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Abstract

In recent years the research into hybrid logic ha.s taken flight; a number
of advances have been made in axiomatizing, proof systems, completeness
results and other areas. In this thesis we develop a theorem prover for
infinitary hybrid logic and treat the necessary theory to achieve this.

Hybrid logic

Hybrid logic combines elements from first-order logic and modal logic. From
the latter it inherits the possible world srnaiitics, accessibility relations and
the local perspective of evaluation; from the former it takes direct referem'
to worlds and quantification over worlds.

There are a number of possible realizations of this hybridization; in our
case we consider the hybrid language firined by extending modal logic with
nominals, the u-operator and the j-operator. Nominals are a special class
of propositional variables that are true in exactly one world; in this way
they name worlds and can be used to refer to them. The ©-operator allows
to change the place of evaluation to a specific world; e.g. is true if
evaluates to true iii world i. Finally, the j-operator can be used to make
a nominal refer to the current world; in this way it acts as a quantifier,
binding all future (free) occurrences of the same nominal. For example, the
formula j [jJ (where I1 denotes that the formula may contain a free i)
holds if (iJ holds after i has been made to refer to the current world.

Using this extension of the modal language we can, among other things,
characterize frame properties that were unavailable in classical modal logic;
examples include irreflexivity, intransitivity and antisymmetry. If we look
at irreflexivity, then the problem for modal logic becomes apparent when
we consider two worlds satisfying the same atomic formulas and which link
only to each other; this situation is modally indistinguishable from a single
world that links to itself (because there exists a bisimulation). In hybrid
logic, however, this problem is solved by our ability to distinguish distinct
worlds by use of their nominals.

Wit ii the hybrid language sorted out, the next step is to consider a proof
system. To attain strong completeness (F j= F F ) without limiting
ourselves to compact hybrid logic we need an infinitary proof system. The
proof system used in this thesis is based on sequent calculus and has an
infinitary derivation relation, i.e. it can require infinitely ninny premises. If
the system is extended with only pure sequents (up to countably infinitely
many) it remains strongly complete. This will, for example, also allow us
to reason with frame properties such as reachability or the bounded chain



Semantk tableaux

To automate theorem proving we first need a method of constructing proofs;
the infinitary proof system as it is presented in 1111 provides too few hand-
holds to find a proof in it directly. Semantic tableaux provide an avenue of
attack by applying a systematic search for a counter-model: if there is no
possible counter-model to a potential theorem then it must be true.

We consider the negation of the candidate theorem, and try to satisfy
this; if this is to be possible then the premises of the (original) sequent need
to be true while the consequent is false. At each step in the tableau we
can similarly consider a set of formulas that need to be true and a set of
formulas that need to be falsc in a possible counter-model. These sets can
be manipulated by tableaux rules that break down or combine the formulas,
and in some cases by branching the tableau at the prospect of two possible
counter-models. If at any time the positive and negative sets of formulas
in a branch overlap, then a counter-model there would be inconsistent and
therefore impossible. If this is the case on all branches it proves that the
sequent we started with must have been a valid theorem. If no more tableau
rules can be applied and there is no overlap, then there is a valid counter-
model and therefore the sequent is not a theorem.

Automated theorem proving

Creating a theorem prover based on tableaux still requires some concessions
to practicality. The largest obstacle is time: hybrid logic is undecidable
and so a theorem prover might be unable to find either proof or disproof,
and even when there is a proof it may take arbitrarily long. An additional
problem with tableaux is that the criterion for identifying a counter-model,
that no more rules apply, may sometimes never be reached even when there
is a counter-model. By combining the prover with a small model checker
this latter problem can be solved in a number of common cases. The general
problem of running-time can be kept under control by limiting the searh
depth.

Another obstacle on our path is the sheer breadth of the logic we deal
with; infinitary terms allow a wide range of induction structures to be used.
For our prover we have limited ourselves to the simplest and most common:
weak induction with a single base case.

The theorem prover has been implemented in SW/I prolog. The most
important parts are the rulebase and the proving 'engine' which uses the
rules from the rulebase to search for a proof. Keeping this ruleba.se separate
from the rest of the prover facilitates making changes to the behaviour of
the prover, by allowing easy modification of the tableau rules.

The prover also has a small integrated model checker, but it is very
limited in scope. It only works on pure formulas (i.e. formulas that do not
contain propositional variables); and any infinitary terms will have to be

II



very bask. Consequently, it may fail to recognize when a counter-model
can be formed from the formulas in a tableau node; but when it does detect
Onc. it should be correct.

The output of the prover can be one of three things: it may fail to reach
a conclusion, it may find a counter-model, or it iiiay find a proof. \\hen it
finds a proof it will interact with pdflatex to construct a pdf file showing a
deductive proof of the theorem.
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Introduction
It's a dark and stonny summer night. In his lab we find Victor
Frankenstein hard at work, hacking, cutting and dissecting, sewing
the parts together in novel arrangements. it is the moment of
his greatest creation. But there is no lightning involved here;
somewhere events had taken an awfully wrong turn in this alter-
nate universe. This Frankenstein is no chemist obsessed with the
creation of life, but a logician. His creation: a logic composed of
borrowed parts - Hybrid Logic.

And thus be9ins our harrowinq tale.

In reality the origin of hybrid logic is much more mundane. Its history
starts in the l9fiOs with Arthur Prior's hybrid tense logic 1151. But oniy as
recently as the mid 1990s has hybrid logic really taken flight. One of the
developments in recent years is a sound and strongly complete infinitary
proof system for hybrid logic [11], and it is in that vein that this thesis
continues.

Goal of the thesis
The goal of this thesis is to develop an automated theorem prover for
infinitary logic. But what is infinitary hybrid logic, and why do we want
it? These are questions that will need to be answered first. And once we
have established the theory, how then do we prove theorems and how do we
automate this process?

In this thesis we treat the development of an infinitary hybrid logic prover
from theory to implementation. Along the way we also take a small detour
to have a look at Sahlqvist formulas and how they interact with our hybrid
logic.

Overview of the thesis
The thesis is divided into five parts and an appendix, each consisting of
two or three chapters. Evcry part is preceded by a small overview of the
contents, and followed by the list of references particular to that part.

'Ehe first part consists of three chapters which treat the development of
hybrid logic. Chapter 1 provides an introduction to modal logic, and gives
a motivation for extending it to hybrid logic. The next chapter discusses
the language of hybrid logic. Finally, in the third chapter, we introduce a
proof system for infinitary hybrid logic based oh



The second part of the thesis is made up of chapters 4 and 5. In chapter 4
we apply the proof system to a number of examples: proving some useful
derivative rules and theorems, demonstrating equivalence between pure and
modal axioms which define the same frame properties, and finally proofs of
a few infinitary theorems. Chapter 5 digresses slightly from the main line of
the thesis to extend the class of frames for which we know equivalent modal
and hybrid axioms. By taking a detour through first-order and second-
order logic we find that the entire class of so-called Sahlqvist axioms can be
rewritten in hybrid form.

Part III introduces the main method applied by our theorem prover.
First, a basic introduction into semantic tableaux is provided in chapter 6,
and the scope is subsequently broadened in chapter 7 to accommodate
infinitary hybrid logic.

At long last, part IV brings us to the actual theorem prover. Chapter 8
deals with the overall design of the prover. followed by a discussion of the
implementation in chapter 9 and an evaluation of the prover in chapter 10.

The last part of the thesis discusses what we have accomplished so far
and what work may lie ahead for those that venture onwards.

Finally there are three appendices. Appendix A provides additional
hand proofs, like the ones in chapter 1. Appendix B consists of additional
computer proofs which did not make it into chapter 10. The last appendix,
C, gives the code for the theorem prover.
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1 Modal logic

"The rain in Spain falls possibly on the plain."

1.1 Introduction
Modal logic as we know it today is best seen as an extension of propositional
logic. Aside from the usual propositional operators we also have the modal
operators 0 and 0, which may be read in several ways depending on what
sort of modal logic you have.

The standard interpretations are "necessarily" and "possibly", respec-
tively. So this allows you to say "possibly it rains" (Or), and "necessarily
if it rains I take my umbrella" (Dir —* uJ). Intuitively, it follows from these
two statements that "possibly I take my umbrella" (Ou). Modal logic can
help to formalize this sort of reasoning.

But modal logic is much broader than just this. It does not just apply
to various concepts of necessity (alethic modal logic), hut can also be used
to deal with knowledge (epistemic logic), beliefs, what ought to be (deontic
logic), what is provable (provability logic), computer programs (dynamic
logic) and more.

The common characteristic binding these diverse topics is that you can
make use of models composed of a collection of possible worlds (or states)
that are connected in some (specific) way. This is quite obvious for a topic
such as computer science, because there we are familiar with finite state
machines: each statement in a program brings you from one state to the
next.

For knowledge the leap away from intuition is slightly larger; you know
something when it is true in all possible worlds you might conceivably be in.
You might well imagine a world where the rain in Spain falls mainly outside
the plains, but it cannot be the world you occupy. It is important in this
respect to distinguish what is logically possible from what is epistemically
possible. There is no logical reason why the rain should not fall elsewhere,
but to believe otherwise would simply be contrary to evidence (assuming
the old adage is true).

1.2 Semantics

The versatility of modal logic lies in the underlying semantic framework.
Much of the credit for its development goes to Saul Kripke, and for this
reason it is known as Kripke semantics. In this framework modal statements
are interpreted in terms of (Kripke) models M = (W, R, V).

The first part of the model, W, gives the set of possible worlds (or
states or nodes). The precise nature of this set determines part of the
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interpretation; e.g. the set might consist of program states, or ways the
world might be.

The second part, fl (C W x U'). is an accessibility relation and lets you
'move' from one world to the next; e.g. in terms of computer science it may
represent a state transition, or when dealing with knowledge it can say that
a world is consistent with what you know (given the actual world).

The final part of the model, V (P —. 2), completes the model by
determining in which subset of worlds a given atomic formula is true; e.g.
when your set of worlds U' is {a.h.e.d,e,f}, it might say that if you are
wondering whether t! ruins in Spain", this is true in worlds a, b and c,
and consequently the opposite ("it's not razning in Spain") is true in the
remaining worlds, d, e and f.

Using this conception of models, we can now define when a formula is
true. Reading Al, w as 'world w from model M satisfies the formula
we have the following:

ir = p if w E V(p)
M,wt=-'ip if AI.wi=t,o
Af,w=A,b if —,+-.)
M, is' = O if VEw(u'Ifr and Al, v = )
M,w Dp if M,w = —eC>--. (or V,w(u'Ri' M.v = ))

Furthermore, a formula is considered true Zfl a model, if it is satisfied by all

worlds of the model, i.e. we have Al ( VWEW(M, w ). And som
del

thing is logically true (valid) if it is true in all models; = VM(M = ).
In other words. a formula is valid when there is no counter-model (i.e. a
model with a world where the opposite is true). Finally, for a set I' we define

it1.u' = f'1 V,Er(.f,w = ,)andF = V(Af,)(M,w = I'= M,w = )

The basic modal logic corresponding to the semantics just laid out is
known as the K system. It is formed by extending propositional logic with
the following:

• The necessitation rule: if I— then F- D
• The distribution (or K) axiom: I- Dp —s ) — (D —s Dvi)

This general system forms the basis for more specific modal logics by adding
extra axioms to it. However, this also puts extra demands on the underlying
semantics. Instead of looking at all models when determining the validity
of a statement, you need to look at a subset of models.

1.3 Frame properties

At first it might seem we would need the subset consisting of all models in
which the extra axioms are true. Luckily this turns out not to be the case.
Instead of models we can make use of frames

Any model outside the frame (lass that makes the axioms true turns out to be
bisimilar to a model inside the frame class, meaning they satisfy exactly the same
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A frame F = (IL. I?) is like a model without the valuation function.
Effectively it represents the underlying structure of a model. A formula
, is true in a frame (W, R) if it is true in all models on the frame, i.e.
Vv((W,R,V) =p).

When considering modal axioms in light of these frames, axioms turn
out to correspond precisely with properties of the accessibility relation. So,
for example, when considering epistemic logic, we have amongst others the
axiom DA —. A (or its dual A -.. ci ). The accibility relation of the
frame wiH be reflexive (as we would expect, in each world we must consider
that world itself possible).

Together, all the frames that have the same property form a frame class,
on which we can define the semantics of our modal logic. To be precise
our frame class is characterized by an axiom from the modal logic in the
following way

i) the modal axiom is true in every frame of the class, and
ii) every frame in which the axiom is true belongs to the class.

\Vhen multiple axioms are involved the frame class consists of the inter-
tion of the frame classes characterized by the axioms separately.

A few examples of frame properties are shown in table 1.1. Each of
these properties is a first order definable property. Not all modal axioms
characterize first order properties, however; e.g. D(DA — A) —. DA (the
Uib formula) is inherently second order in nature.

property axiom
reflexivity DA —. A
symmetry A — L]OA
transitivity DA —, DDA
density DOA —+ OA
determinism OA —. DA

Table 1.1, examples of frame properties that can be characterized
with modal axioms

1.4 Frame properties which cannot be characterized by modal
axioms

As it turns out a lot of frame classes cannot be characterized by modal
axioms. Part of the problem is that modal logic follows the duck hypothesis;
if it walks like a duck and talks like a duck, then it is a duck. Moreover it
is the same duck each and every time.

That is to say, distinct worlds may be indistinguishable to modal logic.
And this poses a problem for those properties where distinguishing distinct
worlds is exactly what you need to do, e.g. in irreflexive frames where a
world may only be connected to a world other than itself. This also means

formulae
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entire models may be indistinguishable, as you can e.g. replace two worlds
by one, yielding a new model that is modally equivalent (in the sense you
cannot distinguish the two models by modal formulas). To demonstrate this
the concept of hisimulation 171 will be instrumental.

Definition (Bisinuilation). A bisimulation between models M = (W, R, U)
and M' = (tU'. R', U') is a non-empty relation E between worlds of M and
M' (i.e. E C 11 x W'), such that whenever wEw' (wE V and w'E W')
we have the following:

atomic harmony: the same atomic formulas are true in w and w'
zig: if Rwv, then a world exists v'E W' such that vEv' and R'w'v'
zag: if R'w'v', thena world exists V E U such that vEv' and Rwv

If two models are bisimilar this implies that they cannot be distinguished
by a modal formula; for every world in one model there is a world in the
other model that makes the same modal formulas true and vice versa.

Using this we can show why certain frame clas.ses cannot be characterized
by a modal axiom. Let's first recall what characterization by an axiom
means:

i) the modal axiom is true in every frame (and thus model) of the class
and

ii) every frame in whidi the axiom is true belongs to the class.
This provides us with a straightforward approach to show certain properties
cannot be characterized by a modal axiom: Find a frame that does not have
the property for which each model X has a bisimulation to a model Y on a
frame that does have the property.

Since every Y is a model with the frame property we are interested in,
the axiom that would characterize it must be true there. And because of
the bisimulation this axiom also has to be true in every X. But that means
the axiom would be true in the frame we chose particularly for not having
this property, which gives us a contradiction.

Now let us apply this to a few examples. The first case is irreflexivity,
illustrated by figure 1.1.

.L
Figure 1.1, A bisimulation between an irreflexive model
A and a reflexive model B. (All worlds make the same
atomic formulae true)

Given any particular valuation B is a reflexive model. Through the
bisimulatioim, shown with dashed lines, it is equivalent with a model A (with
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both worlds satisfying the same formulas). However, as model A is clearly
from an irreflexive frame, neither of the worlds is accessible to itself. This
must mean that if there were a modal axiom characterizing irreflexivity, it
is true in A. And if it is true in A, then it is also true in B, because of
the bisimulation. And since this holds for every valuation of B it holds in
the frame underlying B, which in turn must be irreflexive if a modal axiom
characterizing it were true there. However, a frame cannot be reflexive and
irreflexive at the same time. So the only conclusion open to us is that there
can be no such modal axiom.":

Figure 1.2, A bisimulation between an asymmetrical
modvl C and a symmetrical model D.

A similar story holds for asymmetry, as illustrated in figure 1.2. Vhvn
none of the worlds in model C are distinguishable, then the model as a whole
is indistinguishable from one where there is just a single reflexive world. But
such a model is symmetrical, so no modal axiom characterizing asymmetry
may hold there for all valuations of the model. And since any valuation for
D leads to one for C with all worlds equally valued, it cannot exist.

Figure 1.3, A bisimulation between an antisymmetrical
model E, and a symmetrical, irreflexive model F (Worlds
with the same color make the same atomic formulae true)

There are always many possible counterexamples, but it usually pays to
keep it simple. A good heuristic is to start with the smallest model that does
not have the property you are examining. For example, a single reflexive
world in the case of irreflexivity and asymmetry. And then proceed to find
a model it can map to which does have this property.

To disprove the existence of an antisymmetry axiom this means we start
with two worlds, which are connected to each other (F in figure 1.3). The
obvious choice for an antisymmetric model would be a loop with 3 or more
worlds; however, it only works out for an even number of worlds, because

8



otherwise we cannot have a hisimulat ion. The two worlds in our symmetric,
irreflexive model may be different, illustrated by the two different colors in
figure 1.3. So with every step along the accessibility relation we have to
alternate between the two kinds of worlds, where one kind is bisimilar to
the first world (white), and the other kind to the second (gray). This means
.1 worlds is the least we can do (E from figure 1.3).

It turns out this counterexample works for the previous frame property
as well. So we might have shown there cannot be axioms for asymmetry and
antisymmetry at the same time. Likewise, it turns out iiitransitivilv shares
the couiiterexainple for irreflexivity (figure 1.4).

E11t1111L ...TI:III]
Figure 1.4, A bisimulation between an intransitive model
G and transitive model H

The next frame property is a bit of an oddball. So far we have used
bisimulation between models in a sense such that all worlds in one model
are bisimilar to a world in the other. For trichotomy this will not work,
because it says every two distinct worlds are connected in one direction or
the other. So if we tr to reduce a trichotomic model by identifying worlds
with each other it will always keep this property, or conversely building up
a model by splitting/doubling worlds only stands to lose it.

Fortunately bisitnulation does not require such a strong correspondence,
soniething weaker will also do. For this we need to define the concept of
a generated submodel 171. Given a set of worlds, every world reachable in
zero or more steps from those worlds belongs to the generated submodel
(generated by the given set of starting worlds). All that a bisimulation
requires is that hot Ii models have a certain generated submodel, such that
each world from one generated submodel is bisimilar to a world from the
other and vice versa. This is exactly what we need for trichotomny. If we have
a model with two disconnected worlds, then the model is not trichotomic
(K in figure 1.5). But since both worlds are disconnected each on its own is
a generated submodel, and bisimilar to the world of a single world model,
which is trichotomic (I and J in figure 1.5).

°
I J K

Figure 1.5, A bisimulation between trichotomic models
I and J and their non-trichotomic union K
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2 Hybrid logic

There is an oddity at the heart of modal logic: although possible worlds take
the center stage in the semantics (as states in the model) they are left out
of the picture in the syntax. Now, there is not necessarily anything wrong
with such an oddity, except that in this case it also poses certain problems.
l'roperties that are trivial to define on the semantic level become impossi-
ble to characterize in the modal language. Take, for example, irreflexivity,
V,—sRs, which is very easy to state in terms of first order logic, but cannot
be expressed modally.

2.1 Nominals

Hybrid logic remedies this by extending modal logic with a new class of
special propositional variables, the nominals. These noininals are true in
exactly one world, and thus can be used to uniquely name that world. This
makes it possible to say e.g. i —i -'Oi (where i is a nominal), 'if we are
in world i then this world (i) is not accessible'. When this is true for each
nominal, i.e. one reads i —+ as a schema in which i may be instantiated
by any other nominal, then it characterizes irreflexivity. lii this way a host
of new frame properties becomes available which our logic can characterize
and reason about.

To accommodate nominals the semantics has to be slightly adjusted. The
model M = (W, R, V) is extended to M = (W, R, V, A) with an assignment
function A : I —. W (where I is a countable set of nominals). A(i) then
gives the unique world named by nominal i, therefore:

M,w=i if A(i)=w
Instead of adding an assignment function, it is also possible to extend the
valuation function V, and treat nominals more like propositional variables.
However, conceptually it has advantages to keep nominals and (regular)
propositional variables well separated. For example, if we were to extend
the valuation function, we would have to constrain it such that it can only
a.ssign singleton sets to nominaLs, using the assignment function this is a
given. Nevertheless, the equivalence is important, as it means we are still,
in essence, dealing with regular Kripke models.

2.2 The satisfaction operator ©
To make reasoning with nominals more comfortable the satisfaction operator
t, is added for each nominal i. The formula ©, should be read as 'at the
world named i formula p holds'. The truth definition for follows this
reading precisely:

M,w = if M,l(i) =
In essence, the operator (, can be seen as the modal counterpart to an
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accessibility relation R, which connects every world to the world named i.
This also means , is a normal modal operator, and consequently the K
axiom and (Strong2) necessitation hold for it.

The hybrid logic developedso far is known as 1i((). In it we can, as
a start, characterize all the frame properties listed in table 2.1. As shown,
there are also often alternative hybrid axioms that correspond more closely
to the characterization on the semantic level (specifically in the eases where
there are only universal quantifiers). This is a result of the correspondence
between nominals in the syntax and worlds in the model. The ornnionly
used axioms are often further removed from the semantics, but more concise.

property pure axiom alternative model
reflexivity
synmietry
transitivity
density
determinism

U,Oi V,(sRa)
0,001 0,Oj — OJOi —. tRs)
OOi —. Oi 0* A ,Oj - Oj Y.,t,,.(aRt A tRu —. iRa)
Oi — 00* V.,,(sRu —. *sRt A tRu)
Oi —.Oi 01 A Oj —. 0,j VL,,..(sRt A iRa —. I = a)

irreflexivity
asymmetry
antisyninletry
intransitivity
trithotomy

0-0* V,(—aRs)
0,-001 0,0) —. 0,-Oi V.,,(skt -. -'IRa)
e0(Os —. I) 0,Oj A 0,01 0,) V,1 (aRt A IRa — a = I)
00* -.0* 0* A O,Oj —. —.Oj V,,g,.(sRt A IRa —. -'aRu)
e,0 V 0,1 V OIOj ,,,(sRt V a = Iv IRa)

Table 2.1, examples of frame properties characterized by pure
(hybrid) axioms (axioms containing no propositional variables).
The top half can also be characterized by modal axioms, hut the
bottom half cannot.

The axioms which are used in hybrid logic are preferably pure; this means
that no propositional variables (other than nominals) occur in them. When
the base hybrid syst till is extended with only pure axioms, it is automatically
complete for the clas.s of corresponding frames 1111. But the regular modal
axioms, if they exist, are of course also still valid.

The logic fl(@) also has another attractive property: it is decidable.
This means that for any well-formed formula it is possible to determine
whether it is valid in a finite uiuinber of steps.

2.3 The nominal binder
Hybrid logic may be further extended to add even more expressivity. The
obvious choice is a binder, like V or 2. In fact, with these choices the resulting
logic would be as expressive as first order logic. However, this does not do
justice to the modal character of our logic, because if variables could be
bound to arbitrary points we would lose the intuitive locality present in
Kripke semantics. So for this reason often the operator is chosen, which

'Strong necessitation is embodied by the rule
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binds a nominal to the current world. (The combination of both and j
will be discussed in the next subsection; first we will examine the itself.)

One way to look at it is to say that j,, gives the name i to the current
world. And so you could say e.g. J,, Di, 'If I name this world i, then
in every world accessible from here, I can get back to i'. The observant
reader will notice j DOi characterizes symmetry and seems to follow the
same structure as the corresponding pure axiom ,[]O,. It is important to
note however that ., p(i] binds the free occurrences of the nominal i in Ii],
whereas IiI does not. The formula pIij merely forces the evaluation

of ço(i) to be done in the work! named by i, whereas , changes what
i means for future reference. This is reflected in the semantics by a local

change in the model whenever is encountered:

.!,wt=o if M1i:=wI,w
The model A! = (U. R.V,A) is modified to Mfi := wJ = (W,R,V,A'),
where A' = Au wI behaves like A on I — {i} and A'(i) = w.

There are many other pure axioms like DOi, which can be similarly
rewritten using J.. In some cases free nominals can be eliminated altogether
(e.g. see table 2.2). Using such bound axioms means that you no longer
need all instances of a parametrized pure axiom. This makes things at least
conceptually simpler.

frame property bound pure axiom
reflexivity
symmetry
irreflexivity
asymmetry
antisymmetry

J1 Oi
J, DOi

, -'OOi
.[, D(Oi — i)

transitivity
density

J, DO J, ©20j
j 0 C,O<)j

Table 2.2, several examples of axioms where using j results in
pure axioms without free nominals.

2.4 The hybrid language fl(©,j,)
When both operators and are added to the hybrid language together, it
yields a logic that characterizes locality [11. In other words it characterizes
the fraction of first order logic that is invariant for generated sub-models.
The validity of a formula depends solely on the current world, worlds named
by nominals, and successors of these worlds.

Using 1((, ) we can precisely explore and describe any part of a model
or frame accessible via the successors of a (set of) starting point(s) (see
figure 2.1 for a small example).

12



Figure 2.1. The minimal frame described by the formula
i > lb o' Ic a' Id

'b0 A .O(aV b) A —'d(aVbVc)
A©00[b V CV dl
AbD.t A[OaAbAOdA D(aVbVd)1AdDl)

Vol.
The union of any number of generated sub-frames also
satisfies the formula.
In a similar way any generated sub-frame of any given
frame can be systematically described using fl(O, 1).

Because of the way ct and I operator complement eadi other we can
always find our way back when probing our way through a model. At any
time may choose to store the world we are in by naming it with I and
later on we can return to it using ct. and, for example, explore a different
path.

Unlike fl() the logic fl((, j) does not have a decidable satisfiability
problem. In fact even if we kavc out the operator and free nominals, the
remaining fraction of the logic is still undecidable [11. A decision algorithm
may therefore never terminate, and this is a problem a practical theorem
prover has to deal with.

13



3 Hybrid logic with an infinitary proof system

In the previous chapter we discussed the semantic underpinnings of hybrid
logic; in this chapter we will provide an accompanying proof svslem, based
on 1111.

A proof system allows us to deduce theorems by purely syntactic means.
New theorems are formed from old theorems and axioms by applying the
rules of the system. This removes the need to translate everything to the
underlying semantics and determine the truth on the underlying level.

There are two important factors to consider. First we do not want to
be able to deduce 'theorems' in the system that are not valid with respect
to the underlying semantics; and secondly, we want to be able to deduce
every theorem that i3 valid. These problems are known as soundness and
completeness, respectively. For the system laid out in this chapter proofs of
soundness and completeness are discussed in 11].

3.1 The proof system
In the first two chapters we have only implicitly given the language of our
logic; it follows from the definition of the semantics as only formulas with
a meaning are part of the laiiguage. Explicitly the formulas of our logic are
defined, in BNF notation, by:

t'2 I®'p
Where E {A,V,—,4-} and® E {D,O,j,j}.

To form statements about these formulas we will use sequent notation.
Sequents have the form I' I- where F is a countable (possibly infinite) set
of formulas and is a forijiula. Allowing F to be countably infinite has the
consequence that our proof system will be infinitary as well; proof sequents
may require infinitely many premises.

Given that the system has the properties of soundness and completeness,
we have that Fl- if F = p. Further we definer I- ill3 Fl- for all

E .
\Ve can now look at the actual proof system. The axiom sequents and

sequent rules for the system are given in table 3.1.
One of the first things one might notice is the conspicuous absence of

the K axioms, which one would expect in any proof system for a normal
modal logic such as this one. The reason they are not explicitly included is
because they follow SNec by applying it to MP and then applying Ded4.

31n the second part of the paper, within the context of tableaux, F' I- , has adifferent
interpretation.

41'heir omittance is a slight deviation from liii, where they were still unnecessarily
included.

14



Taut I— p if is an instance of a tautology
MP . —. i.b I— ' (modus ponens)
SD F-",-- (self-dual)
Intr F i A —. (introduction)
T0 F (j,j (reflexivity)
Agree I- —. (agree)
Back (back)
DA il—I, — := i] (downarrow)
Name FJ, (o --. provided i fnom(,) (name)
BG i F 0 j Oj provided i j (bounded generalization)

SNeco if 1' F tlieii DI' F D (strong necessitation)
SNec0 if F F then (,I' F LI (strong necessitation)
SNec1 if I'F then j1FFJ,, (strong necessitation)
InfCut if F F and I". . then F, F' F p (infinitary cut)
Ded if F, F , then I' F —. ' (deduction)

Table 3.1, The axiom sequents and sequent rules for 1)

The axiom Name relies on the mapping fnom(), which gives the set of
free nominals that occur in a formula (or set of formulas). The inductive
definition of fnom is fairly straightforward, so we will only comment on the
two most important clauses:

fnom( a,) = fnom(ç) U {i} The ©-operator does not bind nominals
fnoct(, ) = fnom() — {i} The i-operator does bind nominals

For practical purposes the proof svsteni may be a bit too minimalistic.
Undoubtedly sonie effort went into reducing redundancy and choosing the
most basic axioms that came to mind, but in practice it pays to use extended
axioms or derivative theorems. Two axioms that can be easily and usefully
extended are SD and Name: by combining them with their contraposi-
tion you can get equalities instead of implications, which then allows their
use for substitution. A few simple derivable rules are T1, SD1 and DedRev;
possibly the two iiiost important ones are bridge and Paste. 1)erivations
for numerous theorems are given in the next chapter and the appendix.

The proof system can be extended with further axioms (or rather, axiom
sequents) to form proof systems for logics on specific frames. As long as it
i extended with only pure axioms (or axioms provably equivalent to a pure
axioni) we will retain soundness and completeiiess between the proof system
and the semantics (11]. So for example, we can take fl,(©, 1) together with
F , -Oi to form a proof system for irreflexive hybrid logic.

15



3.2 Logics with infinitary axioms
The reason we need an infinitary proof system is because hybrid logic is not
compact. Compactness means that given F = we can always find a finite
I" c F such that F' = p. Basic modal logic is an example of a logic that is
compact, and because of that it can be finitely axiomized.

A finite axiomatization for hybrid logic, however, would be incomplete
because we would not be able to construct proofs of non-compact theorems.
At most it might be complete with respect to the compact fragment of
hybrid logic. But then we would miss out on the range infinitary logics; for
example, the ones shown in table 3.2.

ancestral logic {t11D'—'jIn E N) I- OD—.j
reachability logic E N} F- J
cycle logic {-'>'iIn E NAn? 1} I— J
BCC logic {O'Tjn E N) I- I

Table 3.2, several hybrid logics characterized by infinitary axiom
sequents.

In hybrid ancestral logic we have an extra modal operator 0, besides
the usual 0. 0 corresponds with the reflexive transitive closure of the
accessibility relation of 0, and so addresses all descendants of a given state
at once.

Hybrid reachability logic operates on the class of frames where each
world is reachable (through a finite number of steps) from any other world.

As the name suggests, hybrid cycle logic is a logic where all worlds are
connected to themselves (in one or more steps).

The axiom for hybrid BCC literally states that 'falsum' follows from
the assumption that there are paths of every length, which means that
there must be some maximum path length; unsurprisingly BCC stands for
bounded chain condition. One might imagine BCC is useful for guaranteeing
termination when combined with dynamic logic.

A number of example proofs involving infinitary axioms will be handled
in chapter 4.
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4 Proof examples

'mmm... pudding"

In this chapter a number of examples will be given of various sorts of
proofs using the hybrid logic laid out in chapter 3. First, a number of simple
derivable rules and sequents will be treated, followed by two generalized
sequents and a generalized rule. Then we shall take a look at modal axioms
defining frame conditions and their hybrid equivalents. And finally three
infinitary hybrid theorems will be discussed.

It should be noted that various of the following proofs mav contain
sequents and rules that have not been discussed before they are used. These
will be dealt with in the appendix, along with other proofs for which there
is no space here.

4.1 Derivable rules and sequents
4.1.1 W(Weakening): FI— =

Possibly the most trivial, but still useful, rule that can be deduced in our
logic system is the weakening rule. It follows directly from the infinitary
cut rule and allows the introduction of arbitrary formulas to the antecedent
of a sequent.

rt- i-o
lnftut

Note that F- 0 must be the case, because we have . F for all E 0.

4.1.2 Namerev: I— provided i fnom()

Namerev, as the name suggests, is a sequent which serves the opposite
purpose of Name. Using the self-duality of 6 and j' we can derive it from
the contraposition of Name.

In future use, Name will be used to refer to its combination with
Namerev, i.e. I- , +-+J,2 ©.

Name fnoa(,)}

SD0C4•

51n all fairness, the proof is not actually in the pudding, but in the eating thereof.
But a google count shows over 50% of people get this wrong.

6We use SD0: I— O .-. which can be derived from combining the original,
SD0: I— O, —. —'0, —',, and its contraposition.

TSD: -'v,
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4.1.3 distr' (distribution of over V): I- O,(, V ') (( V O,')

Because is a normal operator we ought to already know that distr
(F (4A t') i—s (,Aib)) is a theorem; using this together with the fact
that u is also a self-dual we can also find that it distributes over V8.

distr?
—') .-.(O.-.pA O,4)

- —.(-A —') .—.
- ve).-.(-,-'pV-'O.--e)

SD 0

4.1.-i T1 : I—i, i

Despite the differences there are also a few striking similarities between
and (; for example, they are both self-duals. Another trait they share is
that thes are both reflexive. For ( this is given as an axiom of the logic,
for j we can deduce that f- i holds.

liar
op

_________

T0
o - , SNec

InICut
SN.-c

F
Name

4.1.5 B0: I— ,j .-s

It is very intuitive that if a world named i has name j as well, then world j
also has name i, because they are in fact the same world. But intuition is
no substitution for proof, so if we want to use it we have to demonstrate its
correctness.

The proof consist of first proving one direction of the equality (Bo-half),
and then using a new instance of that partial result for the other direction.
'rhe useof DedRev9, which does the reverse of Ded, makes for a slightly
shorter proof (by avoiding extra distribution steps).

Intr
F iAj —. 0.j

DedRev,j I- 0.j
_I!_ 0,,,0,jFO,0.j

F ,j 0,j I- 0,i —
F 0,i — e,o., A_lut So-half

So-half: F 0,t-. 0.j F 0.j -. 0,s

8As will be shown in the appendix, also distributea over —. and —.. Similazly, the
operator distributes over V, A, —. and .-..

9IJedRev: l---.' = l'.,-'
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4.1.6 PR (Paste Rule): I'. (1.,Oj F t; F F OD provided
j fnom(F,)Ui

Compared to the previous examples, the Paste Rule is much more complex
to prove, but it is an important rule because it is often used when proving
other theorems. In fl(@) it has to be included in the rules of the logic
system, but in 1((©, 1) we can derive it from more basic rules and sequents.

A lot of the steps in the proof simply involve adding or removing ©s and
js, manipulating sequents into the right form. Even though we already have
SNec, Agree and Name to help us in this department. we additionally use
vacuous binding'0 and vacuous satisfaction".

givi {j fnc.(r, ) Ut)
r,o.o3 F 03w SNeco,frhk

OeF,OO.Oj

j, nr, i, 0.o -, o,, 'B
or,j, 0.oj 1-w

Name oo-.r,- 0—r
BC DQJ. 0 1, 0.0j I- o okr I- OOiF Iiut

T. ii- 01, 0.Oj okr,o 1,O.o)1-°w
O. I-flu . • SNeco 4.or,o.o 1, 0.0; I- 0.°w SNec.

- o.o , o.o 1nfiut o.r,o.n 0.0)1- O.°w
Agree

or F
IniCut

4.1.7 AID (At-Implication-Down equivalence): I— i —
I- O,,

Many theorems come in the form of I- i , f-j or F- ©g. Depending
on the situation one variant might be more convenient than another, and
so it is very convenient to have a rule that helps transform one kind into
another.

The proof for AID goes in three parts, from I— to F- i — , to Hj ,
and then back to F @ . All steps are pretty straightforward, the only
thing of note is the use of vacuous binding after 12 in the third case.

Intr Ft-.Fg., t,OpF DedRev I-i.eInrCut _i!i_ zI-e
SNecj 1-0 1 e

SNec.

F
Ded Fj.i

'-i.e
w Inut '- 0.w VB°

4.2 Generalized rules and sequents
There are some cases where a whole range of sequents or rules can be proven
at once by generalizing over certain patterns (usually of modal operators).

'°VB: I—J, , .-. provided fno.(,)
'VS: OF' 1- r I- and r t— O,, . I' I- provided s fnou(F, )

0, j , .-.
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Such proofs will either depend on induction, or involve other generalized
sequents and rules.

4.2.1 Back1 (generalized back) © I- for n � 0
One of the simplest examples of a generalized sequent is Back. It involves
little more than a repeated application of Back, which means we will be
making use of induction. For completeness we start with a base case for
n = 0, even though in practice we would never use that instance.

base case:

Taut, F
With the base case affirmed, we move on to the induction step, which

builds on the induction hypothesis: V0<m<,,(" F [1' (4)

induction step

induction hypothesisq- F -.
- SNeco DedflevUO, F DO 'O. I- O•-wp

O4,pF O'O. OF DJ tnutO,,,I C) O'

4.2.2 Bridge (generalized bridge)
Before stating what sort of sequent Bridge4 stands for, it is necessary to
introduce some notation first.

Let (n} denote a specific sequence of Os and os. In particular it may be
defined as follows

definition (n}:
def

del(2n)' = D{n}
dci(2n+l)p =

So e.g. (314)
def oo>oooooo

One can convert a number to its corresponding sequence by going through
the following four steps:

1) convert the number to binary, 314 = 100111010
ii) remove the first digit, 00111010
iii) reverse the string, 01011100
iv) replace the Os with Os and is with Os, 00000000.

To convert it back, one can dO these steps in reverse.
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With this notation in place we can now properly state what sequent we wish
to prove:

Bridget : (n)j,O H (n) (where n � 1)
As before this will be an inductive proof, so we start with the base case.

base case, n = 1:

Iitr
I- A —'v' 0.-p

de( 1(1)i,0.I- (t}q'

The induction step is split into two distinct cases, one for odd numbers and
one for even numbers, respectively. It is important here to use a strong
induction hypothesis, because the instance k which is a prerequisite for
proving a case n will fall somewhere in the middle of the range in which we
hypothesize the theorem to hold. Therefore our induction hypothesis will
be: Vi<m<n((m}i,©iF (m})

even n, n = 2k

Inductiofi hypothnds
(k)l,0.E (k)

SND(k}iO0,F O(k)cp ° 0.,I- OO,
InfCutO(k}i.0.F D{k)ç

(2k)i,0pI- (2k}p
(n)t,0pF (n}ço

odd n, n = 2k + 1:
Induction hypothnd

(k}l,0.F (k)p
0.pF(k)i—.(k)cP q

0pE -(k}p —.

D0pF n—(k} -. D-(k}a Seco

D0., F O(k)l -. O(kFp F

0.,F O(k)i —.K{k)p
InfCut

DedRev
O(k)t, flip F O(kFp

der 2k 4- 1)
(2k + 1}t, flip F (2k + i)ip

(n)i,0.ipF (n)ip

Because every number is either odd or even, this demonstrates that
F- (n}p for all n � 1. In particular this means that given c and

a specific sequence of Os and Os followed by i, you can deduce the same
sequence of Os and Os followed by .
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4.2.3 DW (Distant worlds equivalence): 1' I- k(O"i —. ) .
1' F tkD" U

The DW rule makes a claim of equivalence between two different ways of
addressing worlds/states at a certain distance of the current world. Unlike
the previous two generalized theorems, this one does not use induction in its
proof, instead it relies on the generalized Paste Rule'3 and generalized
bridge.

The proof consists of two parts, first in one direction, and then the other.
However, the latter is little more than the reverse of the first.

given given

, Distr. r, oo', i-n, j, o,

___________

r,no q,fl,
Agn.e r,oo'$l-ok,

vu rFooi—.ok,
PR+

4.3 Frames

One of the motivations behind developing hybrid logic is the greater number
of frame properties one can define in it; at the same time it is desirable not
to lose any important results attained in modal logic. In [18] it is shown that
in (ct) the completeness result for extensions with pure axioms cannot be
combined with completeness result for Sahlqvist axioms 116, 12, 101.

For fl((, ) the story is different. In this section the correspondence
between a number of pure and modal axioms will be shown (the third is
most notable, because it includes the counterexample for fl(©) used in f 18]).
For Sahlqvist axioms in general the correspondence with hybrid formulas is
shown in the next chapter. however, the proof method used there deviates
quite a bit from the beaten path.

4.3.1 Reflexivity

The first frame class we will look at is the reflexive class (Ch. 1.3). In a
reflexive frame each world has a connection back to itself. In modal logic
we have the axiom [1 — to characterize this class. There are a number
of simple axioms in hybrid logic that serve the same purpose, the usual two
are i —+ Oi or u,Oi (which are easily shown equivalent with the AIM rule).

Demonstrating the equivalence is split into two parts, first from modal
to hybrid and then back. The first case often (but by no means always)
comes down to a proper instantiation of the modal axiom and possibly using
contraposition or a hit of propositional magic. This is the ease here; to get
from D — to i —. we simply inst.antiate with -'i and contrapose
the result.
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The other direction, F- ©,Oi . I- D —. is more involved:

Hddge { with q ncm(ço)

o.-,,
Ot,—O.-.F -.U-,

SNac., A
FOC>I

InfCut
DadFO.p—O.G'
DIStr°FO.(,-.O)

F —.

4.3.2 Determinism

Our next example deals with deterministic (or partly functional) frames (Ch.
1.3). The usual modal axiom for characterizing determinism is O —+ D.
Instantiating with i gives a hybrid axiom that seems to convey what we
want; but we still need to demonstrate that we can deduce the modal axiom
from the hybrid one.

Bridget (sV fno.()) given
0á,O.F

cp SD. F 0, -.0, DadR
• QiFOl

InfC,it0s,0F O.' SNec., fresh kOk,O,0F O,O,p
AgrseO,,0i.O&0,F flç

F O0e,
DadFO,.Oe,-.O,D Dlstr!FOk(0—.0)

VSF (> -.

However, aside from the obvious choice of hybrid axiom, there is also
one more reminiscent of the underlying first-order logic frame condition
(V1VV(R A R) — y = z), namely the hybrid axiom Oi A Oj —+ ,j.
Proving that it is equivalent to <> —' E and Oi —e Oi will require a bit
more work, because a simple instantiation will not suffice for either direction.

To keep things simple, we will prove equivalence with the earlier hybrid
axiom, Qi —+ Di. This requires less effort than using its modal counterpart

— O; and, seeing as we already know those two are equivalent, either
is 1iID.

The proof is split in two parts. First we demonstrate that it holds that:
FOiAOj—*Q,j =I—Oi--.Di

given
F 0: A Oj — O,s

DedRev0i,Oj F
SNec.O,c'.O,OjFOO,z

O0i,O&0jF O,i
PR40s,F G,fls

Dad
F Oj,0i —. O,,Qs

D,str!
F O,,(0, —. 0)

VSI- Oj -.
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Next we show that the reverse also holds: I- Oi —' Di =t I- ()iAOj —'

given
I- Cj —. Bridge

0) F- Dj F)pdRev ,, D Inftut

0,, Oj I-
I-0,A0j--.O.) fled

4.3.3 The General Axiom

The General Axiom (C) is a generalization of frame axioms, and was found
by Lemmon and Scott[131. It encompasses many of the common frame
axioms; amongst which the previous two examples. In its modal form the
axiom reads: G: 0h0;. 00k0 The corresponding frame condition is

A R —+ 1(R,1 A R).
To dispel the possible illusion that we can always find a hybrid equivalent

by just instantiating p in G appropriately, we will first look at the case
= i = j = k = 1, which gives weak directionality. If we replace with

i or -'i (with contraposition) we get QDi —+ DOi in both cases. Vhilc at
first this might seem reasonable, it does not actually correspond with weak
directionality.

The easiest way to demonstrate this is to give a frame where one is true,
but the other is not. In figure 4.1 we see just this, ODi —. Di is true in the
frame underlying the model (ODi is true nowhere), but the frame is clearly
not weakly directional.

Figure 4.1, A couiiterexample to ODi —. DOi as hybrid
axiom for the property weakly directional.

Fortunately, the other approach, looking to the first-order frame condi-
tion, does help us find a hybrid formula. It leads us to the hybrid axiom
<>hv A (>3u —' ©UOk ix ©vO'x. In general the cannot be eliminated from
this formula (it can if i or k are 0, and for certain h,i,j,k in some frames
that have additional frame properties). This means that in general there is
not a hybrid correspondent in 1'(), but there is in 'l-t( (4, fl

As before, the proof falls into two parts. Our first step we will be to
demonstrate that we can deduce the modal axiom from the hybrid one, i.e.
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I— G-'u A Ohv —. F- OD —i LK. For brevitys sake a
number of steps have been joined together.

Bndge {x

SNec., Agree
SNec1

VB, Name
O'x,O,Dp

givell 1cOo,I- o
F- ' U A SUr -. . O O,,Ox,O.,O' Back

DedRe SNeco, Agree'u. :r ,'k j ,("x j fl.Q'xOD', I- O.O,
u,CUv,ODço I <

SNec. (Ireeh w}, Agree
O..O, +

O'r,.D',F O,.D'O, PR

F OU'D•P +

D'oOD'-.o' vs
I- -o'tc —.
I- D' D'O

Next we consider F- OD —' DO I— O'u A _. ©,0k
the reverse of the last step; fortunately this is a lot less involved. One detail
that warrants mention is the use of generalized Bounded Generaliza-
tion 14, which has hot been introduced before now.

BrFdg

BC OQ O.O' —. [}0U O.Or O, O.rJ F- O-'LJ j

_____________

CP

C •• 0 j. O.Or ) A"fl' j. O.O'x + O'. D'0 U, Q.r UO j,
OU 1

0h0, j O.'r SN . - . nfl ot

- U , U.):
F- ' O, —. U.OU U.O'r

4.4 Examples of infinitary proofs
\Ve end this chapter with a number of proof examples that involve infinite
sequents, finally making use of the infinitary part in infinitary hybrid logic.
Each of the three examples involves an infinitary axiom sequent taken from
chapter 5 of [111.

4.4.1

One very simple example of a proof in infinitary hybrid logic is to show that
there are cycles in a reflexive frame. In formal notation, we wish to show
that: fl.,(©,t)+i—nQi ' AS3:{-'©ciInENAn� 1}F-J.

AIDF O,', O.t, -'O.Oi I- j
wcut

(-'O.O"iln E NAn? l} F- I

'4BG4 : ©0k 1, O'j (or,asinthiacaae,byimplicituseofAlMandDedRaV,
k j3
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4.4.2

A slightly more difficult infinitary proof involves demonstrating that reach-
ability (excluding steps of size zero) implies seriality; i.e. we have that
?1(©,1)+AS2 :{©,OicjIkENAk� 1}FJ =.l-OT

Taut
1F-(D'-jIn€N)

0L0(D"-.jnEN} SNecu

0.01 - 0,D{0-'j!n EN) °
0.01f (,0k.jIkE NAk? 1) given

0,D1-(-O.jIkENAk?I}

_____

IniCut
I)ed

- —--—- SNec
L. ¶J,

Nana

4.4.3

The last example is in quite a different class than the earlier two, and
requires quite a bit more creativity. The goal here is to prove that the
Lob formula follows from the bounded chain condition under transitivity;
1-L't.i)+AS4:{O'tTInEN}Fi+OOi---*Oi FD(D—)--.Dp

It should be possible to prove this because it is knowui that the LOb
formula characterizes transitive, converse well-founded frames; and BCC is
a stronger condition than converse well-foundedness.

\Ve start with a hold claim on which the rest of our proof hinges. Note
that the premise of the sequent is the negation of the LOb formula; so in the
end we want to show that the conclusion of the sequent leads to a contra-
diction with the rest of the logic (notably AS4).

Claim 1: D(D—. ).O-F 0k(o —. )AOk_A{OTIi E [O..k]} for
all k E

To prove this claim we will need to employ induction. The base ease is
quite simple; it follows from conjoining various propositional tautologies

Base case:
Taut

SNeco— Taut - D Taut
n(n ) A 0 01 T

D( -).)F Q(D )A>AT AOT
The induction step is not much different; first, we show how to make

a single step from case k — 1 to k, and then apply this to the induction
hypothesis.
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Induction step: (k> 1)
The induction hypothesis we assume in this induction is the following:

D(D —, I- D'(D, —. p)AC>'-iA{O'TIi E [O..j} for allO < j < k

Taut Taut

_________________

TTRSc SNec

frame transit isit I- <Y— F (>aT

D'(0 —. ) F- L(LJ, -
—. F- 0a —p A O I

-. ,).<*'—F- D(O -. )AOa.A T
OneStep: oa

—. ), ai -sp, {<'TI E O.k — 1)} F- Qk(O
—. A A {' f t Ok])

inductãon hypotheels

-. o'(DQ —. ,)A —A (: e O.k - IJ} OneStep
InfCut

—. - 0 (D —. A - A {OTI E O..kI}

Therefore, having proved claim 1, we have in particular (by weakening the
conclusion) that D(D —i ), O- I— {OTIi E lO..k]} for all k E N, and
thus D(D —' p), (>—p I— {("TIn E N}. With this we can finish our proof.

Clalmi AS4
D([ip -.)'-pf- (fIn N) {'TIn€N}F.L

IniCutF I 2)
I- D(D —. -.
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5 Sahlqvist formulas in fl(',1)
An important class of formulas in modal logics is the class of the Sahlqvist
formulas [5, 16]. Sahlqvist formulas follow a particular structure which
translates to important correspondence results. Importantly, 1) a Sahlqvist
formula is canonical (in the sense that it characterizes a frame class), 2) the
class of frames corresponding to a Sahlqvist formula is first-order definable,
and 3) the corresponding frame condition cait be effectively computed from
a given Sahlqvist formula.

Because Sahlqvist formulas are canonical, and encompass many formu-
las of interest, they can be useful for determining completeness results.
For example, if the basic medal system K is extended with only Sahlqvist
axioms, the resulting logic will always be complete.

In [la] it is shown that combining the completeness result for pure
formulas in 1i() and the completeness result for Sahlqvist formulas is
problematic: we are not guaranteed completeness if we extend a system
with both types of axioms. When our hybrid language also includes the
-opcrator, however, it is a different story. It will be shown that in 11(,I)
every Sahlqvist formula is provably equivalent to a pure formula, and there.
fore we retain completeness when a system is extended with both types of
axioms.

This result applies to every hybrid logic based on the same semantics
for tt and j, as long as the completeness result for pure formulas applies to
it. So in particular it also applies to the infinitary hybrid logic discussed in
chapter 3.

This section aims to outline how Sahlqvist formulas correspond with pure
formulas in and conversely what structure we may expect from a
pure formula which can be translated to a Sahlqvist formula. The latter
turns out to to be closely tied to Kracht formulas 15, 12].

5.1 Sahlqvist formulas
The full breadth of the work surrounding Sahlqvist formulas is too much to
cover here. I will limit myself to the structure of Sahlqvist formulas, and
briefly outline how to translate one to a (local) first-order correspondent.
Why the structure of the Sahlqvist fragment is the way it is. and why the
translation works will be left open (but see in particular 151 and its preceding
section).

The structure of Sahlqvist formulas is best given as a grammar in Backus-
Naur form 15:

'5Unfortunately none of the accessible resources seem to agree with me on that count,
and prefer to give an informal account in words only.
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positive_formula :: T I I I p I
-, negative_formula I

D positive_formula I

O positivelormula I

positive_formula A positivefor.ula I

positive_formula V positive..formula I

negative..formula —. positive_formula

negative_formula :: T I I I

-. positive_formula I

D negative_formula I

O negative.iormula I

negative_formula A negativ...formula I

negative_formula V negative iormula I

positive_formula — negative.iormula

boxe&atom :: p 0 boxed atom

Sahlqvist_antecedent ::= boxed_atom I

negative_formula I

0 Sahlqvist_antecedent I

Sahlqvist..antecedent A Sahlqvist_antecedent I

Sahlqvist..antecedent V Sahlqvist_antecedent

Sahlqvist.Amplication ::— Sahlqvist_antecedent positive_formula

Sahlqvist_formula :: Sahlqvist_implication I

0 Sahlqvist_formula I

Sahlqvist_formula A Sahlqvist..formula I

Sahlqvist_forinula V Sahlqvist_forisula (when there
are no shared variables)

To simplify the notation of first-order and second-order formulas, we will
be using the notion of restricted quantifiers. Restricted quantifiers have the
form V and and are defined in the following way:

V1(x, y) 1/ Vy(R15 — (x, y)) and
xço(x,y) dr_f y(R A p(x,y))

Restricted quantifiers correspond directly to the modal operators in the
modal language.

In various places yr and El' are used to denote a restricted quantifier
without specifying what variable is restricting it, and Q' is used when in
addition the type of quantifier is left unspecified.

The first step in finding a local first-order correspondent for a Sahlqvist
formula is to reduce the problem to finding the correspondents of a (number
of) Sahlqvist implications. To do this we use three rules that split the
formula along the lines it is built up:
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• If is a Sahlqvist formula corresponding to a first-order frame condi-
tion a(x) then Vycxa[y/x] is the correspondent of the formula D

• If corresponds to ci and to 3 then A ' has the correspondent
(i A 3

• If corresponds to a and ' to /3, and furthermore and , have no
variables in common , then V ,/, corresponds with a V (3

\Vhat we are now left with is the task of finding correspondents for a number
of Sahlqvist implications.

The second step is to translate the Sahlqvist implications to second-order
formulas. Recall that a Sahlqvist implication has the form —s i/.', where

is a Sahlqvist antecedent and is a positive formula. The main translation
is defined as follow:

ST(—sp) =
ST4') = ST()tST2(t,b) where E {A,V,—s '4-))
ST(Op) = STp)
ST1(E) = VS1,()
ST1(p) = P,(x)

We now get a second-order formula VP1 . . . VPn(STr() —+ pos), where
pos is the translation of the positive formula i/', and there is a predicate
P for each propositional variable p,. (In the rest of the section quaiitifier
sequences like VP1 .. . VP,, will often be abbreviated as VP.)

Next we deal with the translation of the Sahlqvist antecedent (ST10()).
Recall that a Sahlqvist aiitecedent is built up from negative formulas and
boxed atoms by applying conjunction, disjunction and diamonds. 'l'he goal
now is to reniove the diamonds and the disjunctions.

We can pull out the diamonds using the equivalences
(rx,(I)Afl) RTx,(a(x1)A$) and

(rxa(x) [3) i— Vrxi(a(xi) — 13)

And at the same time, as we come across them, we can split up disjunctions'6
using

((a V 8) —+ -y) -+ ((a —+ y) A (/3 —. y)) and

VPV'.r(o A /3) — (VPV'x.u A VPV'x.j3)

We end up with a conjunction of formulas VPVT±(B0X-AT A NEC —' Pos)

where BOX-AT is a conjunction of boxed atoms and NEC is a conjunction of
(translations of) negative forniulas. We can then bring NEC to the other
side of the implication where it joins POS as a positive formula. This yields
VI'V't(Box-A'r —. POS V -NEG).

'E)isjunctioI' of negative formulas do not have to be split, because such a disjunction
i, itself a negative formula.

33



Here all our work comes to fruition. We get to eliminate the predicates
P, which will leave us with the first-order formula that has been our goal. To
eliminate the predicates we need to find the appropriate instances. First we
can look at any predicates which only occur in the consequent (PosV-NE(;).
For these we substitute a(P) Au.u u.

The rest of the instances will be read off from BOX-AT. We need the
minimal instances that will make the antecedent true. We take the set of
(translations of) boxed atoms from BOX-AT in which P, occurs, which have
either the form Pg(x,) or V,13P(y). In the first case we add u =
and in the second and so the complete substitution will look like
a(P)=Au.(u=xjV...Vu=xmVRuV...VRu).

After applying these substitutions we have our first-order formula and
all that is left is to simplify it as desired.

5.2 Kracht formulas
In the previous section we defined the class of Sahlqvist formulas and laid out
an algorithm that would yield their local first-order correspondent. In this
section we will look at the other direction. We define a class of first-order
formulas, the Kracht formulas, and give an algorithm that provides their
medal correspondent. It should not come as a surprise that there is more to
it than just this similarity; the modal correspondent of a Kracht formula is a
Sahlqvist formula, and the first-order correspondent to a Sahlqvist fonnula
is a Kracht formula.

Kracht formulas are first-order formulas that are built up from the atomic
formulas u $ ii, ii = u, x = y and R, using the connectives A, V and the
restricted quantifiers V, Furthermore, all atomic formulas other
than u u and u = u should contain at least one inherently universal vari-
able, i.e. a variable that is either free, or bound by a restricted universal
quantifier that does not lie within the scope of an existential quantifier.

The first step in finding a modal correspondent to our Kracht formula
is rewriting it to a normal form. For this we define type 1 formulas, which
have the form

xi...V'XnQyi...Qym.I3(Xo,...,Xn,yi,...,ym) (withn,m�O)
Each bound variable is restricted by an earlier variable; so every x is
restricted by an x3 such that j < i, and every y is either restricted by
an xk or an y, with j < i. The quantifier-free formula 3 is a disjunctive
normal form built from u = u, u u, IL, u = x and R; the only atomic
formulas that are excluded are R, and y = y' (typically Q is 3' and so
none of the y' are inherently universal, whereas all x, are).

Type 1 formulas form a special subclass of Kracht formula, and impor-
tantly each Kraeht formula can be rewritten to a type 1 formula by pulling
quantifiers to the front, using the equivalences:
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(Q1) V-y *-. Q' IL.(1 vy) and (QTu./3)A-y 4_ Qr (/3A y)
Where u var(y).

It is. however, important to be careful about choosing the order in which
the quantifiers are pulled out. If, for example, we take the Kracht formula
Vzit.,zoV.r2i.xi (Xi = x2) A io(xo = ui), then it can be rewritten in two
ways: either to V111,[V1211 (x = X2) A = yi)1, or otherwise to

zo [So = yi AV1xVr2,, (x = 12)], unfortunately the latter is no longer
a Kracht formula. To avoid this problem from occurring you have to pull
out only universal quantifiers until you have ascertained each atomic formula
(other than u = u and u u) contains an inherently universal variable; that
is, either o or a variable that is bound by one of the universal quantifiers
you have just pulled out.

Once all restricted quantifiers have been pulled to the front, we have
a formula of the form V'x1 . . .VTxQcy .

. . .,Xn,/1,. ..,ym)
where o is built froni atomic formulas using V and A. All that is now needed
to turn this into a type 1 formula is rewriting into disjunctive normal form.

After having obtained the type 1 formula we can proceed with the next
step, turning our first-order formula into a second-order formula from which
we can ultimately read off the the modal formula which corresponds to our
type 1 formula. As before we will work toward a special class of formulas;
in this case type 2 formulas, which have the form:

A ST()3
\O<s<n

Here a is a conjunction of boxed atoms in p, and q, and 8 is a DNF
of formulas ST(') where is a modal formula positive in each Pt, q,.
Essentially it is a type we have encountered before, in the translation of
Sahlqvist formulas, where o, is BOX-AT and /3 is POs. Once we have a type 2
formula, We can almost proceed opposite to what we did with the Sahlqvist
formulas.

To get from type 1 to type 2 we use the following intermediary step; we
have that a type 1 formula VtQ'y.j3 is equivalent to

QvT± ( ASTX,Pt A Dq,) Qr1y)

Where 8' is Ol)taifled by replacing the atomic formulas in /3 in the following
way:

u=u—'STu(T) u=x,—ST(p)
flux, ST(Op,) — ST(q,)

There is some choice here about which substitution to use if we have R11
or x = x, and we only iieed to introduce pjs and q3s if tliiv actually occur
in /3'.

35



The only thing needed to get from here to a type 2 formula is eliminating
the quantifiers from Qry.3l• This is done by repeatedly distributing the last
quantifier in the sequence over 13'; if it is an existential quantifier, we first
write /3' in DNF and then we can use

(v A STuk,(k :-. (sT(o A kt) A A STukkL)
/ kK l<L, I<Lk

V UJy,

In the case of universal quantifiers we write /3' in CNF and then use a similar
equivalence where each operator is switched with its dual.

All that is left is to turn the type 2 formula into a Sahlqvist formula.
The easiest approach is to first rewrite

( A ST,() to ( A STI,() A fl
/

Next we rewrite A ST1,(o-8) A —/3 to a I)NF. and distribute the existential
quantifiers over it as we did before. We end up with VPVQ-'ST10(V Qk).
Each k is a Sahlqvist antecedent (consisting of BOX-AT parts from the o1s
and NEC parts from -'/3), and thus so is the conjunction of them. Finally
we remove the negaton, so as to get a the second-order translation of a
Sahlqvist formula. VPVQST10(Vck — I), from which, at last, we read off
the desired Sahlqvist formula: V 0k —

5.3 Pure formulas
In the previous two sections we have seen how to obtain a Kracht formula
from a Sahlqvist formula, and, vice versa, how to obtain a Sahlqvist formula
from a Kracht formula. In this section the spotlight will be on the corre-
sponding fragment of pure hybrid formulas.

In light of the previous sections this problem has become somewhat
trivial. We can branch off from the Sahlqvist-Kracht transformation cycle
(see figure 5.1) at the point where we have type 1 formulas and define a
(reversible) translation to hybrid formulas.
The translation from type 1 formulas to pure formulas can be done as follows:

T(Vk) = 0k , T()
= T()

T1tP)=T()T(1I')forGE {A,V,—*,4-}
T(x = y) =
T(R15) = x0Y
T(u = u) = T
T(u u) =

It should be obvious that there is a straightforward reverse translation as
well.
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S.cood OrOer FormulI Orer
Sahlqvust Formula

Kracht Formula

Type 2 Formula

Type 1 Formul

Puts Hybuld Formula

Figure 5.1, a schematic representation of the translation
steps between Salilqvist, Kracht and bound pure (hybrid)
formulas.

Because of this one-to-one translation we can ver easily characterize a
fragment of hybrid logic that corresponds to Sahlqvist formulas. We simply
take the translation of type 1 formulas; and so our hybrid Sahlqvist fragment
looks like 0 J,ri . ©.' 0 ©O j .. . 0 where 0 is either
0 or 0, and each x is an X) with j < i and each y is an xk or some
with j <i. and finally is a DNF of I, T, y, ('r<O>y. yOX.

.Just as there were in the case of Sahlqvist and Kra(ht formulas, there are
formulas outside this fragment that are equivalent to one in the fragment.
lr example, we can consider the equivalences

lb c0 Id tl, ©cD Id ©D lb (with b c)

and

u00 lb ©b& Ic a00 Ic (provided b does not occur in ),

where in both cases ' is built from formulas of the form J, T and using
any connective. Aside from those equivalences, there is also a rewriting rule
that bears mentioning,

LHaDjbaó FH0Ob©0ç.
So, for example, if we have a formula in this hybrid Sahlqvist fragment, we
can pull out every ©,1Dk L0,' to the front as a Okx which is a useful
way to eliminate 'j's.

5.4 Example

We will now apply the methods from the previous three sections to an
example. The example we will use is that of a modal formula characterizing
weakly connected frames (in which any two worlds accessible from a given
world are either identical, connected or both). The common axiom we find
for weak connectedness is L]( A D —* p) V D( A DLr —. ); the first thing
we may notice is that this is not in fact a Sahlqvist formula. Fortunately,
it is equivalent to one, and a little rewriting yields the equivalent Sahlqvist
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formula O(p A Op A q) —' D(q V Oq V p).

Our first goal will be to derive the first-order frame condition which
corresponds to the Sahlqvist axiom. We start with

<)(pADpAq) —+ D(qVOqVp)

And translate this to the corresponding second-order formula

VPVQ([P(y) A VP(w) A Q(y)J — Vz>LQ(z) V 2Q(v) V P(z)1)

Then we pull out the existential quantifier(s) from the antecedent

VPVQVVDX (IP(y) A VP(w) A —÷ VZDZIQ(z) V 302Q(v) V P(z))

\Vith only boxed atoms left in the antecedent, we now first determine the
minimal instantiations for the predicates, a(P) = = y V R) and
a(Q) = Au.(u = y), and then apply these substitutions.

VPVQVxV,(z = y V = y) V Z = y V R)
\Vhich finally simplifies to

VycxV,1(z = yV R4 V R,)

Next we translate this result to a hybrid formula.
As it happens = y V V is already a type 1 formula so
all that is needed is applying the translation. We get

(ID j, ©D J or (>yAOz —' (4yV4OyVOOz),
which is equivalent

The translation back to a Sahlqvist formula takes a bit more work, even
though we are fortunate enough that V,V4(z = y V R4 V R.), our
starting formula, is already a type 1 formula. As y and z are both inherently
universal we have a choice as how to translate R and
If we use z = y —* ST(p), R,, —i ST4(q) and R4 —+ ST2(Op) we get

VPVQ V,,.7V,1(ST(p A Dq) — ST4(p) V ST(Op) V ST(q))
Next, we can simplify the consequent.

VPVQ A Dq) —+ STZ(P V Op V q))

Now we bring in the quantifiers.
VPVQVyrx(ST(pA Dq) —* Vzr'xST(pV OpV q))
VPVQ A Dq) - V21ST(p V Op V q)

And then we do the reverse translation for the quantifiers,
VPVQ ST1O(p A Dq) — STD(p V Op V q)

Simplify,

VPVQ ST[O(p A Dq) — D(p V Op V q)
And finally, we go from second-order formula to modal, and we get

O(pAOq)— D(pVOpVq)
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Note that this is not the Sahlqvist formula we started off with. When
we translate a Sahlqvist formula to a Kracht formula and back, we are only
guaranteed to get an equivalent Sahlqvist formula (and the same is true if
we go from Kracht to Sahlqvist and back).

5.5 Concluding remarks
Especially in the case of automated theorem proving there are advantages
to working with only hybrid axioms; the ability to translate a large class of
modal axioms to hybrid form is therefore a valuable one. Moreover, as the
process can be automated, it is possible to integrate it into a prover system.
Unfortunately, it does not apply to all modal axioms, but only to those in
Sahlqvist form.
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6 A short introduction to semantic tableaux

One of the most popular proof procedures used for automated theorem
proving in modal logics is the method of semantic tableaux. The method
aims to prove theorems by refutation: given a formula it will engage in a
systematic search to find a counter-model that would satisfy the negation
of the formula. If an exhaustive search does not yield a counter-model this
is taken to mean there is not one, and therefore the theorem must be true.
However, this conclusion depends on the rules of the tableau forming a sound
and complete proof system (i.e. only valid theorems can be proven, and all
valid theorems can be proven).

A tableau calculus typically consists of a set of rules that break down
formulas into their constituent parts. This means that each node in the
tableau proof tree will contain a set that consists of subformulas of previous
nodes. In other words tableaux usually conform to the subformula property
to some extent, which great ly helps in liiiiit ing the search space.

When we want to prove a theorem, we start the proof tree with the
singleton set containing the negation of the theorem. So if we want to
show holds we have {—'} as our root. From there on we continually
apply the tableau rules until there is no longer any rule that applies (with a
preference for applying the closing rule, to prevent unnecessary work). Then
we examine whether all branches of the tableau are closed; if this is not the
case then we have a counter-model.

6.1 An example: propositional logic
To get a feel for the tableau method, we will first have a look at how the
tableau method might be applied to propositional logic. The set of tableau
rules we need can be quite short. Taking into account that we can either
normalize a formula at the start, or use propositional rewriting rules as we
go (to eliminate — and —.. and distribute -, over connectives), the following
set of three rules suffices:

IA LVI closed

These rules strictly satisfy the subformula property, so we can now
examine any propositional formula and determine whether it is a tauto-
logy or not in a finite number of steps. Each tableau rule either reduces the
number of connectives (v, A), of which there are finitely many, or it closes
a branh. So any path from the root to a leaf will have at most as many
tableau rules applied as there are connectives. Nevertheless, in the worst
ca.se the total number of nodes can still be exponential in the depth of the
tree, due to branching.
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Example 6.1 Example 6.2
A closing t(2hhuu for the theorem An open tableau for the formula
,—.(,—.pAL). Therezsno Acoun-
counter-model, thei fore the for- terexample is forme4 when and
mula is a tautology. -'v' both hold.

In example 6.1 we can see the tableau method at work. The use of propo-
sitional rewriting is abbreviated with prop. To prove — ( — A ) we
start by taking the negation, - —* (t' — A v')), and then rewrite it to
change the main connective to one our rules can deal with. This gives us

A -'(u' —+ A ), which we can split using rule [Al into {. -' —+ A Y)}.

'lo apply the next tableau rule, we once again need to rewrite out' of the
formulas in the set, we then get {. ui A —'(p A i')} .Now we can use IA[
again, and split 'A —'(Au), this yields {,',—'(WA')}. A last rewrite
results in {., ui. - V —'}, and using [VI the tableau branches, giving us two
sets, {ui"} and {,','uj'}, both of which are closed by (Id).

Example 6.2, which exaniines the formula —. —* up) —. v'), follows
much the same road, except in the end we are left with the set {p, —}
in both branches. Neither of the formulas in the set can be broken down
any further, so it must, constitute a counterexample. And indeed, applying
the assignments V() = T and V() = J in our starting formula we get
T —. ((1 —. T) —. I) which simplifies to I, which confirms that we have
found a counter-model.

6.2 Tableaux and sequent calculus

Up to now we have had the tableau method operate on a single set of
formulas, but we cais also split this into two sets, a positive set (of formulas
w' want to satisfy) and a negative set (of formulas we try not to satisfy).
Vlivui there is an overlap between these sets it means there is a formula we
do and do not want satisfied at the same time, which of course cannot be
realized, and therefore no counter-model can be constructed. So this will be
the new closing condition for branches in the tableau.

In essence the change is quite superficial, but it has a few advantages.
One of these is that we can now deal with negative formulas in a neat way;
we can remove a negation by transferring the formula to the other set. But
the main advantage is notational: there is now a strong connection with
sequent calculus. We can interpret the nodes of a tableau, and the proof

'7A result so well-known, I cannot find a reference where it is not assumed well-known.
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as a whole, in terms of sequents rather than loose sets of formulas. If we
take F as the conjunction of the positive set and as the disjunction of
the negative set, then we can think of F I— 2 as a sequent'8. If r holds,
then t holds. And reading the tableau proof upside down, we have a valid
deduct ivy proof in sequent calculus.

The change has a number of consequences for our rule set. First, because
we have two sets to work with, we generally have separali rules for both
kinds of sets, 'left' rules and 'right' rules.

______

rF-.x

___________

ri-wvl'.F Rvl

________

LA IRAJ

Closed tl

We have also gained rules to handle negation, again in a 'right' and 'left'
variety. And we have a different rule for closing a branch, which looks at
both sets.

In the next chapter we will extend the tableau method in this second
representation to hybrid logic, and introduce rules for handling modal and
hybrid operators.

'8Note that this deviates from the interpretation in the first part of the paper! There
1' I- was read as r I— w for all w E , i.e. a conjunction.
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7 Tableaux for hybrid logic

After the small introduction of the previous chapter, we now go to work on
the actual tableau system for our hybrid logic. It will be largely based on
the tableau system in [6], but there will be some differences. Continuing
the line of thought of previous chapter, we will use the sequent tableau
representation. Moreover, a number of rules will be altered to make their
automated use more convenient.

7.1 Propositional rules
Starting where we left off in the previous chapter, we first make two minor
adaptions to the rule set that deals with propositional operators. We add
two pairs of rules to break up formulas with —. and -. as main operator,
such that we do not implicitly need to use rewriting rules to handle them.
And in addition each formula in the tableau will be grounded in a named
world, which is achieved by prepending the starting formulas with , (where

i is a fresh nominal).

Propoitiona1 rules

L
rI--.o,p,

R
F I- 1. ( F-

F. ,t, F
.. ['I- .(,; v

1. F. LVI
F

IRvI

1'. A
LA

— F- ',(; 1 1). .
F. F 1' .;. I

I L u(,:. —.

F F I' F I. - F H

II.-
F. F.,. ,L' F..I'F- I,F-

— dlclosed

7.2 Modal rules
Extending the tableau system to hybrid logic requires the introduction of
new kinds of rules to deal with its various aspects. '%e start with the modal
operators, Oand 0.

The basic method here is to break down formulas to ones of the form
ct,j. (p and T(>j by giving (individually) accessible worlds names. If we
have a 0 on the left side (or equivalently a 0 on the right side) this is
quite siiiiple: give the world it leads to a (new) name, splitting ,'C' into
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t,<C'j and Because (t,C) can be reconstructed from OOj and
we can replace it and avoid redundancy. We will see later on how these rules
correspond with the theory from the first part of the paper.

If we have a 0 on the left side (or equivalently a 0 on the right side) it is
more difficult because we do not know how many worlds there are (if any).
So iii this case we take the set of all worlds we do know are accessible, and
if we have ©,D then for each j such that @,0j we have ©,. However, it
is always possible that we may later find a new ©,Ok, so we cannot throw
away ;,[ILp without (possibly) losing information.

Modal rules

__________

r,ot I-

r, ,ot, f I- O,,

ii-
(Lo) r. .ot F

If we read [Rol and {LO[ from bottom to top, we see these proof steps are
equivalent to an application of the Paste Rule (note that the t introduced
by the tableau rule is a fresh nominal, so the conditions for applying PR
are met). And reading ILDI and [Rol upside down, they turn out to be an
application of bridge.

7.3 rules
Next we consider the © operator. The general strategy here is to eliminate
them u.s much as possible, by reducing sequences of @s to a single one, and
by removing formulas of the form @t that occur on the right side.

( rules

r,
L

F F
I Agreel

1. i.s F— IF— .. F. a, F-
F I—

L refi
ClOSC(l

(TJ
l'[t/.1 F— .Xfr/]

(L wbl

The first two rules are exactly what they seem, the tableau equivalents of
Agree. With the next two we have a significant divergence from 161. First
we have a different take on IL refi. Because we know is true for any 8,
there is no need to explicitly keep the formula around. However, we need
to complement this choice with the addition of a second closing rule: (.

The last rule in the box '© rules', IL subj, takes the place of two rules used
in [6] ( IL nomi and IL bridgel), and functions as a more general substitution
rule. Again this allows us to throw out formulas without losing important
information.
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7.4 j rules
The is the last operator we need to construct rules for. Again our goal is
to try and eliminate it as much as possible.

I rules

___________

, F
EL Nan.el r I- 7l8/ti1. t P4.5TIl

These rules correspond to DA (via Ded and AIM). The nature of these
rules is somewhat deceptive. The rules suggest we can simply eliminate
however, it does not work in every situation. The modal operators throw a
spanner in the works. As we saw there, certain formulas cannot be broken
down into subformnulas. If those subformula.s contain the j it means we

cannot eliminate them either. When this is the case we may run the risk of
getting trapped in loops, trying to buikl infinite counter-models.

In sonic cases this is avoidable. If we examine e.g. <)( I—
with the tableau system, then the naive application of rules would generate
more and more 'new' worlds. however, some of those can be unified: they
are not necessarily new. So in this case we can avoid looping by checking
whether worlds can be unified, or by using a model checker to see if the
partial counter-model suffices as it is.

however, an infinite counter-model becomes unavoidable with sequents
such as (I,(>T,(I JOT. 'QDD J(Ot,©D ItDD 1utOtZ I-' 'QOCt. (see
figure 7.1). Although, evidently, it may still be found in some cases.

Figure 7.1, When the tableau system is used to examine
the sequent 8OT, (3OT,©3DO s,Ot, D DD
©Ou I- © jt')t. it will proceed to generate every world
in the infinite model above.

The largest problem stems from the fact that in general hybrid logic with
is undecidable [1] (except under certain conditions). So we may need to

try uncountably many models before ruling out there is a counter-model.

7.5 Axiom introduction

In addition to the basic hybrid logic system, we also want to he able to
cope with (pure) axioms. For this we need a rule to introduce (instances)
of axioms into the tableau.

r F . I. OtI
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At any given moment there are only a finite number of instances to pick
from, because the number of nominals that are in use is finite. However,
an axiom may give rise to new nominals later on, and so there is again the
risk of getting stuck in a loop. Therefore it is important to choose carefully
which axiom and instance thereof is used.

7.6 Infinitary terms
Infinitary sequents pose the final challenge for our system. Recall that infini-
tary sequents contain a term which is the conjunction of a set of countably
infinitely many formulas. In this last section we will introduce two methods
for handling them.

Our first strategy deals with an infinitary term on the left side of the
sequent. The strategy here it to extract an appropriate instance from the
set.

Ike N}. r F-
Insti

With an infinitary term on the right side, the procedure is a bit more
complicated. Most likely induction will be needed, but the number of base
cases and induction cases may vary. When just one base and induction case
is necessary the following rule for strong induction can be used:

F-O.1,kIkEN)A I

F}— I F. Q,{k Ik<nEN}I-'.PInI1ifn>O} '
The tableau system laid out in this chapter will be the basis for the rest

of the work in this thesis.
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8 Design

'There is no such thing as intelligent design."

In this chapter we will discuss the hopes and dreams for our theorem
prover (many of which may be cruelly dashed when we arrive at the actual
implementation in the following chapter). Some attention will go to the
input and output, and the representation of data and rules, but the most
important aspect will be the global structure of the theorem prover and the
choices that have to be made there.

8.1 Design goals

Before design can start we should lay out our goals for the theorem prover
and take inventory of various choices and problems we may face.

The main goal is of course to prove theorems of hybrid logic, but we can
he more specific by looking at the various fragments.

The basic hybrid logic with only nominals and should not be much of
a problem. This fragment is decidable, although the run-time of a tableau
based algorithm may still be exponential in the length of the formulas. Next
we have the fragment of hybrid logic whkh also allows . This one is more
problematic because it is undecidable and therefore it may take arbitrarily
long to find a proof if there is one, and longer still if there is not. Neverthe-
less, we can give it a good shot. Lastly we allow infinitary terms. Now this
is the most unsettling, because we have as many variants here as there are
induction structures. Especially with respect to this last class, the theorem
prover will have to be limited in scope.

The prover will be allowed three acceptable types of output. If it can
find a proof it should return this in a readable format. If a counter-model is
found instead, we should instead be given this. The last case relates to the
intractability of the problem; if the program takes too long to decide either
way, it is allowed to give up.

8.2 Data structures
The normal hybrid formulas can be represented by a simple grammar, but
two more complex types warrant some extra attention. First, we have
parametrized formulas where a modal operator may be repeated a fixed, but
possibly unknown, number of times, e.g. formulas like Li' and ,4m+52•
And next, related to these, are infinitary terms, where we have an enume-
ration of an infinite number of (parametrized) formulas. e.g. {©1)"jn E N}.
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The nodes of the tableau are represented with eight sets of formula:
the main split is between formulas on the left and right side of the tur,,stile;
then each side is split further into four: simple formulas that cannot be split
up, inflnitary terms, composite formulas which may be split up into simple
formulas, and lastly 'boxed' formulas which can only be used together with
the other two types and cannot be reduced.

The last class of data we need to represent are the tableau rules. The
rules could he woven into the algorithm, hut by keeping the rule base
separate we can more easily modify the behaviour of the prover later on.
Each rule should consist of a number of elements: a name, whether it
operates on left or right formulas, what form of input it applies to and
what the result will be and optionally we could give each rule a priority or
specify a set of conditions in which it can be used (for example. we might
hasp rules that apply for specific frames). If we give rules priorities we
can also consider allowing these to be changed during the running of the
algorithm.

8.3 Preprocessing
After reading the input, it needs to be preprocessed to be able to use it
effectively. First, we distinguish the axioms, and the theorem we want to
prove. The terms in the theorem will have to be grounded in a world'9
(because each tableau rule only applies to grounded formulas) .Next we
can split the terms in the theorem up in several classes; first, aording to
whetlit', they occur on the left or right side of the turnstile (the 'I—' in a
sequent). and then, according to how the tableau rules apply to them (can
they he broken down further, and if so can they be replaced by the result).

8.4 Searching for a proof
An important part of the algorithm is the search procedure employed to find
a proof. At each step there are a number of ways a proof might be continued.
depending on which tableau rules apply. One option is to examine each
possible continuation at the same time. One benefit of this is that you
can do as much work as possible in each step. without having to do things
repeatedly. however, there is a large cost when rules split the node, because
you will have to keep theni all in memory; in the case of complex theorems
you can easily go beyond the limits of memory.

Another option is iterative deepening search. As in the case of breadth-
first search you will find the shallowest proof first, but without the cost in

'9A formula is grounded in a world z' if it has tire form O,.
To ground formulas, we choose a nominal z which does not occur in the theorem

arid then prefix the ungrounded formulas with . This is allowed because of the rules
SNec (Ch. 3.1), and VS (App. A.1.3).
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memory. Instead we have to trade off time: each deeper iteration has to
redo the work of the previous iteration.

When doing an iterative deepening search it makes sense to consider
prioritizing which sub-searchtree to examine first. And as this is determined
by the application of a rule, one way would be to give each rule a score; this
score could even be changed dynamically based on past successes. Up front
we can tell that closing a branch whenever a closing rule applies should have
the priority, because nothing shortens a search like stopping.

8.5 Finalizing the proof
Once we have a proof it generally is not pleasant to look at; e.g. at each
step we have kept all the subforinulas of previous steps, where in the end
we need at most two to close a branch. We can trim the fat off the proof by
tracing back from the leaves to the root, and keeping only those subformulas
that are necessary, which will reduce the length of the sequents at each step
of the proof.

In some cases it might be useful to take two nodes together; e.g. the end
node is typically a tautology p I- .p and together with the next step it might
be the instantiation of an axiom.

In other cases we might want to split a node, to make it explicit that
weakening is used to introduce extra subformulas (which were previously
trimmed away).

Finally before final printing, we can rename the nominals; the automatic
generation may have created unnecessarily long, weird names, and it would
be preferable to have nominals like i,j,k,8,t etc.
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9 Implementation

The theorem prover is implemented as a prolog program using SWI prolog.
It consists of six units, as shown in figure 9.1. The arrows in the picture
represent the interdependene of units. For example, the 'prover' unit is the
top-level unit which ties everything together, and the 'input' unit is required
by all other units for the representation of formulas. The unit misc' (for
miscellaneous) is a catch-all for predicates that do not fit well in any of the
other units.

The programming code for the prover can be found at the end of the
appendix section of this thesis, and is available upon request by email.

9.1 Input
Not much needs to he said about the 'input' unit; mainly two things are
handled here. Firstly, this unit defines a number of unary prefix operators
and binary infix operators to allow a more natural input of sequents that
one wishes to prove. Aside from the normal prolog convention to use terms
like implies(a. b) and not(a), the definition of prefix and infix operators
allows the more natural notation of a => b 20 and - a.

Following is a list of acceptable notations using operators:
formula representation(s)
-'a nota, a

diaa
la boxa
aVb aorb,a\/b
aAb aandb, a/\b
a — b a implies b, a —> b
a — b a equals b, a <—> b

C i : a, at i : a

a ! i : a, bind i : a, name i : a, downarrow i : b
The hybrid operators pose a bit of a problem here, because the way they

are normally used cannot be well replicated in SW! prolog. To fix this we

20_>. might have been preferred as operator but unfortunately it is an operator used
by prolog itself and redefining it causes problems in some cases.

55

Figure 9.1. The six parts of the prover and their inter-
dependetice



use a second operator, ':', to tie the hybrid operator-i-nominal to the rest of
the formula.

Three further types of formulas cannot be represented with operators,
and caii only be written as regular prolog terms:

formula representation(s)
08a dia(a, [8])
Dn+k+ma box(a, [k,m,n])
{an,k E N} forall(a, (k,n]), set(a, [k,n])

It should be noted that the order in which the parameter list is given does
not really matter, as it will be sorted in preprocessing (any numbers will be
summed together and made the first element).

The second part of the 'input' unit defines predicates to govern the
standardization of the input. This is necessary because as seen above a
number of alternative input notations is allowed for some formulas, and
therefore the input needs to be converted to a common internal format.

9.2 Printing
\Vhen we have found a proof, we next want a way to print it in a legible
manner; to accomplish this we make use of the typesetting system WThX.
The hussproofs package is used to allow the creation of sequent-style proof
trees. The proof tree from the tableau prover is converted step-by-step into
lYlX commands and written to a temporary file. Once this translation is
finished the temporary file is compiled and a pdf viewer is called to show
the result.

9.3 Model checking

The model checker incorporated in the system is very rudimentary and only
serves to pick out the mnoet common counter-models. It works by taking
the formulas of the form Oj from the left side of the node and using
them to construct a candidate model, built from the perspective of a root
world (which is the world used to ground formulas in the theorem). It then
proceeds to test whether the other formulas from the left side are satisfied
in this candidate model (at the root world), and whether the formulas from
the right side fail to be satisfied. If these conditions are met we have a
counter-model.

The modelchecker is limited in a number of ways. Firstly, it does not
ascribe a valuation of propositional variables to the different worlds, so it
fails when anything but pure formulas is involved. Consequently frame.
checker might be a more appropriate name.

A second limitation lies in its assumptions of its input. This input is
presumed to come from the tableau prover. For example, formulas like

are expected to have been dealt with by the tableau; which allows the
checker to ume all worlds are uniquely named.



9.4 Rulebase
'l'he ruleba.se contains the rules for the tableau system. The head of each
rule consists of three parts, a signature, an argument and a result. The
signature gives the name of the rule, as well as information which will be
used by the prover to select the argument. The argument contains one or
two formulas, selected from the tableau node to which the rule is to be
applied. The formulas from the argument are then used to determine the
result of the rule, either solely via pattern matching in the head or by the
optional body of the rule. Once the result of the rule is known it (au be
used to make the next step in the tableau.

To give a better idea of the ruleba.se we will discuss a few examples. We
start with one of the simplest rules from the ruleba.se:

rule( sig(r, 'T—O', s),
arg(C S : S ),
res (close)
).

The signature part of the rule tells us that if we want to apply the 'T-@'
rule, then we need to find an argument among the set of simple formulas on
the right side of the node. The argument part tells us that the argument
needs to be of the form s. And lastly, the result part tells us that if
we have succeeded in finding the argument. then we can close the current
branch of the tableau (because obviously i can never be false).

The most important difference in our second example, compared to the
first, is t 1w result of the rule. Often the branch of a tableau will not be
closed but will grow in seine way.

rule( sig(l, 'L imply', c),

arg( C S : Phi implies Psi ),

res( split(add([], [C S Phi]),

add([C S : Psi], [])

))
When the left imply' rule applies the branch of the tableau splits in two.
and the prover will need to complete both branches if it is to find a proof.

The last example shows two important differences with the previous

examples. First, we have two formulas in the argument part of the rule.

Secondly, there is a significant body to the rule, relating the argument to

the result.
rule( sig(l, 'L box—n', sb),

arg( C S box(Phi,P) , C S : dia(nom(T),(L])),
res( add([C nom(T) : Res], []))

(number(L) —> selectnum(L, P. R) ; select(L,P,R)),

((R =— []) —> (Phi \= nom(T), Rem — Phi)
(Res = box(Phi, R))).

This rule deals with formulas that have a repeated modal operator. If we



have ,O't and where p2 1 then we can add to the node
of the tableau. However, I might be either a number or a parameter and p
can be the sum of a number and several parameters; so some work is needed
to construct the right result.

After the declaration of the entire rulebase, the signatures of the rules
are collected to allow easy selection of a rule. The prover can then pick the
rules one at a time in the order in which they were declared, choosing the
arguments based on the rule that was selected rather than the other way
around. This way simple or non-branching rules can be given precedence
over more complicated ones.

9.5 Prover
The engine of the theorem prover is contained in the 'prover' unit, and ties
the other units together.

\e query the prover by providing a sequent to the predicate start;
the prover then proceeds by standardizing the notation of the sequent, and
prepares the sequent further by grounding each term to a world. The final
step of preprocessing entails sorting out the terms into their various bins.

After preprocessing we start the real work: an iterative deepening search
for a proof or counter-model. We run processing cycles of increasing depths,
starting at a depth of one, until we either get a result or reach the maximum
depth (which defaults to 15, but can be changed by the user). In this way
we should get the shallowest, most concise proof, if there is one.

The processing cycle falls into several steps again: First, we check whether
we have reached the maximum depth, in which case the prover will let the
user know its limit has been reached and stop. If we have not gone beyond
the maximum depth, then the next step is for the modelchecker to try and
distill a counter-model from the current tableau node. If we do not find a
counter-model then we will need to continue work on building the tableau.

To make the next step in the tableau we first pick a rule by selecting a rule
signature. Based on the signature we try to select the required arguments;
if they can be replaced they are also extracted from the node. Once we have
the arguments we apply the rule to determine how to make the next step.
If the rule calls for closing the current branch we do so; otherwise we will
need to update tIle tableau node in some way for the next step.

There are three types of updates a rule can call for: the usual case will
be that we need to add formulas to the left and/or right side of the node.
The second case calls for splitting the tableau into two branches; which then
reduces to two different instances of the previous case. Lastly we may need
to replace one nominal by another throughout the node.

Onec we have the updated tableau node(s), we recursively apply the
processing cycle with a decrea.scd depth.



On return from the recursion we may find that there was a counter-model
down the road, or that we reached the maximum depth. In those cases we
simply pass on that result. We may also find that we successfully closed
the hranch(es) beneath the current node. When this happens we proceed
by cleaning up the current node, ridding it of formulas that were not used
further down, and then finish the current proof-subtree to pass on up.

After the iterative deepening search has finished, all that is left is to
show the result. Proofs are displayed by generating a pdf; and a counter-
model, or notice of reaching the maximum depth, is shown in plain text on
the terminal.
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10 Results and evaluation

In this chapter we will give a few examples of the prover at work. All
the sequents used in these examples are taken from among the examples
elsewhere in this thesis; however, in a few cases they have had to be adapted
slightly, because unfortunately the prover still lacks proper functionality for
handling axioms.

First, we start the program, by starting up the prolog interpreter, and
loading the hyloprover unit (which then loads the other units).

Walcose to SWI-Prolog (Multi-threaded, Version 5.6.35)
Copyright (c) 1990—2007 University of A.sterdaa.
SWI-Prolog coses vith ABSOLUTELY NO WARRANTY. This is free 8Oftvare,
and you are velcose to redistribute it under certain conditions.
Please visit http://vvv.svi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropoe(Word).

?- (hyloproverj.
% input.pl co.piled 0.00 sec 8,996 bytes
X print.pl co.piled 0.00 sec 12,152 bytes
X aisc.pl cospiled 0.00 sec. 10.956 bytes
Z rulebaze.pl coapiled 0.01 sec. 23,404 bytes

•odalchacker.pl coapiled 0.00 sec 10.644 bytes
byloprover cospiled 0.01 sac, 82,696 bytes

Yes

10.1 Example 1, CD: o,Otmk, ©Ok I— Q,Om j3

Our first example will deal with the Common Descendant theorem, for
which a hand-made proof is given in appendix A.2.3. To get the prover
working on this theorem we query it with the command:

start((C noei(i):dia(nos(k), Em]), C nom(j) :dia(no.(k), En])] ::—
C nom(i):dia(! non(s):(C nos(j):dia(no.(s),[n])).(.])).

Almost immediately the prover will have found a proof, and calls the
pdfviewer to display it, as shown in the screenshot in figure 10.1 on the next

page. Most notable of this exaniple is that the prover works on a generalized
sequent: the theorem holds for any ?fl and n.

10.2 Example 2, reflexivity = AS3: {,©huiIn e N} I- J
Our ((ond example comes from section 1.4.1, and is an infinitary theorem.
Our goal is to prove

reflexivity = AS3: {—'aO'in E N} F J

\\e fae an important problem here: we cannot use axioms. So we need
to adapt the theorem slightly. Instead of using an axiom for reflexivity, we
take only a single specific instance of a reflexive axioiii. and add this to the
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Figure 10.1, screenshot of the prover after finding the
proof in the first example.

premise of the sequent. Now we can query our prover with:

start(fCnoc(i):dia nom(i),

forall(Cnoni(i):not dia(noiu(i). (a, 1]), (n]))::—false).

In the terminal window we will get the following output:

And in our pdfviewer this proof is displayed in a much more humane manner
as:

T-
I- t

Lnot
L ln,x-n

- L rnf-b
ri

1 o,{EJ1' --ilsi .\ }
- Lint-dual'.-'• { - c }— - L mt-agree

F -i.
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7— start((C no.(i):dia no.(i),
forall(C no(j):not dia(no.(i). [n,1]). En))) :— false).

[(Cnom(s):forafl(Cnoa(i):not dia(nos(i). [1. n)). En)), Cno.(i):dia(no.
Ci), (1])] ::—(], (I. mt—agree. [lno.(i):dia(no.(i). [1)), Cno.(i):fora

1l(not dia(nos(i). (1, n)), (n])]::(] , EL inf—dnal,

i), (1]), Cnos(i):forall(box(not no.(i). (1. n)). (nfl)::—O, EL jut—b,

([Cno(i):box(not no.(i), [1)). Snos(i):dia(no.(i). (i)))::—[J, EL box
—n [(Cnoi(i):not no.(i))::—U, IL not, (Ll::—(o.(i):no.(i)), IT—C)))

1)1]]])]]



This example shows that our prover can indeed prove infinitary theorems.
Although we may need to work around a lack of support for axioms to
accomplish this.

10.3 Example 3, AS2 : {-jk E N Ak? 1) I- I = I— T
ihe third example is another theorem that involves infinitary terms, it is

the theorem from section 4.4.2.

{OkjkENAk � 1)1- J . HOT

Again we have an axiom to deal wit Ii. but we solve the problem differently
this time. Instead of taking specific instances of the axiom, we can leave
nominals uninstantiated by making use of prolog variables. In the prover
process these variable nominals can then be instantiated when they are
unified with another nominal. However, such an 'axiom' would still need
to be added for every different instance of it which is used throughout the
proof.

Our query to the prover is given as follows:

start((forall(C noiia(I):not dia(nomi(j), [k,i]), 1k)) implies false]

::—dia true).

can he ,een. we left one nominal from the axiom uninitialized, giving it

the variable I. The reason we did not leave j uninitialized is purely to get a
better looking proof: j is printed in the proof and if it had been a variable
we would have gotten something like G_143 in its place.

On finding the proof, prolog lets us know which instantiations where
used for any variables (in this case I). The terminal output is shown below:

?— start( fforall(C no.(I): not dia(nom(j). [k.iJ). 1k)) iepli.e talc.)

dim true).

dia(nonl(J), [1, k)), lk))i.plies tales)::—

[Snom(.):dia(true. (1))]. IL imply, ([]::—[Cnoe(s):dia(true. (1)). mo.

(.):foraJ1(Cno.(s):nOt dia(nom(j), [1, k]), 1k))], tR md.
Cnos(.):not dla(no.(j). (1]), Sno.(s):dia(trus, (1])]. ER age.. (I

]::—[Cno.(*):not dia(no.(j), (1]). Onoc(a):dia(trus, (1])). ER not, ([C

no.(*):dia(no.(j), (i)))::—[mno.(s):dia(true, [1])]. ER dim—n. ([]::—[C

nom(j):true], [T]))))))]. [(Cno.(s): Cno.(*):not dia(nos(j). (1, k]))::

—[Cno.(s): Ino.(e):not dia(no.(j). (1. k))), [id))fl,

IT)]]]

This is pdfeTel, Version 3.141592-1.21a-2.2 (Web2C 7.5.4)
entering extended code

done

Yes
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In our prett v-printed proof we can clearly ee our prover using induction
to eliminate an infiiiitary term. And there is no sign of the variable nominal.
as it has been unified with * (the root world) throughout the proof.

T
I- O,T

ri 3-a.T Rdia-n
knot

Id

.o. v o.- R agree

R hid. ) I v O.{.—<'jIkN } L imply
.({@. } -l )

10.4 Example 4, a counter-model for Ot I— ©,' k 3Dk
Our last example in this chapter comes from section 7.4, where we used

(;'( I- (q.O k ©30k as an example of problems a pure tableau prover
might face. \Vithout any countermeasures, a tableau could keep applying
rules ad infinituni. For this reason we have included a small model checker
to our tableau system.

\Vc set our prover to work on (4Kl I— ©O lk "'Jk using the following
query

start(Cnom(s):dia no(t): :—Cnom(s):dia(!no(k):Onom(s):box nom(k))).

After a few moments, the prover displays its findings in the terminal: there
is a counter-model.

9— atart(Cnou(a):dia no.(t)::- Cno.(s):dia(!no.(k): no.(s):box no.(k))).
Cotinter-ode1
[([([world(no.(s)). vorld(no.(nC)). vorld(no.(t)), link(no.(a). no.(nC),
(1)), link(no.(s), no.(t), [1]))]]]]

The output is not pretty, but it is clear enough. If we have worlds s, c and f,
and the only links are from s to e and from . to 1, then the sequent cannot
be true: the premise is true, but the consequent is not.

10.5 Final remarks
As the examples in this chapter show, our prover comes a long way to meet
the goals we have set. It can prove theorems and display them in a format
that is comfortable to read. It can also find counter-models. On down side,
a regrettable deficiency is the inability to deal with axioms in a proper way;
although, as we have seen, there are workarounds in some cases.

63



References

121 Carlos Areces and Juan Heguiabehere. HyloRes: Direct resolution
for hybrid logics. In C. Areces and NI. de Rijke, editors, Proceedings
of Methods for Modalities 2, Amsterdam, The Net herlands, November
2001.
website: http://wwu. br Ia. fr/areces/content/papers/SOrtdate .php

doc: http://www.boria.fr/areCes/COnteflt/PaPerB/tilaS/4lRO2.Pdf

[6] Patrick Blackburn and Maarten Marx. Tableaux for quantified hybrid

logic. In U. Egly and C. Fern,nüller. editors, Automated Reasoning with
Analytic Tableaux and Related Methods, pages 38-52. International Con-
ference. TABLEAUX 2002, 2002.
website: bttp://wvw.boria. fr/b1ackbur/pub.htal
doc: http : //www. loria. fr/'blackbur/paperB/tableauxO2 .pdf

(8] Robert S. Boyer and J. Strot.her Moore. A Computational Logic. ACM
monograph series. ISSN 0572-4252. New York [etc.] : Academic Press,
1979.

191 Ricardo Caferra, Alexander Leitsch, and Nicolas l'eltier. Automated
Model Building, chapter Automated Model Building (Ch.1 Introduc-

tion), page 33-I. Applied Logic Series , Vol. 31. Kluwer, 2004.

website: http://www. logic .at/people/leitacb/
doc: http: //www.bogic .at/people/beitsch/mbbook.pdf

114] Lawrence C. Paulson. Designing a theorem prover. In Abrasnsky &

(;abbay k Maibaum (Eds.), editor, Handbook of Logic in Computer
Science, volume 2, pages 415-175. Clarendon, 1992.

website: https://www.publications.cl.caa.aC.uk/116/
doc: https://wvv.publications.cl.Cal.aC.uk/116/Ol/TRl92lCPdeSigfliflg.Pdf

64



Part V
Reflect ions

Contents

11 Discussion 66
ii.! The Proof Method 66

11.2 The Implementation Language 66

12 Further work 68

12.1 Axioms 68

12.2 Inlinitary Terms 68

12.3 Model checking 68

12.4 Hybrid Sahlqvist formulas 69

References 70

65



11 Discussion

In this thesis we have developed, to our knowledge, the first theorem prover
for itifinitary hybrid logic. It should be mentioned, however, that there are
provers for other flavours of llvl)rid logic (e.g. IlyloRes 121), but none of
them deal with infinitary hybrid logic.

Rather than adapting an existing prover, we have built a new one from
the ground up. One of the reasons for this was simply the problem of getting
access to existing provers and their source code. Another reason lies in that
our goal is to provide a human-readable proof, and not, as is often the case,
just a yes or no answer as to whether a sequent is a theorem.

11.1 The Proof Method
Our first real challenge was to find a way to adapt the theoretical proof
system based on 1111 in such a way that we could use it to prove theorems.
A direct approach is problematic, because bottom-up there is no telling
which axioms, or how many, we need to combine to reach our candidate
theorem; and top-down we have to deal with the cut rule, which gives us an
infinite number of choices to proceed.

To avoid these problems we have had to adapt the infinitary proof system
to one of several possible proof methods. An important reason for choosing
a tableaux method based on (61 comes, again, from our goal of providing
intelligible proofs: as discussed in section 6.2, a tableau proof can be easily
transformed to a proof in sequent calculus. So by employing the tableau
method we can remain close to the original proof system. If on the other
hand we had chosen a different proof method which was further removed
from sequent calculus, e.g. resolution (2J, then a lot more effort would be
needed to transform the result into a readable deductive proof.

However, there are also disadvantages to the approach we have taken.
The tableau method is not the most efficient proving method, and by focus-
ing on creating a readable proof we have had to trade in even more efficiency:
we have dozens of rules for specific situations (and still have not exhausted
all options), where we might have done with fewer if we had only needed to
answer yes or no.

11.2 The Implementation Language
The language we chose to implement our prover in is Prolog. One reason
for this is obvious: l'rolog is a logical programming language, and we are
dealing with a logic project, so it is a natural first choice. A more important
reason is that a logical language generally allows smaller programs that are
easier to read and understand 21, compared to imperative programming

21Functional languages like tiaskell also share the same advantage of allowing small
programs, but unfamiliarity with Haskell prevented it from being a viable option.
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languages like ('/('++. Related to this is the fact that Prolog enables us to
do a number of things without much effort, e.g.:

• \Ve can provide a half-decent notation for hybrid logic formulas by
defining operators.

• Rules can be simply defined as predicates and still be used as a separal t'
rulebase.

• Matching formulas can be done via prolog unification
• Backtracking is automatic.

In other areas Prolog is not as congenial, however.

For one, Prolog is relatively slow, but this can easily he forgiven; speed is
not the main purpose, and its advantages outweigh this small disadvantage.
More problematic is another handicap, which rears its head when we have
to deal with complex data-structures.

In the normal style of Prolog programming data has to he passed on in
each step. When there are a lot of different pieces of data, we can either
use predicates with many arguments, which does little for intelligibility, or
we can try to group the data in some structure. But once we have built a
complex data structure, we find that accessing it becomes a burden. In our
prover this is especially apparent with the structure of the tableau nodes
and the predicate selectarg which a((esses and modifies'22 it.

Data management has proven to be a real headache in Prolog. in no
small part detracting from the readability we desire from a Prolog program.
In an imperative programming language like C/C++ this would be much
less of a problem, because we could have direct access to parts of data and
hide away processes in objects; hut in other areas, like matching formulas,
things would be much more complicated again. Overall it is hard to say
which would be preferable without having tried the alternatives.

22There is no real modification of data, instead one piece of data is put in relation to
a piece of data which can be considered a modified copy.
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12 Further work

We have triade a long and arduous journey on a path from theory to imple-
nwntation, but the path continues ever onwards. This thesis may be nearly
at its end, but there is always further work to be done in projects such as
these. In this final chapter we explore the road which lies ahead for anyone
willing to venture there.

12.1 Axioms
As we noted in chapter 10, one of the shortcomings of our theorem prover
is that it. lacks a mechanism for dealing with axioms. Although we can
work around this in some cases, it would be much more convenient if such
a mechanism were included.

The main problem with axioms is finding the right initialization. Using
variable nominals23 that are instantiated once they are matched to actual
nominals poses the problem that we have to clean up uninitialized nominals
at the end. On the other hand, initializing axioms entirely the moment they
are invoked means we may have to try every combination of nominals that
occur in the current tableau branch.

12.2 Infinitary Terms
The current theorem prover only covers a limited range of infinitary terms.
Au obvious improvement to the system would he to extend this range. For
example, one could think of generalizing the induction rule. It should be
possible to use induction structures to define formulas, and then use those
same structures in a general induction rule to decide which base cas are
needed and which induction steps.

\\e could also think about better heuristics for extracting instances from
infinite sets. At the moment we have a lot of ad hoc rules for combining
infinitary terms with normal formulas; cleaning this up would be a marked
improvement to the intelligibility of the program.

12.3 Model checking

Although the current model checker embedded in the system does not, in
general, contribute a lot to the results, it may be worth exploring the com-
bination further. Combining two methods in this way may help cover blind
spots in either: A tableau system tries to exclude the possibility there is a
counter-model, but might not necessarily notice when there is one. A model
checker (or rather model builder [9]) approaches the problem from the other
direction —— it tries to give a counter-model but might fail to notice there
cannot be one.

23Vhich could be implemented with prolog variables, as we did in chapter 10, or by
some other means over which we have more direct control.
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And at the very least, it would seem fitting to have a hybrid plover for
a hybrid logic.

The model checker that is currently integrated in the prover systeni is

very niinimalistic, and so there are a number of avenues opeii for further
development. Firstly, there is the issue of propositional variables. The
checker only builds a franme: it ignores the valuation function (and conse-
quently cannot give a conclusive answer when propositional variables are
involved). By extending the model checker to take propositional variables
into consi(leration it would become a lot more versatile.

Another area for improvement lies in how the model (frame) is built.
The checker only uses formulas of the type ©Oj, but it could also use other
formulas. For example, if we have DOi, then every time we would create
a new link from i to another world, we should make a link in the reverse
direction. In the current setup, the model checker waits for the tableau
system to create (tOi for every x such that Ox.

A final option we will mention here is including a heuristic for recognizing
infinite models. Some sequents only have counter-models of an infinite size.
which can pose a real problem for a theorem prover because it might work
diligently on a proof indefinitely (safe for time limits and similar safeguards).
People on the other hand can sometimes quickly spot that there is such a
counter-model; giving a model checker that same intuition would therefore
be a helpful addition.

12.4 Hybrid Sahlqvist formulas

Although the chapter about hybrid logic and Sahlqvist formulas was 'on
the side. so to speak, there are sonic interesting opportunities for future
work. On the theoretical side one can consider working out the details
of the translation for the extensions of Sahlqvist formulas that exist. On
the practical side, it would be interesting to implement the algorithm for
translating between Sahlqvist, Kraeht, and hybrid formulas. And, when
this has been accomplished, such an implementation could be used as part
of theorem prover that internally works only with pure axioms.
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A Additional hand proofs

In this appendix the additional hand proofs that were constructed during
the writing of this thesis will be included. Some of the theorems, rules and
equivalences between frame axioms that are proved here have already been
used or mentioned in chapter 1. but many others are new.

As we did in chapter 4, we start with a number of relatively simple rules
and sequents. Next we proceed to a number of generalized sequents and
rules. And finally we look at a few pure formulas corresponding to modal
axioms that characterize certain frame properties. (There are no further
examples involving infinitary sequents.)

A.1 Derivable rules and sequents
A.1.1 DedRev (reverse deduction): ['I- —a ) r.
DedRev is a simple rule which offers the reverse functionality of Ded. It
is quite useful for simplifying proofs by streamlining sequents for use with
InfCut.

given MI'
F'-Q—.t O.Q—'?Ft

IniCut

A.1.2 NR (name rule): [',iF = Fl— provided ifnom(F,p)
The name rule provides the means to eliminate superfluous nominals from
the premise of a sequent. When no claims are made regarding a world named
by a nominal its elimination does not influence the validity of the theorem.

given (i fnas(I'p)}
r,jI-, To

F
SNeco -----

InfCuto.r F
j. o,r SNec1

Name,Nant&evri-,

A.1.3 distr (distribution of over A): I- (At) .—. (cWA©1,)
As is the case with every normal modal operator24 , ( distributes over A;
neverIht(Ies. for completeness, it is proven lien. This theorem has already
been used in chapter .1 for the proof of distr".

taut taut

___________

' tautSNee. SNeco'.(cAt') O.pA)t—.,j,

______________

SN(;Ae')- p,O.O.('At,) ec
(t,A .v) F (O,AO.) O,(A)

2 tA normal modal operator is one for which strong necessitation holds, or, equiva-
leittly. both the distribution axiom (also called K axiom) and (weak) necessitation; e.g.
0 in basic modal logic, K in epistemic logic, C and H in temporal logic and N in
dyrtantic togtc, but not, in general, their duals.
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A.1.4 distr_. (distribution of ' over —.): I— c( -_ _÷ (Q —.

If we expand the definition of —+ the theorem distr . follows directly from
distr" (which was proven in chapter 4).

distx°
4,( vV) .. (4

SI)
L fi.(-Vv) .-. -*.CV.t)
- —. ,) ._. (ii;—.

A.1.5 distr. (distribution of (t over 4—*): I- © .— /,) — (ui; .- i')
The previous two theorems together help to prove the distrilmt ion theorem
for the last common connective.

distr?

________________________

• 0- A () 0. A l -. 01) dtr
I-

Similar distribution theorems for j (distr . distr1 distrL and distrL)
can be proven along the same lines as the distribution theorems for simply
replae the (1 by through the proofs (in fact this holds for any modal
operator which is a self-dual).

A.1.6 VB (vacuous binding): Fj4 provided i fnom()

Vacuous binding is very similar to the name rule and follows directly
from it. Again, the intuition is that attributing a name to a world is mean-
ingless if you iicvvr use the name.

DA { fnos(p))
j,,oço

NR

A.1.7 VB" (vacuous binding after ©): I- t, h

The theorem vacuous binding after effect ivclv says it is unnecessary
to state that you will henceforth refer to a world by a certain name if that
name already refers to it.

DA
-

55cr0

_______

•
Ia

______

——i-—— ditr..
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A.1.8 VS (vacuous satisfaction): I' I— ©1p = r F and I— . r I- ,
provided i fnom(F,p)

The vacuous satisfaction rule provides a shortcut in the frequent case
where you want to remove an from part of a sequent.

given givenr
- SNec1 SNec1

VB
' '

VBNj, jon-
Name Name

A.1.9 Nom: I- (©j A ©o) —*

Non) captures the intuition that if two nominals can be identified wit Ii each
other, then if a formula is true at the world referred to be the first, then
it niust also be true for the world referred to by the other (because the
nominals in fact refer to the same world).

Intr

prop

SD.
' SNecoo(j A

Dlstr

_______________________________

-Distr

F
Agree

A.1.1O SD (self-duality of j): F -' -
As has been mentioned before is a self-dual, just like (Ct. Now, we finally

get around to proving it: validating earlier claims that depend on it.

L)A

__________

i-j ;..
I, '1.'-, ,' T4SNeco

—, -.,)
Inftiit'

SNec1(, —;)
Name

A.1.11 DB (double bind): E-jJ —
The theorem double bind states that giving the same name to a world
twice is not better than doing it once. In hindsight this case is already
covered by vacuous binding: but waste not, want not.

DA

________________

T1

j -j, (j, ,, .-. ,) j,
InfCtit

distrL
1-1,1, ,, n
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A.1.12 BC (binder commutativity): l—J,

A more interesting theorem regarding the binder involves the case where a
world is given multiple names: the order of consecutive binders does not
matter.

____________

DA DA

;.j t,jl-j,, p_!.L' ''' NR
NR

A.1.13 BVS (bound variable substitution): HJ2 ;[j := i] i3 := il

A useful theorem that follows directly from the nature of a binder is that you
can rename a bound variable without consequences. This can be very useful
to avoid possible confusion between free and bound variables (by renaming
the latter).

I)A

E)A jF-,,,.—.pIi-—jJ T1i j, =11 T7 j, j -j, (1. —'I: =11) I-jj)
IniCut

— -—, Iiif('ut distrLi• (, 1. . ., = .71di,tr. -i, .-., i - .-.j.
.-,II: j]

A.2 Generalized rules and sequents
A.2.1 BG (generalized bounded generalization): H uD j

provided i j
Another nice example of a generalized sequent is generalized bounded
generalization. Its proof is more complicated than the proof for Back ,
but simpler then Bridget. As in those cases, we rely on induction for the
proof.

\Ve start with the base case, H I2 ©,i, which follows directly from
NameRev

!xz.Se case:

NamcRe-

'-' ImpAtEq

For the induction step we will use the following induction hypothesis:
Vo.pm<n(H Dm j, ©1Omj). From Bridge and Back4 we can deduce
that we can take a step from case n — 1 to n. By invoking the induction
hypothesis we can then finish the proof.
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induction step:

Bridge-*

-- - SNec0
k. F',"a-J H

Agree
'k. Q, -) H ,

SNec,, 'i&) Hj,
VII"'k.

SNec B&k BGH

fl , o,c'"j e 0O'kF- OO.Ok kF- 0 , 0&('j
— . k.D

SNec FkDj,O,:j L)ed

k - k 0 ,
IC.'kF-j,, 01, 0

VB,, ". ''k F 0 1, 0.c"j
k [1" 'Ok, *,c"j induction hypothis

, 'k F— ,D" H 0,0"' J. 0.c"'k
,D" j, 0,' -j

A.2.2 PR (generalized Paste Rule): F,©O'j F— I' I— ©ID'
provided j fnom(F. ) U {i}

The next obvious candidate for generalization is the Paste Rule. Because
this generalized rule is an equivalence, it means we have two directions to
prove.

The right direction of the proof for the generalized Paste Rule follows
the same tines as the normal Paste Rule, except that we use generalized
rules in a number of places.

given {j fnou(F,)U (i}

- - SNero,freebk
- - Agree'' SNec

I, ' VII, 4a.me
". J ,.' Bark'

n,.,, SN'r 'i,rf r;"or
- ,, InfCut

J ,:1 ,,
SNec0O,Ur. '
A ec 50

"U. nH" , ,-"j O,L" g
F- 0.O 1, 0.C"j

IniCutuFF nH
VSrF- n,",,

The left direction of the proof comes down to applying generalized
Bridge.

Bridge
H"J9,QH ("'Q

,"'jti,[pF SNeco
given

Agree
rH

r. q' F

IniCut
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A.2.3 CD (common descendant): 3(?'k F (ty'" j, (tO"S
The common descendant theorem states that if you can reach a common
descendant from two worlds, in m and n steps respectively, then from the
first world oii can reach a descendant in m steps which you can reach from
the other one in n steps.

Agre
4,:"k-.*kI"k

________Bridge___________

-'1 k Oj&O k "'k k z

DdRev "k,ökk,(/k uvs

. "k. ii, >"k - InI(lut

A.2.4 CDeq (corn. desc. equality): F ©Om1k©j<)"k '—b

The last generalized sequent we will deal with is an equality related to the
previous theorem. When two worlds share a descendant. it is equivalent to
say either that we can reach a world from i which can be reached from j or
that we can reach a world from j which we can reach from i.

The proof is broken down into two parts due to its size and because
it allows us to reuse an intermediary result. First, we prove Lemma 1:
J'° k mkF (jm k ©,O"k.

en
l. k. 0,<'"k .(" 0,O"k

SN,.'k U,c"k F- @,<)'" 1k ,O"k,,k.0,')"k- j o,)'k

__________________________

, ',O"k.j o,""k , ",'"'k U, ' "k "ii, ',
".:"k.m1k0,<'"kF" ,k5Ns 'k

—.C,'.'•' k',''kM" 1k','k.'k '"k K'

j */"'k. 0' , :"k - n,< "'
0,'k, ,LJ" '. 'k ",0.O" j "k BG

1k 0, . k,0,D . k 0. j, a,-' k *,D j, k

Lemma 1: a,:" 0.'Y"kF ,.Y" 1, "k

Then using two complementary instantiations of lemma 1 we show that
our theorem holds.

Leninia I Lemma I

Q ,," • t, "'k- 0,')"' 4,')"k c, j ,')'kI— '" j,
fled fled

,. ct, k —. O a,) k 0, k—' a,' C, k

1k 0,"'k.. -" Ia .0.')k Con

A.3 Frames

A.3.1 Symmetry

Symmetric frames have the property that any two worlds that are connected.
are connected in both direction.s; this property is characterized by the modal
axiom — D<. There are a number of alternative hybrid axioms to choose
from; e.g. i —* DOi, (DOi and Oj —. @,C>j. The first two are equivalent
by AIM, and i -. Ui follows from — DO by instantiation with i. So
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for their part we are only left to prove that the modal axiom follows from
either i DOi or ©100j.

Back { with Fr1i I
F —

I- -. DO,
DedRevO, F OOp given

,o(>&,O,;- !nR:ut l-DOj
1nftut

Bridge
ci i

U, j ç, ci, given
g,: Agree

F O,Di)i

Ded

O,p I- O.DO,
-. Ded

DIetr!
Snec1

—. DO)
Namer —.

Seriality means there is always a next world. A common modal axiom used
to characterize it is D —n , but a simpler one is OT. OT is a pure
axiom as well as a regular modal axiom; another pure axiom for seriality is
[]i —. Oi. First we will prove CT follows from D, —. O,, then the reverse;
which together means they are equivalent. Finally it is shown Di —i Oi leads
to L —. (and the reverse follows by instantiating with i), making all
these axioms equivalent.

gisen

1k'dftev
FT

SNeCS
-

S O- IniCut

A.3.3 Transitive

In transitive frames every world reachable in two (or more) steps can also
be reached in one step. Transitivity is characterized by the modal axiom

ULbp. and the hybrid candidates we consider are OOi —e Oi and
Oi A (i,Oj —. (>j. Like numerous times before, the first axiom follows from
an instantiation of the modal axioms (in this case with -'i), and we are only
left to show the reverse.

Bridge { with fresh I

(>Ifl-spF

C>,.

Dci, DO,> F 00V
SNece

The third hybrid axiom, 3Oi —i ©IO.J, can he proven equivalent to
in a fairly straightforward way.

A.3.2 Serial

given
F ö, j .

DedRev
' PR

given
• Ti)

i-

given
F Di—.
F- -0, V Cd

F- (>(-i Vi)
F OT
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given

Bridge :k . —.

'5). .it F ii 'k. ° jF
IniCut

— 'J'k.Di tLi

______________________

/)k. SNeco

_____________

,>k. Lot - 'kLI Agree

- PR

I- P 0, —.
Ded

Distr°- (D —. fl)
VS

I— U, -. 00*

When we have a frame in which every two worlds reachable from a given
world are connected then we call it euclidean. Exhaustively following the
same procedure we have performed so many times before, we note the modal
axiom O —. D<O for euclideanness and consider its equivalence to the pure
axioms Oi —. flOi and Oi A Oj starting with the former.

given
Bridge {i fno()} F <, —. o<>i

• F
Dedftev

-.. InfCut

•o's
SD0

.) —,11,_<, F f, -
SNeco,freshk

- L'>t,kD''2F O,-
P [3': H L[]•

H k •'5' -. O.o- Ded

Dist,°.

F (p -. DO

And finally, again, we show the two pure axioms are equivalent.
given

H <Si A ('j —. p
DedRevgten '

,
'Neet fresh k

[)edRev . Agret(.0'SjI- '5>j ')j-flj )J O5•
Inf(

ut (I.- PR

F <S'IAO) -.) FOi -.O&OO,
F &(<i —. 0),) Distr.

FQi—.DO,
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Iii idge U ' fno(,)J given

'3 '3

'."5'j. L1 H
I(ut

SNeco. fresh,
Agree

F ,[]1.] PR

H —. .DUQ 0
H -. DE1,)

,str.
S

In line with previous examples, we continue with demonstrating that the
second pure axiom, I— Oi A ©,Oj — j, is equivalent to the previous one.

gien
Bridge I- '5'(') .. 0)

DedRev'l,,O.''j Oj 003 H- 0)
InfCut0,,P,0j Qj

iA.0j-.0j

A.3.4 Euclidean



A.3.5 Functional

Functionality is nothing more than the combination of seriality and deter-
minism; modally it is characterized by Op —+ D, and a pure axiom for it
is Oi i—i Eli. The proof from modal to pure again follows from instantiation,
and in the other direction it follows from combining the results of seriality
and determinism.

given given

(deterrnirnsrn} {sen&}

A.3.6 Weakly dense
'Flie weakly dense fraineclass forms the second to last class we treat here. A
frame is weakly dense when every world reachable in one step can also be
reached in two; so e.g. reflexivity implies weak density.

The modal axiom characterizing this frame class is LIfl —+ D. The
only (simple) pure axioms that presents itself is <>i OOi , which follows

from instantiation with —.i. This leaves only the reverse direction to be
proven

Bridge given

cp Fii-.OOi reanev
InfCut0,, OO I- O.

Oi0i,OiDOI- frk k

Q,0i,OiOD I- O.,
O*°°e I-

FODO,—.OO,

vs —
I- DD,

A.3.7 Weakly connected

The final class of frames we will deal with consists of the weakly connected
frames; in these frames any two worlds reachable from a third must be either
connected or they must be the same world.

Recall that this frameclass already briefly came up in the example of
chapter 5, where we used the method developed in that chapter to show,
among other things, that D( A D —i ) V D( A 01/, — is equivalent to
<>i A Oj —. (,Cj V V ©,Oi). Here we will show this equivalence again,
but without the detour via first-order and second-order logic. Another pure
axiom we consider, is D(j [i V <>il) V D(i —i Ii V (>j]).

\Ve start by proving the two pure axioms equivalent. The first part
of this proof consists of deducing Oi A Oj —+ (l,Oj V ©,j V ©30i) under
assumption of D(j —. [i V i]) V D(i —i [j V Oil).
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given

DedRev

__________________•j3)

Bridge

0 . v j .(i .j vjJ) F- —.j '
i,-. -(j I> ,I.i -, jvj]) D' t°

T0 S. (j . '. ii .i V >j]) L r
DedRev

(3 IV
I

V IlVj I, V —. I)
J- 0> . ,(' 0 3 JJ

II
.3. I3';J , (3

SD0
j. u,j j .11,>). i >iJ)

- Dtstr.
I I. J- " - ,Fi Va -.: DedR

1>3 'I, 3. ,j. -.Jj V j] 3,Ir V &j

-j-.c1,5v-.jH ,[ivT
Dedi..jf- a,,jv(j]vo>]:v.rJ aDLstr,

1, 0,3 v , - v
F- T-I-J —.(F!jjv,jVO,0,)

Next we consider the other direction, and show that we can also derive
EJ(j —. [i V iJ) V D(i -. [j V j]) from Oi A Oj —. (@Oj V Jj V F1i).

i>j •(,jF,jVÜ,-i)
DedRevV 0.3 VKi SN0, sh k(!kI. flkrJ,C 3 V rt1.u.j V 0k

Agree

Ok0i,k-J 0,Qj V ,j V ,i V >)t
k>>, ok>>), —(,t > F-

DedRev

i.(j. -(Fa,i V >t),.t F- V (,j
Ck>. Ck73. --(>i V F- . V ,j

- - Dlstr?, Distrr*Ti. Q>j. o, V >t> i) Q,(. —. Jj V }(
kJ. -(°,:V ,-_>i)F ktI —.Fjvj)

11k >3, kL>(I -. [j VJ!) F V (.>>i>:

k-J. -ü1(i - . 3 V3((. U,) 0,1 V U>
Ded

3
or(_-.j jj(F 0.3 I '" Distr° Disti!.'Ilk>). 0k (I . I') Vj) 0,(j .

• j V 0 (j --.

F flfl(, . jvj])ViL(j . ,'..i])
-- -—-----—--—>-— Distr.

- j j) .' (j .

(V -j)V(j—.tiVOi)

Finally, we show the modal axiom A — V D( A Et' )
be derived from one of the pure axioms. In this case our choice falls on
K'i A Oj —. ((uj V ©1j V 3'Oi). Bearing in mind that both pure axioms
are equivalent and that D(i — [j V 0j]) V D(j —i [i V Oil) is an instantiatioli
of the modal axiom (with 'i and -nj), this suffices to show all three axioms
are all equivalent.
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B Additional computer proofs

In this appendix a few more (unannotated) computer proofs are collected.

B.1 Example 1, a simple induction

Q itery:

start([dia no(i),o(i):dia no(i))::—fora].1(dia(dia nom(i),[n]),[n])).

Terminal output:

tart(fla no.(i),Ino.(i):dia noa(i)] :-fora11(diaii rm i [r.
In])).
I [ro.) Ha(ncm(j) • [1)), no.(i) :dia(nom(i) (1])] - rn(' f-'rail
(dia(tha(nm() t'), [n]), [n))] • [R md, [Inom(.):dia(no.(i), (1)))
::—io.(.):diaCnoa(i). (1))], (id]], (1)),

n)), uo.(i):dia(noa(i), [1])]::—(Cnoa(*):dia(dia(no.(i), [1)), [1, n])

), [L dia-n, [n]). Cnoa(i):dia(no.(i), (1]). mo
•(nW):dia(no.(i), (1])]::—(Sno.(.):dia(dia(noa(i), (1]). (1, a])] (Fm d

ia—n, ([Cnoa(i):dia(noa(i), [1)), Cnoa(nW):dia(no.(i), (1])]::—(Cnoa(nU
):dia(dia(no.(i), (1]), [1))). [R dia—n. ((Sno.(i):dia(no.(i), (1))]::—
[Cnoa(i):dia(no.(i), [1])],

Formatted proof:

•id

O,.1nwO Rdia-n
Rdia-n

Id .1 ".'*
L dia-n

- .{;'n E R md

B.2 Example 2, BG
A computer version of A.2.l

Query:

start(::— C nom(i): box(! nom(j): C no(i): dia(noin(j),(n]), [n])).
Terminal output:

?— atart(::— C no.(i): box(! no(j): C no.(i): dia(no(j)jn]), (n])).
([]::—(eno.(i):box(!no.(j) Cnoa(i):dia(noa(j), (n]), [a])), (Fm box-n,

(n]))::—[Cno.(nC):!no.(J): Czio.(i):dia(no.(j), [

a])], [Fm na.e, [(Cno.(i);dia(no.(nC), [n])]::—[Cno.(nC): mo.(i):dja(no

•(nC), [ii))], (Fm agree, [n))]::-[Sno.(i):dia(noa
(nC), (a])],

Format ted proof:

Id
,"nC I- O,("nC

fl,-)'nC' cO."nC Ragree
ft name

F-, nCO,,c1, ,. j
ft box-n

F- ,t] , ,c j
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B.3 Example 3, symmetry
A computer version of A.3.1

Query:

eta t(Cnoin(I):(noin(J) => box dia noin(J))::—varphi —> box dia varphi).

Terminal out put:

?— start(Cnos(I):(nox(J) => box dia no.(J))::—varphi •> box dia varphi).

box(dia(noe(.), (1]). [i])]::—[Cno.('):varphi i

iiplies box(dia(varphi, (1)), (1))), ER isply. Cno.(.)

:nos(.)implies box(dia(nos(*), [1]), [1))]: :—(Cno.(*):box(dia(varphi,
1]), [1])], [R box—ne ([Cno.(s):varphi, Onom(s):dia(no.(ni), [1]). mO.
(s):noin(.)isplies box(dia(no.(), [1]), [1])]::—[Cno.(nI):dia(va.rphi,
1])], [L isply. [T-C]], ([Cno.(*):varphi, mo.(

s):box(dia(no.('), [1]). [1]), nos(.):dia(no(ni), [1)))::—(Cno.(nZ):d

ia(varphi. (1])], IL box—n. Cuos(nX):dia(no.(s). [1])

]::—[Cno.(nX):dia(varphi, (1])], [Ft dia-n, [(Cnom(s):varphi]::-[Cno.(s)

:varphi). [id)])]J]fl)]])

This is pdfsTel. Version 3.141592-1.21a-2.2 (W.b2C 7.5.4)
entering extended .ode
done

I S.
i—S

Yes

Format ted proof:

Id

Rdia-nT- ' Lb-u
L imply

Rbox.nLflc
R imply

-. [1K).) . flO,)

B.4 Example 4, CD-eq
A computer version of A.2.4

Query:

start(
(C noin(i):dia(! no(k):C noui(j):dia(noin(k).[n]).(.])) <>
(C nom(j):dia(' nois(k):C noiii(i):dia(nom(k),[m]).[n])) ).
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Terminal output:

Formatted proof:

(1,"nU. t ,(''k'ntcUk r1.z1

k —. i&

85

?— 8tart(::—
I (C noa(i):dia(' no.(k):C noe(j):dia(noa(k),[n)L[.])) <>

I
(C noa(j):dia(' no.(k):C noa(i):dia(no.(k),[.)),(n]))

([] : — [Cnoa(*) : (Cno.(i) :dia( !no.(k): Cnoa(j) :dia(noa(k) • En)) • Ea])) e

quals om(hdia(!noa(k): Cnoa(i):dia(noa(k), (.]), En)))). ER equal.

a(i):dja(!noa(k): Cnoa(j):dia(no.(k), En)), t.))] ::—[Cno
a(s): Cnoa(j):dia('nom(k): Cnoa(i):dia(nom(k), [a]), En))). [L agree,

[Cnoa(i):dia(!noa(k): Cno.(j):dia(noa(k). [n]), [a])]::-[Criom(.): noa(

j):dia('noa(k) : noa(i) :dia(no.(k) . [a]), En])], EL dia—n, [(Cnoa(i) di
a(no.(nT), [a)), Cnoa(nT):!noa(k): Cnom(j):dia(noa(k), [n])]::—(Cnoa(e)

Cnoa(j):dia('noa(k): Cnom(i):dia(noa(k), [a]). En])], [R agree, ([Cno
•(i):dia(noa(nT), (a]), Ino.(nT):!no.(k): Ino.(j):dia(noa(k), En])]::-[
Cno.(j):dia(!no.(k): Cno.(i):dia(no.(k), [a)), En))], EL nape, [(Cno.(i

):dia(noa(nT), (a]), Cno.(nT): Cnoa(j):dia(no.(nT), En])): :-[Cnoa(j):di

a('no.(k): Cno.(i):dia(noa(k), [a]). En])], EL agree, [(Cnoa(i):dia(noa

(nT), (a)). Cnoa(j):dia(noa(nT), (n])]::-[Cno.(j):dia(!noa(k): Cno.(i):

dia(noa(k), [a]), En])]. [R dia-n, [(Cnoa(i):dia(noa(nT), (.])]::-[Cnoa

(nT): !nos(k): Inoa(i):dia(noa(k), (a])J, ER naae. ([Cnoa(i):dia(noa(nI)

Ea])]::-(Cnoa(nT): Cno.(i):dia(noa(nT), (a])), ER agree, EECno.(i):di
a(no.(nT), (a])): :—(Cnoa(i):dia(noa(nT), (a))],
([Cnoa(.): Cnoa(j):dia(!noa(k): Cnoa(i):dia(no.(k), [a)), (n))]::-[Cnoa
(s): Cnoa(i):dia('no.(k): Cnoa(j):dia(noa(k), En]), (a))), EL agree, ([

Cnoa(j):dia(!noa(k): Cnoa(i):dia(noa(k), (a)), [n))]::—Elnoa(s): Cnoa(i
):dia(noa(k): Cnoa(j):dia(noa(k). (n)), (a))], (L dia-n, ((Cnoa(j):dia

(noa(nU), En]). Cnoa(ntJ):!noa(k): Cnoa(i):dia(no.(k), [afl]::—[nom():
Inoa(i):dia(!no.(k): Cnoa(j):dia(no.(k), En]), (a))), ER agree. ([Cnoa

(j):dia(no.(nU), En]). Inoa(nU):'noa(k): Cnoa(i):dia(noa(k), [m])]::—[C
noa(i):dia(!noa(k): Cnoa(j):dia(noa(k), En]), (a])), EL najie, ((Cno.(j)
:dia(noa(nU), En]), Cno.(nU): Cnoa(i):dia(noa(nU), [a]))::—[Cnoa(j):dja
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