs. Clearly, LDEs with trivial profiles are instances
of standard weighted voting (Equation 2.2).



3.1 a power index for liquid democracy 朳朹

In this chapter, we also admit the possibility for an agent to abstain by dele-
gating to a nul agent 0. When a delegation chain ends up with the 0 agent, e.g.,
i1 → i2 → · · · → 0, all agents on the chain abstain, in other words, their weight
will not be counted in the voting phase. This feature will be of technical use for
the characterization of the power index we are going to introduce.

We need to introduce some further terminology. Given the chain i1 → i2 →
i3 → · · · → ik−1 → ik, if {i1, i3, . . . , ik} ⊆ C ⊆ N but i2 /∈ C, then i1 is not able to
delegate to ik within C as she has no access to intermediary i3 in such subset. For
C ⊆ N we write d∗C(i3) = ik to denote that ik is the guru of i3 and the chain from
i3 to ik contains only elements of C, i.e., for i3, ik ∈ C, d∗C(i3) = ik if d∗(i3) = ik
and δd(i3, ik) ⊆ C. Then we write

De∗(C, d) = {j ∈ N | ∃k ∈ C, d∗C(j) = k} (3.2)

for the set of agents that directly or indirectly delegate to some agent in C through
intermediaries contained in C. Intuitively, this captures the support accrued by
gurus in C via agents in C. Notice that De(N, d) = De∗(N, d).

3.1.2 Delegative Banzhaf Index

Once delegations are settled, liquid democracy results in weighted voting where
only the gurus vote with weight equal to the sum of weights they accrued from
direct or indirect delegations. From a voting perspective, gurus are therefore
the only agents who retain voting power after the delegation phase. However,
this neglects the instant call component of liquid democracy and the power that
delegators actually have within liquid democracy by being able to control a large
number of votes. Let us give a simple example. A guru i obtaining m direct
delegations is intuitively more ‘powerful’ than a guru obtaining m delegations
via an intermediary j, who is in turn recipient of m− 1 direct delegations. Most
of i’s power then depends on j (see also Example 13 below).

In this section we generalize the standard Banzhaf index (Equation 2.3) to the
delegable proxy voting setting. The Banzhaf index has already been used to
study the power of gurus in liquid democracy by Kling et al. [49].

There is one obvious way in which an LDE V induces a simple game (see the
definition of simple games in Section 2.2): it is the simple game capturing the
weighted voting occurring among gurus once delegations have been fixed, i.e.,
GV = ⟨N, fV⟩ where, for any C ⊆ N:

fV(C) = 1 iff ∑
i∈Gu(C,d)

w(i, d) ≥ β. (3.3)

That is, a coalition wins whenever all gurus in it together accrue enough weight to
meet the quota. In such a game, only gurus may have positive power: i ∈ Gu(d)
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1 2 3 4 5 6 7

Figure 3.1: The delegation graph in Example 12

if Bi(GV) > 0, because GV is silent about the influence that delegators have in
determining the winning coalitions.

The influence of delegators can be captured by a different simple game defined
as follows.

Definition 9 (Delegative Simple Games). A delegative simple game induced from
LDE V = ⟨N, w, d, β⟩ is a tuple G ′V = ⟨N, f ′V⟩ where N is the set of agents and f ′V is
the characteristic function, such that for any C ⊆ N:

f ′V(C) = 1 iff ∑
i∈De∗(C,d)

w(i) ≥ β. (3.4)

That is, a coalition C is winning whenever the sum of weights accrued by the
gurus in C from agents in C (recall Equation 3.2), meets the quota. According
to this way of constructing the simple game, an agent’s weight is accrued in
a coalition C if the agent, her guru, and all intermediaries between them are
contained in C. We refer to G ′V as the delegative simple game of LDE V. Clearly, if
d is trivial, all agents are gurus and therefore GV = GV′ .

Example 12. Consider an LDE V consisting of 7 agents, each of whom is initialized
with voting weight wi = 1, the quota is β = 4, and the delegation profile d is denoted
in Figure 3.1. We consider coalition C = {3, 4, 6, 7}. When computing the coalition’s
weight under the simple game definition introduced in Section 2.2, i.e., GV , the weight of
coalition C is the sum of the accrued weights by gurus 3 and 4 in delegation profile d,
according to Equation 2.1. Then the weight is 5, and C is a winning coalition in simple
game GV .

However, when we consider the delegative simple game G ′V , agents 6 and 7 do not
delegate to guru 4 since the delegation chain is broken (agent 5 is not in C). Therefore in
G ′V , guru 4 only accrues weight of 1 in coalition C. Hence C’s weight is 2 in G ′V and it is
a losing coalition.

Definition 10 (Delegative Banzhaf Index). Given an LDE V = ⟨N, w, d, β⟩, we
define the delegative Banzhaf index (DB) of an agent i in LDE V simply as the Banzhaf
index of i in the delegative simple game of V:

DBi(V) = Bi(G ′V). (3.5)

Observe that in LDEs V where the delegation profile is trivial, and therefore
games G(V) and G ′(V) coincide, the Banzhaf index and the delegative Banzhaf
index coincide.
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Figure 3.2: The delegation profiles in Example 13

Example 13. Consider two LDEs, V1 = ⟨N, w, d1, β⟩ and V2 = ⟨N, w, d2, β⟩, where
N = {1, 2, 3, 4}, w(i) = 1 for all i ∈ N, β = 3, and d1 and d2 are represented in
Figure 3.2a and Figure 3.2b, respectively. As follows, we list the computation of agents’
DBs in both LDEs.

• V1:

– Agent 1: Agent 1 cannot swing for any coalition, since the only coalition
counting her weight is {1, 2, 3, 4} but {2, 3, 4} is already a winning coalition.
Therefore, we have DB1(V1) = 0.

– Agent 2: Agent 2 swings for coalitions {2, 3, 4} and {1, 2, 3, 4}, e.g., for
coalition C = {2, 3, 4}, f ′V1

(C) = 1 due to ∑i∈C w(i) = 3 ≥ β, but
f ′V1

(C \ {2}) = 0. Therefore, we have DB2(V1) = 2/24−1 = 1/4.

– Agent 3: Agent 3 swings for coalitions {2, 3, 4} and {1, 2, 3, 4}, which results
in that DB3(V1) = 1/4.

– Agent 4: Agent 4 also swings for the same coalitions as above, i.e., coalitions
{2, 3, 4} and {1, 2, 3, 4}. Hence, we have DB4(V1) = 1/4.

• V2:

– Agent 1: Agent 1 is a direct delegator who delegates to guru 4. Observe
that agent 1 swings for coalitions {1, 2, 4} and {1, 3, 4}. Therefore, we have
DB1(V2) = 2/24−1 = 1/4.

– Agent 2 and Agent 3: Notice that, the same as agent 1, both agents 2 and 3
are also direct delegators who delegate to guru 4. Therefore, agents 1, 2 and 3
are in the "symmetric" positions in d2, and they have the same power, i.e.,
DB2(V2) = DB3(V2) = DB1(V2) = 1/4.

– Agent 4: Agent 4 is a swing agent for coalitions {1, 2, 4}, {1, 3, 4}, {2, 3, 4}
and {1, 2, 3, 4}, and hence we have DB4(V2) = 4/24−1 = 1/2.

Observe that the delegative Banzhaf index depends on the structure of the delegation
profile. For instance, in both V1 and V2, agent 1 is a delegator with no incoming
delegations, but DB1(V1) = 0 while DB1(V2) = 1/4. In V1, agent 1 is "far" from the
guru and her delegation does not matter for meeting the quota. In V2, however, agent 1
delegates directly to the guru. Similarly, in both LDEs agent 4 collects 4 votes. However,
DB4(V1) = 1/4 but DB4(V2) = 1/2 since in V1, the delegation chain pointing to 4
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is long, so that agent 4 depends on 3 for 3/4 of her weight. In V1, even though both
agents 2 and 3 delegate to agent 4, that is, agents 2 and 3 rely on agent 4 to make the
decision, the three agents have the same power (i.e., DB2(V1) = DB3(V1) = DB4(V1))
to influence the final voting result.

3.2 an axiomatic characterization of the del-
egative banzhaf index

There are of course many ways in which a power index could be defined on LDEs.
To underpin Equation 3.5 we present a characterization of the delegative Banzhaf
index. We want to axiomatically identify DB among all power index functions
p : V → (N → R) for LDEs on N. To do so, we borrow ideas and techniques
from existing axiomatizations of the Banzhaf index for weighted voting games
[29, 53, 60].

The strategy we follow consists in generalizing a known characterization of
the Banzhaf index for standard weighted voting due to Barua et al. [6]. We use
the same axioms of that characterization (Axioms 2-5 below), with the addition
of one axiom for so-called dummy agents (Axiom 1). Crucially, however, we
show how to adapt the key definitions upon which the axioms are based from
the standard weighted voting setting to LDEs. This concerns in particular the
definitions of composition and bloc formation (Definitions 16, 17 and 18) which
play an important role in the proof. As a result, one can retrieve the known
characterization of the standard Banzhaf index from ours, by simply restricting
to the class of LDEs where profiles are trivial, and therefore delegations do not
matter.

3.2.1 Preliminary Definitions

We start by introducing standard definitions from the theory of simple games.
Assume an LDE V = ⟨N, w, d, β⟩ be given.

Definition 11 (Dummy Agent). An agent i ∈ N is dummy if for any C ⊆ N (i ∈ C),
f ′V(C) = f ′V(C \ {i}), where f ′ is the characteristic function of the delegative simple
game of V (Definition 9). Let dum(N) denote all dummy agents of the LDE.

That is, an agent is dummy whenever she cannot influence f ′V(C) by quitting
or joining any coalition C ⊆ N. It is worth observing that in LDEs there are three
ways in which an agent can be dummy: if the agent abstains (i.e., delegates to 0);
if the agent is linked by a chain to a delegation cycle; if the agent—call it i—is
such that ∑j∈δd(i,d∗i )∪{d∗i } w(j) ≥ β, that is, the delegation distance between i and
her guru in d is larger than or equal to β; we call such an agent distant (in d).
Intuitively, an distant agent i is dummy (cannot become a swing agent) since:
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1. she can swing only for a coalition C, where all the intermediaries between
she and her guru and her guru are contained in C, otherwise her weight
cannot be count; but

2. C \ {i} never weighs less than β.

Definition 12 (Dictator). An agent i ∈ N is a dictator if for any C ⊆ N, f ′V(C) = 1 if
and only if i ∈ C.

That is, an agent i is a dictator of V whenever it belongs to all and only the
winning coalitions of the delegative simple game of V. In an LDE this occurs if
the dictator i is a guru and β ≤ w(i), that is, i meets the quota on her own.

Definition 13 (Symmetric Agents). Any two agents i, j ∈ N are symmetric if for all
C ⊆ N\{i, j}, f ′V(C ∪ {i}) = f ′V(C ∪ {j}).

Symmetric agents are swing for exactly the same coalitions in the delegative
simple game of V. Note that a pair of symmetric agents do not necessarily have
the same weight.

Example 14 (Example 13 continued). Consider V1 in Figure 3.2a. Since β = 3 and
the delegation distance ∆d(1, 4) = 3, agent 1 is a distant (and therefore dummy) agent.
Next consider agents 1 and 2 (or any pair of {1, 2, 3}) in V2, each of whom directly
delegates to agent 4. For any coalition C ⊆ N \ {1, 2}, f ′V2

(C ∪ {1}) = f ′V2
(C ∪ {2}),

thus 1 and 2 are symmetric. There is no dictator in Example 13.

The following definitions generalize the standard theory of simple games to
account for delegations.

Definition 14 (Minimally Winning Coalition). A coalition C ⊆ N is a minimally
winning coalition if for any i ∈ De∗(C, d), f ′V(C) = 1 and f ′V(C\{i}) = 0.

That is, a coalition C is minimally winning if it is winning (in the delegative
simple game of V), but becomes losing if any agent who is linked to a guru in
C via agents in C is removed. So a minimally winning coalition is a coalition
that contains just enough gurus with just enough support through intermediaries
in the same coalition to meet the quota. It follows that no distant agent may be
included in a minimally winning coalition. Notice, however, that a minimally
winning coalition may contain agents that are not linked to gurus in C by
intermediaries in C (i.e., that do not belong to De∗(C, d)) and therefore it may
not be minimal with respect to set inclusion.

Definition 15 (Unanimity Liquid Democracy Election (ULDE)). V = ⟨N, w, d, β⟩
is a unanimity LDE if the quota β = ∑i∈Gu(d) w(i, d). We call such a quota unanimity
quota and denote it by βU .
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That is, in a ULDE, the quota equals the sum of weights of all agents who
directly or indirectly delegate to gurus.

The last two definitions concern operations on LDEs: how to combine two
LDEs into a new one; and how to build an LDE from another one by merging
two agents into a ‘bloc’.

Definition 16 (Conjunction Composition). Let two LDEs V1 = ⟨N1, w1, d1, β1⟩ and
V2 = ⟨N2, w2, d2, β2⟩ be given, such that for any i ∈ N1 ∩ N2:

1. if d1(i) = j and j ∈ N2, d2(i) = j, otherwise d2(i) = 0;

2. if d2(i) = j and j ∈ N1, d1(i) = j, otherwise d1(i) = 0; and

3. and w1(i) = w2(i).

We define the conjunction composition (∧ composition) of V1 and V2 as V1 ∧ V2 =
⟨N1 ∪ N2, w1∧2, d1∧2, β1 ∧ β2⟩, where:

• for any i ∈ N1, w1∧2(i) = w1(i), and for any i ∈ N2, w1∧2(i) = w2(i);

• for any i ∈ N1 \ N2, d1∧2(i) = d1(i), for any i ∈ N2 \ N1, d1∧2(i) = d2(i), and
for any i ∈ N1 ∩ N2 , if d1(i) = d2(i) then d1∧2(i) = d1(i) = d2(i), otherwise
d1∧2(i) = dk(i) where k ∈ {1, 2} and dk(i) ̸= 0;

• β1 ∧ β2 is met by C ⊆ N1 ∪ N2 if and only if ∑i∈De∗(C∩N1,d1)
w1(i) ≥ β1 and

∑i∈De∗(C∩N2,d2)
w2(i) ≥ β2.

Definition 17 (Disjunction Composition). Let two LDEs V1 = ⟨N1, w1, d1, β1⟩ and
V2 = ⟨N2, w2, d2, β2⟩ be given, such that for any i ∈ N1 ∩ N2:

1. if d1(i) = j and j ∈ N2, d2(i) = j, otherwise d2(i) = 0;

2. if d2(i) = j and j ∈ N1, d1(i) = j, otherwise d1(i) = 0; and

3. and w1(i) = w2(i).

We define the disjunction composition (∨ composition) of V1 and V2 as V1 ∨ V2 =
⟨N1 ∪ N2, w1∨2, d1∨2, β1 ∨ β2⟩, where:

• for any i ∈ N1, w1∨2(i) = w1(i), and for any i ∈ N2, w1∨2(i) = w2(i).

• for any i ∈ N1 \ N2, d1∨2(i) = d1(i), for any N2 \ N1, d1∨2(i) = d2(i), and
for any i ∈ N1 ∩ N2, if d1(i) = d2(i) then d1∨2(i) = d1(i) = d2(i), otherwise
d1∨2(i) = dk(i) where k ∈ {1, 2} and dk(i) ̸= 0;

• β1 ∨ β2 is met by C ⊆ N1 ∪ N2 if and only if ∑i∈De∗(C∩N1,d1)
w1(i) ≥ β1 or

∑i∈De∗(C∩N2,d2)
w2(i) ≥ β2.
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Figure 3.3: The delegation profiles in Example 15. Left: the original d1. Middle: d2. Right:
the revised d1.

Two LDEs can be composed provided the delegation graphs at their intersection
coincide or, if they do not, provided that this is because an agent in N1 ∩ N2
delegates outside the intersection under one profile while she abstains (i.e.,
delegates to 0) under the other profile. The condition is required to guarantee the
coherency of delegations in the composition. We use the following example to
illustrate this conditions.

Example 15. Consider two LDEs V1 with N1 = {1, 2, 3, 4} and w1 = (1, 1, 2, 1), and
V2 with N2 = {2, 3, 4} and w2 = (1, 1, 1); the delegation graphs of d1 and d2 are
depicted in Figure 3.3 left and middle. These two LDEs cannot be composed since:

1. The weights of agent 3 in the two LDEs are not consistent. Since agent 3 is in
the intersection of N1 and N2, she should have identical weight in both LDEs to
guarantee that we can clearly define her weight in the composition LDE.

2. The delegation strategy of agent 2 is not consistent in the two LDEs. All of the
agents 2, 3 and 4 are in the intersection of N1 and N2, however, it is unclear what
the delegation strategy of agent 2 is in either V1 ∧V2 or V1 ∨V2, since d1(2) = 3
but d2(2) = 4.

However, if we revise V1 so that w1 = (1, 1, 1, 1) and d1 as shown in Figure 3.3 right,
then V1 and V2 can be composed. Agent 1 is not relevant for whether the two LDEs can
be composed or not, since she does not belong to N1 ∩ N2.

Subsequently, the quotas in the composition are so defined as to guarantee the
following:

1. Coalitions in the delegative simple game of the conjunction composition
are winning if and only if they are winning in both of the delegative simple
games of the LDEs; or

2. Coalitions in the delegative simple game of the disjunction composition are
winning if and only if they are winning in at least one of the delegative
simple games of the LDEs.

Note that, by abuse of notation, β1 ∧ β2 and β1 ∨ β2 are not real numbers as
defined in Section 3.1.1. This property is crucial in the proof of Lemma 1.
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Definition 18 (Bloc formation). Given V = ⟨N, w, d, β⟩ and for any i, j ∈ N such
that di = j or i, j ∈ Gu(d), V′ = ⟨N′, w′, d′, β⟩ is called the bloc LDE joining i and j
into a bloc ij, where

• N′ = N\{i, j} ∪ {ij};

• For d′, if di = j, d′ij = dj, and for any a ∈ N, such that da = i or da = j, d′a = ij,
but if i, j ∈ Gu(d), for any a ∈ N such that da = i or da = j, d′a = ij;

• w′(ij) = w(i) + w(j).

A bloc LDE treats two agents i and j, who are either adjacent on a delegation
chain or both gurus, as one new agent ij. By applying the operation in Defini-
tion 18 repeatedly, it is possible to coalesce all agents who share the same guru
into one bloc. Furthermore, any pair of delegation chains can also be joined into
one bloc by joining their gurus into one bloc. Such operations play an important
role in the proof of our characterization result (in particular, in Lemma 2).

3.2.1.1 Axioms

We can now introduce the axioms on the power index function p of our charac-
terization. Assume again that an LDE V = ⟨N, w, d, β⟩ is given.

The first three axioms consider individual agents. We assign minimum power
(i.e., 0) to dummy agents, maximum (i.e., 1) to dictators, and identical power to
symmetric agents:

Axiom 1 (No Power (NP)). If i ∈ dum(N), pi(V) = 0.

Axiom 2 (Maximum Power (MP)). If i is a dictator, pi(V) = 1.

Axiom 3 (Equal Treatment (ET)). For any pair of symmetric agents i, j ∈ N, pi(V) =
pj(V).

The last two axioms concern how the power index should behave with respect
to composition and bloc formation.

Axiom 4 (Bloc Principle (BP)). For any two agents i, j ∈ N such that di = j, or
i, j ∈ Gu(d), let V′ be the bloc LDE by joining i and j into bloc ij. Then pij(V′) =
pi(V) + pj(V).

Axiom 5 (Sum Principle (SP)). For any pair of LDEs V1 = ⟨N1, w1, d1, β1⟩, V2 =
⟨N2, w2, d2, β2⟩ ∈ V, such that any i ∈ N1 ∩N2 satisfies the conditions in Definition 16
and Definition 17:

1. if d1(i) = j and j ∈ N2, d2(i) = j, otherwise d2(i) = 0;

2. if d2(i) = j and j ∈ N1, d1(i) = j, otherwise d1(i) = 0; and
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3. and w1(i) = w2(i),

we have pi(V1 ∧V2) + pi(V1 ∨V2) = pi(V1) + pi(V2) for any i ∈ N1 ∪ N2.

Intuitively, Axiom 4 describes the situation where we can form a bloc from
two agents, who satisfy the condition that the two agents are two gurus, or two
adjacent agents on a delegation chain. This condition guarantees that in the
resulting delegation profile (in the bloc LDE), no confusing delegation profile is
produced, e.g., the formed bloc delegates to multiple neighbors, or new delegation
cycles are formed. Then the power of the bloc is the sum of the voting powers of
the individual agents. Axiom 5 requires that the sum of any agent’s power in the
two LDEs V1 ∧V2 and V1 ∨V2 to be the sum of her power in V1 and V2.

3.2.1.2 Characterization

The characterization is based on two lemmas. We start by fixing some auxiliary
notation. Let an LDE V = ⟨N, w, d, β⟩ be given. For any i ∈ N, let (d−i, d′i) be the
profile in which any j ∈ N\{i} delegates as in d, while agent i chooses delegation
d′i. Furthermore, dC denotes the profile restricted to a coalition C ⊆ N. Such a
restricted profile is a mapping dC : C → C ∪ {0} defined as follows, for all i ∈ C:

dC(i) =

d(i), if d(i) ∈ C

0, otherwise
. (3.6)

That is, in dC all agents in C either delegate to agents in C or abstain. Recall the
notation De∗(C, d) (Equation 3.2), i.e., the set of all agents that delegate to some
guru in C ⊆ N via a delegation chain contained in C, in d. The same set, for a
different profile d′, is denoted as De∗(C, d′).

Lemma 1. DB satisfies MP, SP, BP, ET, and SP.

Proof. We start with the MP axiom, assume that agent i is a dictator in LDE
V = ⟨N, w, d, β⟩. Then, for any coalition C ⊆ N\{i}, f ′V(C) = 0 and fV(C ∪
{i}) = 1 by Definition 12. This implies that i is a swing agent for all coalitions in
{C ∪ {i}|C ⊆ N \ {i}}, in which the number of elements is 2n−1. Thus we obtain
DBi(V) = 1.

Now NP simply follows, because for any i ∈ dum(N), DBi(V) = ∑C⊆N\{i}( f ′V(C
∪ {i})− f ′V(C))/2n−1 = 0 by Definition 11.

To show that DB satisfies the SP axiom, one first has to show that by the way
in which weights β1 ∧ β2 and β1 ∨ β2 are set in Definition 16 and Definition 17,
we have that for any coalition C ⊆ N1 ∪ N2, f ′V1∧V2

(C) = 1 iff f ′V1
(C ∩ N1) = 1

and f ′V2
(C ∩ N2) = 1, and f ′V1∨V2

(C) = 1 iff f ′V1
(C ∩ N1) = 1 or f ′V2

(C ∩ N2) = 1.
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The proof can then proceed with a standard argument, which considers agents in
N1 \ N2, N1 ∩ N2, and N2 \ N1, respectively.

We first consider any i ∈ N1 \ N2, i.e., agent i is contained in N1 but not in
N2. Let mV

i denote the number of times that agent i is swing in the delegative
simple game for V, i.e., mV

i = |{C ⊆ N \ {i} | f ′V(C) = 0, f ′V(C ∪ {i}) = 1}|.
Then, if i is swing in C ⊆ N1 in LDE V1, she is also swing in (C ∪ C′) ∩ N1, for
any C′ ⊆ N2 \ N1, since C′ does not influence the value of f ′V1

. Therefore, in LDE

V1 ∨ V2, we have mV1∨V2
i = mV1

i 2|N2\N1|, where mV1∨V2
i is the number of times

that i is swing in LDE V1 ∨ V2. Additionally, since i ∈ N1 \ N2, mV2
i = 0, that

is, i cannot be swing in LDE V2, which implies mV1∧V2
i = 0. Hence we have for

i ∈ N1 \N2 that mV1∨V2
i = mV1

i 2|N2\N1|+mV2
i 2|N1\N2|−mV1∧V2

i . Identical equations
can be developed for agent i ∈ N2 \ N1 or i ∈ N1 ∩ N2. We then divide each side

of the equation by 2|N1∪N2|−1 and obtain that, for any i ∈ N1 ∪ N2, m
V1∨V2
i

2|N1∪N2 |−1 =

m
V1
i

2|N1 |−1 +
mV2

i
2|N2 |−1 −

m
V1∧V2
i

2|N1∪N2 |−1 , which implies that DBi(V1 ∧ V2) + DBi(V1 ∨ V2) =

DBi(V1) +DBi(V2) as desired.
To prove the BP axiom, we rewrite DBi(V) +DBj(V) as:

2n−1(DBi(V) +DBj(V))

= ∑
C⊆N\{i}

( f ′V(C ∪ {i})− f ′V(C)) + ∑
C⊆N\{j}

( f ′V(C ∪ {j})− f ′V(C))

= ∑
C⊆N\{i,j}

( f ′V(C ∪ {i})− f ′V(C) + f ′V(C ∪ {i, j})− f ′V(C ∪ {j}))

+ ∑
C⊆N\{i,j}

( f ′V(C ∪ {j})− f ′V(C) + f ′V(C ∪ {i, j})− f ′V(C ∪ {i}))

=2 ∑
C⊆N\{i,j}

( f ′V(C ∪ {i, j})− f ′V(C)).

Since DBij(V′) = 1/2n−2 ∑C⊆N\{i,j}( f ′V(C ∪ {i, j}) − f ′V(C)), we have that
DBi(V) + DBj(V) = DBij(V′), where V′ is the bloc LDE by forming i and j
into a bloc.

As for ET, assume that i and j are symmetric agents. We show that whenever i
is a swing agent, so is j, and vice versa. Then i serves as a swing agent for any
coalition which contains agent j, or not, as shown in the following two cases:

(1) For any C ⊆ N\{i, j}, such that f ′V(C ∪ {i})− f ′V(C) = 1, by Definition 13,
we obtain

f ′V(C ∪ {j})− f ′V(C) = f ′V(C ∪ {i})− f ′V(C) = 1.
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(2) For any C ⊆ N\{i, j}, such that f ′V(C ∪ {i, j})− f ′V(C ∪ {j}) = 1, by Defi-
nition 13, we obtain that

f ′V(C ∪ {i, j})− f ′V(C ∪ {i}) = f ′V(C ∪ {i, j})− f ′V(C ∪ {j}) = 1.

That is, each time i serves as a swing agent, j also serves as a swing agent once.
By a similar argument, it can be shown that each time j serves as a swing agent, i
also serves as a swing agent once. Then DBi(V) = DBj(V).

Lemma 2. If a power index p for LDEs satisfies NP, MP, ET, BP, and SP, then p is
DB.

Proof. We start by introducing the following claim.

Claim 1. A power index p for unanimity LDEs satisfies MP, NP, SP, ET, and BP, only
if it is DB.

The proof is obtained by first showing that Lemma 2 holds if Claim 1 holds
and showing that Claim 1 holds.

First, we show that if p is DB for all unanimity LDEs, then the power index
p is DB for all LDEs. Assume that an arbitrary LDE V is given and let C =
{C1, . . . , Cm} denote all minimally winning coalitions (recall Definition 14). Notice
that any winning coalition can be represented as the union of a subset of C .
Hence V can be represented as the disjunction of m unanimity LDEs, i.e., V =
V1 ∨ V2 ∨ · · · ∨ Vm where Vj = ⟨Cj, w, dCj , βU⟩ (1 ≤ j ≤ m) is a unanimity
LDE. Observe that any agent’s delegation strategy is consistent in all unanimity
games, that is, the condition of Definition 17 is satisfied: for any pair of LDEs
Vi, Vj ∈ {V1, . . . , Vm}, for any agent k ∈ Ci ∩ Cj, if dCi (k) = h (resp. dCj(k) = h)
and h ∈ Cj (resp. h ∈ Ci), dCj(k) = h (resp. dCi (k) = h), otherwise dCj(k) = 0
(resp. dCi (k) = 0).

We prove by induction on the size of the disjunction composition of unanimity
LDEs. As the basis, pi(Vj) is DB by the assumption that p is DB for any unanimity
LDE given in Claim 1, where i ∈ N and 1 ≤ j ≤ m.

Henceforth, we assume that for any LDE which is the disjunction of k (k < m)
unanimity games in {V1, . . . , Vm} p is equivalent to DB, then prove that for any
LDE which is the disjunction of k + 1 unanimity games in {V1, . . . , Vm} p is also
equivalent to DB. Without loss of generality, assume that pi(V1 ∨ · · · ∨Vk) is DB,
and we prove that pi(V1 ∨ · · · ∨ Vk ∨ Vk+1) is also DB. By SP, we have pi(V1 ∨
· · · ∨Vk ∨Vk+1) = pi(V1 ∨ · · · ∨Vk) + pi(Vk+1)− pi((V1 ∨ · · · ∨Vk) ∧Vk+1).

Observe that if an agent belongs to (V1 ∨ · · · ∨Vk) ∧Vk+1, then she belongs to
the intersection of Vk+1 with at least one of V1, . . . , and Vk. That is, the agent be-
longs to (V1 ∧Vk+1)∨ · · · ∨ (Vk ∧Vk+1). Therefore, we have that (V1 ∨ · · · ∨Vk)∧
Vk+1 = (V1 ∧Vk+1) ∨ · · · ∨ (Vk ∧Vk+1) (distributive law). Since Vj is a unanimity
LDE, Vj ∧Vk+1 is equivalent to the unanimity LDE ⟨Cj ∪ Ck+1, w, dCj∧Ck+1 , βU⟩.
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Therefore, by the assumption that p is DB for each disjunction of k unanimity
LDEs, we have p is DB for (V1 ∨ · · · ∨ Vk) ∧ Vk+1. Hence it implies that p is
DB for V1 ∨ · · · ∨ Vk ∨ Vk+1. Intuitively, the number of times that any agent
i ∈ ⋃

1≤j≤k+1 Cj serves as a swing agent in V1 ∨ · · · ∨ Vk ∨ Vk+1 is the sum
of her swing times in V1 ∨ · · · ∨ Vk and Vk+1, subtracting her swing times in
(V1 ∨ · · · ∨Vk)∧Vk+1. Therefore, we proved that if Claim 1 holds, Lemma 2 holds
automatically.

Next, we prove Claim 1 by induction on the size of the agent set. Consider
an arbitrary unanimity LDE V̇ = ⟨N, w, d, βU⟩. Let N̂ = N \ dum(N) denote all
non-dummy agents, and n̂ = |N̂|. As the basis of the induction, consider the case
in which there is only one agent, i.e., N = {i}. If i is a dummy agent, then by NP,
pi(V̇) = 0. On the other hand, if i /∈ dum(N), then i is a dictator, which implies
that pi(V̇) = 1 = 1/2n̂−1 due to MP.

Then for the induction step, we assume that p is DB if |N| = k (k ∈ N+,
i.e., positive integer), and prove that p is also DB if |N| = k + 1. That is in
V̇ (|N| = k + 1), we prove that for any i ∈ N̂, pi(V̇) = 1/2n̂−1 and for any
i ∈ dum(N), pi(V̇) = 0, which is identical to DB. For any unanimity LDE, let’s
consider three exhaustive cases: (1) all agents are dummy agents, (2) only one
non-dummy agent exists, and (3) more than one non-dummy agents exist in the
unanimity LDE.

Case 1. N = dum(N). That is, all agents are dummy agents. Then by NP, for all
i ∈ N, pi(V̇) = 0.

Case 2. |dum(N)| = k. In this case, there is only one non-dummy agent, denoted by
i. Then i is a dictator, and pi(V̇) = 1 = 1/2n̂−1 by MP. On the other hand, for any
j ∈ dum(N), pi(V̇) = 0 by NP.

Case 3. |N| − |dum(N)| > 1. That is there are more than one non-dummy agents in
the unanimity LDE. Among these non-dummy agents, there must exist at least one guru,
otherwise all agents become dummy due to lack of representation. Therefore, we consider
three exhaustive subcases according to the number of gurus in the set of non-dummy
agents: (1) all non-dummy agents are gurus, (2) there is only one guru among non-
dummy agents, and (3) there are more than one gurus among the non-dummy agents, but
not all non-dummy agents are gurus, i.e., at least one non-dummy agent is a delegator.

Case 3.1. ∀i ∈ N \ dum(N), i ∈ Nd. That is, any non-dummy agent is a guru.
Let i, j ∈ N \ dum(N) such that i ̸= j, then we form i and j into a bloc and obtain
the bloc LDE V′. Observe that V′ has k agents. Therefore, by assumption and BP,
pi(V̇) + pj(V̇) = pij(V′) = 1/2n̂−2. Since i and j are symmetric in V̇, pi(V′) =

pj(V′) = 1/2n̂−1 due to ET. Moreover, any agent i′ ∈ N̂ \ {i, j} is symmetric with i
(or j), thus pi′(V′) = pi(V′) = 1/2n̂−1, and for any a ∈ dum(N), pa(V̇) = 0 by NP.

Case 3.2. Gu(d) = {i}. In this case, there is only one guru, which is i, and any other
delegator has i as their guru. Therefore, for all j ∈ N \ dum(N) such that j ̸= i, d∗(j) =
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i. Assume j ∈ N, such that dj = i. Then we obtain a bloc game V′ by forming i and j
into a bloc ij. By BP and the assumption, pi(V̇) + pj(V̇) = pij(V′) = 1/2n̂−2. Then,
since ET, pi(V̇) = pj(V̇) = 1/2n̂−1. Additionally, for all a ∈ dum(N), pa(V̇) = 0
due to NP, and for all a ∈ N \ dum(N), pa(V̇) = 1/2n̂−1 due to ET.

Case 3.3. |Gu(d)| > 1 and Gu(d) ⊂ N \ dum(N). In this case there are more than
one gurus and at least one delegator delegates to one of the gurus. We can then apply
similar arguments to those provided for Case 3.1 or Case 3.2 to join agents into a bloc
and thus prove that f is equivalent to DB.

This completes the proof of Claim 1, and the whole proof.

3.3 further properties of the delegative banzhaf
index

The above axioms are somewhat technical. In this section we focus on properties
of the delegative Banzhaf power index that have direct intuitive appeal. These are:
power loss by delegation, power monotonicity, direct delegations are better, short chains
are better and equal power in unanimity LDE. The property power loss by delegation
(Fact 1) shows that to be a guru is always weakly better than to delegate in terms
of voting power. Properties power monotonicity (Fact 2), direct delegations are better
(Fact 3), and short chains are better (Fact 4) illustrates that more direct delegations,
or short delegation chains, are preferred by both delegators and gurus. Finally
for unanimity LDEs, equal power in unanimity LDE shows that each agent has
equal voting power.

Fact 1 (Power Loss by Delegation). For any pair of LDEs V = ⟨N, w, d, β⟩ and
V′ = ⟨N, w, d′, β⟩, such that d′ = (d−i, d′i), d(i) = i and d′i = j (i ̸= j), we have that
DBi(V) ≥ DBi(V′).

Proof. To prove the fact, it is sufficient to prove that, for any coalition C ⊆ N
with i ∈ C, if i is not a swing agent for C in V, neither is she a swing agent
for C in V′. Towards a contradiction, we assume that i is a swing agent for C
in V′ but i is not a swing agent in V. Then we have that ∑a∈De∗(C,d) w(a) ≥ β,
and ∑a∈De∗(C\{i},d) w(a) = ∑a∈De∗(C,d) w(a) − w(i) < β. Since the only dif-
ference between d and d′ is the strategy of i, we have ∑a∈De∗(C\{i},d) w(a) =

∑a∈De∗(C\{i},d) w(a), i.e., the weight of C \ {i} is identical in both LDEs V and
V′. Moreover, since i is a guru in V and i ∈ C, it holds that ∑a∈De∗(C),d w(a) =
∑a∈De∗(C\{i},d) w(a) + w(i) = ∑a∈De∗(C\{i},d) w(a) + w(i) ≥ β, which contradicts
the assumption that i is not a swing agent in V.
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Fact 1 implies that delegations never lead to an increase in power for the
delegator. In fact, one can show that the inequality DBi(V) ≥ DBi(V′) can be
strict.

The next two facts show that agents closer to the guru have more power than
those farther away and that, power-wise, delegating directly to a guru is better
than doing that indirectly.

Fact 2 (Power Monotonicity). For any pair of agents i, j ∈ N, such that di = j,
DBi(V) ≤ DBj(V).

Proof. We prove the fact by showing that DBi(V)−DBj(V) ≤ 0. By the defini-
tion of the delegative simple game of V, we substitute DBi(V) and DBj(V) in
DBi(V)−DBj(V) ≤ 0 as follows.

2n−1(DBj(V)−DBi(V))

= ∑
C⊆N\{j}

( f ′V(C ∪ {j})− f ′V(C))− ∑
C⊆N\{i}

( f ′V(C ∪ {i})− f ′V(C))

= ∑
C⊆N\{i,j}

( f ′V(C ∪ {j})− f ′V(C) + f ′V(C ∪ {i, j})− f ′V(C ∪ {i}))

− ∑
C⊆N\{i,j}

( f ′V(C ∪ {i})− f ′V(C) + f ′V(C ∪ {i, j})− f ′V(C ∪ {j}))

=2 ∑
C⊆N\{i,j}

( f ′V(C ∪ {j})− f ′V(C ∪ {i})).

Concerning the above equation, for any C ⊆ N \ {i, j}, we consider two possible
cases:

1. f ′V(C ∪ {j}) = 0.
This implies that ∑a∈De∗(C∪{j},d) w(a) < β, and consequently, ∑a∈De∗(C,d) w(a) ≤
∑a∈De∗(C∪{j},d) w(a) < β. Since di = j and j /∈ C, we have that i /∈ De∗(C ∪
{i}, d). Therefore, we have ∑a∈De∗(C∪{i},d) w(a) = ∑a∈De∗(C,d) w(a) < β,
which implies that f ′V(C ∪ {i}) = 0. Hence f ′V(C ∪ {j})− f ′V(C ∪ {i}) = 0.

2. fV(C ∪ {j}) = 1.
This implies that ∑a∈De∗(C∪{j},d) w(a) ≥ β. Now we consider two possible
cases:

a) ∑a∈De∗(C,d) w(a) < β.
Since i /∈ De∗(C∪ {i}, d), it can be inferred that ∑a∈De∗(C∪{i},d) w(a) =
∑a∈De∗(C,d) w(a) < β, which implies that f ′V(C ∪ {i}) = 0. Therefore,
f ′V(C ∪ {j})− f ′V(C ∪ {i}) > 0.

b) ∑a∈De∗(C,d) w(a) ≥ β.
We can obtain that ∑a∈De∗(C∪{i},d) w(a) ≥ ∑a∈De∗(C,d) w(a) ≥ β, which
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implies that f ′V(C ∪ {i}) = 1. Therefore, f ′V(C ∪ {j})− f ′V(C ∪ {i}) =
0.

Hence, to sum up, we have

∑
C⊆N\{i,j}

( f ′V(C ∪ {j})− f ′V(C ∪ {i})) ≥ 0,

which implies that
DBj(V)−DBi(V) ≥ 0.

This completes the proof.

Fact 3 (Direct Delegations Are Better). Let V = ⟨N, w, d, β⟩ be a LDE where N
contains three agents i, j and k such that d(i) = j and d(k) = i. Let V′ = ⟨N, w, d′, β⟩,
such that d′ = (d−k, d′k) where d′k = j. Then DBk(V′) ≥ DBk(V).

Proof. It is sufficient to show that if k is a swing agent for coalition C in LDE V,
then she is also a swing agent for C in V′. We have ∑a∈De∗(C,d) w(a) ≥ β and
∑a∈De∗(C\{k},d) w(a) < β. This implies that k ∈ De∗(C, d), from which we can
infer that i, j ∈ De∗(C, d). Note that the only difference between d and d′ is the
strategy of k, and d(k) = i while d′(k) = j. Therefore, we obtain k ∈ De∗(C, d′),
and consequently De∗(C, d) = De∗(C, d′). Hence ∑a∈De∗(C,d′) w(a) ≥ β and
∑a∈De∗(C\{k},d′) w(a) < β, which implies that k is also a swing agent for C in
V′.

Note that the above inequality DBk(V′) ≥ DBk(V) becomes strict if k is a swing
agent for some coalition C not containing agent i in LDE V′.

It is not only delegators who can benefit from getting closer to gurus, but
shorter delegation chains are also better for gurus.

Fact 4 (Short Chains Are Better). Let V = ⟨N, w, d, β⟩ and V′ = ⟨N, w, d′, β⟩, such
that di = j and dj = k, and d′ = (d−i, d′i = k). Then we have DBk(V′) ≥ DBk(V).

Proof. We show in this proof that if agent k is swing for a coalition in LDE V, she
is also swing for this coalition in LDE V′, but not vice versa.

Assume that agent k is swing for coalition C ⊆ N under profile d, i.e., in LDE
V. This implies that k ∈ De∗(C, d) since k contributes voting weight to De∗(C, d),
i.e., ∑a∈De∗(C,d) w(a) ≥ β and ∑a∈De∗(C\{k},d) w(a) < β. Since the only difference
between d and d′ is the delegation strategy of agent i, where d′i = k, and di = j
and dj = k, we obtain that if k is not contained in a coalition, then i’s weight
cannot be counted for the weight of the coalition. This immediately indicates that
∑a∈De∗(C\{k},d′) w(a) = ∑a∈De∗(C\{k},d) w(a) < β. Then, we consider the weight
of coalition C. Observe that we have ∑a∈De∗(C,d′) w(a) = ∑a∈De∗(C,d) w(a) ≥ β for
all cases except for the one where j /∈ C but i ∈ C. In this special case, we have
that ∑a∈De∗(C,d′) w(a) = ∑a∈De∗(C,d) w(a) + w(i) ≥ β, since the chain between i
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and k is broken in C under profile d. That is, the claim “if k is a swing agent for
C in LDE V, then she is also a swing agent for C in V′” holds.

However, a case may exist where k swings for coalition C ⊆ N, which does
not contain j, under d′, and 0 ≤ ∑a∈De∗(C,d′) w(a) − β < w(i). In this case,
∑a∈De∗(C,d) w(a) = ∑De∗(C,d′) w(a)− w(i) < β. Then k is not a swing agent for C
under d.

The last fact is for unanimous LDEs: all agents have equal power in a ULDE.

Fact 5 (Equal Power in Unanimity LDE). In any ULDE V, for any pair of agents
i, j ∈ N, DBi(V) = DBj(V).

Proof. Observe that in any Unanimity LDE V, each agent i ∈ N can only swing
for coalition N, i.e., f ′V(N \ {i}) = 0 and f ′V(N) = 1. Therefore DBi(V) = 1

2n−1 ,
which completes the proof.

conclusion
This chapter developed a power index for voting in liquid democracy. We showed
that the index generalizes the Banzhaf index for standard weighted voting and
can be axiomatized in a similar fashion (Section 3.2). It was also shown that, as
expected, the index is highly dependent to the delegation structure, which is
reflected in the facts proved in Section 3.3.

The theory proposed in this chapter has stimulated further interest by re-
searchers working on liquid democracy. In particular, D’Angelo et al. [25] study
the computational complexity of DB and a similar generalization of the Shapley-
Shubik power index (Equation 2.4). They further showed that it is computationally
hard to find a solution to a defined voting power bribery problem, where they try
to maximize/minimize a given agent’s voting power by changing the delegation
structure under a given budget constraint.

Different from our work, Colley et al. [22] define a Banzhaf index based power
index in liquid democracy, called LD-Penrose-Banzhaf index, which does not
depend on the prior information of the delegation graph. Instead, the LD-
Penrose-Banzhaf index measures the probability that each agent can change the
voting result under all possible delegation graphs. They show that it is #P-hard
to compute the LD-Penrose-Banzhaf index for a group of heterogeneous weight
agents. However, it costs pseudo-polynomial time to compute LD-Penrose-
Banzhaf index in proxy voting and liquid democracy with a complete social
network.

Several research directions remain open and we would like to mention one.
First, it would be nice to obtain a characterization of DB based on more natural
axioms, such as the properties studied in Section 3.3.
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In the next chapter, we incorporate the proposed DB into the game-theoretical
model of [11], and investigate the structure of equilibria and agents’ behavior in
simulations in specific social networks.



4 D E L E G AT I O N G A M E S W I T H
P O W E R

In this chapter, we incorporate the voting power theory of Chapter 3 into the the-
ory of delegation games developed by Bloembergen et al. [11] (recall Section 2.4).
In the resulting games, agents aim at achieving a trade-off between: (1) delegating
to high-accuracy agents, who are able to make correct decisions accurately; and
(2) retaining voting power.

chapter contribution We show that, in delegation games of this type, Nash
equilibria (NE) cannot be guaranteed to exist in general but they exist under
some specific conditions. Finally, we run computer simulations. The empirical
results show that considering to retain voting power reduces agents’ incentive to
delegate, especially via long delegation chains. At the same time, this leads to
more equal voting power distribution in the group.

4.1 power-sensitive delegation games: defini-
tion

Note again that, like in [11], we will be working with the more general setting
of underlying networks: those represented as a directed graph as introduced in
Section 2.1.

We then begin by introducing the definition of delegation games.
In the delegation game by Bloembergen et al. [11], agents’ payoffs in an LDE

depend solely on the accuracy of their gurus and the effort agents incur should
they vote directly. Here we abstract from the effort element of the model and
focus instead on incorporating a power-seeking component in agents’ utilities.
The key intuition behind our extension is to model agents that are not only
interested in voting accurately, but also in their own influence during the vote.
So our agents choose their delegations by aiming at maximizing the trade-off
between pursuing high accuracy and seeking more power.

Definition 19. A power-sensitive delegation game is a tuple D = ⟨N, R, q, Σ, β, u⟩,
where: N is a finite set of agents; R = ⟨N, E⟩ is a directed graph; q is the accuracy
profile; Σi ∈ N is the delegation strategy space of agent i (i.e., agent i’s neighborhood

朵朷
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R′(i) in the underlying network), β ∈ [0, n] is the quota; and u is the utility function,
defined as follows:

ui(d) =

DBi(d)α · qd∗i
, if d∗i ∈ N

0, otherwise
, (4.1)

where α ∈ [0, 1]. Note that, in the above utility function, if agent i is linked to
a delegation cycle in d, she has no guru, i.e., d∗i /∈ N, and hence her utility is 0
since DBi(d) = 0 because she is a dummy agent (recall Axiom 1). Observe that
we modify the definition of delegation games in [11] (Definition 3) in three ways:

1. P is degenerated to single point distribution: each agent benefits equally
from choosing the true alternative.

2. Voting does not cost effort in our definition.

3. The power-sensitive component DBi(d)α is added.

Intuitively, the power-sensitive component in Equation 4.1 denotes the extent that
agents are motivated to retain power: parameter α is used to control how much
agents are influenced by power in the range going from no influence to influence
equal to that of accuracy. The structure of Equation 4.1 depicts that agents should
keep a balance between pursuing high accuracy (i.e., the accuracy component
qd∗i

) and retaining power (i.e., DBi(d)α). Agents would lose power when they
delegate to inherit high accuracy (Fact 1), especially through long delegation
chains (Fact 2 and Fact 3)

When no confusion arises, we simply call a power-sensitive delegation game a
delegation game in the rest of this chapter. In the theoretical part of this chapter,
we will be working with a restricted version of Equation 4.1 by assuming α = 1,
and in the empirical section (Section 4.3), we will be working with the general
setting α ∈ [0, 1].

Observe that the strategy profiles of this game are delegation profiles. Each
such profile d induces an LDE ⟨N, w, d, β⟩. Note also that we assume w to be the
standard weight function assigning weight 1 to each agent.1 The utility of profile
d for i is the accuracy that i acquires in d, multiplied by i’s power in d, measured
by DBi(d).2 Notice that, therefore, the utility of a dummy agent is 0 and that the
utility of a dictator equals her accuracy.

The following simple example illustrates a trade-off between pursuing high
inherited individual accuracy and retaining voting power.

1 Our results can be extended to general weight profiles w by computing agents’ DBs based on their
initial voting weight.

2 Notice that we slightly abuse notation here by using d directly as input for the index, instead of the
corresponding LDE.
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Figure 4.1: Underlying network of Example 16.
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Figure 4.2: Delegation profiles of Example 16.

Example 16. Consider a delegation game in which N = {1, 2, 3, 4, 5} with accuracy
profile q = (0.6, 0.6, 0.8, 0.7, 0.9), quota β = 3, and underlying network as represented
in Figure 4.1. Then starting with the trivial delegation profile d0 (Figure 4.2a), we
investigate the change of agents 1 and 2’s utility if they delegate to the more accurate
neighbor 5.

• Agent 1. In profile d0, agent 1’s utility equals u1(d0) = q1DB1(d0) = 0.6 ∗ 6
24 . If

agent 1 changes to delegate to agent 5 (d1, Figure 4.2b), her voting power becomes
half of that in d0, i.e., DB1(d1) = 3

24 , but she inherits a higher accuracy from
agent 5, namely 0.9. However, agent 1 would not delegate, otherwise she loses too
much voting power, which cannot be compensated by the higher accuracy inherited
from agent 5, i.e., u1(d1) = q5DB1(d1) < u1(d0) = q1DB1(d1).

• Agent 2. We then consider the strategy of agent 2 based on profile d1 (Figure 4.2b).
Since now agent 1 delegates to agent 5, agent 2’s voting power also changes
(DB2(d1) =

4
24 comparing to DB2(d0) =

6
24 ) even though she is still a guru as

in d0. Therefore agent 2 would choose to delegate to agent 5 (to form profile d2,
Figure 4.2c), since her voting power will change to DB2(d2) =

3
24 while she also

inherits an accuracy of 0.9 from agent 5. This leads to u2(d2) = q5DB2(d2) >
u2(d1) = q2DB2(d1).

Note that for our experiments later in this chapter, we will be using the more
general form of (4.1) given by DBi(d)α · qd∗i

, with α ∈ [0, 1].

4.2 equilibrium analysis
In this section, we investigate the existence of Nash equilibria in delegation games.
We first show that Nash equilibria are not guaranteed to exist in general, but they
always exist in several subclasses of delegation games.
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4.2.1 Equilibria Do Not Exist in General

In this section, we ask the natural question whether the games of Definition 19

have a Nash equilibrium (NE) in pure strategies. In general, the answer to this
question is negative:

Theorem 10. There are power-sensitive delegation games that have no (pure strategy)
NE.

Proof. Consider the delegation game defined as follows. N = {1, 2, 3, 4, 5, 6},
q1 = 0.51, q2 = 0.7, q3 = 0.9, q4 = 0.6, q5 = 0.7, q6 = 0.9, β = 4, and for the
underlying graph R = ⟨N, E⟩, E = {(1, 3), (2, 3), (4, 6), (5, 6)}, which can be
represented as in Figure 4.3. Notice that this is a directed graph.
Below, we list all possible delegation profiles based on the underlying network.
Then in each possible delegation profile, we show that at least one agent has an
incentive to deviate from the delegation profile.

• The trivial profile d0, in which each agent is a guru, as shown in Figure 4.4.
(1) d0. Agent 1 deviates from d0 to d1, thus from DB1(d0) = 0.1875 to
DB1(d1) = 0.3125, and from u1(d0) = 0.1594 to u1(d1) = 0.1688.

• Profiles with only one delegating agent, as shown in Figure 4.5.
(2) d1. Agent 4 deviates from d1 to d7, thus from DB1(d1) = 0.25 to
DB1(d1) = 0.1875, and from u1(d0) = 0.15 to u1(d1) = 0.1688.
(3) d2. Agent 1 deviates from d2 to d5, thus from DB1(d2) = 0.25 to
DB1(d5) = 0.1875, and from u1(d0) = 0.1275 to u1(d1) = 0.1688.
(4) d3. Agent 1 deviates from d3 to d7, thus from DB1(d3) = 0.25 to
DB1(d7) = 0.15625, and from u1(d3) = 0.1275 to u1(d7) = 0.1406.
(5) d4. Agent 1 deviates from d4 to d8, thus from DB1(d4) = 0.25 to
DB1(d8) = 0.15625, and from u1(d4) = 0.1275 to u1(d8) = 0.1406.

• Profiles with two delegating agents, as shown in Fig 4.6.
(6) d5. Agent 2 deviates from d5 to d1, thus from DB2(d5) = 0.1875 to
DB2(d1) = 0.25, and from u2(d5) = 0.1688 to u2(d1) = 0.175.
(7) d6. Agent 5 deviates from d6 to d3, thus from DB5(d6) = 0.1875 to
DB5(d3) = 0.25, and from u2(d5) = 0.1688 to u2(d1) = 0.175.
(8) d7. Agent 4 deviates from d7 to d1, thus from DB4(d7) = 0.15625 to
DB4(d1) = 0.25, and from u4(d7) = 0.1406 to u4(d1) = 0.15.
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Figure 4.3: The underlying Network.
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Figure 4.4: The trivial profile d1.
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Figure 4.5: Profiles with only one delegating agent.

(9) d8. Agent 5 deviates from d8 to d1, thus from DB5(d8) = 0.15625 to
DB5(d1) = 0.25, and from u5(d8) = 0.1406 to u5(d1) = 0.175.
(10) d9. Agent 4 deviates from d9 to d2, thus from DB4(d9) = 0.15625 to
DB4(d2) = 0.25, and from u4(d9) = 0.1406 to u4(d2) = 0.15.
(11) d10. Agent 5 deviates from d10 to d2, thus from DB5(d10) = 0.15625 to
DB5(d2) = 0.25, and from u5(d10) = 0.1406 to u5(d2) = 0.175.
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Figure 4.6: Profiles with two delegating agents.
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• Profiles with three delegating agents, as shown in Fig 4.7.
(12) d11. Agent 2 deviates from d11 to d6, thus from DB2(d11) = 0.09375 to
DB2(d6) = 0.1875, and from u2(d11) = 0.0844 to u2(d6) = 0.1313.
(13) d12. Agent 1 deviates from d12 to d6, thus from DB1(d12) = 0.09375 to
DB1(d6) = 0.1875, and from u1(d12) = 0.0844 to u1(d6) = 0.0956.
(14) d13. Agent 5 deviates from d13 to d5, thus from DB5(d13) = 0.09375 to
DB5(d5) = 0.1875, and from u5(d13) = 0.0844 to u5(d5) = 0.1313.
(15) d14. Agent 4 deviates from d14 to d5, thus from DB4(d14) = 0.09375 to
DB4(d5) = 0.1875, and from u4(d14) = 0.0844 to u4(d5) = 0.1125.
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Figure 4.7: Profiles with three delegating agents.

• Due to the restriction by the underlying graph, agent 3 and agent 6 can
only be gurus. Therefore in the last possible profile d15, agents 1, 2, 4 and 5
are all delegating agents (Fig 4.8).
(16) d15. Agent 5 deviates from d15 to d14, thus from DB5(d15) = 0.09375
to DB5(d14) = 0.15625, and from u5(d15) = 0.0844 to u5(d14) = 0.1094.
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Figure 4.8: Profile d15.

Therefore, there is no NE in this delegation game as all profiles admit a profitable
unilateral deviation.

Although a pure strategy NE do not exist in general, we can still prove its
existence in some restricted classes of delegation games. In particular, we study
games with minority quota, unanimous quota, and complete networks.
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4.2.2 Existence of Equilibria: Quota Conditions

Since we assumed that a quota rule is used in delegation games (and LDEs),
it should be observed that the specific quota value β can also influence agents’
behaviors in the game. Note that in the following theorem, we consider delegation
games with a small quota, even though we specify that β > |N|/2 in Section 3.1.1.
When β is small, specifically, smaller than |N|/2, pure strategy NE can be
guaranteed.

Theorem 11. In any power-sensitive delegation game D = ⟨N, R, q, Σ, β, u⟩, where
β ≤ ⌈ n

2 ⌉ (n = |N|), there always exists at least one (pure strategy) NE.

Proof. We show that if the above condition is satisfied, the trivial profile d,
i.e., ∀j ∈ N, dj = j, is a NE. Towards a contradiction, assume that an agent
i ∈ N exists, such that i has an incentive to deviate from d. That is, another
agent i′ ∈ N exists, such that i obtains higher utility if she delegates to i′,
formally, ui(d′) > ui(d), where d′ = (d−i, d′(i) = i′). In profile d, we obtain that
DBi(d) = (n−1

β−1)/2n−1 since all agents are gurus and i is a swing agent for any

subset of size β− 1 in N \ {i}. Therefore ui(d) = qiDBi(d) = qi(
n−1
β−1)/2n−1. On

the other hand, in profile d′, since d′(i) = i′, i can be a swing agent in a coalition
only if i′ is also contained in the coalition. Thus DBi(d′) = (n−2

β−2)/2n−1, by which

ui(d′) = qi′ ∗DBi(d′) = qi′(
n−2
β−2)/2n−1 follows. By the assumption,

qi′

(
n− 2
β− 2

)
/2n−1 > qi

(
n− 1
β− 1

)
/2n−1. (4.2)

Rewrite Equation 4.2 and obtain

β− 1
n− 1

>
qi
qi′

.

Since for any j ∈ N, qj ∈ (0.5, 1], we have

β− 1
n− 1

>
1
2

,

which contradicts β ≤ ⌈ n
2 ⌉.

Intuitively, when the quota β is less than half of the entire weight, based on
the trivial profile, an agent will lose more than half of her voting power if she
delegates. This loss of voting power cannot be compensated by the improvement
of her individual accuracy, since her inherited individual accuracy is always less
than two times her original accuracy, as each agent’s accuracy is in the range
(0.5, 1].
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Under the unanimous quota, i.e., β > n− 1 in Equation 3.1, by Fact 5, the del-
egative Banzhaf index of each agent is identical in any profile. Therefore agents’
utility depends only on their gurus’ accuracy. This guarantees the existence of a
pure strategy NE.

Theorem 12. In any delegation game D = ⟨N, R, q, Σ, β, u⟩, where n− 1 < β ≤ n,
there always exists at least one pure strategy NE.

Proof. We prove the claim by construction. Given an arbitrary delegation game
D, such that β ∈ (n− 1, n], we construct a delegation profile d, and prove that
this profile is a pure strategy NE for D.

We construct profile d by Algorithm 2. In the algorithm, we use a sequence
σ which is a permutation of N, such that for the i-th and j-th elements, namely
σ(i) and σ(j), qσ(i) ≥ qσ(j) if i < j. For any C ⊆ N, σC is the sequence only
containing agents in C, with the consistent pairwise order according to σ. In a
social network R = ⟨N, E⟩, for any agent i ∈ N, let R−(i) denote all agents who
are able to delegate to i, i.e., R−(i) = {j ∈ N | (j, i) ∈ E}.

Algorithm 2 Building a Nash Equilibrium Under Unanimity Quota

initialization: d← d̂, θ ← N, σ, Ne← [].

iteration:
1: while θ ̸= ∅ do
2: Ne.append(σθ(1)).
3: while Ne ̸= [] do
4: for all i ∈ R−(Ne1) do
5: if di = i then
6: di = Ne1.
7: Ne.append(i).
8: θ ← θ \ {i}.
9: end if

10: end for
11: Ne.pop(1).
12: end while
13: end while

return: d

Now we show that the output profile d by Algorithm 2 is a Nash Equilibrium.
By the algorithm, initially, for the highest-accuracy agent (i.e., σθ(1) and θ = N),
all of her neighbors are designated to delegate to her. Then, all agents having
access to σθ(1) are added to Ne and are linked with delegation chains pointing
to σθ(1), by lines 3-12 in the iteration component of Algorithm 2. Such a process
is applied to all connected components of the underlying network R, so that
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each agent in N delegates to a guru who has the highest accuracy among those
to which the agent has access in the social network. Then by Fact 5, in every
delegation profile, each agent’s DB is identical when β > n− 1. Therefore in d,
each agent obtains the highest possible utility, from which it follows that d is a
NE.

Intuitively, when β is a unanimous quota, each agent can only be a swing agent
for the entire set N, that is, each agent has identical DB. Therefore, the agents’
utility solely depends on their gurus’ accuracy. By [11], such a game always
admits a NE, in which each agent delegates to a guru with the highest individual
accuracy to which she has access within the underlying network.

4.2.3 Existence of Equilibria: Complete Networks

The following result shows that a pure strategy NE can also be guaranteed to
exist when the underlying network is complete.

Theorem 13. In any power-sensitive delegation game D = ⟨N, R, q, Σ, β, u⟩ where R
is a complete network, there exists at least one (pure strategy) NE.

Proof. Note that in the complete network R, any agent can observe and interact
with any other agent. Hence by Fact 3, no delegation chain is longer than 1. We
prove the theorem by construction, that is, we use Algorithm 3 to output a profile
and verify that the profile is a NE.
To introduce Algorithm 3, we first introduce a sequence σ over N \ {i∗}, where
i∗ is the agent with the highest accuracy (ties are broken lexicographically). The
sequence is a bijection σ : N \ {i∗} ←→ [n− 1] ([k] = {1, . . . , k} for any k ∈ N),
and for any i ∈ N \ {i∗}, σ(i) denotes the ranking of i in σ, and σk (k ∈ [n− 1])
denotes the k-th agent in σ. For example, if agent i is the k-th agent in sequence
σ, σk = i and σ(i) = k. Furthermore, for any coalition C ⊆ N, let σC denote the
sequence that is consistent with σ but restricted to agents in C.
In other words, in Algorithm 3, in turns according to σ, each agent in N \ {i∗}

chooses between being a guru or delegating to i∗. If an agent changes from being
a guru to delegating to i∗ (to obtain higher utility), she cannot change her strategy
anymore. When no agent wants to change, the algorithm terminates and returns
the profile d.
Next, we verify that d is a NE. We show that in d, (Claim 1) i∗ will not deviate,
(Claim 2) any delegator will not deviate, and (Claim 3) any guru, other than i∗,
will not deviate.

First, Claim 1 obviously holds since (i) i∗ will not change to delegate to any
delegator to form a delegating cycle otherwise she would get utility of 0 by
Equation 4.1; (ii) by Fact 1, i∗ will not delegate to any other guru, otherwise she
would obtain a lower DB and inherits a lower accuracy.
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Algorithm 3 Constructing an NE in Complete Networks

initialization: i∗, C0 = ∅, C1 = N\{i∗}, σ, j = 1, d : for any i ∈ N, d(i) = i.

best response sequence:
1: while Cj ̸= Cj−1 do

2: j← j + 1
3: Cj ← Cj−1

4: for k = 1 to |Cj−1| do
5: d(i)← arg max

a∈{i∗ ,σCj−1
k } ui((d−σCj−1

k
, d′

σCj−1
k

= a))

6: if d(σCj−1

k ) = i∗ then
7: Cj ← Cj\{σCj−1

k }
8: end if
9: end for

10: end while

return: d

Next we show Claim 2. It is clear that a delegator would not change to delegate
to another delegator by Fact 3. Then we show that any delegator will not deviate
to be a guru. We use Lemma 3, which illustrates that if more agents delegate
to i∗, then all current delegators’ DB would not change, and Lemma 4, which
illustrates that if more agents delegate to i∗, then all remaining gurus’ (except for
i∗) DB will be weakly worse off.

Lemma 3. Given a power-sensitive delegation game D = ⟨N, R, q, Σ, β, u⟩ and a
profile d, where for any j ∈ N, if d(j) ̸= j, d(j) = i∗, we construct another profile
d′ = (d−i, d′(i) = i∗), where d(i) = i and i ̸= i∗. Then we have for all j ∈ N such
that d(j) = i∗ that DBj(d) = DBj(d′).

Proof. We show that for any delegator j under d, she is a swing agent for a
coalition C ⊆ N under d if and only if she is a swing agent for C under d′.
Since the only difference between d and d′ is the strategy of i, and i is a guru
under d and d′(i) = i∗, we have for any coalition C ⊆ N such that i∗ ∈ C that
the sum of initial endowed weight of all agents in De∗(C, d) and De∗(C, d′) is
identical, i.e., ∑a∈De∗(C,d) w(a) = ∑a∈De∗(C,d′) w(a). Note that j can be a swing
agent only if she is contained in De∗(C, d). Since d(j) = d′(j) = i∗, we have
that if j is a swing agent for C, then i∗ ∈ C under both d and d′. Therefore,
we have that under d, ∑a∈De∗(C,d) w(a) ≥ β and ∑a∈De∗(C\{j},d) w(a) < β if and
only if ∑a∈De∗(C,d′) w(a) ≥ β and ∑a∈De∗(C\{j},d′) w(a) < β. Thus, DBj(d) =

DBj(d′).
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Lemma 4. Given a delegation game D = ⟨N, R, q, Σ, β, u⟩ and a profile d, where for
any j ∈ N \Gu(d) with d(j) = i∗, we construct another profile d′ = (d−i, d′(i) = i∗),
where i ∈ Gu(d) \ {i∗}. Then we have for all j ∈ N \ Gu(d′) that DBj(d) ≥ DBj(d′).

Proof. We compare the times of any j ∈ N \ Gu(d′) serving as a swing agent
under d and d′. Since the only difference between d and d′ is the strategy of
agent i, it is sufficient to consider coalitions containing i. Then, under d and
d′ respectively, we count the number of coalitions for which j is a swing agent.
Consider the two possible cases: (1) i∗ ∈ C and (2) i∗ /∈ C.

1. i∗ ∈ C. Since i is a guru under d and d′(i) = i∗, we have |De∗(C, d)| =
|De∗(C, d′)|. Therefore, |De∗(C, d)| ≥ β and |De∗(C \ {j}, d)| < β if and
only if |De∗(C, d′)| ≥ β and |De∗(C \ {j}, d′)| < β. That is, j serves as a
swing agent for C under d if and only if j is a swing agent for C under d′.

2. i∗ /∈ C. Since i∗ /∈ C and d′(i) = i∗, we have |De∗(C, d)| = |De∗(C, d′)|+ 1,
and j cannot be a swing agent for C under both profiles. Then we consider
two possible (exhaustive) sub-cases:

a) j is a swing agent for C under d, but becomes a non-swing agent
for C under d′. That is, |De∗(C, d)| = ⌈β⌉ and |De∗(C\{j}, d)| =
|De∗(C, d′)| = ⌈β⌉ − 1. Since i∗ /∈ C, none of delegators is contained
in De∗(C, d) or De∗(C, d′). Then let C∗ denote the set of gurus, except
for i∗, under d, i.e., C∗ = Gu(d)\{i∗}, and n∗ = |C∗|. Therefore,
|De∗(C, d)| = |De∗(C ∩ C∗, d)|. Thus in this sub-case, the number of
coalitions C for which j is a swing agent is ( n∗−2

⌈β⌉−2), i.e., C contains
⌈β⌉ − 2 agents in Gu(d)\{i, j, i∗}, and C also contains i, j.

b) j is a swing agent for C under d′, but is a non-swing agent for C under
d. That is |De∗(C, d)| = ⌈β⌉+ 1 and |De∗(C, d′)| = |De∗(C, d)| − 1 =
⌈β⌉. Then, the number of C, for which j is a swing agent under d′, is
( n∗−2
⌈β⌉−1), i.e., C contains ⌈β⌉ − 1 agents in Gu(d)\{i, j, i∗}, and C also

contains i, j.

By Theorem 11, if β < ⌈ n
2 ⌉, Algorithm 3 returns the trivial profile since

remaining a guru maximizes each agent’s utility, and the trivial profile
is a NE. Then β ≥ n+1

2 , and we have ( n∗−2
⌈β⌉−2) ≥ ( n∗−2

⌈β⌉−1) since n∗ ≤ n− 1.
Therefore, the number of times that j serves as a swing agent under d is
weakly more than that under d′.

Therefore, in Algorithm 3, if an agent i chooses to delegate to i∗, she has no
incentive to change back to be a guru under d since: (1) by Lemma 3, as more
agents delegate to i∗, i’s utility does not change since DB and qi∗ do not change;
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(2) by Lemma 4, her utility becomes even lower than that before she chooses to
delegate to i∗.

Next, we show that any delegator will not change to delegate to another guru,
by using the following lemma.

Lemma 5. Given a power-sensitive delegation game D and a profile d, where for any
j ∈ N\Gu(d), d(j) = i∗, we construct another profile d′ = (d−i, d′(i) = i′), where
d(i) = i∗ and i′ ∈ Gu(d)\{i∗}. Then DBi(d) ≥ DBi(d′).

Proof. Analogously to Lemma 4, we also prove the lemma by comparing the
number of times that i serves as a swing agent under d and d′, respectively. First
notice that for any coalition C such that i∗, i′ ∈ C, |De∗(C, d)| = |De∗(C, d′)|.
That is, i is a swing agent for C under d if and only if she is also a swing agent
for C under d′.
Then we consider any coalition C which contains only one of i∗ and i′. Let
C′ = N\(De∗({i∗}, d) ∪ {i′}), namely, all agents except for delegators under d,
i∗ and i′, and let n′ = |C′| and n∗ = |De∗({i∗}, d)\{i∗}|. Then we consider two
cases:
(1) i is swing for C under d, but not swing under d′. We can infer that i∗ ∈ C
but i′ /∈ C, since d(i) = i∗ and i ∈ De∗(C, d). Therefore, |De∗(C, d)| = ⌈β⌉ and
the number of such coalitions (or times i is swing in this case) is (n′+n∗

⌈β⌉−2), i.e., C
contains ⌈β⌉ − 2 agents in C′ ∪ De∗({i∗}, d)− {i∗}, and it also contains i, i∗. (2)
i is not swing for C under d, but is swing under d′. Then we have that i′ ∈ C,
but i∗ /∈ C. Therefore, |De∗(C, d′)| = ⌈β⌉, and the number of such coalitions (or
the times of i being a swing agent in this case) is ( n′

⌈β⌉−2) ∗ 2n∗ . That is, C contains
⌈β⌉ − 2 agents in C′ as well as i, i′, and since i∗ is not in C, any agent delegating
to i∗ is dummy and does not influence the value of |De∗(C, d)|, thus it leads to
2n∗ times of ( n′

⌈β⌉−2).
If β < ⌈ n

2 ⌉, the trivial profile is a NE by Theorem 11, and thus we assume
β ≥ n+1

2 . Under this condition, we have (n′+n∗
⌈β⌉−2) ≥ ( n′

⌈β⌉−2) ∗ 2n∗ by Lemma 6, thus
DBi(d) ≥ DBi(d′).

Lemma 6. Given n, n′, n∗ ∈ Z+ and β ∈ (n/2, n] such that n = n∗ + n′ + 2, we have
(n′+n∗
⌈β⌉−2) ≥ ( n′

⌈β⌉−2) · 2n∗ .
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Proof. Let α = (⌈β⌉−2)!(n′−⌈β⌉+2)!(n∗+n′−⌈β⌉+2)!
n′ ! . We assume that n′ − ⌈β⌉+ 2 ≥ 0,

otherwise ( n′
⌈β⌉−2) = 0 and (n′+n∗

⌈β⌉−2) ≥ ( n′
⌈β⌉−2) · 2n∗ obviously holds. Then(

n′

⌈β⌉ − 2

)
· 2n∗ · α

=
n′!

(⌈β⌉ − 2)!(n′ − ⌈β⌉+ 2)!
· 2n∗ · α

=2n∗ · (n′ − ⌈β⌉+ 3)(n′ − ⌈β⌉+ 4) . . . (n′ − ⌈β⌉+ 2 + n∗)︸ ︷︷ ︸
n∗

= 2 · (n′ − ⌈β⌉+ 3)2 · (n′ − ⌈β⌉+ 4) . . . 2 · (n′ − ⌈β⌉+ 2 + n∗)︸ ︷︷ ︸
n∗

.

(4.3)

We also have that(
n′ + n∗

⌈β⌉ − 2

)
· α =

(n′ + n∗)!
(⌈β⌉ − 2)!(n′ + n∗ − ⌈β⌉+ 2)!

· α

= (n′ + 1)(n′ + 2) . . . (n′ + n∗)︸ ︷︷ ︸
n∗

.
(4.4)

We first compare 2 · (n′ − ⌈β⌉+ 2 + n∗) and n′ + n∗. Since ⌈β⌉ ≥ n+1
2 , 2⌈β⌉ ≥

n′ + n∗ + 4, we have

2n′ + 2n∗ − 2⌈β⌉+ 4 ≤ n′ + n∗.

Therefore,

(
n′

⌈β⌉ − 2

)
· 2n∗ · α ≤

(
n′ + n∗

⌈β⌉ − 2

)
· α.

Finally, we show Claim 3 that any guru i (i ̸= i∗) under d will not deviate. It
is obvious that i has no incentive to change to delegate to i∗ by the operation
of Algorithm 3. That is, in line 5 of Algorithm 3, agent i’s optimal delegation
strategy is being a single guru. Then by Lemma 5, i can obtain even lower utility
if she changes to delegate to another guru rather than i∗. Hence i will not deviate
from d.

It remains an open question whether the completeness of the underlying
network could be replaced by weaker properties, e.g., symmetry.

4.3 empirical study
In this section, we empirically study agents’ delegation behavior in power-
sensitive delegation games. We evaluate the performance of two types of iteration
by computer simulation. Recall that we theoretically showed that a pure strategy
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NE cannot always be guaranteed to exist in delegation games. Therefore, as
an extension of the theoretical analysis, we use an algorithm implementing a
process of iterated better response dynamics as a process of equilibrium com-
putation, for power-sensitive delegation games (Algorithm 4). Notice that in
Algorithm 4, a sequence σ, i.e., a permutation of N, is also used, where σ(i)
denotes the i-th agent. Algorithm 4 is also compared with another algorithm,
modeling one shot iteration (OSI). In OSI, starting from the trivial profile, each
agent chooses once her best response strategy (see Definition 5) simultaneously,
which maximizes her utility. Formally, let d0 be the trivial profile. In OSI, i
chooses di = argmaxa∈R(i)ui((d0

−i, di = a)).

Algorithm 4 Iterated Better Response Dynamincs (IBRD)

initialization: d0 : ∀i ∈ N, d0(i) = i, σ, j = 1, k = 0.

round j :

1. Let i = 1.

2. step 1: Randomly choose ℓ from R(σ(i)), and let d̃j = (dj
−σ(i), d̃j(σ(i)) =

ℓ).

3. step 2: If uσ(i)(d̃j) > uσ(i)(dj), dj ← d̃j and go to step 3,
else if uσ(i)(d̃j) ≤ uσ(i)(dj) and k > 2(|E(σ(i))|+ 1), go to step 3,
otherwise go to step 1 and k = k + 1.

4. step 3: If i < n, i = i + 1 and go to step 1;
else if i = 30 and dj = dj−1, return dj;
otherwise go to Round j + 1.

To evaluate the performance of the two algorithms, we measure several criteria
of the resulting profiles. First, to measure structural features of a given profile,
we compute the ratio of delegators, and the maximum and average length of
all delegation chains. Since the DB is supposed to be related to the structure of
delegation profiles, we also compute the maximum/minimum/average DB as
well as the Gini coefficient [36], which reflects the balance of the distribution of DB:
higher Gini coefficient implies more inequality. Moreover, the weighted average
accuracy of all gurus in each profile is also computed as another measurement
of performance of the algorithms. Finally, we investigate the ratio of converged
instances of the IBRD for some parameters: when the converged instances take a
low ratio, agents tend to change their delegations easily.

These criteria, namely, the ratio of delegators, the Gini coefficient of DB’s and
the average accuracy, reflect the information with which we are mostly concerned,
i.e., the structure of the delegation graphs, the distribution of the DB’s, and the
individual decision quality. Therefore, we provide the statistical tests (ANOVA
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tests) to determine whether the qualifications of the described trends with respect
to the variable on the x-axis (e.g., “increasing” and “decreasing”) as well as the
described difference between the algorithms are appropriate or not. As shown in
Appendix A.1, the details of the ANOVA tests for the above three criteria (i.e.,
corresponding to Figures 4.9a, 4.9g, 4.9h, 4.10a, 4.10g, 4.10h, 4.11a, 4.10g and
4.11h) are provided.

4.3.1 Experimental Setup

We compare the two algorithms in three simulations, all of which use random
networks (recall Section 2.1) as underlying networks.

As one might expect, the bottleneck in our experiments consists in the compu-
tation of DB in order to establish agents’ utilities by Equation 4.1. It is well-known
that computing the Banzhaf index in weighted voting games is intractable [55]
in general. Matsui & Matsui [54] provided a pseudo-polynomial time algorithm
to compute the Banzhaf index in weighted voting when agents’ weights are
small. The authors use an inductive method to compute the Banhzaf index
fast. In each step of the induction, the algorithm requires that after removing
a given agent from a coalition, the weight of the residual coalition should be
computable based only on the individual weights of the agents in the residual
coalition. Unfortunately, this method cannot be adapted to DB, since by removing
a given agent from a coalition, the residual weight also depends on the structure
of the delegation graph and the identity of the removed agent. We therefore
implement the approximation method described by Bachrach et al. [3]. Each time
we need to establish the DB of an agent, 15000 coalitions are randomly sampled
(by uniform distribution), and the ratio of the coalitions for which the agent is
swing is used as the estimator of the DB. By the analytical bounds proven by
Bachrach et al. [3] with the above method, we know that the correct DB lies in the
confidence interval [D̂B− 0.011, D̂B+ 0.011] with probability of 0.95, where D̂B
is the estimator. So it should be clear that the statistics presented in this section
report on values that depend on the estimator D̂B, and that with high probability
are close to the exact intended values.

The simulation is programmed in Python 3.7, on the Peregrine HPC cluster
of the University of Groningen.3 The source code can be found on https:

//github.com/IamYoezy/Power-in-Liquid-Democracy.

4.3.2 Parameter Setting

We set |N| = 30, and for each parameter setting, we use an accuracy vector
Q ∈ R30, where each element in Q is drawn from a Gaussian distribution
N (0.75, 0.125) and forced to be in range [0.5, 1]. All statistics are the mean value

3 https://wiki.hpc.rug.nl/peregrine/start
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over 50 instances for each parameter setting, but note that for IBRD (Algorithm 4),
we only take the instances converged in 100 iterations among all 50 instances.

We will be working with three parameters. To test the effect of connectivity
on power we assume that interaction happens on a random network and vary
the probability p (see range in e.g., Figure. 4.9b) of any two agents being linked,
with assumption of α = 1 and β = 16 (i.e., the weighted majority voting rule),
i.e., experiment A. To test the effect of different attitudes towards the importance
of power for agents we work in experiment B with the general utility function
defined by Equation 4.1 with α ∈ {0, 0.25, 0.5, 0.75, 1} and assuming an underly-
ing random network with p = 0.75 and β = 16. Finally to test the effect of the
quota β we vary the value of β in range {16, 18, 21, 24, 27} in experiment C, i.e.,
from weighted majority to almost unanimous voting, while keeping α = 1 and
connectivity parameter p = 0.75.

4.3.3 Connectivity: Experiment A

Figure 4.9a shows that the higher the connectivity (the larger the p), the weakly
more agents tend to delegate both in equilibrium (IBRD) and in one-shot interac-
tion (OSI). This is in line with expectations because agents have more chance to
interact with high-accuracy agents. It is worth observing, however, that the ratio
of delegators is very low (less than 0.06 on average). That is, very few agents
delegate on average. This is in contrast with the behavior of the delegation game
where utility is solely based on accuracy (cf. Bloembergen et al. [11]). We will
see in experiment B that the influence of power on agents’ utility seems to be an
important factor in limiting vs. facilitating delegations.

The delegation structure indicators, i.e., the average length of delegation chains
(Figure 4.9b) and the longest delegation chain (Figure 4.9c) further show more
details of agents’ behavior. By Figure 4.9c, all delegations are one-hop in all
instances. This indicates that delegation through long chains is significantly
prevented in order to avoid loss of voting power, since agents’ utility strongly
depends on DB (e.g., α = 1 in the setting of Experiment A). Hence the higher ratio
of delegators is the only reason leading to the increase of the average length of
delegation chains (Figure 4.9b). When p ≥ 0.4, the delegator ratio in OSI remains
stable with value of approximately 0.33, but the ratio in IRBD is increasingly
higher. By the fact that no agent gets access to high-accuracy agents by longer
delegation chains in IRBD (all delegations are one-hop), we conclude that agents’
delegations can motivate other agents to delegate by changing their voting power.

Despite the small number of delegations, we can still observe that increasing
p lowers the mean value of DB (Figure. 4.9f) and weakly increases inequality in
the distribution of DB, measured by the Gini coefficient (Figure 4.9g). It should
be stressed, however, that the Gini coefficient remains very low due to the small
fraction of delegators. Intuitively, an increase in delegations enhances some
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(a) A: ratio of delegators
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p

(b) A: Average delegation chain
length
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p

(c) A: The longest delegation
chain

0.0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9
p

(d) A: Minimum DB

0.0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9
p

(e) A: Maximum DB

0.0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9
p

(f ) A: Average DB

0.0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9
p

(g) A: Gini coefficient

0.0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9
p

(h) A: Average accuracy

Figure 4.9: Experiment A: - for OSI and - for IBRD.
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agents’ power (Figure 4.9e), but reduces the power of other agents (Figure 4.9d),
be they gurus or delegators.

Additionally, by Figure 4.9h, as more delegations happen in the network, the
average accuracy becomes weakly higher, since delegators inherit high accuracy
from their gurus. However, the difference of the average accuracies is not obvious
because of the low delegator ratio, and the average accuracy of IBRD is slightly
higher than that of OSI, since more agents delegate in IBRD. This trend coincides
with the one observed in [11], where the average accuracy becomes higher as
more agents delegate to agents with higher accuracies.

4.3.4 Power: Experiment B

Figure 4.10a shows that larger values of α correspond to significantly fewer
delegators for OSI. As agents put more weight on power, they are more reluctant
to delegate in the initial profile (recall Fact 1). For IRBD, this effect is observable
only for α ≥ 0.25. We argue that this may depend on the fact that IRBD, at the
initial profile, allows for delegations to take place that only suboptimally improve
utility, triggering further delegations at later iterations.

Observe that, in Figure 4.10b and 4.10c, both of the average lengths of delegation
chains and the lengths of the longest delegation chains significantly reduce from
α = 0 to α = 0.25, and keep (mildly) lowering until α = 1. As agents start to
consider to retain voting power (from α = 0 to α = 0.25), long delegation chains
are prevented to maintain voting power, reflecting Fact 2, 3 and 4. Observe that
when α > 0, all delegations in OSI are direct, i.e., one-hop delegations, which
indicates that the difference of the accuracies between the low-accuracy agent and
the high-accuracy agent should be large enough, so that the inherited accuracy
through delegation can cover the loss of voting power. Furthermore, when α > 0,
a few agents still delegate through delegation chains longer than 1 (with the
longest delegation chain of 2 but the average length around 1), hence we infer that
existing delegation may facilitate delegation (through long delegation chains).

It is worth observing that when α = 0, by Figure 4.11d, 4.11e and 4.11f, the
minimum/maximum/average DB’s are all low (close to 0), due to the long
delegation chains. By Fact 3 and 4, both delegators and gurus suffer from losing
voting power through long delegation chains. This problem becomes severe in
Experiment C: agents lose almost all power due to the long delegation chains
(average 5.5 and longest 9). As α grows, the average power increases (Figure 4.10f)
and inequality in the distribution of power decreases (Figure 4.10g). Though
almost all other trends are monotonic, the maximum DB (Figure 4.10e) of OSI
(resp. IBRD) peaks at α = 0.5 (resp. α = 0.75), from which we infer that the
reduction of delegation within some range may promote super-voters to retain
voting power.
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(a) B: ratio of delegators (b) B: Average delegation chain
length

(c) B: The longest delegation chain (d) B: Minimum DB

(e) B: Maximum DB (f ) B: Average DB

(g) B: Gini coefficient (h) B: Average accuracy

Figure 4.10: Experiment B: - for OSI and - for IBRD.
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Consequently, as delegation becomes prevented due to higher α, the average
individual accuracy (Figure 4.10h) of both OSI and IBRD decreases.

4.3.5 Quota: Experiment C

First observe in Figure 4.11i that much fewer instances of IBRD converge in
Experiment C than in Experiment A and Experiment B: e.g., approximately 20

among 50 when β = 27 and none when β = 21 and β = 24. This indicates
less robust results than those reported in Experiment A and Experiment B.
We conjecture that this is due to the fact that, on average, DB in instances of
β = 21 and 24 is low and hence agent’s utility is sensitive to DB’s approximation
error. This, in turn, should make convergence harder because agents keep
changing delegation strategies due to the change of agents’ utilities caused by
DB’s approximation error. However, when β = 27, the quota is approximately
unanimous and agents’ DB’s become almost identical (see Fact 5). Hence agents
are primarily motivated to pursue to delegate to high-accuracy agents instead
of to retain voting power. This results in the trend that some instances converge
again comparing to those when α = 21 and 24, and that the indices when β = 27
are similar to those when α = 0 in Experiment B.

Though the results of the IBRD are less robust, the trends of OSI can still reflect
the influence imposed by β. As β increases, delegation is significantly facilitated:
by Figure 4.11a, the set of delegators grows from the minority (less than %10
when β = 18) to the main part of the whole set (approximately %80 when
α = 27). Note that all delegations are direct (Figure 4.11c). Consequently, we
obtain lower average DB (Figure 4.11f) and higher inequality of DB’s distribution
(Figure 4.11g), as well as increasing average individual accuracy (Figure 4.11h).
Notice that when β = 18, the delegator ratio of IBRD is much higher than that of
OSI (Figure 4.11a), which indicates that agents’ delegations enormously trigger
other agents’ incentive to delegate.

conclusion
This chapter used the power index developed in Chapter 3 to model a variant
of delegation games for liquid democracy where agents seek to find a tradeoff
between increasing their accuracy and acquiring power in the system. We showed
that for this sort of interaction, pure strategy Nash equilibria are not guaranteed to
exist in general. However, the existence of NE was proved in several subclasses of
the delegation games, i.e., delegation games with minority quota, with unanimous
quota, and under complete underlying networks. Finally, we investigated by
computer simulation that delegation is restrained by three parameter settings:
less connectivity of the underlying networks, higher extent to which agents are
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(a) C: ratio of delegators (b) C: Average delegation chain
length

(c) C: The longest delegation
chain

(d) C: Minimum DB (e) C: Maximum DB (f ) C: Average DB

(g) C: Gini coefficient (h) C: Average accuracy (i) C: Converged number of in-
stances

Figure 4.11: Experiment C: - for OSI, - for IBRD.
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motivated by the acquisition of power, and less quota value. These trends are
consistent with the theoretical results in Section 3.3. The restrained delegation
further leads to lower average accuracy and more equality on voting power
distribution among agents.

As to future work, we would like to mention three. First, it would be interesting
to understand how much agents’ attitude towards power could help in readdress-
ing the deterioration of decision-making quality highlighted by [16, 46], through
its equalizing effect on power distribution. (See Preliminaries for this research.)
Second, it is worth studying the theoretical guarantee of the existence of pure
strategy NE in more general subclasses of the delegation games than those stud-
ied in Section 4.2, e.g., delegation games under connected underlying networks.
The last is to analytically study the beneficial effect of voting power in limiting
accrual of voting weight in liquid democracy observed in the experiments.



5 T R A C K I N G T R U T H B Y W E I G H T I N G
P R O X I E S

This chapter studies the truth-tracking behavior of liquid democracy when agents
are allowed to express delegations consisting of the apportionment of shares of a
unit weight (i.e., the agent’s voting weight) to their proxies. This functionality
is available in some implementations of liquid democracy (e.g., on the platform
Congressus of the French Pirate Party1). We show that in this setting—unlike in
the standard one where voting weight is delegated in full to only one proxy—it
becomes possible to construct delegation structures that optimize the truth-
tracking ability of the group. Then, in the next chapter, focusing on group
accuracy, we contrast this centralized solution with the setting in which agents
are free to choose their weighted delegations by greedily trying to maximize their
own individual accuracy.

chapter contributions We first interpret these apportioned weights prob-
abilistically, that is, as mixing of pure delegations. The issue we are after is
to understand the extent to which weighted delegations could help the truth-
tracking behavior of liquid democracy. We make two contributions. First, we
show that in this more general setting it is always possible for the agents to
achieve maximal group accuracy by centrally coordinating their delegations
(Theorem 15). Second, we provide an interpretation of weighted delegations
alternative to mixing, in which weights are modeled as shares of voting power
that agents apportion to their proxies. We show that these two interpretations of
weighted delegation coincide under specific conditions, and the maximal group
accuracy is also achievable by centralized coordinated delegations in this second
interpretation. This part presents and extends material from [69].

5.1 weighting proxies
In this and the following chapter (together constituting Part III), we will be
working with the class of symmetric directed graphs, called undirected graphs
(recall Section 2.1), which are a subclass of the graphs used in Part II. In such a
graph, if a pair of nodes are linked, two edges with different directions must exist
between them. We make this assumption for mathematical tractability. We also
assume that all underlying networks are connected. That is, in the undirected

1 https://partipirate.org/

朸朱



朸朲 tracking truth by weighting proxies

graph R = ⟨N, E⟩, for any pair of agents i, j ∈ N with i ̸= j, we can find at least
one path connecting i and j. Additionally, each agent is initially assigned a voting
weight 1 (one person one vote). This also restricts us to the more special case
w(i) = 1 for all i ∈ N.

5.1.1 Weighted Delegations

The model in Part III is also based on the one introduced in Section 2.1, where a set
of agents make a decision on a binary issue through a liquid democracy system.
We generalize this setting (under the aforementioned assumptions) by allowing
agents to apportion parts of their voting power to different proxies: i’s delegation
now amounts to a stochastic vector Di = (Di1, . . . , Din) ∈ Rn

≥0 with ∑j∈N Dij = 1.
We call such delegations weighted delegations. A profile of weighted delegations
(weighted profile) is an n× n-dimensional stochastic matrix D = (D1, . . . , Dn), and
D is the collection of all such profiles. A standard delegation profile d then
corresponds to a degenerate stochastic matrix where each row contains only one
entry. We will be referring to standard delegations also as pure delegations, and
standard delegation profiles as pure delegation profiles (or simply pure profiles).

A weighted profile D defines a weighted directed graph G(D) = ⟨N, x−→⟩ where

for any pair of i, j ∈ N, a directed edge i
Dij−→ j from i to j with label of weight

Dij exists whenever Dij > 0. Weighted delegation chains, cycles and loops can
then be defined on these graphs as we did for graphs of pure delegations in
Section 2.1.

Example 17. Consider a set of agents N = {1, 2, 3, 4, 5}, with weighted profile D, such
that

• D1: D11 = 1, i.e., maintaining her full voting weight,

• D2: D22 = D25 = 0.5, i.e., agent 2 delegates half to agent 5 and maintains the
other half,

• D3: D31 = D33 = 0.5, i.e., agent 3 delegates half to agent 1 and maintains the
other half,

• D4: D43 = 1, i.e., agent 4 fully delegates to agent 3, and

• D5: D52 = 1, i.e., agent 5 fully delegates to agent 2.
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Figure 5.1: Delegation graph of Example 17

We can then denote the weighted delegation profile D as the following matrix:

D =



1 0 0 0 0

0 0.5 0 0 0.5

0.5 0 0.5 0 0

0 0 1 0 0

0 1 0 0 0


The corresponding delegation graph is depicted in Figure 5.1.

Several interpretations of a voter’s weight become possible under weighted
delegations. We deal with two such interpretations. The first one is based on a
probabilistic interpretation of the weights, and it will be the one we use to develop
our framework. Later, in Section 5.3.2, we are going to interpret weights also as
direct transfers of shares of voting weight, and compare the two approaches.

5.1.2 The first Weighting Approach: Expected Weight

Each weighted profile D can be thought of as describing a probability distribution
over pure profiles where the probability of a pure profile d is Pr(d) = Πi∈N Did(i).
We say that pure profile d is supported by weighted profile D, if it has a positive
probability, i.e., Pr(d) > 0. The weight transfer of agent i in D, is the vector tD(i) =
(tD(i, 1), . . . , tD(i, n)) describing how i’s weight is distributed in expectation
among all guru agents, where:

tD(i, j) = ∑
d∈s(D)

1d∗(i)=j Pr(d) (5.1)

where j ∈ N, s(D) = {d | Pr(d) > 0} denotes the support of (the probability
distribution over pure profiles induced by) D, and 1d∗(i)=j is the indicator that j
is the guru of i in d, i.e., 1d∗(i)=j = 1 if d∗(i) = j, otherwise 0. We will refer to
this interpretation of weighted delegations as the expected weight approach.

Remark 1. Interpreting agents’ weighted delegations as stochastic strategies is also
used in, e.g., the studies of Kahng et al. [46] and Halpern et al. [41]. In the notion of
local delegation mechanism in [46], agents delegate to neighbors with higher accuracy
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with higher probability. In [41], a function ϕ(qi, qj) is used to decide agent i’s stochastic
delegation strategy, by taking qi and qj, i.e., the accuracy of each neighbor j of i’s.

Using Equation 5.1, we generalize the voting weight accrued by agent i (i ∈ N)
in Equation 2.1 to the one consisting of the sum of the weights she receives from
all agents:

w(i, D) = ∑
j∈N

tD(j, i). (5.2)

Equation 5.2 defines, for each D, a vector w(D) = (w(1, D), . . . , w(n, D)) assign-
ing a weight to each agent, which we call the weight distribution of D. Then,
as a generalization of the notion of gurus introduced in Section 2.1, we denote
by Gu(D) = {i ∈ N | w(i, D) > 0} the set of gurus in D, that is, the set of
agents with positive weight in the weight distribution of D. It is worth observing
that ∑i∈N w(i, D) can be less than n (recall that n = |N|), because agents may
end up having no guru in the induced pure profiles where they are caught into
delegation cycles. In such cases, the agent loses the weight corresponding to the
probability attached to such pure profiles. We also observe that for any guru
i ∈ Gu(D) in weighted profile D, Dii > 0. That is, agent i is a guru in at least one
pure profile in s(D).

Example 18 (Example 17, continued). Consider the weighted delegation profile for the
set of 5 agents in Example 17. By the expected weight approach, we consider the weight
transfer of each agent as follows:

• tD(1). Agent 1 always fully delegates to herself, therefore tD(1) = (1, 0, 0, 0, 0).

• tD(2). With probability of 0.5, agent 2 and 5 form a delegation cycle, where the
weight of the two agents is lost. With probability of 0.5, agent 2 acts as a guru and
retain her weight of 1. Therefore tD(2) = (0, 0.5, 0, 0, 0).

• tD(3). Agent 3 delegates to agent 1 with probability of 0.5, and is a guru with
probability of 0.5. Hence tD(3) = (0.5, 0, 0.5, 0, 0).

• tD(4). Agent 4 always fully delegates to agent 3. However, due to agent 3’s
delegation strategy, this amount is retained by agent 3 with probability of 0.5, and
by agent 1 with probability of 0.5. Hence tD(4) = (0.5, 0, 0.5, 0, 0).

• tD(5). Among all induced pure profiles, in a half, agents 2 and 5 form a cycle and
the weight of these two agents is lost, and in the other half, agent 5 delegates to
agent 2. Therefore tD(5) = (0, 0.5, 0, 0, 0).

Then by Equation 5.2, the weight distribution of D is w(D) = (2, 1, 1, 0, 0). Notice that
∑i∈N w(i, D) = 4 < 5, since weight amount of 1 is lost the delegation cycle formed by
agents 2 and 5.
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5.1.3 Group Accuracy with Weighted Delegations

Each agent i with positive weight in the weight distribution w(D) votes with
accuracy qi and weight w(i, D). We are interested in the group accuracy under
delegation (see Definition 2 in Section 2.2) when gurus vote with accrued weights
determined by the expected weight approach described above. We generalize
Definition 2 as follows:

qN,w(D) = ∑
C∈W(D)

∏
i∈C

qi ∏
i∈Gu(D)\C

(1− qi), (5.3)

whereW(D) is the set of winning coalitions, i.e.,

W(D) = {C ⊆ Gu(D) | ∑
i∈C

w(i, D) > ∑
i∈Gu(D)\C

w(i, D)}. (5.4)

We abuse notation and extend W(D) to include one of the two equinumerous
coalitions in case of ties uniformly at random if ∑i∈C w(i, D) = ∑i∈Gu(D)\C w(i, D).
Note that this is different from the quota rule used in Chapter 3 where a deter-
ministic tie breaker is used. It is worth noting that weight may be lost due to
cycles (i.e., ∑i∈Gu(d) < n). That is why a winning coalition needs to be defined
with weight more than ∑i∈Gu(D) w(i, D)/2 instead of n/2.

Observe that the group accuracy under weighted delegations depends on the
weight distribution w(D), or, in other words, depends on the interpretation of
weighted delegations. As mentioned above, we also introduce in Section 5.3.2
another method to interpret weighted delegations, which usually produces dif-
ferent weight distributions than the expected weight approach, and consequently
results in different group accuracies.

Example 19 (Example 18, continued). We use Example 18 with accuracy profile
q = (0.9, 0.9, 0.6, 0.6, 0.6). Consider the weight distribution w(D) = (2, 1, 1, 0, 0). We
have that Gu(D) = {1, 2, 3}. Notice that there is a tie between coalitions {2, 3} and
{1}. Since the tie is broken uniformly at random, we have two possible cases:

1. Coalition {2, 3} is chosen as the winning one. Then all winning coalitions are
W(D) = {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. Then take the voting instance of the
winning coalition {1, 2}, where agents 1 and 2 vote correctly but 3 incorrectly.
This instance has probability q1q2(1− q3) = 0.324. Then the group accuracy
is the sum of all accuracies of these winning coalitions, i.e., qN,w(D) = 0.324 +
0.054 + 0.054 + 0.486 = 0.918.

2. Coalition {1} is the winning one. By a similar computation, we have that
qN,w(D) = 0.324 + 0.054 + 0.036 + 0.486 = 0.9.
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5.2 centralized weighted delegations
Our motivation to study weighted delegations comes from the known general-
ization of the Condorcet jury theorem (Theorem 4) showing that the chance that
the voting outcome of the group is correct is maximized if a weighted majority
rule is used with a specific choice of weights. That is, if for all agents i ∈ N, the
voting weight is proportional to log( qi

1−qi
)2, then the group accuracy qN achieves

maximal.
We can leverage Theorem 4 to solve the optimal delegation problem: given a

set of agents with different accuracies, what is the weighted delegation graph that
maximizes group accuracy? We develop an answer to this question in two steps.
First, to fix intuitions, we provide a solution for complete networks (Algorithm
5), and then move to connected networks (Algorithm 6).

5.2.1 Centralized Delegations in Complete Nets

In complete networks, all agents can delegate to all the other agents. We propose
an algorithm that uses one-hop weighted delegations to reallocate weight from
the less accurate to the more accurate agents in the group. We define the optimal
weight of each agent i ∈ N by:

w⋆
i = n ·

log qi
1−qi

∑j∈N log
qj

1−qj

, (5.5)

where n is the number of agents (and thus it is also the entire amount of vot-
ing weight due to our one-person-one-vote setting), limqi→1 log qi

1−qi
= ∞, and

limqi→0.5 log qi
1−qi

= 0 (detailed value trend is shown in Figure 2.2). Notice that
this weight is larger than 1 for the more accurate agents whereas it is smaller
for the less accurate ones and, as desired, it is proportional to log qi

1−qi
. The idea

behind the algorithm (Algorithm 5) is to have the agents i with w⋆
i > 1 apportion

their full weight to themselves, and have each agent j with w⋆
j < 1 apportion

shares w⋆
i − 1, normalized by the total excess weight of the i agents, of the excess

weight 1 − w⋆
j to each agent i. Notice that if all agents are equally accurate

(N = N3), Algorithm 5 returns the trivial profile. We use Example 19 to illustrate
Algorithm 5.

Example 20 (Example 19, continued). We first compute log qi
1−qi

for all i ∈ N, and
obtain vector (0.9542, 0.9542, 0.1761, 0.1761, 0.1761). Then the optimal weight vector
w⋆

i is computed by normalizing the above vector by the entire weight, in this case,

2 Note that all the following results do not change by different choice of the logarithm’s base, and we
use natural base of e.
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Algorithm 5 Optimal delegations in complete networks

input: N, w⋆

initialize: N1 = {i ∈ N | w⋆
i < 1}, N2 = {i ∈ N | w⋆

i > 1}, N3 = {i ∈ N |
w⋆

i = 1}, w = ∑i∈N2
(w⋆

i − 1).

delegate:
1: For i ∈ N3: Dii = 1.
2: For i ∈ N2: Dii = 1.

3: For i ∈ N1: for all j ∈ N2, Dii = w⋆
i , Dij = (1− w⋆

i )
w⋆

j −1
w .

return: D

obtaining vector w⋆ = (1.958, 1.958, 0.3613, 0.3613, 0.3613). We can observe that w⋆
1

and w⋆
2 are larger than the initial weight 1 and therefore according to the algorithm, they

will not delegate. For any other agents i ∈ {3, 4, 5}, they delegate the excess weight above
w⋆

i = 0.3613 (i.e., 1− w⋆
i ) to agents 1 and 2 by share w⋆

1
w⋆

1+w⋆
2

and w⋆
2

w⋆
1+w⋆

2
respectively.

That is, in this case, each agent i delegates to agents 1 and 2 equally since w⋆
1 = w⋆

2 .
Therefore the returned profile is D, in which:

• D11 = D22 = 1,

• D3 = (0.31935, 0.31935, 0.3613, 0, 0),

• D4 = (0.31935, 0.31935, 0, 0.3613, 0), and

• D5 = (0.31935, 0.31935, 0, 0, 0.3613).

Then for all i ∈ N, w(i, D) = w⋆
i .

Theorem 14. Given a set of agents N, with accuracy profile q, and an underlying net-
work R, if R is complete, then Algorithm 5 outputs an element of arg maxD∈D qN,w(D).

Proof. By Theorem 4, D ∈ arg maxD∈D qN,w(D) if w(i, D) ∝ log( qi
1−qi

) for all
i ∈ N. Observe that (N1, N2, N3) is a tri-partition of N. Agents in N1 have
optimal weight below 1, and this requires them to delegate part of their weight
to agents in N2 whose optimal weight is above 1. We discuss each element of
the tri-partition in turn. For all agents in N3, their optimal weight is exactly
1. Therefore they just need to be gurus without incoming delegations to reach
their optimal weight, i.e., for all i ∈ N3, by line 1 in Algorithm 5, Dii = 1 and
w(i, D) = 1 = w⋆

i .

We then consider N1 and N2 in turn. Note that no weight is lost in the returned
weighted profile, since no cycle can be formed by Algorithm 5.
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First consider all agents in N1. By line 3 of Algorithm 5, for all i ∈ N1, Dii = w⋆
i ,

and for all j ∈ N \ {i}, Dji = 0, thus w(i, D) = Dii = w⋆
i . For the excess weight of

i, i.e., 1−w⋆
i , she delegates a proportion of it to each agent in N2. The proportion

is decided by
w⋆

j −1
w for all j ∈ N2 (note that w = ∑j∈N2

(w⋆
j − 1)), that is, agent j is

expected to receive weight amount of (1− w⋆
i )

w⋆
j −1
w from all i ∈ N1.

Then any agent j ∈ N2, in total, is expected to receive ∑i∈N1
(1− w⋆

i )
w⋆

j −1
w .

Moreover, Djj = 1 (line 2, Algorithm 5), which indicates j is expected to delegate
all her weight to herself, i.e., amount of 1. Notice that for all agents in N1 and
N2, ∑k∈N1∪N2

w⋆
k = |N1|+ |N2|, and hence ∑k∈N1

(1− w⋆
k ) = |N1| −∑k∈N1

w⋆
k =

∑k∈N1∪N2
w⋆

k − |N2| −∑k∈N1
w⋆

k = ∑k∈N2
w⋆

k − |N2| = ∑k∈N2
(w⋆

k − 1). Therefore

j collects ∑k∈N2
(w⋆

k − 1)
w⋆

j −1
w + 1 = w⋆

j , as desired.

The next example shows how the optimal accuracy via weighted delegations
may be higher than that achievable via pure delegations.

Example 21 (Example 20, continued). Let us continue with Example 20. Following
the intuition of achieving a trade-off between enhancing the individual accuracy level by
coordinating low-accuracy agents to delegate to high-accuracy agents, and maintaining
a large enough number of gurus such that more agents make decisions independently,
we find that the optimal pure delegation profile is the one in which only one delegation
happens: an agent with accuracy of 0.6 delegates to an agent with accuracy of 0.9. Then
the optimal (pure profile) majority accuracy is 0.918, which is lower than the optimal
accuracy, 0.92664, of the weighted profile D.

Intuitively, pure delegations allow for only discrete weights and can therefore
only approximate the optimal weight distribution among gurus in which each
winning coalition C ⊆ Gu(d) of gurus is more accurate than the corresponding
losing coalition Gu(d)\C.

Remark 2. It is worth discussing Algorithm 5 also in the context of the GreedyCap
algorithm of Kahng et al. [46]. GreedyCap is a semi-local probabilistic delegation
algorithm, with a centralized element: a cap on the maximal number of delegations, which
avoids the creation of too much dependence among voters and thus preserving wisdom-of-
the-crowd effects. In GreedyCap, each agent may delegate to the highest-accuracy agent
in her neighborhood as long as the number of received delegations of the highest-accuracy
agent does not exceed the cap. Algorithm 5 implements a fully centralized approach to
group accuracy by assuming delegations to be centrally determined.

5.2.2 Centralized Delegations in Connected Nets

We now extend Algorithm 5 to the case of connected networks. We first fix
some notation before introducing the algorithm. Given a non-negative matrix
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1 2 3
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0.169

0.831
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0.331
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4

0.662
1

0.162

Figure 5.2: Network underlying Example 22 (top) and depiction of two intermediate steps
of Algorithm 22 (middle and bottom)

A ∈ Rn×n
≥0 , G(A) = ⟨N, E(A)⟩ denotes the directed graph3 induced by A, i.e., for

any pair of i, j ∈ N, i
Aij−→ j if and only if Aij > 0, and the label Aij = Aij. Let

furthermore C(A) denote all cycles in G(A).
Algorithm 6 generalizes the idea of Algorithm 5 to connected networks as

follows. Similar to Algorithm 5, each agent expected to delegate (i.e., in N1)
transfers part of her excess weight to each of the agents who should receive
delegations (i.e., in N2). Note that (N1 ∪ N2) ⊆ N. Then the DETERMINE
PATHS component in Algorithm 6 first decides an acyclic path between each
such pair of agents, and the LABEL REQUIRED TRANSFER OF WEIGHT
component labels the expected transfer weight amount on each edge on the path.
For example, between a pair of agents i ∈ N1 and j ∈ N2, a certain amount of
weight is expected to be transferred from i to j through a path Lij. On the edge
between each pair of adjacent agents on Lij, say k and k′, the above amount is

labeled as ei,j
k,k′ . Hence for each node, all incoming and outgoing edges are labeled

with weight (one edge might have several labels). Observe that between any
pair of nodes, two edges with different directions may exist. We then aggregate
the net expected transfer amount between the pair of nodes. Note that cycles
may exist. We break every cycle by subtracting from each edge in the cycle the
amount equal to the minimum amount among all edge labels in the cycle, by the
component REMOVE CYCLES. Finally by the DECIDE WEIGHTS component,
each agent decides her delegation strategy by computing the proportion of each
expected outgoing weight in total incoming weight (including her initial weight).
An illustration of the algorithm follows.

Example 22. Consider a network with 4 agents N = {1, 2, 3, 4}, and accuracy profile
q = (0.5, 0.9, 0.6, 0.9). Let R be as in Figure 5.2 (top). By Equation (5.5) the optimal

3 Note that we use this notation for delegation graphs, which are directed. The underlying networks
used are still undirected as noticed in the beginning of this chapter.
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Algorithm 6 Optimal delegations in connected networks

input: w∗, R = ⟨N, E⟩
initialize:

A = 0n×n, ∀i ∈ N1, j ∈ N, Di,j = 0, N1 = {i ∈ N | w⋆
i < 1}, N2 = {i ∈ N |

w⋆
i > 1}.

determine paths:
For all i, j ∈ N (i ̸= j), select an arbitrary acyclic path Lij in R.

label required transfer of weight:
For all (k, k′) ∈ Lij:

1: For i ∈ N1, j ∈ N2: ei,j
k,k′ = (1− w⋆

i )
w⋆

j −1

∑ℓ∈N2
(w⋆

ℓ−1) .

2: For i ∈ N and j ∈ R′(i): Ai,j = ∑k∈N1,k′∈N2
ek,k′

i,j − ∑k∈N2,k′∈N1
ek,k′

j,i , if

∑k∈N1,k′∈N2
ek,k′

i,j −∑k∈N2,k′∈N1
ek,k′

j,i > 0.

remove cycles:
For c ∈ C(A), and (k, k′) ∈ c:

1: Ak,k′ = Ak,k′ −min(ℓ,ℓ′)∈c(Aℓ,ℓ′).

decide weights:
For i ∈ N and j ∈ R′(i):

1: If Ai,j > 0: Di,j = Ai,j/(∑ℓ∈R′(i),Aℓ,i>0 Aℓ,i + 1).
2: Di,i = (∑ℓ∈R′(i),Aℓ,i>0 Aℓ,i + 1−∑ℓ∈R′(i),Ai,ℓ>0 Ai,ℓ)/(∑ℓ∈R′(i),Aℓ,i>0 Aℓ,i +

1).

return: D

weight distribution is w⋆ = (0, 1.831, 0.338, 1.831), and therefore N1 = {1, 3} and
N2 = {2, 4}.

We first determine the weight transfer paths, and assume that L1,2 = {(1, 2)}, L1,4 =
{(1, 2), (2, 3), (3, 4)}, L3,4 = {(3, 4)}, and L3,2 = {(3, 4), (4, 2)}. Then we compute
the expected weight transfers. For instance, agent 1 should transfer amount (1 −
w⋆

1
w⋆

2−1
∑i∈N2

(w⋆
i −1) = 0.5 to agent 2. Therefore, for each path in L1,2, i.e., (1, 2), e1,2

1,2 = 0.5.

Similarly, we label all required transfer weights, aggregate the net amounts between each
pair of agents, and obtain the labeled graph in Figure 5.2 (middle). Observe that there is
a cycle formed by agents 2, 3 and 4. This cycle is broken by subtracting amount 0.169,
which is the minimum amount among those of edges (2, 3), (3, 4) and (4, 2), from each
edge in the cycle and obtain the acyclic graph in Figure 5.2 (bottom).
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2: q2 = 0.9

1: q1 = 0.6

3: q3 = 0.6

Figure 5.3: The underlying network and accuracy profile in Example 23.

Finally, we compute the weighted profile. Let us take agent 4 as an instance. Observe
that agent 4 is expected to transfer 0.162 to agent 2, while she simultaneously receives
0.662 from agent 3. 0.162 takes 9.75% among agent 4’s received amount 0.662 plus her
initial weight amount of 1. We thus obtain D42 = 0.0975 and D44 = 1−D42 = 0.9025.
Similarly we have D12 = 1, D22 = 1, D34 = 0.662, and D33 = 0.338.

We can prove that Algorithm 6 achieves optimal accuracy:

Theorem 15. Given a set of agents N, with accuracy profile q, and the underlying
network R, if R is connected, Algorithm 6 outputs an element of arg maxD∈D qN,w(D).

Proof. First recall that w⋆ is an optimal weight distribution given by Theorem 4.

Then notice that in the algorithm, we transfer the amount of (1− w⋆
i )

w⋆
j −1

∑ℓ∈N2
(w⋆

j −1)

from each i ∈ N1 to each j ∈ N2, by line 1 in the Label Required Transfer of
Weight component, since we can find a path from any agent in N1 to any agent
in N2 in the connected network R. This amount is labeled on each edge of each
above path, and the net weight transfer is aggregated on each edge by line 2

in the Label Required Transfer of Weight component. These transfers are not
cyclical because of Remove Cycles which takes care of removing cycles.

So at this point, the algorithm has constructed an acyclic graph encoding the
required transfer Aij of expected weight between any pair of agents i and j. This
amount needs to be normalized for each agent by the Decide Weights routine.
For any agent i ∈ N, if she is required to transfer positive weight Ai,i′ to a
neighbor i′ ∈ R(i), the weighted strategy Dii′ should be the proportion of Aii′

in her total required incoming weight, plus her original endowed weight, i.e.,
∑ℓ∈R′(i),Aℓ,i>0 Aℓ,i + 1 (line 1 in the Decide Weights component). The obtained
weighted profile D thus ensures that for any pair of agents i ∈ N1 and j ∈ N2,

tD(i, j) = (1 − w⋆
i )

w⋆
j −1

∑ℓ∈N2
(w⋆

ℓ−1) . Therefore by Equation (5.2), w(D) = w⋆ as

desired.

We observe that the connectedness of R, which we assume throughout this
chapter, is a necessary condition for Theorem 15 to go through.

Example 23 (Connectedness is necessary for Theorem 15). Let N = {1, 2, 3}, and
let the set of edges in R be E : {(1, 3)} (that is, R is disconnected), as shown in Figure 5.3.
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Observe that in this network, only one undirected edge exists from agent 1 to 3, that is,
only agents 1 and 3 can delegate to each other, and agent 2 can only be a guru. Now let
the accuracy profile be: q = (0.6, 0.9, 0.6).

Then, applying Algorithm 6 to the component consisting of agents 1 and 3, and to the
single component 2, respectively, would output a weighted profile D with the trivial weight
distribution of w(D) = (1, 1, 1), which is different from the optimal weight distribution
w⋆ = (0.053, 2.894, 0.053), since the weight in connected component {(1, 3)} cannot be
transferred to agent 2 because of the disconnected underlying network.

Observe also that if R is complete, the path Lij between any pair of agents
i ∈ N1 and j ∈ N2 can be selected to be the one-hop edge (i, j). Algorithm 6 then
reduces to Algorithm 5.

5.3 weights as shares of votes
We have so far developed our theory based on the expected weight approach of

Equations (5.1) and (5.2). This is not the only way in which agents’ weights can
be interpreted under weighted delegations. In this section we briefly highlight
another interpretation, which we call the limit weight approach, and relate it to the
expected weight approach we developed in the previous section.

By the limit weight approach, we investigate agents’ weight transfer in the
limit, studying weighted delegation profiles as Markov chains. In the next section,
we introduce the basic concepts of Markov chain theory, which we will use to
develop the limit weight approach.

5.3.1 Rudiments of Markov Chains

We will be concerned specifically with discrete-time Markov chains [28] with
finite state space, to which we will refer simply as Markov chains.

Let S = {s1, s2, . . . , sm} be a finite set of states. A Markov chain is a sequence of
variables X1, X2, X3, . . . , where each variable Xt ∈ S describes the state at time
step t ≥ 1, and the sequence satisfies the Markov property, i.e.,

Pr(Xn+1 | X1, X2, . . . , Xn) = Pr(Xn+1 | Xn).

Intuitively, in a Markov chain, the probability of moving from the current state
(i.e., Xn) to the next state (i.e., Xn+1) only depends on the current state Xn, but
not on any previous states.

Given that there are m states, we can then use a transition matrix A ∈ Rm×m
≥0 to

denote the transition probability between each pair of states. Any element in A,
Ai,j, denotes the probability of moving from state si to state sj, i.e., Pr(Xn+1 =
sj | Xn = si) = Ai,j. Therefore, A must be a stochastic matrix, where ∑m

j=1 Ai,j = 1
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for all i ∈ {1, 2, . . . , m}4. Then, the power of k to the transition matrix Ak denotes
the probability of moving from one state to another state in k steps. For instance,
for any pair of states si, sj ∈ S, A2

i,j = ∑1≤ℓ≤m Ai,ℓAℓ,j denotes the probability that
from the current state si, the Markov chain moves to state sj in two steps.

As we already observed earlier, a transition matrix A can be denoted as a
directed graph ⟨S, E⟩, where the set of nodes is S and between each pair of nodes
(or states) si, sj ∈ S, a directed edge (si, sj) ∈ E exists if and only if Ai,j > 0,
which is labeled with Ai,j. That is, each edge in the graph denotes the probability
of transition between the pair of states.

convergence We can now use a stochastic m-dimensional vector π ∈ Rm
≥0,

called a distribution vector, to denote the probability of each state to which the
chain moves. For example, a distribution vector with the i-th (1 ≤ i ≤ m) element
being 1 denotes that the Markov chain moves to state si with probability of 1.
From a distribution vector πt at time step t, we can induce the distribution vector
of the next time step (i.e., t + 1) by the production of πt and the transition matrix
A, i.e., πt+1 = πtA. Given a transition matrix A, a distribution vector π converges
if a time step t∗ exists, such that for all t ≥ t∗, πtA = πt+1 = π∗, and we call π∗

a stationary distribution vector. Intuitively, a distribution vector converges if it
stabilizes after a finite number of time steps through the transition matrix.

We call a state si an absorbing state if, starting from si, the Markov chain stays
in si for all following time steps, i.e., Ai,i = 1. In other words, if at some time
step, the Markov chain moves to si, it is then stuck in si forever.

However, a distribution vector cannot always converge. If that is the case, some
state in the Markov chain is periodic. Let Prk(si, sj) denote the probability that a
Markov chain moves from state si ∈ S to state sj ∈ S in k steps.

recurrency State si is recurrent if ∑k≥1 Prk(si, si) = 1, that is, the Markov
chain moves from si back to itself with probability 1 at some future time step.

periodicity In a given Markov chain, for a state si ∈ S, we have a set of positive
integers K = {k ∈ Z≥0 | Prk(si, si)}. Then state si is periodic if gcd{K} > 1,
where gcd is the greatest common divisor. Periodicity is an important condition
in verifying whether a distribution vector converges or not.

Lemma 7 ([28]). If a Markov chain can move from any recurrent state to any other
recurrent state with positive probability and each state is aperiodic, any distribution
vector converges.

Observe also that in the directed graph of transition matrix A, if a state in a
strongly connected component5 is periodic, all the other states in the strongly

4 Such a stochastic matrix is also called a right stochastic matrix.
5 Recall that, in a directed graph, a strongly connected component is a subgraph, in which there is at

least a path from each node to each of the other nodes.
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connected component are also periodic [28]. Therefore, we say that a strongly
connected component is periodic if all states in the component are periodic, and
we further say that a directed graph is periodic if all states (or nodes) in the graph
are periodic.

We illustrate some of the above concepts in the following example.

Example 24. Consider a transition matrix A with 8 states.

A =



0 1 0 0 0 0 0 0

0.5 0.5 0 0 0 0 0 0

0 0 0 0.5 0.5 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1


This transition matrix is described as a graph in Figure 5.4. Below we illustrate the
evolution of the chain from three different starting states.

1. The initial state is s1 with probability 1. The distribution vector is π1 = (1, 0, 0, 0,
0, 0, 0, 0). At time step 2, π2 = π1A = (0, 1, 0, 0, 0, 0, 0, 0), which implies
that the Markov chain must move from s1 to s2. At time step 3, we have that
π3 = π1A2 = ( 1

2 , 1
2 , 0, 0, 0, 0, 0, 0), which means that in two steps, the Markov

chain may move to s1 or s2 with probabilities 1
2 and 1

2 , respectively. Then, in the
limit, the distribution vector converges, and limk→∞ π1Ak = ( 1

3 , 2
3 , 0,

0, 0, 0, 0, 0), which is stationary. This means that after a large enough number of
time steps, the Markov chain may move to state s1 (respectively, s2) with probability
1
3 (respectively, 2

3 ).

2. The initial state is s3. The distribution vector is π1 = (0, 0, 1, 0, 0, 0, 0, 0). Then
we have from time step 1 to 4:

• π2 = π1A = (0, 0, 0, 1
2 , 1

2 , 0, 0, 0);

• π3 = π1A2 = (0, 0, 0, 0, 0, 1, 0, 0);

• π4 = π1A3 = (0, 0, 1, 0, 0, 0, 0, 0).

Notice that the distribution vector loops back in 3 steps, i.e., π4 = π1. We actually
have that in this case, for any k ≥ 1, πk = πk+3. Then s3 is periodic.

3. The initial state is s7. The starting distribution vector is π1 = (0, 0, 0, 0, 0, 0, 1, 0),
and then it becomes π2 = π1A = (0, 0, 0, 0, 0, 0, 0, 1), which is stationary. Ob-
serve that no matter whether starting from states s7 or s8, the stationary distribution
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Figure 5.4: The figure denoting the transition matrix in Example 24.

vector can only be the one in which state s8 has probability of 1. Therefore, s8 is an
absorbing state.

With the above concepts, we are ready to introduce the limit weight approach
to weighted delegations.

5.3.2 Limit Weight

Each weighted profile D describes the direct transfer of voting weight between
any two agents: Dij is the share of i’s power transferred to j. The indirect transfer
of weight, via transitive delegations, is therefore described by the powers of D.
For example, D2

ij = ∑k∈N DikDkj is the share of power transferred in two steps
from i to j. In this view, the weight transfer of agent i consists of the transfer of
i’s weight in the limit, described by the limit vector

t̊D(i) = lim
k→∞

1iDk (5.6)

when such limit exists,6 and where 1i is the n-dimensional vector where all
elements are 0’s except for the i-th one which is 1. This approach treats each
agent as a state and D as a stochastic transition matrix describing to whom i’s
original weight of 1 ’flows’ in D. So we are treating the distribution of votes
as a Markov chain. The j-th element of t̊D(i), denoted as t̊D(i, j), is the weight
transfer from agent i to agent j under weighted profile D, and an agent’s accrued
weight is then:

ẘ(i, D) = ∑
j∈N

t̊D(j, i), (5.7)

defining the weight distribution ẘ(D) = (ẘ(1, D), . . . , ẘ(n, D)), to which we
refer as the stationary weight distribution. We call an agent an absorbing agent if
she has a loop weighted 1, and a strongly connected component of the delegation

6 It is worth remarking that the inexistence of limk→∞ Dk does not necessarily imply the inexistence of
limk→∞ 1iDk .
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1 2 3
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1

1

Figure 5.5: Delegation graph of Example 25

graph of D an absorbing component if it has no out-degree7. In other words, if
weight "flows" to an absorbing agent or component, then it will be caught into
the agent or component forever. Note that for the limit weight approach, we may
also have ∑i∈N ẘ(i, D) < n, since each agent caught in a non-convergent strongly
connected component of the delegation graph loses her weight.

Remark 3. We remark that the definition of convergence in Equation 5.6 is slightly
different from the standard convergence definition in Markov chain theory which requires
that the distribution vector becomes stationary in finite steps, and is therefore stronger.

Example 25. In this example, we show a case in which weight does not converge in
the limit. Consider N = {1, 2, 3}, with weighted profile as in Figure 5.5. In the first
step, agents 2 and 3 exchange their voting weights (amount of 1), and meanwhile, agent
1 delegates her full weight to agent 2. Therefore after step 1, agent 2 accrues weight of
2 and agent 3 accrues 1. Then, in time step 2, agents 2 and 3 keep exchanging their
weights, and as a result, agent 2 now has weight 1 while agent 3 has 2, and their weights
keep exchanging thereafter. Hence the transfer of weight does not converge in this case.

Observe that the strongly connected component consisting of agents 2 and 3 is periodic
and each agent in the component is recurrent. That is, the state of each agent of 2 and 3
repeatedly returns to the same state in every two steps with probability 1.

Remark 4. The limit weight approach is related to the so-called influence matrices studied
in the literature on the DeGroot model [26, 44] and on power in organizations [35, 42,
43]. Both these strands of literature define limit influence notions as done in Equation
(5.6).

Remark 5. Note that the Markov chain of the weight distribution in a delegation graph
consisting of only a delegation cycle where each agent fully delegates to the next agent in
the cycle (as in Figure 5.6), does not converge. Even though it might seem that we could
have a stabilized weight distribution of (1, 1, . . . , 1) in the one-person-one-vote setting in
such a delegation graph, the weight transfer of each agent does not converge. Starting
with the initial weight distribution of an agent in the cycle (0, . . . , 1, . . . , 0), her weight
transfer changes back after each n steps, so each agent is a periodic state in the chain.

7 We say a strongly connected component has no out-degree if no agent in the component has any
out-degree pointing to an agent who does not belong to the component.
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Figure 5.6: A full delegation cycle.

5.3.3 Expected Weight vs. Limit Weight

In general, the two weight approaches introduced above may result in different
weight distributions. We first provide a comparison of the two approaches in the
following two examples.

Example 26. As in Example 18, consider N = {1, 2, 3, 4, 5}, with weighted profile
D, such that D11 = 1 (i.e., maintaining her full voting weight), D2 = (. . . , D22 =
0.5, . . . , D25 = 0.5), D3 = (D31 = 0.5, . . . , D33 = 0.5, . . . ), D43 = 1, and D52 = 1
(recall Figure 5.1).

By the limit weight approach, for the component consisting of agents 1, 3 and 4, since
agent 1 is the only absorbing agent in the component (of the delegation graph), all weight
in that component ‘flows’ to her in the limit, even though agent 3 has a loop with label of
0.5. Hence ẘ(1, D) = 3, while ẘ(3, D) = ẘ(4, D) = 0.

For the component consisting of agents 2 and 5, we observe that it is strongly connected
and aperiodic because of the loop of agent 2. Then, in the limit, the weight transfers
of agents 2 and 5 converge, and agent 2 always keeps half of the stabilized weight and
delegates half to agent 5, while agent 5 accrues the weight delegated from agent 2 to agent
5 since this amount steadily “flows” through agent 5. That is, in the stationary weight
distribution, agent 2 retains a weight amount twice of that retained by agent 5. Therefore,
ẘ(2, D) = 2 × 2/3 = 4/3 and ẘ(5, D) = 2/3. So ẘ(D) = (3, 4/3, 0, 0, 2/3).
Unlike in the expected weight case (Example 18) there is therefore no weight loss in
ẘ(D).

Due to the different weight distributions resulted from the above two weight
approaches, we usually have different group accuracies. We can then modify
Equation 5.3 by simply replacing the weight distribution of the expected weight
approach by that of the limit weight approach, and obtain:

qN,ẘ(D) = ∑
C∈W(D)

∏
i∈C

qi ∏
i∈Gu(D)\C

(1− qi), (5.8)
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whereW(D) is the set of winning coalitions, such that

W(D) = {C ⊆ Gu(D) | ∑
i∈C

ẘ(i, D) > ∑
i∈Gu(D)\C

ẘ(i, D)}, (5.9)

where ties are resolved uniformly at random.
We illustrate the difference between the two group accuracies by the following

example.

Example 27 (Example 18, continued). We continue to use Example 18 with accuracy
profile q = (0.9, 0.9, 0.6, 0.6, 0.6). Unlike in Example 19, where we applied the expected
weight approach, we apply the limit weight approach here. The stationary weight distribu-
tion is then ẘ(D) = (3, 4/3, 0, 0, 2/3) and the group accuracy is then qN,ẘ(D) = 0.9,
since agent 1 is the dictator (agent 1 alone is a winning coalition), and is therefore lower
than that in the expected weight case.

Intuitively, the difference in Example 26 is caused by two features:

1. In the component consisting of agents 2 and 5, by the expected weight
approach, a part of the total weight is lost due to cycles. However, the
component converges by the limit weight approach, and hence a positive
amount of weight is accrued by each agent in the limit.

2. In the other component containing agents 1, 3 and 4, by the expected weight
approach, agent 3 accrues part of the weight since she becomes a guru in
some pure profiles supported by the weighted profile. But by the limit
approach, all weight flows to agent 1, since she is the only absorbing node
in that component.

It appears that cycles and loops are the main reasons for different weight distri-
butions in the two approaches. In the following theorem, we specify sufficient
conditions under which the two weight approaches coincide, leveraging the above
observation.

Before showing the following theorem, we first introduce the concept of con-
nected component into delegation graphs. In an undirected graph, a connected
component is a connected subgraph which is not a part of any larger connected
subgraph. Then, given a delegation graph (which is directed), we call a subgraph
a connected component if in the undirected graph which eliminates all edges’ di-
rections in the delegation graph, the corresponding nodes and undirected edges
form a connected component.

Theorem 16. Let D be an arbitrary weighted profile. For any agent i ∈ N, tD(i) =
t̊D(i) if all connected components of the delegation graph satisfy the following two
properties:

1. every cycle is only contained in a periodic strongly connected component, in which
each agent is recurrent, and all agents linked to this strongly connected component
are not linked to any other agent who has a loop; and
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2. every loop has a label of 1.

Proof. Without loss of generality, we assume that the delegation graph consists of
only one connected component, otherwise we can apply the argument below to
each connected component respectively.

We consider two exhaustive cases:

Case 1. the delegation graph does not contain any cycle; and

Case 2. the delegation graph contains cycles and satisfies the condition that any
cycle is only contained in a periodic strongly connected component, in which each
agent is recurrent, and all agents linked to this strongly connected component
are not linked to any other agent who has a loop.

case 1. In this case, an agent is a guru if and only if she has a loop labeled 1,
which means that the agent fully delegates to herself in both weight approaches.
Then we only need to verify that for any agent i1 ∈ N and any delegation chain
from this agent to any guru, the (expected) amount of weight transferred through
this delegation chain is the same by both weight approaches, which immediately
implies tD(i1) = t̊D(i1).

Let (i1, . . . , iℓ) be a path from agent i1 to guru iℓ. Then, by the expected
weight approach, the expected amount of weight transferred from i1 to iℓ is
∏1≤j≤ℓ−1 Dijij+1 through this path. This amount exactly equals the amount
transferred from i1 to iℓ in ℓ steps along the chain by the limit weight approach,
since no agent in {i1, . . . , iℓ} has a loop. The weight transferred from i1 to iℓ
equals the entire weight transferred through all such paths, through each of
which the amounts by both weight approaches coincide. Therefore, both weight
approaches output the same weight transfer for all agents.

case 2. In this case, we first prove that the weight of all agents contained in
cycles is lost. Since all cycles are contained in strongly connected components
which are periodic and all agents in those strongly commented components
are recurrent, we have that the weight delegated from any agent in any of the
periodic strongly connected components is delegated back to the agent after a
finite number (larger than one) of steps. Therefore, we can infer the following
statements:

(a) No loop exists in the strongly connected component since the component is
periodic, by the definition of periodicity.

(b) The strongly connected component has no out-degree, otherwise it violates
that all agents in the component are recurrent: a certain amount of weight
cannot be delegated back to agents due to the out-degree.

(c) The weight of all agents in the strongly connected component is lost in both
weight approaches since:
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• the weight transfer of any agent in the component is non-convergent
by the limit weight approach;

• by the expected weight approach, all supported pure profiles contain
only cycles, since no loop exists in the component.

Now, we show that any agent linked to such strongly connected component also
loses her full weight. By the second condition stated in the theorem, any agent
linked to such a strongly connected component is not linked to any agent with a
loop. By (a) above, we have that

(d) by the limit weight approach, all the weight of this agent flows to strongly
connected components which are periodic and all agents in those compo-
nents are recurrent;

(e) by the expected weight approach, she is caught in a cycle in any induced
pure profile.

Therefore, her full weight is lost.
It follows that in Case 2, we also obtain that the weight transfer of any agent is

identical in both weight approaches, which completes the proof.

With the above theorem, we immediately infer that Algorithm 6 and Algo-
rithm 5 usually do not output weighted profiles with identical weight distribution
by the two weight approaches, since all agents in N1 have a loop with a label less
than 1.

Corollary 1. There exists D output by Algorithm 5 (respectively, Algorithm 6), such
that w(D) ̸= ẘ(D).

Hence these two algorithms fail to output the optimal weighted profiles for the
limit weight approach.

5.3.4 Centralized Delegations in Connected Nets for The Limit Weight

We now propose another algorithm (Algorithm 7), which is able to construct
delegation profiles, so as to achieve the optimal weight distribution w⋆ as per
Equation 5.5, for a subclass of connected underlying networks. The idea is to
elaborately construct a delegation cycle, which converges by the limit weight
approach and each agent maintains a stabilized amount of weight equal to the
optimal amount in the limit. Recall that the results so far in the chapter are based
on connected underlying networks, which are represented as undirected graphs.
In this section, we will be working with the subclass of Hamiltonian graphs,
which ensures the existence of a delegation cycle visiting each agent exactly once.

Definition 20 (Hamiltonian graphs [4]). In an undirected graph, a cycle is called a
Hamiltonian cycle if it visits each node exactly once. An undirected graph containing a
Hamiltonian cycle is called a Hamiltonian graph.
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However, a Hamiltonian cycle is not guaranteed to exist in a connected
undirected graph, and determining the existence of Hamiltonian cycles is NP-
complete [4]. The following lemma provides a sufficient condition which guaran-
tees that a Hamiltonian cycle always exists.

Lemma 8 (Balakrishnan & Ranganathan [4]). If a connected undirected graph is the
line graph of a Eulerian graph, a Hamiltonian cycle always exists, where a Eulerian graph
is a connected undirected graph in which each node has even degree, and we construct the
line graph L(R) from an undirected graph R by

1. for each edge in R, making a node in L(R); and

2. for each pair of edges in R that have a common node, making an edge between the
corresponding nodes in L(R).

To introduce the algorithm, we further recall that, in a directed graph, a path L
can be denoted as a sequence of nodes. Let Li denote the i-th node on the path,
and |L| denote the number of nodes on L, where 1 ≤ i ≤ |L|. Now, we are ready
to introduce the algorithm outputting a weight profile with the optimal weight
distribution in the limit weight approach.

In Algorithm 7, all agents are contained in one cycle. Notice that, by Line 2 of
the DELEGATE component, unless all agents have identical optimal weight, at
least one agent exists such that she has a loop. Therefore agents’ weight transfers
converge in the limit by the limit weight approach. Then in the stationary weight
distribution, an amount of weight keeps "flowing" in the cycle (determined by
the weighted delegation specified in Line 6 of the DELEGATE component), and
for each agent, the stabilized weight equals this amount plus the amount she
retains by her loop labeled in Line 7 of the DELEGATE component. We use the
following example to show how Algorithm 7 works.

Example 28. Consider three agents N = {1, 2, 3}, with accuracy profile q = (0.6, 0.6, 0.9),
under the restriction of network R shown in Figure 5.7 left. By the DETERMINE
THE CYCLE component, the cycle L = (1, 2, 3, 1) is selected as shown by the ar-
rows in Figure 5.7 right. Then, we compute the optimal weight distribution w⋆ =
(0.4044, 0.4044, 2.1912) (rounded), by Equation 5.5. Therefore, w⋆

min = 0.4044. We will
construct a stationary weight distribution such that the amount of w⋆

min keeps "flowing"
in the delegation cycle stabilizedly. By Line 1 in the DELEGATE component, we have
that D1,2 =

w⋆
min

w⋆
1

= 1, and similarly, D2,3 = 1 and D3,1 = 0.1846. By Line 7, we have
that D3,3 = 0.8154, and therefore the algorithm outputs the following weighted profile:

D =

 0, 1, 0

0, 0, 1

0.1846, 0, 0.8154

 ,

which induces w⋆ in the limit weight approach.
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Figure 5.7: Figures in Example 28: the underlying network (left) and the weighted delega-
tion graph output by Algorithm 7 (right).

We can then prove that by the limit weight approach, Algorithm 7 outputs a
weighted delegation profile inducing the optimal weight distribution w⋆.

Theorem 17. Given a set of agents N, with accuracy profile q, and a network R which
satisfies the condition specified in Lemma 8, Algorithm 7 outputs a weighted delegation
profile belonging to arg maxD∈D qN,ẘ(D).

Proof. First note that by Lemma 8, the DETERMINE THE CYCLE component
can always select a delegation cycle L that visits each agent exactly once.

We then prove this theorem by showing first that the delegation graph of the
output weighted profile converges, and then the stabilized weight distribution is
identical to w⋆.

We first consider the special case where each agent has the same accuracy.
Then by Line 2 of the DELEGATE component ẘ(i) = 1 = w⋆

i for all i ∈ N.
We then consider the other general cases. By the DETERMINE THE CYCLE

component in Algorithm 7, the delegation graph of the output weighted profile
D consists of one cycle, which contains all agents in N. Moreover, by Line 7 of
the DELEGATE component, there must exist at least one agent who has a loop.
Therefore, by Lemma 7, all agents’ weight transfer vectors converge since all
agents are recurrent and the delegation graph is aperiodic due to the loops.

Therefore, in the stabilized status, an amount of weight keeps "flowing" through
the delegation cycle. That is, at each time step in the limit, each agent receives an
amount of delegation weight and delegates the same amount to her successor.
Thus the stabilized weight of each agent is this "flowing" amount plus her
retaining amount, i.e., the amount retained by her loop.

Assume the "flowing" amount is w. For agent Li ∈ N,

ẘ(i, D)
w⋆

min
w⋆

Li

= w, (5.10)
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Algorithm 7 Optimal delegations in connected networks by limit weight approach

input: w⋆, R = ⟨N, E⟩ satisfying the condition in Lemma 8.

determine the cycle:
Select an arbitrary path L which visits each agent in N exactly once and the
first and the last agents in L coincide.

delegate:

1: If w⋆
i = w⋆

j for all i, j ∈ N:
2: DLi ,Li = 1 for all i ∈ N.

3: Else:
4: w⋆

min = mini∈N{w⋆
1 , . . . , w⋆

n}.
5: For i ∈ [1, n]:

6: DLi ,Li+1 =
w⋆

min
w⋆

Li
, where Ln+1 = L1.

7: DLi ,Li =
w⋆

Li
−w⋆

min
w⋆

Li
.

return: D

i.e., the amount agent i delegates to her successor. We then have that

ẘ(Li, D) = w
w⋆

Li

w⋆
min

. (5.11)

Moreover, the sum of the weights of all agents equals

n

∑
i=1

ẘ(Li, D) = w
∑n

j=1 w⋆
Li

w⋆
min

= n, (5.12)

where ∑n
j=1 w⋆

Li
= n. Therefore w = w⋆

min. Then by Equation 5.11, ẘ(Li, D) =

w
w⋆

Li
w⋆

min
= w⋆

Li
for agent Li ∈ N as desired.

conclusion
We studied a variant of liquid democracy with weighted proxies in this chapter.
The theory of two different interpretations of weighted delegations has been de-
veloped. We showed that centralized delegations enable optimal group accuracy
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for both interpretations of weights refer to the theorems. We also identify one
natural sufficient condition, under which the two interpretations coincide.

The work presented in this chapter relies on a connectedness assumption on
the underlying network, which we aim at lifting in future work. Although we
provided some results about the limit weight approach to weighted delegations,
much more has to be understood about that setting.

In the next chapter, we adapt the theory of weighted delegations to the dele-
gation games introduced in Section 2.4 and we study the existence and quality
of equilibria. We will also provide further insights on these equilibria by way of
computer simulations.



6 D E L E G AT I O N G A M E S W I T H
W E I G H T E D P R O X I E S

In this chapter, focusing on group accuracy, we contrast the centralized solution
to optimize group accuracy that we described in the previous chapter with a
decentralized approach to proxy weighting. To do so, like we did in Chapter 4,
we extend the strategic model of liquid democracy developed in [11] to the setting
involving weighted delegations, where agents greedily try to maximize their
individual accuracies.

chapter contribution We show that weighted delegations enable equilibria
that are better in terms of group accuracy, with respect to equilibria with pure
delegations (Theorem 18). This, however, comes at the cost of a higher price
of anarchy with respect to games with pure delegations. We also show that
the two interpretations of weighted delegations developed in Chapter 5 lead
to different notions of utility in delegation games, and therefore to different
equilibria. We prove the resulting notion of equilibrium of the limit weight
approach (Section 5.3.2) to be weaker than that of the expected weight approach
(Section 5.1.2) in Theorem 20.

Finally, to gain further insights into this game-theoretic model, we provide
experimental evidence, via simulations, of the high truth-tracking performance
of weighted delegations even in decentralized settings, if agents are boundedly
rational according to a special model of bounded rationality known as quantal
response equilibrium [56]. To the best of our knowledge, ours is the first appli-
cation of this notion of equilibrium to liquid democracy. We observe that under
specific conditions, weighted delegations can lead to higher group accuracy than
simple majority voting.

6.1 decentralized delegations
In this section, we define the delegation games for the expected weight approach
(Section 5.1.2) and we analyze the existence and quality of Nash equilibria. Then,
in the next section, we alter the definition of delegation games for the limit
weight approach (Section 5.3.2) and investigate the connection between the two
definitions.

Algorithms 5 and 6 in Section 5.2 provide us with tractable (with time com-
plexity polynomial in N) centralized mechanisms to achieve weighted delegation

朱朰朵



朱朰朶 delegation games with weighted proxies

profiles that are optimal with respect to truth-tracking. Now we move to define a
setting in which agents decide their delegations autonomously, assuming that
they greedily aim at maximizing their own individual accuracy. We are interested
in determining—analytically in this section, and empirically in Section 6.2—the
effects of decentralized delegations on the truth-tracking performance of the
group.

6.1.1 Weighted Delegation Games

Recall that, as described in Section 2.4, a delegation game for pure delegations
has the property that any agent i may fully delegate to another agent or be a
guru of herself, and her utility ui(d) is the accuracy she inherits from her guru,
i.e., ui(d) = qd∗(i) whenever d∗(i) exists. In weighted profiles, each agent may
transfer weight to several gurus so the above setting can be extended by assigning
to i a utility equal to the weighted average of the accuracies of i’s gurus, weighted
by the weights that i transfers to those gurus.

Formally, given a weighted profile D and its associated weight transfer profile
tD(i) for agent i (recall Equation (5.1)), i’s utility is given by:

Ui(D) = ∑
j∈N

qjtD(i, j). (6.1)

Observe that vector tD(i) can be interpreted as a probability distribution over
i’s gurus when none of i’s weight is lost due to cycles. Equation (6.1) then gives
us the expected individual accuracy of i in D or, in other words, the expectation
E(ui) over ui given D. Note also that in this section, we focus on the expected
weight approach and in the next section, we replace the weight transfer tD(i) by
that of the limit weight (Section 5.3.2) and study the delegation games with the
other weight approach.

Equipped with the notion of utility, we move to define delegation games with
weighted delegations.

Definition 21 (Delegation games with weighted delegations). A delegation game
with weighted delegations is a tuple G = ⟨N, R, S, U⟩, where N = {1, 2, . . . , n} is the
set of agents, R is an undirected connected graph, S = {si}i∈N is the strategy space of
each agent i ∈ N where each element in each si is a weighted delegation as defined in
Section 5.1.1, and U is the function defined by Equation (6.1).

In the remainder of this chapter, we refer to delegation games with weighted
delegations simply as delegation games.

Observe that, since Ui equals the expectation over ui given the distribution
over pure profiles induced by a weighted profile D, the corresponding delegation
game can be viewed as the mixed-strategy version of the delegation game with
pure delegations. By Nash’s theorem [61], we therefore know that such games
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always have Nash equilibria (NE), and we call such equilibria U-NE. We will also
write E(G) to denote the set of all U-NE of G. It has already been shown that the
pure delegation variant of these games (where each Di is a degenerate probability
vector) also always admits an NE [11], and we call such a pure strategy NE a
u-NE.

An important feature of U-NE is that they do not contain any weighted dele-
gation cycle1:

Lemma 9. No U-NE contains a weighted delegation cycle.

Proof. We reason towards a contradiction. Assume that D is a U-NE and it
contains a weighted delegation cycle (i1, . . . , ij, . . . , iℓ, i1). We show that there
exists an agent in the cycle who has a better response, i.e., she obtains a better
utility by deviating from the current weighted profile.

In the following reasoning, if an integer j is in the range [ℓ+ 1, 2ℓ], let ij = ij−ℓ,
and if it is in the range [−ℓ+ 1, 0], let ij = ij+ℓ. For any agent ij in the delegation
cycle (1 ≤ j ≤ ℓ), we call Uij(D

e) the external utility of ij, which is obtained by
redistributing the weighted strategy Dijij+1 by the same proportion as her strategy
Dij to the other neighbors R(ij) \ {ij+1} out of the delegation cycle. Formally, for
all k ∈ R(ij) \ {ij+1},

De
ijk = (1 +

Dijij+1

1− Dijij+1

)Dijk.

Assume that agent ik (1 ≤ k ≤ ℓ) is the agent in the delegation cycle who
has the maximal external utility, i.e., for all ij where 1 ≤ j ≤ ℓ, it holds that
Uik (D

e) ≥ Uij(D
e). Then, if ik deviates from the weighted profile D by taking the

weighted delegation strategy De, she obtains Uik (D
e). However, in D, agent ik

obtains the following:

Uik (D) =(1− Dik ik+1
)Uik (D

e) + Dik ik+1
(1− Dik+1ik+2

)Uik+1
(De)+

· · ·+ Dik ik+1
. . . Dik−2ik−1

(1− Dik−1ik )Uik−1
(D(−ik−1ik))

≤(1− Dik ik+1
)Uik (D

e) + Dik ik+1
(1− Dik+1ik+2

)Uik (D
e)+

· · ·+ Dik ik+1
. . . Dik−2ik−1

(1− Dik−1ik )Uik (D
e)

=(1− Dik ik+1
)Uik (D

e) + (Dik ik+1
(1− Dik+1ik+2

) + Dik ik+1
Dik+1ik+2

(1− Dik+2ik+3
) + · · ·+ Dik ik+1

. . . Dik−2ik−1
(1− Dik−1ik ))Uik (D

e)

=(1− Dik ik+1
)Uik (D

e) + (Dik ik+1
− Dik ik+1

. . . Dik−2ik−1
Dik−1ik )Uik (D

e)

=(1− Dik ik+1
. . . Dik−2ik−1

Dik−1ik )Uik (D
e).

1 Recall that a loop, i.e., a cycle with length 1, is not a delegation cycle (Section 2.1)
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Since the delegation cycle (i1, i2, . . . , iℓ, i1) exists, we have that Dik ik+1
. . . Dik−2ik−1

Dik−1ik > 0, which leads to Uik (D) < Uik (D
e).

Therefore, a contradiction is obtained.

The above lemma indicates that there is no weight loss in U-NE. Therefore, we
further obtain that all agents obtain the same utility in a U-NE with weighted
delegation and pure delegation, since each agent delegates to the highest-accuracy
agents accessible in the underlying network. This generalizes an observation
made by [11] in the pure delegations case.

Corollary 2. Given a delegation game G on N, let D be a U-NE and let d be a u-NE.
Then, for all i ∈ N, it holds that Ui(D) = ui(d).

We illustrate the intuition by the following example.

Example 29. Consider a delegation game G with four agents N = {1, 2, 3, 4}, accuracy
profile q = (0.6, 0.8, 0.9, 0.9), and underlying network as shown in Figure 6.1 left.

Figure 6.1 middle shows a pure-strategy Nash equilibrium

d∗ = (2, 3, 3, 4),

where agent 1 delegates to agent 2, agent 2 delegates to agent 3, and agents 3 and 4 are
gurus. Therefore, agents 1 and 2 obtain the same utility, since they inherit the accuracy
from the same guru, agent 3. In the other pure-strategy Nash equilibrium, the only
difference is that agent 2 delegates to agent 4. In both equilibria, each agent obtains the
same utility: ui(d∗) = 0.9 for all i ∈ N.

Figure 6.1 right shows a weighted Nash equilibrium

D∗ =


0, 1, 0, 0

0, 0, 0.5, 0.5

0, 0, 1, 0

0, 0, 0, 1

 .

Different from any of the pure-strategy Nash equilibria, in D∗, agent 2 delegates half to
agent 3 and the other half to agent 4. In any weighted Nash equilibrium, it is obvious
that all voting weight is distributed between agents 3 and 4, and therefore all agents have
agents 3 and 4 as their gurus. This implies that in any weighted Nash equilibrium, any
agent obtains a utility of 0.9.

6.1.2 Group Accuracy in Equilibrium

So what is the truth-tracking quality of equilibria in weighted delegation games?
We answer this question by first comparing group accuracy qN,w(D) when D is a
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Figure 6.1: Figures in Example 29: left: the underlying network; middle: pure-strategy
Nash equilibrium d∗; right: weighted Nash equilibrium D∗.

U-NE with qN,d when d is a u-NE. We then establish a bound on how bad group
accuracy may be in equilibrium using price of anarchy.

6.1.2.1 Weighted vs. Pure Equilibria

Weighted delegations make it possible to achieve higher group accuracy in
equilibrium by balancing weight among maximally accurate agents. As a result,
NE in delegation games with weighted profiles can be shown to be never worse
than NE with pure delegations and to be better in some cases. Given a delegation
game on N, let us denote with N∗ = {i ∈ N | ∀j ∈ N, qi ≥ qj} the set of
maximally accurate agents in N. Based on a weighted profile D, for agent i ∈ N,
let (D−i, D′i) be the weighted profile where all agents take D except for i who
takes the weighted delegation strategy D′i.

Theorem 18. Any weighted profile D∗ of a delegation game G such that for all i ∈ N∗

w(i, D∗) = n
|N∗ | is a U-NE and D∗ ∈ arg maxD∈E(G) qN,w(D).

Proof. We first prove that D∗ is a U-NE by a stronger claim, that if in a weighted
profile D, ∑i∈N∗ w(i, D) = n, D is a U-NE. We show this by working towards a
contradiction. Let q∗ be the maximum accuracy, i.e., the accuracy of any agent
in N∗. Assume that an agent i ∈ N exists such that she obtains higher utility by
taking D′i. That is, Ui((D−i, D′i)) > Ui(D). Since ∑i∈N∗ w(i, D) = n, all agents
only have gurus in N∗ in D, and Ui(D) = q∗. This also implies that all delegation
chains point to one of the agents with accuracy q∗. Therefore by taking D′, there
are two possible cases: (1) agent i changes part of her delegations to other agents
other than herself; (2) agent i changes part of her delegations from other agents
to herself and hence she becomes one of her gurus.

In case (1), all delegation chains starting from i still point to agents with
accuracy q∗, and then Ui((D−i, D′i)) = q∗. Contradiction.

In case (2), agent i becomes one of her own gurus, and her utility becomes
Ui((D−i, D′i)) = (1− D′ii)q

∗ + D′iiqi. Then, if i ∈ N∗, Ui((D−i, D′i)) = Ui(D), but
if i ∈ N \ N∗, qi < q∗, which results in Ui((D−i, D′i)) < Ui(D). Contradiction.

Then by Theorem 4, the U-NE D such that for all i ∈ N∗, w(i, D) = n/|N∗|
optimizes group accuracy for N∗. Furthermore, by the Condorcet jury theorem
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(Theorem 1), which states that larger group of agents (with homogeneous accu-
racy higher than 0.5) enhances group accuracy, no U-NE D in which Gu(D) is a
strict subset of N∗ has higher group accuracy.

The following example shows that there exist delegation games in which
D∗ has strictly better group accuracy than any equilibrium in pure delegation
strategies.

Example 30. Consider a delegation game where there are 7 agents, 5 of which have
maximal accuracy q∗ = 0.9. By Theorem 4 and Theorem 1, any pure delegation NE
with maximal group accuracy would involve a pair of maximally accurate agents who
both get a weight of 2. These two agents form a winning coalition, but they have a
lower group accuracy than the remaining three gurus, i.e., 0.00081 = q∗2(1− q∗)3 <
q∗3(1− q∗)2 = 0.00729. So the resulting group accuracy (recall Definition 2), 0.98496,
is strictly worse than that of D∗, qD∗ = 0.99144, which is obtained by Theorem 18.

6.1.2.2 Price of Anarchy

In this section, we define the price of anarchy introduced in Equation 2.14 by
using the group accuracy as the social welfare and investigate the weighted
version. We define the price of anarchy of a game G as:

PoA(G) =
maxD∈D qN,w(D)

minD∈E(G) qN,w(D)
. (6.2)

When restricting to the price of anarchy in games with pure delegations (and
therefore pure strategy u-NE), it gives rise to PoApure as defined in Equation 2.14.

So Equation 6.2 gives us a measure of how much group accuracy is ‘lost’ in
equilibrium, in the worst case, with respect to what would be achievable via
Algorithm 6 in Chapter 5.

Theorem 19. When |N| → ∞, PoA → 1
q∗ , where q∗ is the accuracy of a maximally

accurate agent in N.

Proof. Let D be the weighted profile for which qN,w(D) is maximal and let D′ be
the U-NE profile for which qN,w(D′) is minimal. D′ is the case when all agents
delegate to the same guru, which has accuracy q∗. Then, since each qi ∈ (0.5, 1],
by the law of large numbers as |N| → ∞, qN,w(D) → 1 and by construction
qN,w(D′) = q∗.

The same argument can be applied to the setting with pure delegations, ob-
taining the same asymptotic value for PoApure.

In the non-asymptotic case, since weighted delegations enable optimal group
accuracy (Theorem 14) while pure delegations do not (Example 21), the PoA in
delegation games with weighted delegations is trivially higher than that in the
case of pure delegations:
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Corollary 3. PoA ≥ PoApure.

6.1.3 Delegation Games Under The Limit Weight Approach

Recall that in Section 5.3.2, agents’ weight transfer in the limit is denoted as the
n-dimensional vector t̊D(i). Similarly, we will refer to equilibria under the limit
weight approach as Ů-NE, where the utility function is defined as:

Ůi(D) = ∑
j∈N

qj t̊D(i, j), (6.3)

by replacing the weight transfer in Equation 6.1 by t̊.
We can then show that NE in the expected weight are also NE in the limit

weight.

Theorem 20. Given a delegation game G, if a weighted profile D is a U-NE, it is also a
Ů-NE of G.

Proof. First note that there is no delegation cycle in the D, by Lemma 9. Moreover,
since all weight in the network is concentrated on all highest-accuracy agents—
assume this accuracy is q∗—and the underlying network is connected, by the
proof of Theorem 18, all agents have the same utility, which is equal to q∗ because
their initial weight of 1 is all distributed among the highest-accuracy agents.
Subsequently, we show in two possible cases: (i) all loops in D are with weight of
1; (ii) at least one loop, which is with weight less than 1, exists.

(i) This case satisfies the conditions in Theorem 16. Therefore, for all i ∈ N,
w(i, D) = ẘ(i, D). Thus, no agent has a profitable deviation, which indicates that
D is an Ů-NE.

(ii) First notice that since no cycle exists, t̊D(i) converges for all i ∈ N, indicated
by the proof of Theorem 16. Then, since D is a U-NE, any agent who has a loop
with weight less than 1 must have accuracy q∗, by the proof of Theorem 18,
and each of her out-degrees must end up at agents with accuracy q∗. By the
limit weight approach, the weight “flows” to the absorbing agents among those
highest-accuracy agents. That is, all agents inherit accuracy from those with q∗.
Hence D is a Ů-NE.

The other direction of the theorem does not hold, however, as shown by the
following example:

Example 31. Consider N = {1, 2} with q = (0.9, 0.9) and R = N2. Profile

D =

(
0.5, 0.5

1, 0

)
,
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1 2
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Figure 6.2: The Ů-NE in Example 31

as shown in Figure 6.2, is a Ů-NE. Since each agent is recurrent and the delegation graph
is aperiodic, the weight transfers of both agents converge under the limit weight approach.
Observe that in the limit, a stable flow of voting weight is retained by agent 2 and agent
1 maintains the same extra amount besides the flow. Therefore, the converging voting
weight distribution is ẘ = ( 4

3 , 2
3 ), and each agent still obtains the maximal utility of 0.9.

However, the profile contains a cycle of weight 0.5 and cannot therefore be a U-NE by
Lemma 9.

6.2 experiments
The analytical results of the previous sections show that Nash equilibria with
weighted delegations can be better in principle under the idealized rationality
assumptions of Nash equilibria. We try to get a more fine-grained picture of
group accuracy with weighted delegations using a weaker form of equilibrium
incorporating a form of bounded rationality. In this section, we approach this aim
by proceeding with a set of computational simulations under both the expected
and the limit weight approach.

6.2.1 Experimental Setting

Agents are constrained in their delegations by a random network which will
be treated as a parameter. Agents try to maximize their own utility under
different weight approaches, namely, as per Equation 6.1 and Equation 6.3,
respectively. However, they are assumed to be boundedly rational and achieve
this maximization only imperfectly. To this aim, we model agents’ strategic
behavior with the so-called quantal response model [56], which has already been
applied successfully to other strategic contexts in social choice (e.g., Meir [57],
and an empirical study of storable voting by Casella et al. [17]).

logit quantal response The quantal response model assumes that agents
choose their strategies with noise. The probability (belief distribution) of choosing
a pure delegation is positively related to the utility of that delegation, and agents
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respond to the others’ strategies assuming that all agents have the same belief
distribution, until an equilibrium is reached.

More precisely, we assume a special case of the quantal response model, known
as logit quantal response (LQR).

Definition 22 (Logit Quantal Response). Given weighted profile D, an agent i ∈ N
responds in that profile by changing her individual weighted strategy to D′ = (D′i, D−i),
such that for any neighbor j ∈ R(i),

D′ij =
eλUi(Dij=1,D−i)

∑k∈R(i) eλUi(Dik=1,D−i)
, (6.4)

where (D′i, D−i) denotes the weighted profile in which each agent takes D except for
agent i who takes D′i, and λ is a parameter indicating the error level to which agents are
subject.

Observe that, when λ = 0, for any agent i ∈ N, Equation 6.4 becomes D′ij =
1

∑k∈R(i) 1 = 1
|R(i)| , which corresponds to a uniformly random choice. However, as

λ→ ∞, agents’ choices approach optimality and the weighted profile approaches
a pure-strategy Nash equilibrium [56]. Note that we replace Ui(D) in Equation
(6.4) by Ůi(D) for the limit weight approach.

Algorithm 8 Iterated LQR (ILQR)

input: R, q, w⋆, λ, σ, k⋆.

initialize: D0 : ∀i ∈ N, D0
ii = 1.

round k (k ≥ 1):
1: For 1 ≤ i ≤ n:
2: For j ∈ R(σ(i)):

3: Dk
σ(i)j =

e
λUσ(i)(Dσ(i)j=1,Dk−1

−σ(i))

∑h∈R(σ(i)) e
λUσ(i)(Dσ(i)h=1,Dk−1

−σ(i))
.

4: If k ≥ k⋆ or Dk = Dk−1:
5: Exit.

return: D

We implement an iterated LQR (ILQR) model (Algorithm 8) starting with the
trivial profile D0 where for all i ∈ N, D0

ii = 1. In the algorithm, besides the
underlying network R and accuracy profile q, we have three extra inputs: λ,
the parameter for the LQR model, σ, a round-robin sequence permuting N, and
k⋆, the maximum number of rounds. Note that we also apply the limit weight
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approach in the algorithm, where we replace Ui by Ůi. Agents then apply LQR
iteratively ordered by the sequence σ until no agent changes strategy (i.e., an
equilibrium is found) or the number of rounds reaches the limit. By way of
illustration, let agent 1 be the first agent responding to D0. Her response would

be D1 = (D1
1, D0

−1), such that for all j ∈ R(1), D1
1j = eλqj

∑k∈R(1) eλqk
, since for all

k ∈ R(1), U1(D1k = 1, D0
−1) = qk. Then agent 2 responds to D1 by LQR, and

so on until no agent changes her strategy any more, reaching a so-called LQR
equilibrium. By [56, Th. 2], we know that as λ → ∞, this LQR equilibrium
converges to one of the Nash equilibria of the delegation game.

As a benchmark, we also implement a one-shot algorithm, called One-shot
LQR (OLQR), which sets the parameter k⋆ in Algorithm 8 to 1. That is, in the
one-shot algorithm, each agent in turn takes a logit quantal response only once.

Note that all agents’ weight transfers converge in the limit weight approach,
since agents have a loop in the weighted profiles output by the ILQR/OLQR.
Therefore, no weight is lost in the limit weight.

6.2.2 Parameter Setting

The simulations are divided into two parts. In experiment A (Section 6.2.4.1),
we consider different levels of density in an underlying random network (recall
Section 2.1) by varying the probability of any two nodes being connected with p ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Then in experiment B, we consider different
error levels in the LQR model by varying λ ∈ {0, 2, 4, 6, 8, 10, 20, 40, 60, 80, 100}.
In both of the above parts, the two weight approaches are simulated: the expected
weight model underpinning utility Ui of Equation 6.1, and the limit weight model
underpinning utility Ůi of Equation 6.3. We fix λ to be 20 in experiment A and
we fix p to be 0.9 in experiment B, due to the obvious trends of desired properties,
e.g., the individual accuracy, the group accuracy, and delegation structure criteria,
under these two settings.

6.2.3 Criteria

We study the effects of the above parameters on two properties of weighted
delegation profiles: decision quality and delegation structures.

Decision quality is measured by two criteria, namely, group accuracy and
average accuracy, which reflect the decision quality of weighted profiles from the
levels of the individuals and the group, respectively. Group accuracy is defined
in Equation (5.3). The average accuracy is simply the weighted mean of all gurus’
accuracies, based on the weight distribution induced by the weighted profiles.

To investigate the delegation structures of weighted profiles, we study four cri-
teria: the maximum and minimum individual weights in the weight distribution,
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the amount of weight lost in delegation cycles in the expected weight approach,
and the Gini coefficient [36]. The Gini coefficient measures the equality of the
weight distribution: the higher the index is, the more unequal the distribution is.

The main measures of decision quality and the structure of delegation graphs
we focused on are the average accuracy, the group accuracy and the Gini coeffi-
cient. To determine whether the qualification of the described trends with respect
to the variable on the x-axis (e.g., “increasing” and “decreasing”) as well as the
described difference between the algorithms and between the weight approaches
are appropriate or not, we carry out statistical tests (ANOVA tests) for these three
criteria (i.e., Figures 6.3a, 6.3b, 6.3c, 6.4a, 6.4b, and 6.4c). The details are provided
in Appendix A.2.

setup We set n = 30. Agents’ accuracies are independently drawn from the
same Gaussian distribution (µ = 0.7, σ = 0.075) and values are forced within
the [0.5, 1] range. For each parameter configuration we perform 50 runs to
obtain our data. As group accuracy involves exponential-time computations, we
estimate it via a Monte Carlo approximation sampling 2n−1/100, i.e., 5368709
times, random coalitions for each computation. Similar to our approaching,
the Monte Carlo method is also used in [2] to compute the group accuracy in
various voting methods. As for ILQR (Algorithm 8), we set for each parameter
configuration the maximum number of iterations (i.e., k⋆) as 100. The experiments
have been programmed in Python 3.7 and run on a CPU cluster of the University
of Groningen2 with 1GB memory.

6.2.4 Findings

6.2.4.1 Experiment A

We first study the trends of average accuracy and group accuracy. As for average
accuracy (Figure 6.3 (a)), in better connected underlying networks, agents have
higher average accuracy in the expected weight approach ( - bars and - bars).
The reason is straightforward: agents have access to higher-accuracy agents
because of the better connectivity. However, in the limit weight approach ( - bars
and - bars), agents’ average accuracy becomes slightly lower as p grows. We
conjecture that cycles appear more frequently in the delegation graphs in better
connected networks. Thus voting weight is distributed more broadly in cycles
by the limit weight, due to the fact that when a weight transfer converges in
a delegation cycle, a stabilized amount of weight keeps “flowing” in the cycle.
This then leads to lower average accuracy. Another interesting observation is
that in the expected weight approach, ILQR (the yellow bars) outputs higher

2 https://wiki.hpc.rug.nl/peregrine/start



朱朱朶 delegation games with weighted proxies

average accuracy than OLQR (the red bars), since agents tend to delegate to
higher-accuracy gurus in the iterated response dynamics. This trend is inverse in
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(f ) A: weight lost in cycles

Figure 6.3: Experiment A: fixed λ = 20 varying connection density of the underlying
network p. Figures show the average accuracy, group accuracy, Gini coefficient,
the maximum/minimum individual weight, and weight lost in delegation
cycles. Response dynamics and weight approaches: - : ILQR with limit
weight; - : ILQR with expected weight; - : OLQR with limit weight; - :
OLQR with expected weight. The red line in Figure 6.3b denotes the group
accuracy of the direct voting, i.e., the trivial delegation profile.

the limit weight, and we conjecture that this happens also because more cycles
are formed by ILQR.

Then, as for group accuracy (Figure 6.3 (b)), as p increases, the trends of both
dynamics and both weight approaches (weakly) increase since agents have a
better chance to delegate to higher-accuracy agents. The group accuracies in
the limit weight ( - bars) are (weakly) higher than that in the expected weight,
i.e., for each p, the group accuracies of ILQR in the limit weight ( - bars) are
significantly higher than those of ILQR in the expected weight ( - bars), and the
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group accuracies of OLQR in the limit weight are similar to those of OLQR in
the expected weight ( - bars), with the group accuracies of ILQR in limit weight
the highest, almost reaching 1. This is because the weight distribution in the
limit weight is more balanced as shown by the Gini coefficient (Figure 6.3 (c)),
where the values in the limit weight ( - bars and - bars) decrease as p increases,
and between those the value of the ILQR ( - bars) is considerably lower than
the others. This observation can be further supported by the maximum and
minimum weight statistics (Figures 6.3 (d) and (e)): the individuals’ weights
of ILQR in the limit weight become roughly identical when p = 0.9, with a
minimum of more than 0.8 and maximum around 1. We then conclude that in
the limit weight, weight distribution is balanced, especially of the ILQR, because
a large number of delegation cycles are formed. It is also worth observing that
when p ≥ 0.3, the group accuracy of ILQR in the limit weight approach ( - bars),
which has the most balanced weight distribution, outperforms the high group
accuracy of direct voting (the red line in Figure 6.3 (b)).

Another interesting finding is that, as shown above, in the limit weight, the
weight distribution of ILQR is more balanced than that of OLQR, however, this is
reversed for the expected weight approach, as shown in Figures 6.3 (c), (d) and
(e). We conjecture that this is also due to delegation cycles. The limit weight
approach tends to distribute weight more equally in cycles.

Finally, Figure 6.3 (f) shows that as the connectivity increases, more weight
is lost in delegation cycles, in both ILQR and OLQR. Furthermore, ILQR (the
red bars) causes increasingly more weight loss than OLQR (the orange bars).
Given the fact that agents distribute weighted delegations relatively dispersively
when λ = 20, better connected networks enhance the probability of forming
delegation cycles, which aligns with the observed trends. Moreover, by ILQR, in
the delegation graphs, more delegations tend to be concentrated on high-accuracy
agents. This further increases the probability of forming delegation cycles, which
is the reason of higher weight loss in ILQR.

6.2.4.2 Experiment B

By Figures 6.4 (a) and (b), we observe that as agents’ weighted delegations are
more concentrated (i.e., larger λ), the average accuracies of both dynamics and
weight approaches increase (from around 0.7 to more than 0.8), but this does
harm to the group accuracy (from almost 1 to around 0.8). The trends of average
accuracy are as expected: agents inherit higher accuracy when they delegate
more weight to high-accuracy agents.

The results on group accuracy suggest that dispersively distributed weight
improves group accuracy to some extent. We now investigate group accuracies
in more details, combining them with the criteria concerning the delegation
structure. For each value of λ, the group accuracy of ILQR in the limit weight ( -
bars) is in general weakly higher than the others, and this trend corresponds to a
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(much) lower Gini coefficient of ILQR in the limit weight for most values of λ, as
shown in Figure 6.4 (c). On the other hand, ILQR in the expected weight approach
( - bars) generally has the most unbalanced weight distribution (reflected in the
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(f ) B: weight lost in cycles

Figure 6.4: Experiment B: fixed p = 0.9 varying the concentration parameter of the LQR
model λ. Figures show the average accuracy, group accuracy, Gini coefficient,
the maximum/minimum individual weight, and weight lost in delegation
cycles. Response dynamics and weight approaches: - : ILQR with limit
weight; - : ILQR with expected weight; - : OLQR with limit weight; - :
OLQR with expected weight. The red line in Figure 6.3b denotes the group
accuracy of the direct voting, i.e., the trivial delegation profile.

highest Gini coefficient) when λ ≥ 8. This leads to its overall (weakly) lowest
value of group accuracies. The above observations further support the observation
that more balanced distributed weight may benefit group accuracy. Observe
also that when agents distribute weighted delegations relatively equally among
neighbors, i.e., when λ ≥ 10, the group accuracy of most parameter settings
outperforms that of direct voting (the red line in Figure 6.4 (b)).
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It is also worth observing some features of the two weight approaches with
respect to the delegation structure criteria. Similar to experiment A, the limit
weight approach also outputs relatively more balanced weight distributions. This
can be evidenced by comparing the Gini coefficient in the limit weight approach
and that in the expected weight approach by both ILQR ( - bars and - bars)
and OLQR ( - bars and - bars), as well as larger minimum weight in the limit
weight ( - bars and - bars in Figure 6.4 (e)). However, in the limit weight ( -
bars and - bars) high-accuracy agents may accrue more weight, especially when
agents’ delegations are more concentrated (e.g., λ ≥ 40), as shown in Figure 6.4
(d). This is due to the fact that cycles are formed among high-accuracy agents and
it becomes easier for those agents to retain weight in the limit weight: delegation
cycles absorb weight and distribute the weight among agents in them.

Lastly, it is interesting to notice that by ILQR in the expected weight ( - bars),
the amount of weight lost in cycles first decreases until λ ≥ 10 and then rebounds
(Figure 6.4 (f)). As agents uniformly distribute their weighted delegations among
their neighbors (i.e., when λ = 0), cycles are formed with high probability.
This problem of delegation cycles improves when agents start to concentrate
their delegations to high-accuracy agents. However, when more delegations
are concentrated on smaller groups of high-accuracy agents (when λ ≥ 10), the
weight loss again becomes more severe as agents in this group tend to form cycles
easily as they have similar accuracies. But by OLQR ( - bars), many cycles are
formed when agents dispersively distribute their delegations (when λ is small).
Since they do not change strategies iteratively to avoid cycles as ILQR, the weight
loss level keeps unchanged until λ = 10. The situation is relieved when agents
turn to concentrate more delegations on the high-accuracy agents.

conclusion
We incorporated the interpretations of weighted delegations developed in Chap-
ter 5 in the delegation games developed in [11] and studied the features of NE. We
showed that the group accuracy of NE with weighted delegation is never worse
than that with pure delegation, which translates into a higher price of anarchy for
delegation games with weighted delegations. To reveal the link between the two
interpretations of weighted delegation, we showed that the NE in the expected
weight are special cases of those in the limit weight. We finally complemented
these findings with experimental observations showing how weighted delegations
may boost group accuracy also in decentralized settings with boundedly rational
agents.

Our experiments are based on one specific (and arguably fairly artificial) class
of networks. A natural extension of our results would look into other classes of
networks. Finally, analytical results about quantal response and group accuracy
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(e.g., price of anarchy with respect to quantal response equilibria) are worth
pursuing.



7 C O N C L U S I O N S A N D O U T LO O K

7.1 summary of the thesis contribution
Liquid democracy is a young innovation in collective decision making. Much
remains to be investigated. In this dissertation, we investigated liquid democracy
from two angles: voting power and truth-tracking performance. We developed a
method to formally measure the voting power in liquid democracy in Part II. This
method provides foundations to understand power accrual in liquid democracy,
including thorny issues such as the super voter problem of liquid democracy,
i.e., a voting suffers from the risk of being manipulated by a small group of
voters when they accrue a large number of votes. In Part III, we then contributed
to the ongoing debate on the truth-tracking performance of liquid democracy,
by proposing two models of weighted delegations. We have shown that this
type of delegation mechanism may allow liquid democracy to achieve better
truth-tracking performance than models from the literature.

We now revisit the contributions made in this dissertation in some more detail.

part I In this part, we introduced the background of liquid democracy, based
on which we developed the research in this dissertation. We provided a detailed
technical basis in Chapter 2. Our work is based on the setting of collective
decision making where a group of agents have to make a decision via binary
truth-tracking voting. Agents may freely choose to directly vote or delegate their
voting right, while their delegating interactions are restricted by a social network.
Delegation cycles, namely, the structures in which no representative exists, may
be formed, and all voting weight caught in such a structure is assumed to be
equivalent to abstention. Under such a setting, we introduced the key toolbox
for the study of power and truth tracking in binary voting. What follows is the
introduction of the game-theoretic model of [11] on which we based a large part
of our research. In this model, agents’ utility is the individual accuracy they
inherit from those on the end points of delegation chains. Lastly, we recaptured
the existing negative results on liquid democracy’s truth-tracking performance,
against which we developed the weighted delegation theory to try to recover
better truth-tracking performance for liquid democracy.

part II In this part, we developed the theoretical and empirical study of voting
power in liquid democracy.

朱朲朳
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In Chapter 3, we defined a novel voting power index, which measures agents’
probability to influence the voting result in liquid democracy, for both gurus
and delegators. This index strictly generalizes the Banzhaf power index to
liquid democracy. An axiomatic characterization of the index was provided by
extending an existing characterization of the standard Banzhaf power index with
extra special properties characteristic of liquid democracy. We also showed that
agents’ voting power highly depends on the structure of the delegation graph.
For example, along a delegation chain, agents closer to the guru have higher
voting power, since their delegations are less likely to be redirected by other
agents ahead. Another important feature of our index is that agents gain more
voting power by obtaining more direct delegations than delegations via long
delegation chains. This is because when agents accrue weight via long delegation
chains, it is easier to lose a large amount of voting weight once some agent on
the delegation chains changes her delegation strategy. However, such a risk is
much lower for direct delegations.

According to the method in [49], the authors saw the voting activity of the
gurus as a weighted voting and therefore studied the voting power of gurus
only. In contrast, by our voting power index, both gurus and delegators have
positive voting power, since delegators are also able to influence the voting result
by changing their delegation strategies due to the instant recall component of
liquid democracy. Moreover, delegators with a large number of direct delegations
might have more voting power than gurus with fewer delegations accrued via
long delegation chains.

In Chapter 4, we incorporated agents’ incentives to retain the above voting
power into the delegation games defined in Part I, and studied agents’ behaviors
both theoretically and empirically. We first showed that pure strategy Nash
equilibria cannot be guaranteed to exist in delegation games in general. However,
pure strategy Nash equilibria always exist in several subclasses of delegation
games, such as in quota voting when the voting quota is less than half of the
entire weight, in unanimity voting, and in voting instances for which the social
network is complete.

We then bounded agents’ rationality and studied their behavior by computa-
tional simulations. In the simulation algorithm, agents are assumed to iteratively
choose a proxy randomly among those agents who are able to improve their
utility. We showed that as the social networks are better connected, the average
individual accuracy level is higher, but the voting power distribution becomes less
equal. This is because agents have better access to high-accuracy agents, which
results in the situation where a small number of high-accuracy agents accrue a
large amount of voting weight. Then, when agents have more incentives to retain
voting power, delegations tend to be prevented since agents lose voting power
by delegating, especially via long delegation chains. As delegations happen less
frequently, the voting power distribution becomes more equal, but the average
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individual accuracy level also decreases. Finally, we studied agents’ behavior
in different quota voting rules. We mainly observed trends in a benchmark
algorithm, where agents in turn choose their best response only once, since the
iterated algorithm has poor convergence on many quota settings. Agents tend to
delegate more when the quota becomes higher, since agents are less sensitive to
voting power as it is harder for agents to influence the voting result. As a result,
the average individual accuracy level becomes higher while the voting power
distribution becomes slightly less equal.

part III In this part we mainly investigated the truth-tracking property of
liquid democracy, and studied whether the performance is improved by allowing
agents to split their voting weight and delegate to multiple proxies, namely, by
weighted delegations as per our definition.

In Chapter 5, we provided two different interpretations of weighted delegations,
namely, the expected weight approach and the limit weight approach, and we
studied and compared the truth-tracking performance of the two interpretations.

In the expected weight approach, we considered weighted delegations as the
probability that agents delegate to each neighbor. We thus computed each agent’s
accrued voting weight as the expected amount of her accrued weight in each
possible pure delegation profile. We showed that the optimal voting weight
distribution for truth tracking, where each agent’s weight is proportional to
log( qi

1−qi
), is achievable by coordinating agents’ delegation strategies when the

underlying network is connected.
In the limit weight approach, weighted delegations are interpreted as a direct

split of voting weight, and this process can be modelled as a Markov process.
We showed that these two weight approaches coincide when: (1) all delegators
fully delegate their weight or, (2) each agent caught in a delegation cycle in
some induced pure profile is caught in a delegation cycle in every induced
pure profile. This is because, in the limit weight approach, the weight transfers
in delegation cycles or non-full loops, i.e., loops with weight less than 1, may
converge considerably differently from those in the expected weight approach.
We further proved that the optimal voting weight distribution is also achievable
when all agents are involved in an elaborately constructed delegation cycle and
retain specific parts of delegations.

Then, in Chapter 6, we incorporated weighted delegations into the delegation
games introduced in Part I and studied the Nash equilibria in both weighted
delegation approaches. We showed that, even though a pure Nash equilibrium
always exists, a weighted Nash equilibrium in the expected weight approach is
never worse than a pure Nash equilibrium in terms of truth-tracking performance.
As a consequence, weighted Nash equilibria come with a higher price of anarchy
than pure Nash equilibria. We also showed that the set of the Nash equilibria in
the expected weight approach is a subset of that in the limit weight approach.
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Lastly, we empirically studied agents’ behavior in delegation games with
weighted delegations. In the experiments, we modelled agents’ bounded rational-
ity by the logit quantal response model [56], which had already been successfully
applied to social choice scenarios. We observed that in better connected social
networks, the truth-tracking performance can be weakly improved. However,
better connectivity also results in more delegation cycles, such that more voting
weight is lost.

In the second simulation study, we showed that as agents concentrate more
delegations on high-accuracy agents, the average individual accuracy level be-
comes higher, with more unequal voting weight distribution. This, on the other
hand, does harm the truth-tracking performance.

7.2 outlook
Our research can be extended in numerous directions. We sketch a few such
directions below.

The research on voting power in liquid democracy in Part II moved from the
observation that agents have much flexibility to transfer and retain voting power
in liquid democracy, since agents’ voting power may vary due to any change on
the delegation graph. However, this also imposes enormous complexity for agents
to arrange and manipulate delegation strategies in order to optimize various
objectives. Future works can be developed in different directions for different
optimization objectives. For example, we may consider two dichotomous types of
agents in terms of decision-making quality: self-interested agents and far-sighted
agents.

If agents are selfish and concentrate on their own decision-making quality,
they aim at maximizing their individual accuracy, which gives rise to the game-
theoretic model studied in Chapter 4. We showed in this chapter that pure
strategy Nash equilibria are not guaranteed to exist in general, but they do exist
in several subclasses of delegation games, e.g., delegation games with a complete
underlying social network. However, based on this strong assumption of complete
social network, our results leave out all the other classes of social networks. As
the structure of social networks can significantly influence the behavior of agents,
in future work, it is worth studying agents’ behavior in delegation games under
other social network classes. For example, in a star social network, the central
agent may receive a large number of delegations even though her accuracy is
at average level, since she has access to high-accuracy agents. However, as she
accrues a large amount of voting weight, she might choose to be a guru as she
would lose much voting power if she delegates. Such situations may also give
rise to the voting power bribery problem as studied by D’Angelo et al. [25].
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On the other hand, when agents’ optimization objective is the overall collective
decision-making quality, that is, collective truth tracking, then the setting is
the one studied in Part III. In Part III, we showed that the optimal weight
distribution with respect to truth tracking is achievable by liquid democracy.
However, our results are based on strong centralized delegation mechanisms,
which are not realistic in a context where decision making is distributed. To
better understand the truth tracking performance of liquid democracy, in future
work, we may link truth-tracking performance with voting power measurement
in general delegation mechanisms. This link has been studied in the setting of
weighted voting by Kalai [47], where the author showed that the group accuracy
asymptotically converges to 1 if any agent’s voting power is bounded. Therefore,
in liquid democracy, in order to optimize the truth-tracking performance, agents
do not only aim at enhancing the average individual accuracy level, but also try
to restrict the voting power of the others, in order to achieve convergence of the
group accuracy. For instance, delegators may choose more indirect delegations
instead of direct ones in order to restrict the voting power of the gurus. Moreover,
using liquid democracy as a method to increase individual accuracy, we may
expect a better truth-tracking performance of it as compared to other voting
methods, such as direct voting. Therefore, we could investigate the properties
Do No Harm and Positive Gain defined by Kahng et al. [46] to compare liquid
democracy and direct voting under the above aim.

Following up on the above directions of research, since liquid democracy
captures the characteristic of direct voting and representative voting, we would
also like to compare liquid democracy with other benchmark representative
voting methods in terms of truth-tracking performance, e.g., elective represen-
tative voting and randomized representative voting. Traditional representative
voting usually uses the elective representative voting method, where a set of
representatives is elected by the voters. However, the randomized representative
voting method, e.g., sortition [33], selects the set of representatives at random.
In selective and randomized representative voting methods, the voting power
of each representative depends on the size of their set. However, the individual
accuracy level of the randomized voting method might be lower than that of the
selective one. It is then interesting to conduct similar comparisons between liquid
democracy and these two methods, taking into consideration individual accuracy
and voting power.

Next, we propose a direction in terms of delegation mechanisms. In Chap-
ter 5, we showed the possibility of optimal truth-tracking performance of liquid
democracy. However, this is achieved by strong centralized delegation mecha-
nisms. It is then a natural generalization in future work to explore the possibility
of decentralized delegation mechanisms, or so-called local delegation mecha-
nisms in [46]. When the underlying social network is complete, Algorithm 5 in
Chapter 5 captures some features of decentralized delegation mechanisms: Each
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agent applies a specific delegation scheme according to the information of her
neighbors. However, it is still challenging to verify the situations in which the
network is not complete due to the complexity of social networks. For example,
we conjecture that the optimal weight distribution (Theorem 4) is still possible
by decentralized delegation mechanisms in some social networks which are not
complete, even though we showed that no mechanism works in disconnected
networks by Example 23. We would then like to extend our work to study in
which classes of social networks the above conjecture still holds. Inspired by the
experiments of agents with bounded rationality in Chapter 6, it would also be
interesting to empirically study the performance of more decentralized delegation
mechanisms in general underlying social networks.

Lastly, in Chapter 4, our experiments suffer from poor convergence of the
iterated algorithm for several parameter settings of the quota rule. We would
like to investigate the reason of such poor performance of the iterated algorithm
under these settings of quota voting rules in the future work.

We hope that the theory developed in this dissertation will benefit follow-up
research to better understand liquid democracy and settle crucial problems in
this young voting method.



A A P P E N D I X

a.1 statistical tests for section 4.3
In this section, we provide statistical tests for the main results of Section 4.3.
Specifically, we conduct ANOVA tests for three criteria, including the ratio
of delegators, the Gini coefficient of the DB’s, and the average accuracy for
Experiments A, B and C. That is, we conduct statistical tests corresponding to the
results shown in Figures 4.9a, 4.9g, 4.9h, 4.10a, 4.10g, 4.10h, 4.11a, 4.11g, 4.11h.
To test the significance of the results, we conduct two types of tests:

1. For each algorithm between IBRD and OSI (Algorithm 4 and the corre-
sponding one-shot algorithm described in Section 4.3), in order to test the
significance of the trends with respect to the variable on the x-axis, we
conduct pairwise ANOVA tests. For example, for the trend of IBRD varying
p shown in Figure 4.9a, we test whether the difference between each pair
of adjacent values of p is significant or not, so as to determine whether the
description of “increase” or “decrease” is valid or not.

2. For each parameter on the x axis, we test the significance of the difference
between the two algorithms.

The details of the statistical tests are as follows.
Note that in the following tables (Table A.4, A.6, A.7 and A.9), the results of

several tests are nans. This is because both of the two data sets being tested
have all elements identical, resulting in both within-group variances being zero.
Therefore, the statistics cannot be computed (because the denominator is 0).

Based on the tests we performed, the trends observed are significant (by
assuming that we reject the original hypothesis if p-value is less than 0.05).

朱朳朱
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a.1.1 Experiment A

p’s statistic p-value

0.1 v.s. 0 11.918918918918914 0.0008218136713670221

0.2 v.s. 0.1 6.433893684688775 0.01277530122590356

0.3 v.s. 0.2 2.3007372914241366 0.1325318166017588

0.4 v.s. 0.3 0.800066644451849 0.37326498425035703

0.5 v.s. 0.4 7.181455633100703 0.00864152584955915

0.6 v.s. 0.5 0.4482253933406515 0.5047531989663581

0.7 v.s. 0.6 1.6896551724137931 0.19669557387883027

0.8 v.s. 0.7 0.550561797752809 0.4598628737645788

0.9 v.s. 0.8 0.34937611408199637 0.5558273671731995

Table A.1: Pairwise statistical tests for the ratio of delegators for IBRD by varying p.

p’s statistic p-value

0.1 v.s. 0 11.730179282214571 0.0008995284553868939

0.2 v.s. 0.1 6.436778004339954 0.012755878905417573

0.3 v.s. 0.2 2.584547911895945 0.11112840648084796

0.4 v.s. 0.3 0.5877655926437918 0.44512736657605234

0.5 v.s. 0.4 7.724114876302524 0.006532451875090862

0.6 v.s. 0.5 0.531569230667027 0.4676867518554163

0.7 v.s. 0.6 1.3317506237704053 0.2513005631272605

0.8 v.s. 0.7 0.3631058330280339 0.548178213979232

0.9 v.s. 0.8 0.3077337232475393 0.5803380940959126

Table A.2: Pairwise statistical tests for the Gini coefficient for IBRD by varying p.
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p’s statistic p-value

0.1 v.s. 0 11.965276504636225 0.0008038057243390304

0.2 v.s. 0.1 6.854679386252455 0.010243526216546802

0.3 v.s. 0.2 2.3639008164150757 0.12739390805892525

0.4 v.s. 0.3 0.8085618814681148 0.3707499103444768

0.5 v.s. 0.4 7.18243724468699 0.008637128186298066

0.6 v.s. 0.5 0.37765448887627323 0.5402853653439399

0.7 v.s. 0.6 1.695048921585182 0.19598864202369062

0.8 v.s. 0.7 0.5055826751449164 0.47874629854651396

0.9 v.s. 0.8 0.3448670023432293 0.5583838578654481

Table A.3: Pairwise statistical tests for the average accuracy for IBRD by varying p.

p’s statistic p-value

0.1 v.s. 0 30.032258064516128 3.298564922367793e-07

0.2 v.s. 0.1 19.253438113948913 2.8879711855297574e-05

0.3 v.s. 0.2 3.9168026101141917 0.05061175709798265

0.4 v.s. 0.3 0.7 0.40481922522219216

0.5 v.s. 0.4 0.33793103448275863 0.5623605782990677

0.6 v.s. 0.5 1.0 0.3197732875085853

0.7 v.s. 0.6 nan nan

0.8 v.s. 0.7 nan nan

0.9 v.s. 0.8 nan nan

Table A.4: Pairwise statistical tests for the ratio of delegators for OSI by varying p.
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p’s statistic p-value

0.1 v.s. 0 30.040425465888255 3.287953898429905e-07

0.2 v.s. 0.1 18.02066961227148 4.970078284646743e-05

0.3 v.s. 0.2 4.229841830630905 0.04237649128989634

0.4 v.s. 0.3 0.4420443383408732 0.5076989601212056

0.5 v.s. 0.4 0.32578632159690535 0.5694573564017935

0.6 v.s. 0.5 0.4543842868885774 0.5018471627511145

0.7 v.s. 0.6 1.1833514670099692 0.27934289101732485

0.8 v.s. 0.7 2.2000573202663993 0.14121456846635574

0.9 v.s. 0.8 1.4983702260051142 0.22385697055839684

Table A.5: Pairwise statistical tests for the Gini coefficient for OSI by varying p.

p’s statistic p-value

0.1 v.s. 0 30.015646202162973 3.320255058834433e-07

0.2 v.s. 0.1 18.860630100504697 3.4306533372135195e-05

0.3 v.s. 0.2 3.9179188245321095 0.05057951231551284

0.4 v.s. 0.3 1.0019846454183021 0.3192959748130856

0.5 v.s. 0.4 0.4280666761851765 0.5144716239619078

0.6 v.s. 0.5 1.069581887808635 0.30358528274843755

0.7 v.s. 0.6 0.9635314109999913 0.32871586799314567

0.8 v.s. 0.7 1.0 0.3197732875085853

0.9 v.s. 0.8 nan nan

Table A.6: Pairwise statistical tests for the average accuracy for OSI by varying p.
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p’s statistic p-value

0 nan nan

0.1 0.5178335535006606 0.4734799255965564

0.2 1.4082111436950149 0.23822236952511366

0.3 0.2969696969696969 0.5870264485335026

0.4 0.10913140311804014 0.7418403823693323

0.5 17.46391752577321 6.366403027828661e-05

0.6 23.261235955056193 5.1850551956509405e-06

0.7 64.89189189189197 1.9308335774011577e-12

0.8 33.92307692307693 7.290016682853988e-08

0.9 60.00423728813559 8.789059766348315e-12

Table A.7: Statistical tests for ratio of delegators of IBRD and OSI by varying parameter p.

p’s statistic p-value

0 0.7478440102951036 0.38927158664803596

0.1 0.7798539095481827 0.37934698858583216

0.2 1.7212668436652159 0.19259498574959574

0.3 0.4794864498733933 0.4902925793821019

0.4 0.004657357555142044 0.9457297855079441

0.5 16.072127811109763 0.00011903935854757729

0.6 22.833095832097836 6.208690852612615e-06

0.7 58.1487607028792 1.582586966060409e-11

0.8 29.9731374079682 3.3764252045070473e-07

0.9 53.744591833694564 6.584828901679882e-11

Table A.8: Statistical tests for the Gini coefficient of IBRD and OSI by varying parameter p.
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p’s statistic p-value

0 nan nan

0.1 0.7203742645224687 0.3980896274569464

0.2 1.5993768339191372 0.2089908034599571

0.3 0.39750063297293886 0.5298503474339566

0.4 0.03362443747419054 0.8548868195864499

0.5 15.90796189472944 0.00012824484660111063

0.6 20.636545361192265 1.5839295077049324e-05

0.7 59.96423284217482 8.900541825662807e-12

0.8 31.6224192098408 1.7690830629556046e-07

0.9 56.164148745545546 2.992911384162645e-11

Table A.9: Statistical tests for the average accuracy of IBRD and OSI by varying parameter
p.

a.1.2 Experiment B

α’s statistic p-value

0.25 v.s. 0 1613.1019169329115 1.1410966349037825e-62

0.5 v.s. 0.25 32.77139066990937 1.1337831698857927e-07

0.75 v.s. 0.5 22.119898880462262 8.396142814199391e-06

1 v.s. 0.75 1440.3862227325008 2.104221072145953e-60

Table A.10: Pairwise statistical tests for the ratio of delegators for IBRD by varying α.

α’s statistic p-value

0.25 v.s. 0 676.6965125611798 8.641527218837465e-46

0.5 v.s. 0.25 27.06899399230893 1.0783903149669859e-06

0.75 v.s. 0.5 53.519619543196214 7.090481461390791e-11

1 v.s. 0.75 856.9158691218703 3.0201228028622884e-50

Table A.11: Pairwise statistical tests for the Gini coefficient for IBRD by varying α.
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α’s statistic p-value

0.25 v.s. 0 8.136719239798605 0.005291487666277194

0.5 v.s. 0.25 14.12507065984858 0.00029075118135904135

0.75 v.s. 0.5 3.533161027491973 0.06312369549881953

1 v.s. 0.75 240.52855210588743 3.959032849775264e-28

Table A.12: Pairwise statistical tests for the average accuracy for IBRD by varying α.

α’s statistic p-value

0.25 v.s. 0 739.9830508474546 1.833174385395013e-47

0.5 v.s. 0.25 4234.999999999967 1.894603306985394e-82

0.75 v.s. 0.5 3792.820224719053 3.70430806513828e-80

1 v.s. 0.75 1234.6882129277558 2.3979447275126244e-57

Table A.13: Pairwise statistical tests for the ratio of delegators for OSI by varying α.

α’s statistic p-value

0.25 v.s. 0 17.97921228983098 5.062294163659057e-05

0.5 v.s. 0.25 66.35260362687832 1.2388124134097925e-12

0.75 v.s. 0.5 817.5698292851629 2.379462846831657e-49

1 v.s. 0.75 1275.08997805985 5.54360028502678e-58

Table A.14: Pairwise statistical tests for the Gini coefficient for OSI by varying α.

α’s statistic p-value

0.25 v.s. 0 190.16437003973746 1.0989248854863765e-24

0.5 v.s. 0.25 1199.3319309661858 8.963843866473961e-57

0.75 v.s. 0.5 1502.650327223156 3.0075054146576734e-61

1 v.s. 0.75 278.24991499528915 2.1925867001575185e-30

Table A.15: Pairwise statistical tests for the average accuracy for OSI by varying α.
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α’s statistic p-value

0 3821.5778461538835 2.582013016420025e-80

0.25 93.1773444753946 6.863082090682601e-16

0.5 1218.293464858202 4.4001255412308975e-57

0.75 3351.000877116057 1.3628792665779992e-77

1 0.29123328380386304 0.5906554066692713

Table A.16: Statistical tests for the ratio of delegators of IBRD and OSI by varying parame-
ter α.

α’s statistic p-value

0 736.099367357708 2.302445751193731e-47

0.25 3.3033101029132097 0.07219613183411208

0.5 6.226704844088865 0.014254685115983864

0.75 613.3044071802934 5.702638127266943e-44

1 0.5064317973214694 0.47837818621524963

Table A.17: Statistical tests for the Gini coefficient of IBRD and OSI by varying parameter
α.

α’s statistic p-value

0 16.715875604898663 8.900934579116132e-05

0.25 23.047085675421055 5.673490067469565e-06

0.5 72.94307111233813 1.7573262124657275e-13

0.75 206.5738089718491 7.188418476763892e-26

1 0.37363055323950906 0.5424472041690601

Table A.18: Statistical tests for the Gini coefficient of IBRD and OSI by varying parameter
α.

a.1.3 Experiment C

For the pairwise tests in Experiment C, we only provide those for the OSI, since
there is no converged instance by IBRD for β = 21 and 24. Due to the same
reason, we also only provide the tests of the two algorithms for β = 21 and 27.
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α’s statistic p-value

21 v.s. 18 2063.917372881346 1.1968749911276396e-67

24 v.s. 21 4156.822068965525 4.624510361519394e-82

27 v.s. 24 2345.329994107255 2.97084821257209e-70

Table A.19: Pairwise statistical tests for the ratio of delegators for OSI by varying β.

α’s statistic p-value

21 v.s. 18 97.93156196354586 2.0348273390122846e-16

24 v.s. 21 558.3545181227464 2.9503027687339763e-42

27 v.s. 24 7793.29667635564 3.293712260934069e-95

Table A.20: Pairwise statistical tests for the Gini coefficient for OSI by varying β.

α’s statistic p-value

21 v.s. 18 1154.1033178980504 5.108088663304388e-56

24 v.s. 21 793.2771955165471 8.900797492660102e-49

27 v.s. 24 439.8067523413944 5.215911905433414e-38

Table A.21: Pairwise statistical tests for the average accuracy for OSI by varying β.

β’s statistic p-value

18 2444.9085619284765 4.192282596431685e-71

27 2196.403688954098 6.482766016142379e-69

Table A.22: Statistical tests for the ratio of delegators of IBRD and OSI by varying parame-
ter β.

β’s statistic p-value

18 111.27444458657305 7.827402796411174e-18

27 81.62012880032862 1.5069916793304207e-14

Table A.23: Statistical tests for the Gini coefficient of IBRD and OSI by varying parameter
β.
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β’s statistic p-value

18 68.71280449874074 6.099467693434161e-13

27 71.79587118786283 2.454931275081777e-13

Table A.24: Statistical tests for the average accuracy of IBRD and OSI by varying parameter
β.

a.2 statistical tests for section 6.2
In the following, we provide the statistical tests for the significance of the dif-
ference of values shown in Section 6.2. Note that we skip the test results for
some parameter settings which do not show obvious trends. For example, for
the group accuracies shown in Figure 6.4b, when λ ≤ 6 or λ ≥ 60, the values
do not show obvious trend. However, most information is revealed by the other
parameter settings (i.e., when λ = 8, 10, 20 and 40). Therefore, we only provide
test results for those important parameter settings. Note also that for some
parameter settings, the p-values are rounded to 0.0 due to their smallness.

Based on the tests we performed, the trends observed are significant (by
assuming that we reject the original hypothesis if p-value is less than 0.05).

a.2.1 Experiment A

For Experiment A, we conduct two types of statistical tests.
For each setting of weight approach and interaction algorithm (i.e., ILQR and

OLQR), we test whether the trend is significant or not, when varying p. In order
to verify this, we conduct statistical tests for all adjacent p’s, for each setting of
the other parameters, in Section A.2.1.1.

Then, for each p, we test whether the difference is significant between interac-
tion algorithms and weight approaches, for each criterion, in Section A.2.1.2, by a
two-way ANOVA test.

Additionally, we also test whether liquid democracy’s group accuracy is signif-
icantly different than that of direct democracy for ILQR of the limit weight, i.e.,
the blue bars in Figure 6.3b.

We use ANOVA tests for all of the above statistical tests. These tests are
conducted by Python on MacBook Pro.
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a.2.1.1 Pairwise Tests for Different p’S

p’s statistic p-value

0.2 v.s. 0.1 166.5397783634625 7.433703058956776e-23

0.3 v.s. 0.2 47.8638831087753 4.735223271012755e-10

0.4 v.s. 0.3 23.91453684963575 3.94443119832898e-06

0.5 v.s. 0.4 13.334446409867066 0.0004204528012277543

0.6 v.s. 0.5 13.023451894236535 0.00048661483953794276

0.7 v.s. 0.6 10.802011576795007 0.0014079003679302296

0.8 v.s. 0.7 4.955071590286428 0.028305339241508104

0.9 v.s. 0.8 8.427140275946762 0.004566795433766429

Table A.25: Pairwise statistical tests for the group accuracy of parameter p’s, OLQR and
the limit weight approach.

p’s statistic p-value

0.2 v.s. 0.1 123.93567646066671 4.298462408652272e-19

0.3 v.s. 0.2 32.26303471147467 1.3797023715398688e-07

0.4 v.s. 0.3 20.689295619330842 1.548322326620974e-05

0.5 v.s. 0.4 28.35415703946293 6.42662262426275e-07

0.6 v.s. 0.5 0.93351056491011 0.3363306601814884

0.7 v.s. 0.6 10.740277833718434 0.001450802062276393

0.8 v.s. 0.7 12.233685746340656 0.0007072317784877887

0.9 v.s. 0.8 1.6742302409643715 0.19873401257257492

Table A.26: Pairwise statistical tests for the group accuracy of parameter p’s, OLQR and
the expected weight approach.
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p’s statistic p-value

0.2 v.s. 0.1 56.717191311394615 2.5038481356604112e-11

0.3 v.s. 0.2 8.29838431663491 0.004874466046953932

0.4 v.s. 0.3 0.006674611013906675 0.9350532621761203

0.5 v.s. 0.4 1.8653165494527333 0.17513881903583361

0.6 v.s. 0.5 0.00038087393427298417 0.9844691593595195

0.7 v.s. 0.6 0.26097921461763046 0.6105971528259573

0.8 v.s. 0.7 3.8637350976478713 0.05217053400884316

0.9 v.s. 0.8 0.026657330433067485 0.8706415038655109

Table A.27: Pairwise statistical tests for the group accuracy of parameter p’s, ILQR and
the limit weight approach.

p’s statistic p-value

0.2 v.s. 0.1 4.783725909893994 0.03110855324815725

0.3 v.s. 0.2 8.195704857989204 0.005135200232083897

0.4 v.s. 0.3 0.9512097371190559 0.3318128859151591

0.5 v.s. 0.4 0.50117792482307 0.4806633618783578

0.6 v.s. 0.5 0.0008437315234920584 0.9768861317449898

0.7 v.s. 0.6 0.4953103055772458 0.48323687424265604

0.8 v.s. 0.7 0.029534474249846666 0.8639051460797447

0.9 v.s. 0.8 0.16310147597541333 0.6871968891294142

Table A.28: Pairwise statistical tests for the group accuracy of parameter p’s, ILQR and
the expected weight approach.
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p’s statistic p-value

0.2 v.s. 0.1 84.63236141287486 6.608676972304395e-15

0.3 v.s. 0.2 65.84972557949106 1.4426433530836054e-12

0.4 v.s. 0.3 18.864788334799815 3.42439238507535e-05

0.5 v.s. 0.4 15.20312952170269 0.00017686807957719978

0.6 v.s. 0.5 14.018784554942242 0.0003054657264744267

0.7 v.s. 0.6 9.753995902738094 0.0023528696059906228

0.8 v.s. 0.7 7.03861422156798 0.009307010039519193

0.9 v.s. 0.8 17.244964179810474 7.020477223595789e-05

Table A.29: Pairwise statistical tests for the Gini coefficient of parameter p’s, OLQR and
the expected limit approach.

p’s statistic p-value

0.2 v.s. 0.1 112.68126362303727 5.621006990832714e-18

0.3 v.s. 0.2 88.53053298879304 2.32110485318418e-15

0.4 v.s. 0.3 49.25344499762507 2.9488125133694385e-10

0.5 v.s. 0.4 48.85027781685804 3.3815458751443366e-10

0.6 v.s. 0.5 40.22095493344449 7.002000403059658e-09

0.7 v.s. 0.6 8.525868061892409 0.004344560645718378

0.8 v.s. 0.7 8.28649608967821 0.004903937524124969

0.9 v.s. 0.8 4.586395714312812 0.03470590483243959

Table A.30: Pairwise statistical tests for the Gini coefficient of parameter p’s, OLQR and
the expected expected approach.
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p’s statistic p-value

0.2 v.s. 0.1 108.8274627066418 1.399914031516551e-17

0.3 v.s. 0.2 70.66417364643337 3.421826831854012e-13

0.4 v.s. 0.3 55.331780435230684 3.919805993698668e-11

0.5 v.s. 0.4 78.98238905961016 3.138266821489785e-14

0.6 v.s. 0.5 51.27506161096944 1.492854178998599e-10

0.7 v.s. 0.6 82.73522873587588 1.1088479356446503e-14

0.8 v.s. 0.7 53.268460240173425 7.702047101572619e-11

0.9 v.s. 0.8 131.72982134207976 7.820561182843862e-20

Table A.31: Pairwise statistical tests for the Gini coefficient of parameter p’s, ILQR and
the limit approach.

p’s statistic p-value

0.2 v.s. 0.1 34.43118657253161 6.007488248639325e-08

0.3 v.s. 0.2 23.466302755746106 4.757637978436083e-06

0.4 v.s. 0.3 12.894134615075288 0.0005171946678489186

0.5 v.s. 0.4 18.449120422044643 4.1120854888978577e-05

0.6 v.s. 0.5 3.3613607426648446 0.0697783065148374

0.7 v.s. 0.6 0.020358528479130354 0.8868332419727378

0.8 v.s. 0.7 0.4399249269568965 0.5087158816116875

0.9 v.s. 0.8 0.016792359983213316 0.8971601034785985

Table A.32: Pairwise statistical tests for the Gini coefficient of parameter p’s, ILQR and
the expected approach.
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p’s statistic p-value

0.2 v.s. 0.1 180.33231346473858 6.075673865856836e-24

0.3 v.s. 0.2 65.91569746628959 1.4140619636420263e-12

0.4 v.s. 0.3 17.09680596569194 7.501808712162509e-05

0.5 v.s. 0.4 10.625548009693947 0.0015341516947878118

0.6 v.s. 0.5 9.898375759011046 0.0021910397388396835

0.7 v.s. 0.6 6.973002138438706 0.009630389405240754

0.8 v.s. 0.7 3.1169030920828207 0.08059862756205427

0.9 v.s. 0.8 7.955601238144938 0.00580297341917339

Table A.33: Pairwise statistical tests for the average accuracy of parameter p’s, OLQR and
the limit approach.

p’s statistic p-value

0.2 v.s. 0.1 353.6597616313316 2.763475891210417e-34

0.3 v.s. 0.2 148.6966474065831 2.324936961628038e-21

0.4 v.s. 0.3 146.2012683872805 3.8386849544050825e-21

0.5 v.s. 0.4 97.13910710218056 2.4866934638756686e-16

0.6 v.s. 0.5 77.6308258877871 4.5900865474079884e-14

0.7 v.s. 0.6 93.86044153321434 5.752246681875576e-16

0.8 v.s. 0.7 127.41254590838 1.9951421071062741e-19

0.9 v.s. 0.8 171.79779903512284 2.818264583885233e-23

Table A.34: Pairwise statistical tests for the average accuracy of parameter p’s, OLQR and
the expected approach.
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p’s statistic p-value

0.2 v.s. 0.1 73.26961841250122 1.5984856151942656e-13

0.3 v.s. 0.2 39.4879347958012 9.141994481330327e-09

0.4 v.s. 0.3 30.919074147187413 2.3279188812886616e-07

0.5 v.s. 0.4 31.132465351920946 2.1415136837388408e-07

0.6 v.s. 0.5 10.987807724636683 0.0012865043744678625

0.7 v.s. 0.6 22.621167947236035 6.789752524820291e-06

0.8 v.s. 0.7 3.3738484747454134 0.06926978697994199

0.9 v.s. 0.8 23.349704170845637 4.996039031258842e-06

Table A.35: Pairwise statistical tests for the average accuracy of parameter p’s, ILQR and
the limit approach.

p’s statistic p-value

0.2 v.s. 0.1 111.2370821523629 7.89678301122896e-18

0.3 v.s. 0.2 37.6229968002405 1.8144059797531448e-08

0.4 v.s. 0.3 29.613508481152458 3.8922765733525847e-07

0.5 v.s. 0.4 12.681313245479357 0.0005718930729590695

0.6 v.s. 0.5 10.971241299729803 0.0012968762732144482

0.7 v.s. 0.6 3.587367672173392 0.061169363096696606

0.8 v.s. 0.7 0.0703665737058842 0.7913609794590181

0.9 v.s. 0.8 0.02271503821919389 0.8805102561727112

Table A.36: Pairwise statistical tests for the average accuracy of parameter p’s, ILQR and
the expected approach.
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p’s statistic p-value

0.2 v.s. 0.1 111.2370821523629 7.89678301122896e-18

0.3 v.s. 0.2 37.6229968002405 1.8144059797531448e-08

0.4 v.s. 0.3 29.613508481152458 3.8922765733525847e-07

0.5 v.s. 0.4 12.681313245479357 0.0005718930729590695

0.6 v.s. 0.5 10.971241299729803 0.0012968762732144482

0.7 v.s. 0.6 3.587367672173392 0.061169363096696606

0.8 v.s. 0.7 0.0703665737058842 0.7913609794590181

0.9 v.s. 0.8 0.02271503821919389 0.8805102561727112

Table A.37: Pairwise statistical tests for the average accuracy of parameter p’s, ILQR and
the expected approach.
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a.2.1.2 Tests for Different Algorithms and Weight Approaches, for Each p.

p’s variable statistic p-value

0.1 algorithm 52.73161 8.784988e-12

weight approach 110.451787 8.925789e-21

mixed 118.650620 6.567179e-22

0.2 algorithm 127.186458 4.668018e-23

weight approach 836.415126 1.212913e-72

mixed 825.150574 3.558876e-72

0.3 algorithm 29.509790 1.637654e-07

weight approach 2090.217695 1.667584e-106

mixed 1917.742687 3.648821e-103

0.4 algorithm 12.491996 5.098308e-04

weight approach 2612.265143 2.917188e-115

mixed 2441.290496 1.378686e-112

0.5 algorithm 222.854880 3.708810e-34

weight approach 4549.485397 1.348699e-137

mixed 5004.602836 1.703522e-141

0.6 algorithm 378.657637 1.157994e-47

weight approach 5018.6373182 1.308049e-141

mixed 4837.393729 4.192957e-140

0.7 algorithm 1162.848184 2.393625e-84

weight approach 9093.251194 3.458018e-166

mixed 8892.110180 2.955479e-165

0.8 algorithm 2260.911194 1.432350e-109

weight approach 14207.893565 7.383587e-185

mixed 14496.652002 1.055409e-185

0.9 algorithm 3241.709061 7.154750e-124

weight approach 17930.574118 1.212686e-194

mixed 17431.716657 1.868712e-193

Table A.38: Statistical tests for the group accuracies of ILQR with the limit weight, ILQR
with the expected weight, OLQR with the limit weight, and OLQR with the
expected weight varying parameter p’s.
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p’s variable statistic p-value

0.1 algorithm 541.955203 2.486891e-58

weight approach 1651.312367 1.992946e-97

mixed 1165.829093 1.930694e-84

0.2 algorithm 340.393589 1.010321e-44

weight approach 2817.187176 2.925816e-118

mixed 992.476706 1.218906e-78

0.3 algorithm 474.194396 3.183433e-54

weight approach 5682.474424 1.036829e-146

mixed 1423.536894 8.012347e-92

0.4 algorithm 898.793089 3.838589e-75

weight approach 12187.286488 2.003835e-178

mixed 2463.631038 6.029831e-113

0.5 algorithm 1129.127000 2.815109e-83

weight approach 15388.591031 3.272828e-188

mixed 2893.024282 2.558289e-119

0.6 algorithm 967.197006 1.004518e-77

weight approach 13925.673244 5.134683e-184

mixed 2372.439288 1.844239e-111

0.7 algorithm 1321.791847 4.647890e-89

weight approach 18453.299502 7.476472e-196

mixed 3087.341597 6.465541e-122

0.8 algorithm 1769.834795 4.480329e-100

weight approach 20467.562217 3.223241e-200

mixed 3802.165859 2.659475e-130

0.9 algorithm 1565.684907 2.092782e-95

weight approach 15830.048618 2.118387e-189

mixed 3182.073690 3.977625e-123

Table A.39: Statistical tests for the average accuracies of ILQR with the limit weight, ILQR
with the expected weight, OLQR with the limit weight, and OLQR with the
expected weight varying parameter p’s.
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p’s variable statistic p-value

0.1 algorithm 2.063452 1.524623e-01

weight approach 44.796822 2.242124e-10

mixed 452.620561 7.914925e-53

0.2 algorithm 207.965985 1.308265e-32

weight approach 1885.167734 1.673053e-102

mixed 2420.964872 2.943655e-112

0.3 algorithm 2135.462763 2.441343e-107

weight approach 17332.951787 3.241061e-193

mixed 12658.610188 5.150890e-180

0.4 algorithm 3488.035864 8.097745e-127

weight approach 29866.596857 3.557646e-216

mixed 17018.659643 1.908830e-192

0.5 algorithm 5169.832784 7.941656e-143

weight approach 45047.381401 1.421971e-233

mixed 21812.327787 6.679522e-203

0.6 algorithm 10472.311504 4.435690e-172

weight approach 92209.912243 5.731036e-264

mixed 39757.359369 2.787318e-228

0.7 algorithm 14667.139183 3.407006e-186

weight approach 128202.550126 5.725188e-278

mixed 52517.384918 4.455589e-240

0.8 algorithm 23451.098818 5.860183e-206

weight approach 205512.789094 4.986306e-298

mixed 81151.045528 1.525375e-258

0.9 algorithm 55040.438054 4.560390e-242

weight approach 485850.180509 0.0

mixed 189644.046310 1.301870e-294

Table A.40: Statistical tests for the Gini coefficient of ILQR with the limit weight, ILQR
with the expected weight, OLQR with the limit weight, and OLQR with the
expected weight varying parameter p’s.
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a.2.1.3 Tests for The Group Accuracy of Liquid Democracy and Direct Democracy,
for ILQR of The Limit Weight

p’s statistic p-value

0.1 73.52540063100427 1.4843542321180185e-13)

0.2 0.7994393699767813 0.37345164698004174

0.3 213.55453015945778 2.3559655039091344e-26

0.4 252.3493374295719 7.316642195303165e-29

0.5 320.84862465047166 1.12476285039545e-32

0.6 407.82889092931816 1.0588738498555122e-36

0.7 224.96724706664287 4.0103169492453565e-27

0.8 337.7445525333721 1.610649209075784e-33

0.9 321.9059495743476 9.9367995117392e-33

Table A.41: Statistical tests for whether liquid democracy’s group accuracy is significantly
higher than that of direct democracy for ILQR of the limit weight, by varying
p.

a.2.2 Experiment B

For Experiment B, we also conduct two types of statistical tests.
For each setting of weight approach and interaction algorithm (i.e., ILQR and

OLQR), we test whether the trend is significant or not, when varying λ. In order
to verify this, we conduct statistical tests for all adjacent λ’s, for each setting of
the other parameters, in Section A.2.2.1.

Then, for each λ, we test whether the difference is significant between interac-
tion algorithms and weight approaches, for each criterion, in Section A.2.2.2, by a
two-way ANOVA test.

We further test whether liquid democracy’s group accuracy is significantly
different from that of direct democracy when varying λ. We test for both ILQR
and OLQR, and for both limit and expected weight approaches when λ ≤ 20,
since direct democracy’s group accuracy is significantly higher when λ ≥ 40.

We use ANOVA tests for all of the above statistical tests. These tests are
conducted by Python on MacBook Pro.
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a.2.2.1 Pairwise Tests for Different λ’s.

λ’s statistic p-value

2 v.s. 0 33.697477867076586 7.946101700252189e-08

4 v.s. 2 0.16819827976258037 0.6826132315605582

6 v.s. 4 0.3875272882046523 0.5350478645151406

8 v.s. 6 2.816772068870739 0.09647008253997547

10 v.s. 8 10.419220171091021 0.0016967025128810749

20 v.s. 10 2825.079596940522 4.532730211581297e-74

40 v.s. 20 19641.13288677056 1.0122329981378235e-114

60 v.s. 40 2.4185554876369604e-07 0.9996086095746533

80 v.s. 60 1.2763697938929606 0.26133277186465625

100 v.s. 80 0.2963536700150953 0.587413967483414

Table A.42: Pairwise statistical tests for the group accuracy of parameter λ’s, OLQR and
the limit approach.

λ’s statistic p-value

2 v.s. 0 9.185425887162024 0.003120312782120451

4 v.s. 2 4.1178742469533836 0.04514398791867437

6 v.s. 4 0.6963500810900743 0.4060424127271359

8 v.s. 6 0.8035971039030514 0.372216853110097

10 v.s. 8 8.740566493094823 0.003899117072624748

20 v.s. 10 2856.7192374997394 2.674099474469802e-74

40 v.s. 20 16963.36342498823 1.281886840207716e-111

60 v.s. 40 0.7036003374112373 0.4036179601536374

80 v.s. 60 0.45722157909118183 0.5005180436112836

100 v.s. 80 2.3512919571563335 0.12840129954422397

Table A.43: Pairwise statistical tests for the group accuracy of parameter λ’s, OLQR and
the expected approach.
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λ’s statistic p-value

2 v.s. 0 4.936579334842027 0.0285945623796507

4 v.s. 2 0.47639936927665755 0.49168918815236196

6 v.s. 4 1.5140779063848664 0.2214632300022637

8 v.s. 6 0.002523340638107158 0.9600390640834481

10 v.s. 8 2.870474348645114 0.09339413814244243

20 v.s. 10 1.997298263891961 0.16074829889427572

40 v.s. 20 8553.583053603601 3.6310930903052493e-97

60 v.s. 40 2184.2010361432144 8.419607483091502e-69

80 v.s. 60 2.152043678555343 0.1455821020803066

100 v.s. 80 0.9969393739349762 0.3205112362508542

Table A.44: Pairwise statistical tests for the group accuracy of parameter λ’s, ILQR and
the limit approach.

λ’s statistic p-value

2 v.s. 0 14.995611962700002 0.00019452709360650832

4 v.s. 2 6.34696874471554 0.013375385219743944

6 v.s. 4 0.8712060117710392 0.3529156737152048

8 v.s. 6 266.86517574854065 9.934545741349914e-30

10 v.s. 8 950.1298026564227 3.1320426664060774e-52

20 v.s. 10 0.8128906484490336 0.36947752639071607

40 v.s. 20 0.5758440565459478 0.4497672301752814

60 v.s. 40 0.002691715980522462 0.9587285222456762

80 v.s. 60 0.49198797642733977 0.48470417782576625

100 v.s. 80 3.0399507200818996 0.08437441721337217

Table A.45: Pairwise statistical tests for the group accuracy of parameter λ’s, ILQR and
the expected approach.
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λ’s statistic p-value

2 v.s. 0 1517.041457414907 1.9391427766025834e-61

4 v.s. 2 2292.3401026467295 8.703151065741204e-70

6 v.s. 4 2172.3675115653855 1.086352014992814e-68

8 v.s. 6 2097.221933107771 5.656762473677674e-68

10 v.s. 8 1794.1756890771048 8.231836662736442e-65

20 v.s. 10 31612.73378001771 8.25747418088154e-125

40 v.s. 20 63973.74719816083 8.891208725709813e-140

60 v.s. 40 11313.095664279248 4.65684969697804e-103

80 v.s. 60 1616.1571758582281 1.0455288238422296e-62

100 v.s. 80 1008.7723402870596 2.168462711525211e-53

Table A.46: Pairwise statistical tests for the Gini coefficient of parameter λ’s, OLQR and
the limit approach.

λ’s statistic p-value

2 v.s. 0 3172.386013585435 1.846789816800291e-76

4 v.s. 2 8030.789207076138 7.702123345344262e-96

6 v.s. 4 7346.919409379285 5.714474039735905e-94

8 v.s. 6 6502.32642187234 2.0882113419178038e-91

10 v.s. 8 4279.655207209466 1.1462458282947723e-82

20 v.s. 10 71882.01613617723 2.966208929060779e-142

40 v.s. 20 67576.31250130241 6.093074227619333e-141

60 v.s. 40 1963.794389943116 1.2235810341387132e-66

80 v.s. 60 86.2660046375037 4.250893194764263e-15

100 v.s. 80 0.009481826631807739 0.9226277308812322

Table A.47: Pairwise statistical tests for the Gini coefficient of parameter λ’s, OLQR and
the expected approach.
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λ’s statistic p-value

2 v.s. 0 1.321057633336573 0.2531996860021503

4 v.s. 2 0.3250725715656805 0.5698798800942273

6 v.s. 4 0.009831921588099427 0.9212169178594561

8 v.s. 6 21.6813340995141 1.0119258712255448e-05

10 v.s. 8 8.653968915224144e-05 0.9925965606279419

20 v.s. 10 649.8237118732212 4.8863411310102726e-45

40 v.s. 20 29121.19479909663 4.552687331014183e-123

60 v.s. 40 106857.06862829272 1.1082168947562314e-150

80 v.s. 60 18776.759503668647 9.08269388623569e-114

100 v.s. 80 12256.182841887934 9.508331822688943e-105

Table A.48: Pairwise statistical tests for the Gini coefficient of parameter λ’s, ILQR and
the limit approach.

λ’s statistic p-value

2 v.s. 0 395.2663253537091 3.6419203317140286e-36

4 v.s. 2 3619.7999901908834 3.443221854981776e-79

6 v.s. 4 3750.394312702926 6.339954175106029e-80

8 v.s. 6 1979.2783921554467 8.478822008512142e-67

10 v.s. 8 10186.570545131302 7.58948409965021e-101

20 v.s. 10 34335.01518105878 1.4592366190495527e-126

40 v.s. 20 3749.4511680130536 6.416577125121589e-80

60 v.s. 40 328.2477530509702 4.7566008625515914e-33

80 v.s. 60 232.83157396987306 1.2275218795198537e-27

100 v.s. 80 206.46571918521704 7.315135851182084e-26

Table A.49: Pairwise statistical tests for the Gini coefficient of parameter λ’s, ILQR and
the expected approach.
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λ’s statistic p-value

2 v.s. 0 2685.8229351892155 4.960001750637973e-73

4 v.s. 2 2441.0753598383403 4.514045385742642e-71

6 v.s. 4 2081.864477988122 7.98060747247188e-68

8 v.s. 6 1572.596287078475 3.6935984559733007e-62

10 v.s. 8 1517.4769890983464 1.9136747207417118e-61

20 v.s. 10 25665.09103779997 2.1737390912583185e-120

40 v.s. 20 81997.6813851716 4.719062817809857e-145

60 v.s. 40 27533.772808320464 7.031114855162137e-122

80 v.s. 60 3225.743936598063 8.35436610460555e-77

100 v.s. 80 1718.6791987840668 6.059786801530095e-64

Table A.50: Pairwise statistical tests for the average accuracy of parameter λ’s, OLQR and
the limit approach.

λ’s statistic p-value

2 v.s. 0 19.749945778036597 2.3254857209021276e-05

4 v.s. 2 54.690165906164644 4.831010024066825e-11

6 v.s. 4 114.28925085575138 3.860441287142883e-18

8 v.s. 6 197.73075255465898 3.0665711513459217e-25

10 v.s. 8 224.59325574105858 4.245628682084058e-27

20 v.s. 10 2857.6244949586317 2.6342469906467797e-74

40 v.s. 20 17078.156653206734 9.228706047661161e-112

60 v.s. 40 12720.667658309472 1.5582186029268303e-105

80 v.s. 60 8178.623273717061 3.1843816910475e-96

100 v.s. 80 201.5900396442289 1.619563929931945e-25

Table A.51: Pairwise statistical tests for the average accuracy of parameter λ’s, OLQR and
the expected approach.
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λ’s statistic p-value

2 v.s. 0 8.99150018672182 0.0034378606996870297

4 v.s. 2 10.542422350781557 0.001597616098971112

6 v.s. 4 29.168170354788174 4.644486704172686e-07

8 v.s. 6 8.219458012188372 0.005073624244997605

10 v.s. 8 11.082393634009161 0.0012289020981254473

20 v.s. 10 1120.200847028509 1.962923013835463e-55

40 v.s. 20 46676.003516705816 4.421000106647259e-133

60 v.s. 40 153850.16517645994 1.9682534711657252e-158

80 v.s. 60 22219.018380916154 2.472071176613486e-117

100 v.s. 80 14239.210092481466 6.456371822660651e-108

Table A.52: Pairwise statistical tests for the average accuracy of parameter λ’s, ILQR and
the limit approach.

λ’s statistic p-value

2 v.s. 0 77344.88518897237 8.231360359995172e-144

4 v.s. 2 56599.36895531823 3.5569897003762766e-137

6 v.s. 4 29286.01498580673 3.455907023263999e-123

8 v.s. 6 10457.691267331198 2.1204806076879408e-101

10 v.s. 8 12341.88320719503 6.776118143805385e-105

20 v.s. 10 40.550162196224456 6.2147183219380434e-09

40 v.s. 20 173.56938828230727 2.041369610454811e-23

60 v.s. 40 42.4494941523106 3.141355808629567e-09

80 v.s. 60 0.11614836185544074 0.7339795761001308

100 v.s. 80 1.4186805041551653 0.23649755799451747

Table A.53: Pairwise statistical tests for the average accuracy of parameter λ’s, ILQR and
the expected approach.
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a.2.2.2 Tests for Different Algorithms and Weight Approaches, for Each λ.

λ’s variable statistic p-value

8 algorithm 279.164929 1.512060e-39

weight 237.7201318 1.198384e-35

mixed 249.286910 8.992955e-37

10 algorithm 37013.638638 2.973404e-225

weight 37475.788408 8.869170e-226

mixed 38100.799977 1.768204e-226

20 algorithm 3241.709061 7.154750e-124

weight 17930.574118 1.212686e-194

mixed 17431.716657 1.868712e-193

40 algorithm 1708.936310 9.803792e-99

weight 1635.649555 4.593175e-97

mixed 1720.197495 5.500323e-99

Table A.54: Statistical tests for the group accuracy of ILQR with the limit weight, ILQR
with the expected weight, OLQR with the limit weight, and OLQR with the
expected weight varying parameter λ’s.
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λ’s variable statistic p-value

2 algorithm 5.217394e+04 8.455049e-240

weight 7.191158e+06 0.0

mixed 6.609895e+04 7.796567e-250

4 algorithm 2.534262e+05 6.111730e-307

weight 6.866635e+06 0.0

mixed 3.199818e+05 7.381529e-317

6 algorithm 3.617392e+05 4.495997e-322

weight 4.479112e+06 0.0

mixed 4.643772e+05 0.0

8 algorithm 3.368646e+05 4.798366e-319

weight 2.585992e+06 0.0

mixed 4.438866e+05 0.0

10 algorithm 4.127015e+05 0.0

weight 1.836149e+06 0.0

mixed 5.506983e+05 0.0

20 algorithm 1565.684907 2.092782e-95

weight 15830.048618 2.118387e-189

mixed 3182.073690 3.977625e-123

40 algorithm 1447.483395 1.899464e-92

weight 28361.0525665 5.469179e-214

mixed 38.774471 2.838955e-09

60 algorithm 13362.585211 2.769964e-182

weight 28713.455901 1.644006e-214

mixed 11690.381508 1.109327e-176

Table A.55: Statistical tests for the average accuracy of ILQR with the limit weight, ILQR
with the expected weight, OLQR with the limit weight, and OLQR with the
expected weight varying parameter λ’s.



朱朶朰 appendix

λ’s variable statistic p-value

0 algorithm 0.035847 8.500281e-01

weight 5116.991777 2.095054e-142

mixed 0.004152 9.486911e-01

2 algorithm 2621.845334 2.089120e-115

weight 7470.586359 5.139491e-158

mixed 37.374589 5.176190e-09

4 algorithm 9832.592566 1.901413e-169

weight 17098.559058 1.212474e-192

mixed 813.530639 1.093925e-71

6 algorithm 15174.051023 1.273302e-187

weight 33083.355277 1.676803e-220

mixed 3532.666908 2.487169e-127

8 algorithm 4187.121639 3.246379e-134

weight 21236.659919 8.971656e-202

mixed 4373.542062 5.473334e-136

10 algorithm 372.990325 3.066431e-47

weight 182467.784945 5.683862e-293

mixed 73720.477641 1.820874e-254

20 algorithm 55040.438054 4.560390e-242

weight 485850.180509 0.0

mixed 189644.046310 1.301870e-294

40 algorithm 112213.473376 2.618440e-272

weight 202595.982339 2.021084e-297

mixed 117174.346335 3.801811e-274

60 algorithm 13521.116745 8.865201e-183

weight 22917.629804 5.484089e-205

mixed 13286.940104 4.793020e-182

Table A.56: Statistical tests for the Gini coefficient of ILQR with the limit weight, ILQR
with the expected weight, OLQR with the limit weight, and OLQR with the
expected weight varying parameter λ’s.
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a.2.2.3 Tests for Whether Liquid Democracy’s Group Accuracy Is Significantly
Different from That of Direct Democracy When Varying λ.

λ’s statistic p-value

0 124.94858741590238 3.432880376851157e-19

2 231.06564337119408 1.5973595059623873e-27

4 241.639184799514 3.3698156597007435e-28

6 232.70429964932276 1.2509841762114946e-27

8 309.7857815905298 4.192246971954736e-32

10 481.89793591507726 1.289405960085353e-39

20 321.9059495743476 9.9367995117392e-33

Table A.57: Statistical tests for whether liquid democracy’s group accuracy is significantly
different from that of direct democracy for ILQR of the limit weight approach
by varying λ.

λ’s statistic p-value

0 128.00017630612388 1.7544895587311982e-19

2 238.66641964131614 5.193320659867455e-28

4 420.7386848204703 3.070972124249652e-37

6 376.13458392576797 2.542561885010698e-35

8 195.40324977666975 4.525122138081867e-25

10 94383.5282914068 4.8252423165070324e-148

20 140224.50742225765 1.8458909513839925e-156

Table A.58: Statistical tests for whether liquid democracy’s group accuracy is significantly
different from that of direct democracy for ILQR of the expected weight
approach by varying λ.
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λ’s statistic p-value

0 137.14343052631392 2.477508442951973e-20

2 358.752002141059 1.5930112628740303e-34

4 236.40461586600216 7.235718043275045e-28

6 371.26109947255884 4.2238859644490043e-35

8 388.6273807393792 7.086134710617155e-36

10 272.8769719295507 4.44752638643974e-30

20 2655.8686869445114 8.429210458735259e-73

Table A.59: Statistical tests for whether liquid democracy’s group accuracy is significantly
different from that of direct democracy for OLQR of the limit weight approach
by varying λ.

λ’s statistic p-value

0 147.26170082103727 3.100024742827045e-21

2 310.45464676564734 3.867772925736274e-32

4 409.6044303696373 8.9145489090137e-37

6 532.1341763247573 2.1826687933756497e-41

8 346.9355087218597 5.774924795831693e-34

10 327.8113945334829 5.002162818435013e-33

20 2587.0223262118034 2.9158098169545693e-72

Table A.60: Statistical tests for whether liquid democracy’s group accuracy is significantly
different from that of direct democracy for OLQR of the expected weight
approach by varying λ.
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朱朷朰 summary

positive perspective on the issue of so-called supervoters in liquid democracy,
because power concentration does not appear to occur under our assumptions.

To address question (ii), we provide two weighted delegation models that
represent how voters split their votes and delegate to multiple delegatees: one is
probabilistic and models such behavior as mixed strategies, i.e., distributions on
the space of possible delegations; the other one models such behavior as a split of
votes viewed as shares to different delegatees. Compared to the pure delegation
setting (i.e., each voter can only delegate to one delegatee), we demonstrate
that it is possible to optimize the decision-making quality through the weighted
delegation scheme. However, this requires centralized coordination.

We then investigate, both theoretically and empirically, voters’ behavior in
delegation games where weighted delegation is allowed. The results show that
the Nash equilibria in weighted delegations, that is, delegation structures where
no agent has an incentive to change their delegation, are always weakly better
in terms of decision-making quality than those in pure delegation. However,
this comes with a higher price of anarchy, i.e., the fraction between the optimal
welfare and the welfare of the worst equilibrium. Empirically, our simulations
show that when voters are boundedly rational, weighted delegation reaches a
better decision-making quality than pure delegation.

Overall, in this dissertation, we study liquid democracy, this young collective-
decision-making method, in terms of the above two questions. We contribute
formal methods to analyze it, and show liquid democracy’s potential to enhance
the quality of collective decisions.



朱朷朲 samenvatting

de stemkracht van een kiezer in vloeibare democratie wordt niet alleen bepaald
door het aantal verzamelde delegaties, maar ook door hoe zij delegaties precies
verzamelt: directe delegaties versterken degenen die de delegaties ontvangen
beter dan indirecte.

Vervolgens vinden we, met behulp van methoden uit de speltheorie, dat kiezers
die gevoelig zijn voor macht de neiging hebben om niet te veel te delegeren,
vooral niet via indirecte delegatie, om hun invloed op het stemprobleem te
behouden. Deze resultaten bieden een positievere kijk op het vraagstuk van de
zogenaamde ‘superkiezers’ in vloeibare democratie, omdat machtsconcentratie
onder onze aannames niet lijkt voor te komen.

Om vraag (ii) aan te pakken, bieden we twee gewogen delegatiemodellen,
die weergeven hoe kiezers hun stemmen opsplitsen en delegeren aan meerdere
gedelegeerden: de ene is probabilistisch en modelleert zulk gedrag als gemengde
strategieën, dat wil zeggen, verdelingen in de ruimte van mogelijke delegaties;
de andere modelleert zulk gedrag als een opsplitsing van stemmen die wordt
beschouwd als aandelen bij verschillende gedelegeerden. Vergeleken met de
context van pure delegatie (waarbij elke kiezer slechts kan delegeren aan één
gedelegeerde), laten we zien dat het mogelijk is om de besluitvormingskwaliteit te
optimaliseren door middel van het gewogen delegatieschema. Echter, dit vereist
gecentraliseerde coördinatie.

We onderzoeken vervolgens het gedrag van kiezers in delegatiespellen waarbij
gewogen delegatie is toegestaan, met zowel theoretische als empirische me-
thoden. De resultaten tonen aan dat in de context van gewogen degelatie de
Nash-evenwichten, dat wil zeggen, de delegatiestructuren waarin geen agent
een prikkel heeft om zijn delegatie te veranderen, altijd minstens zo goed zijn
qua besluitvormingskwaliteit als de Nash-evenwichten in de context van pure
delegatie. Echter, dit gaat gepaard met een hogere prijs van anarchie, dat wil
zeggen, het verschil tussen de optimale welvaart en de welvaart van het slechtste
evenwicht. Empirisch laten onze simulaties zien dat wanneer kiezers begrensd
rationeel zijn, gewogen delegatie leidt tot een betere besluitvormingskwaliteit
dan pure delegatie.

Over het geheel genomen bestuderen we in dit proefschrift vloeibare demo-
cratie, de jonge methode voor collectieve besluitvorming, met betrekking tot
de bovengenoemde twee vragen. We dragen formele methoden bij om het te
analyseren en laten zien dat vloeibare democratie daadwerkelijk het potentieel
heeft om de kwaliteit van collectieve beslissingen te verbeteren.
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