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Abstract

With the advent of Grid computing, peer-to-peer systems and ad-hoc networks,
distributed systems are becoming increasingly open and operate at a much larger
scale in terms of the number of computational entities in the system. This poses
new challenges for computational resource allocation. Specifically, a resource
allocation mechanism must now deal with the increased size of the allocation
problem, as well as the fact that computational entities may be controlled by
different parties, with conflicting interests. Finally, there is an increased risk
that a computational entity will fail to perform its assigned tasks: there is eze-
cution uncertainty. Traditional resource allocation mechanisms are inadequate
in this setting. Thus, a new mechanism is required.

To this end, in this work an agent-based system is developed that can solve
the resource allocation problem in large-scale, open, distributed systems. Specif-
ically, we develop the Trust-Based CDA (T-CDA), a decentralised market-based
resource allocation mechanism. In this system, computational entities are mod-
elled as agents that may buy or sell the use of resources. The T-CDA is an
extension of the Continuous Double Auction (CDA) mechanism, which is a de-
centralised market-based resource allocation system. This means that the CDA
can deal with the first two challenges of large-scale, open, distributed systems:
its decentralised nature allows it to deal with large allocation problems, while
market-based mechanisms can deal with different agents having conflicting inter-
ests. Now, to meet the execution uncertainty challenge, the T-CDA additionally
allows agents to use a trust model in deciding whether or not to trade with a
certain other agent. Specifically, an additional step is introduced in the trading
process that allows agents commit to trades they believe will maximise their
expected utility.

We empirically evaluate the mechanism with Zero-Intelligence (ZI) agents,
both against the optimal solution given complete and perfect information and
against the standard CDA. We show the T-CDA consistently outperforms the
traditional CDA as execution uncertainty increases in the system. Furthermore,
we investigate the robustness of the mechanism to unreliable trust information
and find that performance degrades gracefully as information quality decreases.

Now, because in a decentralised mechanism the individual agent behaviours
are an important determinant in overall system behaviour, we also develop
Trust-Based ZIP (T-ZIP), a rudimentary trading strategy for the T-CDA. The
T-ZIP strategy is empirically evaluated and shown to outperform ZI in specific
conditions, showing an increase of efficiency of up to 80%. However, the T-ZIP
is shown to fail in other conditions and thus is not a general trading strategy for
the T-CDA. Insights are provided into the failure of T-ZIP in these conditions
and ways to design a generally applicable strategy are identified.
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Chapter 1

Introduction

Resource allocation is an important problem in computer science. Traditionally,
it has been studied in settings where computational entities are cooperative
(i.e. they work together towards a shared goal, such as the completion of some
computation) and the allocation is determined by a central authority (e.g. the
operating system kernel allocating available CPU time to different processes, or
a router allocating available network bandwidth to different services).

However, with the advent of Grid computing, peer-to-peer systems and ad-
hoc networks, distributed systems are now being populated by an increasingly
large number of computational entities. The following examples illustrate this
trend:

e The current (April 2009) top-ranked supercomputerﬂ IBM Roadrunner,
consists of 129.600 processor cores;

e The Large Hadron Collider Computing Grid combines 140 computing cen-
tres in 33 countriesf]

e The Folding@Home volunteer computing project has over 430.000 cores
online ]

Therefore, a fully centralised approach to resource allocation may not be feasi-
ble, as the central resource broker will become a bottleneck for system perfor-
mance and presents a single point of failure (Wolski et al.,|2003). Furthermore,
such settings are not necessarily cooperative: stakeholders may have conflicting
interests and may be motivated by their individual profit (e.g. stakeholder A
and stakeholder B each have their own computational workflow that they want
to be completed as soon as possible, hence they are in conflict over who gets
to use the available resources; a resource provider may sell the use of its data
center for a profit). Therefore, an approach that acknowledges the autonomy of
the different actors within a Multi-Agent System (MAS) is required.

In more detail, if we consider a truly open infrastructure, there may be a
very large number of agents providing a certain resource and a large number of
agents that need such a resource. For a number of reasons, some agents may

Thttp://www.top500.org/
%http://lcg.web.cern.ch/LCG/
Shttp://fah-web.stanford.edu/cgi-bin/main.py?qtype=osstats
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be more reliable (i.e. more likely to provide full use of the resource, or to settle
the payment) than others. We refer to this problem as ezecution uncertainty.
For example, a desktop computer providing its idle CPU time will typically be
less reliable than a dedicated machine in a data center with equivalent CPU
power, because a computation on a desktop machine may be halted when the
owner resumes use of the machine, while a resource provider that specialises in
selling its computational power will strive to prevent unnecessary interruptions.
The situation is complicated further by the fact that agents may enter or leave
the system at any time, which means that for an allocation to be meaningful,
it will need to be completed in a small time frame, since it may be invalidated
at any time by some of the participating agents leaving the system. Similarly,
given that agents may have strict deadlines regarding task execution, a timely
allocation is important.

Now, in a setting where autonomous agents compete for a limited demand
and supply of a resource, market-based resource allocation mechanisms are a
natural choice, since they are designed such that desirable overall system be-
haviour emerges from the agents’ selfish, profit-motivated behaviours (Clearwa-
ter, 1995)). In addition, as mentioned above, we want to avoid the need for a
centralised resource broker. Hence, we need a decentralised, market-based re-
source allocation mechanism. Considering these requirements, the Continuous
Double Auction (CDA) is an appropriate choice (Dash et al.l [2007).

However, the CDA is not designed with execution uncertainty in mind. When
there is uncertainty about the reliability of interacting agents, an agent A can
represent its beliefs about the reliability of agent B by its trust in agent B.
Therefore, in this thesis we propose an extension of the CDA that allows agents
to use trust information in their decision making.

Given this, in Section [I.I] the CDA is introduced in detail. Section [I.2 ex-
plains how the CDA fails in a setting where execution uncertainty is present and
argues that a solution based on trust is required. Then, the research goals of this
work are detailed in Section and the research contributions are summarised
in Section [1.4] Finally, Section [L.5] provides an overview of the structure of this
thesis.

1.1 The Continuous Double Auction

In the CDA, both buyers and sellers may submit their bids (offers to buy) and
asks (offers to sell) to the market at any time during the trading period. The
market clears continuously, that is, whenever a transaction is possible. In the
single-unit CDA, this is whenever the highest bid is at least as high as the
lowest ask. The CDA is a double auction, because there can be both multiple
buyers and multiple sellers. Typically all messages sent by agents in the market
are made public, anonymously (i.e. without making the identity of the sender
public).

Specifically, in the CDA, the market simply collects and emanates informa-
tion from and to traders. It maintains ordered lists of the current bids and asks:
the order books. The clearing process can be implemented by simply checking
whether the most recently submitted bid is at least as high as the current lowest
ask, or the most recently submitted ask is at least as low as the highest bid. If
that is the case, the market clears, i.e. a transaction takes place (see Section
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for a more in-depth discussion of the CDA).

This contrasts with centralised mechanisms, that will typically collect bids
and asks over a certain fixed period of time and then calculate an allocation as
one big optimisation problem. In the CDA, on the other hand, the allocation
of resources emerges from the interactions between traders in the market. As a
consequence, the CDA offers very little in the sense of guarantees regarding the
optimality of the allocation and there is no known optimal trader behaviour.
Therefore, it is up to traders to adopt a strategy (i.e. a systematic way of making
trading decisions) that ensures they get a good payoff from their participation
in the mechanism.

Notably, the Zero-Intelligence (ZI) strategy was developed by |Gode and
Sunder| (1993) to show that in the CDA, even agents that shout random prices
(and thus have no intelligence) achieve market efficiency that is close to that
of human traders. Hence, the CDA is inherently efficient. Subsequently, |Cliff
and Bruten| (1997) argued that |Gode and Sunder/s results depend on a specific
market structure, and that to achieve human-like performance in general, a more
intelligent strategy is needed. To this end, they developed Zero-Intelligence
Plus (ZIP), a minimally intelligent adaptive strategy for the CDA. Many more
strategies have subsequently been developed that attempt to achieve even higher
market efficiency. Trading strategies are discussed in more detail in Section |2.3

Specifically, market efficiency is defined in terms of the social welfare achieved
by the system. Social welfare is defined as the sum of the utility (or profit) de-
rived by each of the individuals in the system. Then, market efficiency is defined
as the ratio of the social welfare achieved by the market to the social welfare of
the optimal allocation.

The computational complexity of the CDA, from the point of view of the
market, is very low. In fact, the CDA can even be implemented in a fully decen-
tralised fashion, not requiring a central market or auctioneer at all. Specifically,
Ogston and Vassiliadis| (2002) compare the scalability of the CDA with a cen-
tral auctioneer, to a CDA with a distributed hierarchical set of auctioneers to
a fully decentralised CDA implemented as a peer-to-peer system. They show
that the peer-to-peer system performs better than even the hierarchical set of
auctioneers for systems with more than 5,000 traders, with no considerable loss
in market efficiency. Moreover, the peer-to-peer implementation scales beyond
160,000 traders, as the communication cost remains constant, while it is linear
for the central auctioneer. Thus, the CDA may be implemented as a more or
a less centralised system based on the needs of the specific application and can
scale to an arbitrary number of traders.

In summary, the following properties make the CDA appropriate for our
setting (large scale, open, distributed, computational resource allocation):

e The CDA can allocate among multiple buyers and sellers;

e Because the market clears continuously, the CDA can inherently deal with
agents entering and leaving the market during the trading process and with
new demand and supply continuously appearing

e The CDA can scale to very large numbers of buyers and sellers;

4That is not to say that the trading process will be unaffected by these events — indeed
later we will see that a good trading strategy for the CDA will need to be able to quickly
adjust to such changes.



4 Chapter 1. Introduction

e Because the demands on the central entity can be made as low as is re-
quired by the application, i.e. the mechanism can be fully decentralised,
the CDA can avoid the dangers of a single point of failure and being a
bottleneck for system performance inherent in centralised mechanisms.

Thus, the CDA exhibits highly desirable features for our domain. However, the
CDA in its standard form is not robust to execution uncertainty, as is explained
in the following section.

1.2 Execution Uncertainty

Now, we consider one aspect of computational resource allocation in a truly
open infrastructure, with which the CDA cannot deal: ezxecution uncertainty.
That is, successful execution of an agreed transaction cannot be guaranteed in
this setting. Specifically, an agent offering a certain resource may fail to provide
access to that resource (e.g. due to systems failure, or interruption to perform
a task of higher priority). Similarly, an agent that has agreed to pay a certain
amount may fail to complete the payment. Typically, different agents will have
varying degrees of reliability, the likelihood with which the agent will provide
full use of the resource promised, or the likelihood with which the agent will
settle the payment.

Given execution uncertainty, agents trading in the CDA will make sub-
optimal decisions, because the CDA does not provide the means to differentiate
between transaction partners based on their identity. Trade is conducted purely
on the basis of price. With execution uncertainty, this means that a buyer will
always choose a low-priced offer that is almost certainly faulty, over a reliable
offer that is priced slightly higher. Now, the elicitation, representation and use
of such reliability information is covered by models of trust (Ramchurn et al.,
2004). Specifically, a trust model allows an agent to gather and represent in-
formation on the reliability of other agents in a systematic way. Hence, using a
trust model will allow an agent to take (its best estimate of) the reliability of a
potential transaction partner into account. Therefore, we believe it is useful and
interesting to see whether models of trust can positively contribute to a trad-
ing agent’s success (profit or utility) in a continuous trading environment, by
allowing trading agents to balance cost and reliability of the transactions they
agree to. However, in the traditional CDA, agents cannot use a trust model,
because they do not control the clearing process by any other means than the
prices they shout. Moreover, in the CDA, bids and asks are anonymous and
thus a trust model cannot be used to judge the value of a shout, since trust is
based on the identity of the buyer or seller. Thus, a new mechanism is required.

To this end, in this thesis, we propose a novel variant of the CDA, the Trust-
Based CDA (T-CDA), that allows agents to use a trust model in their decision
making process to assess whether to accept or reject offers based on cost and the
reliability of the proposer. Additionally, we develop Trust-Based ZIP (T-ZIP),
a rudimentary trading strategy for the T-CDA. In so doing, we hypothesise
that this mechanism with this strategy will be robust to execution uncertainty
and will allocate resources in an efficient manner.
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1.3 Research Objectives

The aim of this thesis may be summarized in the following research question:

May the Continuous Double Auction be extended by a component
that enables agents to balance cost and reliability of the transac-
tions they agree to, by incorporating a trust-model in their decision
making, in a way that achieves close to optimal social welfare even
when faced with execution uncertainty?

Against this background, the following may be identified as the four main re-
search objectives for this thesis:

1. To create a novel trading mechanism, based on the CDA, that is robust
to execution uncertainty, by allowing agents to use a trust model in their
decision making during the trading process.

2. To study the properties of this new mechanism with minimally intelligent
traders. This includes efficiency (social welfare in comparison to the op-
timum social welfare), individual rationality of participating in the mech-
anism, balance of utilities derived by buyers and sellers, and robustness
against unreliable trust models.

3. To implement a trading strategy for the new mechanism.

4. To study the properties of the developed trading strategy and to bench-
mark its performance.

Each of these objectives is addressed by this thesis, with the overall aim of devel-
oping a decentralised resource allocation mechanism that is robust to execution
uncertainty.

1.4 Research Contributions

Given the research objectives outlined above, they are addressed in this thesis
through the following contributions:

1. The Trust-Based CDA (T-CDA) mechanism. A novel trading mechanism,
based on the CDA, that allows traders to use their trust model in making
trading decisions. The mechanism is empirically investigated using the
Z1 strategy. The T-CDA is shown to be robust to execution uncertainty,
if traders are given perfect and complete trust information, whereas the
CDA is shown to break down, because it does not allow agents to use trust
information. Furthermore, the robustness of the mechanism to unreliable
trust information is empirically demonstrated.

2. The Trust-Based ZIP (T-ZIP) strategy. A rudimentary strategy for the
T-CDA that is based on the ZIP strategy. The T-ZIP strategy is not a
generally applicable trading strategy, but rather is used to further investi-
gate the T-CDA mechanism and to more clearly identify the requirements
for a completely general trading strategy. The properties of the T-ZIP are
empirically investigated and benchmarked against the ZI strategy.
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1.5 Thesis Structure

Next, an overview of literature on market-based resource allocation, trust in
market-based systems and on the CDA is provided, in Chapter 2l Against this
background, in Chapter [3] the problem is formalised and some of its proper-
ties are analysed. Furthermore, suitable measures for empirical evaluation are
identified and the research questions are framed within the problem model.

Chapter [4] describes the design and motivation of T-CDA mechanism and
its implementation in a simulated environment. An empirical evaluation is
performed that shows the new mechanism is an improvement over the traditional
CDA. In Chapter [5 a rudimentary trading strategy is developed, based on the
ZIP strategy. It is empirically compared to the ZI behaviour and to the ZIP in
the traditional CDA. Finally, Chapter [6] concludes and identifies directions for
further work.



Chapter 2

Literature Review

In this chapter, an overview of relevant previous work is given. First, in Sec-
tion 2.1} open distributed systems and specifically the Grid are briefly intro-
duced, and it is shown that the direction taken by this thesis fits well with
current work on Grid resource allocation and indeed is a useful addition to it.

Then, a detailed description of the CDA is given and some important previ-
ous work is summarised in Section [2.2] Section [2.3] explores the relevant work
on trading strategies for the CDA. Finally, Section [2:4] summarises the material
discussed in this chapter.

2.1 Background

As was noted in Chapter [T} the motivation for this thesis comes from resource
allocation for large-scale, open, distributed systems and, specifically, Grid com-
puting. Therefore, this section provides some additional background on the Grid
and the precedents for market-based resource allocation in the Grid. Then, a
brief overview of auctions, as used for resource allocation, is provided. This is
followed by an introduction on trust in multi-agent systems and previous work
incorporating trust in market-based mechanisms. Finally, an example scenario
is discussed that further motivates the need for trust in resource allocation for
open distributed systems.

2.1.1 The Grid

Research on the Grid (Foster and Kesselman, [2003) aims to make computation
at the enormous scale required by modern science (and enterprise) possible.
For example, no single institution has the computational, storage or manpower
capacity to store and analyse the amount of data that is produced by exper-
iments carried out by the Large Hadron Collider. Therefore, the institutions
involved in the LHC experiments need to share their resources and coordinate
their problem solving. Grids provide an infrastructure to discover, combine and
use resources regardless of the details of the underlying hardware or their geo-
graphical location. In Grid terminology, resource sharing is done in the context
of a Virtual Organisation (VO), in which several real-world organisations may
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come together to share their resources towards a common end, subject to certain
terms or conditions.

In other words, access to computational resources is remodelled according
to a wtility computing paradigm analogous to the electricity grid, where compu-
tational power becomes pervasive and available on-demand (Foster and Kessel-
man, |2003)). Essentially, software design is decoupled from the underlying hard-
ware, its geographic location and its ownership.

Grid research has focussed on producing “specifications and technologies
realising service-oriented architectures according to robust distributed system
principles” (Foster et al.| |2004). There has been less emphasis on mechanisms
that deal reliably with failure and that can adapt to changing conditions. This
is the case because up to this point, Grid technology has been used mainly in
cooperative settings (Chevaleyre et al., 2006)), where several organisations work
together towards a common end.

However, as Grid applications become more wide-spread and the distributed
systems they build become more open, there is a need for more flexible, au-
tonomous reasoning entities that use intelligent problem solving to achieve their
goals, i.e. agents (Foster et al. 2004). As the number and variety of partici-
pants in Grid systems increase, so does the potential for conflicting interests.
Therefore, the cooperative model of sharing of resources, used by Grid solutions
thus far, becomes less appropriate and a competitive model is desirable, i.e.
economics (Wolski et al., 2003)).

Fortunately, within the multi-agent systems (MAS) research community, sig-
nificant work has already been done to bring concepts from economics and MAS
together. In particular, game theory, a branch of micro-economics, has long been
a tool in MAS (Wooldridgel [2002). More recently there has been a move to-
wards computational mechanism design (Dash et all |2003), which integrates
ideas from game theory and distributed systems theory to provide a foundation
for the design of real-world, tractable, MAS.

Specifically, computational mechanism design has been applied to resource
allocation, creating market-based mechanisms that allocate resources between
noncooperative agents. Such systems allow for resource allocation in a context
where agents have conflicting interests. The challenge for the mechanism de-
signer is to achieve good system-wide properties despite the fact that agents
act selfishly. Indeed, market-based resource allocation has been applied to the
Grid (Buyya et al.l [2000, 2005|, |Gomoluch and Schroeder} |2003|, Wolski et al.,
2003}, [2001). A comprehensive overview of market-based resource allocation in
computational Grids has been provided by [Buyya and Bubendorter| (2009).

As can be seen, much work has gone before that applies market-based tech-
niques to computational resource allocation and the Grid. However, unlike the
work in this thesis, execution uncertainty is not addressed by the resource allo-
cation mechanisms in that work.

2.1.2 Auctions

Quite often, market-based mechanisms take the form of auctions. There are two
basic types of auctions considered. The first is the clearing house type of auction
(Krishnal 2002), where a central auctioneer gathers all bids and does a ‘one
shot’ calculation to determine an allocation. The prototypical example of such
a mechanism is the Vickrey-Clarke-Groves (VCG) mechanism. This mechanism
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has been extended in several ways to make it more suitable to certain types of
allocation scenario (Dash et al.l [2007, [Porter et al., [2008), and has been applied
to Grid resource allocation (e.g. Schnizler et al. 2008). The advantage of this
mechanism is that the best strategy for agents is to bid their true valuation
and that it finds the best (most efficient) allocation possible, under the usual
assumptions of game theory.

The second type of auction mechanism is more decentralised and trade goes
on continuously as, for example, on the stock exchange. The allocation is not
calculated in ‘one shot’ by the auctioneer, but rather is determined by the market
dynamics. Here, the prototypical example is the Continuous Double Auction
(Smith) [1962)). In this type of auction, the guarantees of the VCG do not hold.
So agents may adopt a strategy and the most efficient allocation is no longer
guaranteed to be found. However, even if agents adopt the very simple Zero
Intelligence (ZI) strategy, the market still finds relatively efficient allocations
(Gode and Sunder}, [1993)). The CDA, like the VCG, has been extended to fit
different usage scenarios (e.g. Dash et al., |2007) and has been applied to Grid
resource allocation (Buyya et al., 2005, |Pourebrahimi et al., 2006} Tan and Gurd,
2007)).

Thus, there is notable previous work on adaptation of auctions and, specif-
ically, the CDA to specific circumstances and to Grid resource allocation in
particular. Hence, our proposal fits within this tradition.

2.1.3 Trust

We define trust as the estimate one agent has about the reliability of another.
The trust an agent places in others may be modelled in several competing
ways. One such way is grounded in probability theory, often using some form
of Bayesian inference (Ramchurn et al.,|2004). These trust models can estimate
the probability of different outcomes of a transaction with a certain agent. In
a market setting, one of the advantages of using probabilistic methods is that
the estimated probabilities of different outcomes may be used to calculate the
expected utility of the outcome. Hence, they integrate readily with the decision-
theoretic means of making decisions: choose the action that leads to the highest
expected utility (reward, value or profit). For this reason, we assume that trust
is modelled in a probabilistic fashion.

Now, because in a Continuous Double Auction, trade is continuously being
conducted, there is an opportunity for agents to learn from each others’ actions
in the market. Specifically, they may learn about the reliability of other agents.
In more detail, such trust may be built in three main ways (Ramchurn et al.
2004)):

e Learning: The agent learns how reliable each other agent is through direct
interaction with them;

e Reputation: The agent asks other agents in its environment to provide an
estimate of reliability of each other agent;

e Socio-cognitive: The agent bases its trust estimate on several estimates of
socio-cognitive propertiesﬂ of the other agent.

1Socio-cognitive models adopt a higher-level view of trust that takes the knowledge of
motivations of other agents for granted and proposes ways to reason about these motivations.
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The work in this thesis does not depend on any specific way of acquiring trust.
However, when applied to large-scale systems, agents will need to use more
than just learning, since having direct interactions with a large proportion of
the population is not feasible.

In addition to having several ways of building trust, different matters com-
plicate this picture. For example, in order to learn to trust an agent, we must
be certain that the agent we are interacting with is truly the agent it says it
is. Hence, agents must be authenticated. In the context of Grid computing, we
may take this problem to be solved (Foster et al., [1998). In the case of reputa-
tion, we must determine (i) how to gather ratings from other agents, (ii) how to
aggregate these ratings into knowledge about trustworthiness and (iii) how to
ensure that ratings are provided truthfully (Ramchurn et al.; 2004)). Even when
ratings are provided truthfully, aggregating them can be troublesome; one may
have to deal with the absence of information about an agent, or with the fact
that agents may rate each other differently because they have different prefer-
ences. Issue (iii) must be dealt with at the system level: the mechanism that is
used to elicit ratings should ensure that agents that provide untruthful reports
are punished (receive diminished utility).

However, it must also be noted that market interactions are not necessarily
the only or the primary source of trust information for agents. Reliability infor-
mation may be provided by an external source (e.g. an independent company
that surveys different providers). The above discussion is intended to make clear
that trust information acquisition is a difficult matter and indeed that we should
not take the availability of accurate reliability estimates for granted. Therefore,
it is important for a trust-based market mechanism to be robust to inaccuracies
in the trust information.

Returning to market-based mechanism and auctions, it must be noted that
for centralised auctions, there has already been some degree of success in the
integration of trust in specific mechanisms (Dash et al., 2004 Porter et al.|
2008). However, to date there is no work on integrating trust into decentralised
mechanisms such as the CDA.

2.1.4 A Motivating Scenario

Today, most Grid implementations, although more open and cross-institutional
than traditional distributed systems, still work in a fairly constrained, benevo-
lent, environment. However, as Grid technologies become more accessible and
wide-spread, this may change. Companies may be interested in selling their
data center overcapacity during off-hours to third parties. Research institutions
may be interested in buying extra capacity to shorten simulation times. In this
way, a competitive market may be set up, that contrasts with the currently
predominant cooperative approach. This market may either trade resources for
‘real’ money, or may induce an artificial economic system of its own (Wolski
et al., 2003).

Projects like SETI@home (Anderson et al., |2002|) have established that con-
sumer computers can be a valuable computational resource for academics and
that consumers are willing to allow the use of that resource, even without direct
monetary compensation. As the Grid matures, there is no reason why con-
sumers would not enter the computational utility market as producers. They
would provide small amounts of resource per consumer and very variable reli-
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ability, somewhat analogous to wind mills in the electricity grid. Consumers
of computational resources would have to be able to find these producers in
large numbers in order to farm out their computational needs. The decrease in
reliability may be compensated for by decreased unit cost, allowing strategies
such as those proposed by [Stein et al.| (2008), provisioning critical parts of a
work flow to several providers.

In the context of Grid systems, it is natural to imagine brokers that would
‘virtualise’ over these large numbers of producers, by simply agreeing to com-
plete some task by a certain deadline and provisioning most of the workload
to consumer computers, possibly complementing this with data center capacity
where greater reliability is needed, for example when a task is critical for meet-
ing the deadline and time is running short. The point is, that it is quite possible
that excess consumer computational power can be used in the Grid with the
same ease as the overcapacity of a large data center, by allowing intermediaries
to boost reliability and eliminate the additional difficulty of finding and provi-
sioning resources in these potentially very small amounts. As per the spirit of
the Grid, the consumer computer pool may be virtualised into a larger pool.

Given this scenario, a market mechanism is needed that is robust to the
appearance and disappearance of traders at any moment, that responds well
to changing market conditions, that allows very large numbers of traders to
interact and that is reasonably efficient. Furthermore, it should be attractive to
both buyers and sellers of resources to enter the market. For markets with no
execution uncertainty, the CDA is such a mechanism. However, the CDA does
not allow agents to balance costs with the risk of failure. Using the CDA, a
resource broker as considered above, would either need to consistently bid very
low prices (risking not acquiring a resource at all), or run the risk of paying
too much for an unreliable resource. Therefore, in order for this scenario to
be realisable, a mechanism is needed that allows agents to take their trust in
others’ reliability into account.

If a truly open Grid infrastructure is to be realised, we can assume virtually
no control over individual providers and consumers and hence there are very few
means of ensuring that individuals act reliably. Therefore, the market dynamics
themselves must ensure that reliability is rewarded. Allowing agents themselves
to choose their trading partners based on their perceived reliability is a way to
achieve this.

In this section, the relevant background on the Grid and open distributed re-
source allocation were provided, as well as an overview of auctions for resource
allocation and an introduction on trust models. Moreover, a motivating sce-
nario was discussed, in which resource allocation must be decentralised and
competitive, while still being efficient, making the CDA an appropriate choice.
However, the mechanism must also be robust to execution uncertainty. There-
fore, the mechanism proposed in this thesis extends the CDA so that it is robust
to execution uncertainty. The following two sections provide the necessary back-
ground on the CDA.
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2.2 The Continuous Double Auction

Here we provide a brief overview on the micro-economics of markets (adapted
from |Vytelinguml, 2006, chap. 2), followed by a description of the CDA mech-
anism. The next section will go into agent behaviours within the CDA, the
trading strategies.

In a market, demand is defined as the willingness or ability of a consumer
to purchase a given resource. The demand curve represents the amount of a
resource that buyers are willing and able to purchase at various prices. Con-
versely, supply is the willingness or ability of a producer to provide a given
resource. The supply curve represents the amount of resource that producers
are willing and able to provide at various prices. In Figure demand and
supply curves for a specific market are superimposed. The demand and supply
curves meet at the competitive market equilibrium:

Definition 2.1 (Competitive Market Equilibrium). This is where demand meets
supply in a free market populated by profit-motivated selfish agents. The com-
petitive equilibrium price is the corresponding price ¢*. The transaction prices
in the CDA are expected to converge towards ¢*. The equilibrium is competitive
because it is the competition among buyers and sellers that drives transaction
prices to ¢*. The corresponding quantity v* is the market equilibrium quantity.

At the competitive market equilibrium price ¢*, the social welfare (defined in
Section of the system is maximised. Now, in Figure because the demand
and supply curves intersect over a range of quantities, we have a volume tunnel,
where the equilibrium quantity can be v* — 1 or v*. However, we will assume
that goods are desirable and thus, the equilibrium quantity is v*. In Figure
the demand and supply curves intersect over a range of prices and hence there
is a price tunnel between ¢ and g;. ¢* lies somewhere within this range.

We call the price at which each agent is willing to transact its limit price:

Definition 2.2 (Limit Price). The maximum bid a buyer is currently willing
to offer, or the minimum ask a seller is willing to offer.

e (% is the limit price of buyer i;
e (7 is the limit price of seller j — may also be referred to as cost price.

Now, if we have complete and perfect information of the market demand and
supply, we can maximise social welfare by determining which agents will trade at
what price. Agents on the left of the equilibrium point (buyers with limit prices
> ¢* and sellers with limit prices < ¢*) are known as intra-marginal traders and
will be trading at price ¢*. Agents with limit prices equal to ¢* will be trading
at zero profit, as we assume that goods are desirable. The other traders are
called eztra-marginal, because their limit prices are too high (sellers) or too low
(buyers) to trade in the market. Given this optimal allocation of resources, we
can define the efficiency of other allocations:

Definition 2.3 (Market Efficiency). The ratio of the sum of all agents’ utilities
in the market to the maximum possible sum of utilities that would be obtained
given the optimal allocation.
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Figure 2.1: Demand and supply curve. Reproduced from [Vytelingum| (2006).
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Figure 2.2: Demand and supply curve. ¢* lies between ¢} and ¢;. Reproduced
from |Vytelingum) (2006)).
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Smith| (1962)) demonstrates that markets governed by the CDA mechanism
and populated by selfish and profit-motivated (human) traders, can achieve close
to optimal market efficiency. Moreover, there is an equilibration of transaction
prices to the competitive equilibrium price ¢*. It is also demonstrated that if
there is a market shock (a sudden change in demand and supply at the beginning
of a trading day), transaction prices would converge to the new competitive
equilibrium price. Convergence of transaction prices to the equilibrium price is
measured by the coefficient of convergence, a:

\/% Z?:l(dz —q*)?

a= ” (2.1)
q

where the ¢; give a history of n transaction prices. a may also be considered as
a measure of price volatility in the market.

Thus far, the micro-economics of demand and supply have been discussed
and we saw how the optimal (social welfare maximising) solution to an allocation
problem (expressed as demand and supply) can be found. Now, we describe the
CDA in detail.

In a CDA market, trade is conducted during a trading day, the period be-
tween opening and closing of the market. In [Smithfs model, at the beginning
of a trading day, traders are endowed with a set of goods to buy or sell, which
determines demand and supply. Buyers and sellers submit their bids and asks,
respectively. Collectively, these are called shouts. If a shout conforms to the
shout accepting rule, it is placed in the relevant order book. Then, the clearing
rule determines whether a transaction takes place, at a price determined by the
pricing rule. Whenever a change takes place in the market, the information rev-
elation rule determines what information is made public. The rules are defined
in detail in Box 211

The CDA may be seen as consisting of two components. First, the bidding
component, manages the agents’ interaction with the order books, through the
shout accepting rule. Second, the clearing component determines how transac-
tions arise, through the clearing and pricing rules. This is visualised in Fig-
ure

2.3 Trading Strategies

Having introduced the CDA in some detail, we now turn to the agent behaviour.
This is captured by an agent’s trading strategy, i.e. the systematic way of mak-
ing trading decisions in the market place that the agent adopts. A wide variety of
trading strategies have been developed over the years. The focus here is on two
important strategies, the Zero-Intelligence and the Zero-Intelligence Plus strate-
gies, because of their emphasis on developing a minimally intelligent strategy
(hence their names) that achieve desirable behaviour in the CDA. Hence, they
are important in evaluating the effectiveness of the mechanism. After a thor-
ough description of these two strategies, some interesting other strategies are
briefly reviewed, to give an idea of the wide range of possible CDA strategies
and of the research that is being conducted into the CDA mechanism.
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The market protocol that defines the CDA consists of a number of simple rules.
In order to keep track of the offers that have been made, bids and asks are
queued into order books, which are sorted lists of orders. Bids are sorted from
highest to lowest, asks from lowest to highest. The following rules define the
CDA protocol in detail:

Shout Accepting Rule Determines which bids and asks are allowed in the
market. Primarily, the price must be within the interval [0, ¢max]. Gmax is
the maximum bid or ask allowed in the market, to prevent unreasonably
high asks and speed up the trading process.

Furthermore, the commonly implemented NYSE shout accepting rule im-
poses that a new shout must improve upon the current best shout by that
agent. When a trader submits a new shout, provided that it improves upon
the current shout by that trader, the current shout is simply replaced by
the new one.

Information Revelation Rule Determines what information is published to
buyers and sellers. Typically, this is current bid and ask prices.

Clearing Rule The market clears continuously, whenever the highest bid price
is at least as high as the lowest ask. Then a transaction takes place, at a
transaction price, determined according to the pricing rule. The matched
shouts are removed from the order books.

Pricing Rule Determines the transaction price. The average of the matched
bid and matched ask prices is typically used in the CDA.

Box 2.1: The CDA protocol

Bidding Component : +  Clearing Component :

' ' ' '

' ' ' '

' ' ' '

' ' ' '

' Order H ' ' trans-
: books ! ! ' action
'

'

'

20 =T

Figure 2.3: The traditional CDA can be seen as consisting of two components.
This figure visualises how information flows through these components. Circles
show concrete pieces of information in the system. Note that a ‘clearing’ here
is a matching of a bid and an ask (not to be confused with the clearing rule).
The rules govern the information flow visualised by the arrows in this figure.
For example, the flow of a shout into the order book (second arrow) is governed
by the shout accepting rule.
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2.3.1 Zero-Intelligence

The Zero-Intelligence (ZI) strategy (Gode and Sunder} [1993), introduced in
Section [I.1] is the baseline strategy for the CDA. A ZI agent is not motivated
by profit and ignores all market conditions when submitting a bid or an ask.
Rather, it will draw a shout price from a uniform distribution with a given range.
Gode and Sunder|(1993) consider two types of ZI agents: the unconstrained Zero-
Intelligence Unconstrained (ZI-U) agents, for whom the price range is [0, gmax]
and the constrained Zero-Intelligence Constrained (ZI—C)E| agents, which are not
allowed to trade at a loss. Therefore, the range for a ZI-C buyer i is [0, £?] and
for a seller j it is [Zj, Gmax)-

Gode and Sunder| (1993) show that ZI-C agents exhibit behaviour that is
much more like that of human traders than ZI-U agents do. With ZI-C, there
is a slow convergence of transaction prices to the theoretical equilibrium and
market efficiency is very close to that achieved by human traders. Given this,
it appears that market efficiency is almost entirely a result of market structure.
Therefore, the previous assumptions that the efficiency of human markets is a
consequence of human intelligence (Smith, [1962) is called into question.

However, human traders do have the lowest profit dispersion (i.e. the least
variation in individual profits) when compared to the ZI-C and ZI-U traders.
From this, |Gode and Sunder| (1993) note that individual aspects of market
performance may be more sensitive to human intelligence than market efficiency.

2.3.2 Zero-Intelligence Plus

The ZIP strategy (also discussed in Section is based on the idea that any
offer being made and every transaction occurring is an opportunity for an agent
to learn how to calibrate its own pricing. To this end, in addition to the limit
price £;, agents set a profit margin u;. Together these determine the shout price
di:

@ =Li(1+ pi) (2.2)

This means that a seller’s margin is raised by increasing u; and lowered by
decreasing p; and that p; € [0,00). Buyers raise their margin by decreasing p;
and lower their margin by increasing p;, with p; € [—1,0].

The agents must learn the appropriate profit margin from market events.
This raises two questions: first, when is it appropriate to raise or lower the
profit margin? Second, how should the profit margin be updated? The first issue
is addressed by the bargaining mechanism, and the second by the adaptation
mechanism.

Bargaining Mechanism

When considering whether to raise or lower its profit margin, an agent has four
factors to consider. First, whether it is active in the market. This is the case
when it is still capable of making a transaction, otherwise it is inactive. The
other three factors are properties of the last shout: its price ¢, whether it was a
bid or an ask and whether it resulted in a transaction or not. Furthermore, let

2 In the remainder of this thesis, when we refer to the ZI strategy, this may be taken to
mean the ZI-C strategy.
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q; represent the price that agent a; intended to shout, not taking into account
the information from the current last shout.

Whenever a shout is submitted in the market, a ZIP trader will evaluate its
bargaining rules (given in Algorithm and Algorithm to decide whether
its profit margin should be updated. If the margin is to be updated, the adap-
tation mechanism is invoked.

Algorithm 2.1 Bargaining algorithm for seller s;
if Last shout resulted in a transaction at price ¢ then
if ¢; < ¢ then
raise profit margin
end if
if Last shout was a bid AND s; is active AND ¢; > ¢ then
lower profit margin
end if
else
if Last shout was an ask AND s; is active AND ¢; > ¢ then
lower profit margin
end if
end if

Algorithm 2.2 Bargaining algorithm for buyer b;
if Last shout resulted in a transaction at price ¢ then
if ¢; > q then
raise profit margin
end if
if Last shout was an ask AND b; is active AND ¢; < ¢ then
lower profit margin
end if
else
if Last shout was a bid AND b; is active AND ¢; < ¢ then
lower profit margin
end if
end if

Adaptation Mechanism

The profit margin of agent a;, u;, is updated according to a delta rule. This is a
learning rule that gradually adapts the variable to be learned towards its desired
value based on the inputs it receives. Let u;(t) be agent a;’s profit margin at
time t and ¢;(t) its calculated shout price at time ¢. Then we update the margin
w; on the transition from time ¢ to ¢ + 1 as follows:

(G(®) +50) | (2.3)

J(t+1) =
pi(t+1) Y
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parameter range

Ri(t) (increase) | [1.0,1.05]
R;(t) (decrease) | [0.95,1.0]
A;(t) (increase) | [0.0,0.05]
A;(t) (decrease) | [—0.05,0.0]
B; [0.1,0.5]
1;(0) (sellers) [0.05,0.35]
1;(0) (buyers) [—0.35, —0.05]

Table 2.1: Default ranges of ZIP parameters. Each required value is generated
from a uniform distribution over the given range.

where 0;(¢) is the momentum-based delta value. The momentum-based delta
value is defined as follows:

Gi(t+1) = %di(t)+ (1 —7)A(t+1) (2.4)
5:(0) = 0 (2.5)

where 7; € [0,1] is the momentum coefficient, and A,(t) is the delta ValueE|
calculated using a;’s learning rate §; and a target price ;(t):

Ai(t) = Bi(mi(t) — qi(t)) - (2.6)

There are many ways in which the target price 7;(t) could be set. For
standard ZIP traders, the target price is a stochastic function of the shout price
q(t):

7i(t) = Ri(t)q(t) + Ai(t) (2.7)

where R;(t) is a randomly generated coefficient that sets the target price relative
to the price q(t) of the last shout, and A;(t) is a small absolute price alteration.
When the intention is to increase the dealer’s shout price, we set:

When the intention is to decrease the price, we set:
0.0<R; <1.0; A;<0.0. (2.9)

R;(t) and A;(t) are randomly generated in an independent and identical way
for each individual agent and time step.

Cliff and Bruten| (1997)) randomly generate each of the many values defined
here from uniform distributions with certain ranges. These ranges are given in

Table 211

Results

With the ZIP strategy, transactions converge towards the competitive equilib-
rium price after a few trading days and remain at that level with low variance.
The ZIP strategy was shown to achieve results closer to human performance

3Note that when v; = 0, 6;(t) = A;(t).
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than ZI-C, even though its parameters were not optimised for the demand and
supply of the market (Cliff and Bruten, |1997)). Moreover, profit dispersion for
ZIP traders is much lower than in a market with ZI-C traders. The ZIP strategy
is also able to converge to a new competitive equilibrium after a market shock.

2.3.3 Other Strategies

The two strategies described above, ZI and ZIP, are the most important for
this thesis, because ZI is used as a lower bound to the performance that can be
expected from the mechanism and ZIP forms the basis of the T-ZIP strategy
developed in this thesis. Here, to illustrate work that has been done on the
CDA and to show that the strategies described above are just examples of
what is possible, a number of important alternative strategies are overviewed
(summarised from [Vytelingum), 2006, chap. 2).

Kaplan The Kaplan strategy does not adapt to market efficiency or infer
the market equilibrium, but attempts to exploit the bidding behaviour of other
agents by sniping at any profitable deal. It will wait while the other strategies do
the negotiating, and then, based on some simple heuristics, take away a good
deal at the last moment. The Kaplan strategy does well in a heterogeneous
environment, but a market populated with only Kaplan strategies does not
perform efficiently because the prices will not be driven towards the equilibrium.

ZIP60 The ZIP strategy described previously was subsequently extended to
ZIP60 (Cliff, 2005). The original set of 8 parameters for updating the profit
margin was extended to 10 and a different set of parameters was used for each
of the 6 different learning rules. The 60 parameters are selected through a
genetic algorithm optimisation that minimises price volatility (Equation .
The ZIP60 is thus tailored to a specific market and can accomplish significant
improvements over ZIP. However, this tailoring to a market means that demand
and supply must be known a priori, which is usually not a realistic assumption.

GD The GD strategy (Gjerstad and Dickhaut, [1998) builds a belief function
that indicates whether a particular shout is likely to be accepted in the market
from the market history. Given this, the bidding strategy submits the shout
that maximises the trader’s expected utility, which is the product of its belief
function and its utility function. The GD strategy takes information recency
into account by limiting the trader’s memory length. GD was shown to achieve
close to optimal efficiency and rapid convergence of prices to the optimum. In
heterogeneous populations, it extracted 1.7% more profit than ZIP.

GDX Building on the GD strategy, GDX additionally takes the time left in
the trading day into account. This means the GDX trader is able to wait for
more profitable transactions that may appear later in the trading day (Tesauro
and Bredin, [2002). Given an opportunity to submit a shout to the market, GDX
also estimates the number of bidding opportunities before the market closes. It
then uses dynamic programming to calculate the optimal shout, taking this
estimate into account. GDX was shown to outperform both ZIP and GD.
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FL The FL (fuzzy logic based) strategy (He et al., [2003) employs fuzzy rea-
soning in order to determine the best bid or ask given the current state of the
market, based on market history. It defines a set of possible transaction prices
represented by fuzzy numbers and uses heuristic rules to infer the best action.
Although the FL strategy does well in heterogeneous populations, performance
is poor in homogeneous environments, like the Kaplan strategy.

AA The adaptive aggressiveness (AA) strategy (Vytelingum et al. [2008)
adopts both short-term and long-term learning to adapt to market conditions.
The short-term learning updates the aggressiveness of the bidding behaviour,
where more aggressive means more willing to trade off potential future profits for
a better chance of transacting. The long-term learning adapts the way a trader’s
aggressiveness influences its bidding behaviour. AA was shown to outperform
both ZIP and GDX in both homogeneous and heterogeneous markets.

While the strategies reviewed in this section are very interesting, they are also
a good deal more complex than the ZI and ZIP strategies (with the possible
exception of Kaplan - which, by itself, is not a viable strategy anyway). This
means not only that they would be more difficult to implement or adapt to a
new mechanism, their more intricate behaviours make analysis of experimental
results more difficult. Hence, for the initial evaluation of a new mechanism, it is
better to employ a simple strategy such as ZI or ZIP. However, the above shows
that there is considerable interest in automated trading strategies for the CDA
and that any extension of the CDA has an extensive body of work on trading
strategies to draw from. Future work might extend any of these strategies and
apply them to the T-CDA. See Section for directions for such work.

2.4 Summary

In this chapter, an overview of the current state of market-based resource allo-
cation in Grid computing was provided. A scenario was discussed where a de-
centralised resource allocation mechanism that deals with both non-cooperative
agents and execution uncertainty is not just desirable, but absolutely required.
To date, such a mechanism does not exist.

Then, the micro-economics of markets were reviewed and it was noted that
supply and demand curves meet at an equilibrium price ¢*, and that allowing
agents to trade at this price as long as this does not yield a loss for them
will result in the optimal allocation (i.e. the allocation that maximises social
welfare). Hence, for a standard market scenario, we may calculate the market
efficiency, an objective measure of the quality of an allocation.

Against this background, the CDA can be viewed as a set of rules that
determine how bids and asks by traders eventually result in transactions. Even
with ZI traders (which shout prices randomly), the CDA achieves high market
efficiency, which thus seems to be attributable mainly to the structure of the
market. Furthermore, work on the ZIP strategy has shown that ZI does not
always do as well and instead proposes a simple adaptive strategy.

Finally, a number of different strategies were discussed, showing the wide
range of strategies that have been proposed for the CDA, as well as their
strengths and weaknesses. This shows that there has been extensive work on
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automated trading in the CDA and that this is still ongoing. Therefore, any
extension of the CDA has an extensive body of work to draw from.
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Chapter 3

Problem Definition

Having identified the research objectives in Section|l.3|and the relevant previous
work in Chapter |2, the problem is formalised in this chapter. First, the trad-
ing environment in which the T-CDA mechanism will be evaluated is defined in
Section[3.1] Then, Section[3:2]shows that, in general, there is no market equilib-
rium in this trading environment. Section [3.3|defines the optimal solution to the
allocation problem and how to find it. Against this background, Section de-
fines desiderata for the T-CDA and its evaluation. Finally, Section provides
a summary.

3.1 Modelling the Trading Environment

This section formally introduces the problem setting. That is, a model of the
trading environment is defined. In this model, a number of simplifying assump-
tions are made:

e The set of buyers and sellers is fixed;

e No new demand or supply appears during a trading day — hence, the full
demand and supply are known at the start of a trading day. Thus, the
allocation for each day can be calculated as a single optimisation problem,;

e Failure is binary, that is, either failure or success;
e Each agent has only one order to fill;

e The utility functions are of a specific form — agents are risk-neutral, non-
malicious and value monetary gain linearly.

These assumptions allow us to calculate an optimal allocation against which to
compare the efficiency of the mechanism (Section . None of these assump-
tions, however, are required by the mechanism. They merely provide a simple
scenario in which to evaluate the mechanism, without loss of generality.

In what follows, first the part of the model in which a traditional trading
mechanism (specifically, the CDA) would be evaluated is introduced. Then, the
notion of execution uncertainty and how it impacts on this model is discussed.
Finally, because agents do not have perfect and complete information of each
other’s reliability, agents are given a trust function.
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3.1.1 Market Definition

We denote the set of buyers as by,bs,...,b, € B and the set of sellers as
Sn41sSnt2y -« -3 Sn+m € S. Then, the set of agents is denoted as A = BU S.
As a convention, we generally refer to a generic buyer as b;, a seller as s; and a
generic agent as a;, when we do not distinguish buyers and sellers.

Every agent participating in the market is given an endowment. For a buyer,
an endowment is an order to buy a single unit of resource for at most the specified
limit price, £2 (Definition . For a seller, an endowment is an order to sell a
single unit of resource for at least the specified cost price, ;.

Given their endowments, buyers place bids (offers to buy) and sellers place
asks (offers to sell) in the market. Collectively, bids and asks are referred to
as shouts. Based on the submitted bids and asks, the market mechanism de-
termines when a transaction takes place between a buyer and a seller. We will
denote a transaction at price g between a buyer b; € B and seller s; € S as
t;.;(¢). After agreeing on a transaction t; ;(q), the buyer pays the seller and the
seller transfers some goods to the buyer. The way the shouts are managed in
the market can be regimented by different market rules.

3.1.2 Introducing Execution Uncertainty

The setting described above is the one traditionally considered in market-based
mechanisms. Moreover, in this work, we do not assume that successful execution
of a transaction is guaranteed. Instead, we assume that the execution of a
transaction is binary, that is, either failure or succesaﬂ We denote the outcome
for the buyer as e, € {0,1} and for the seller as e; € {0,1}. The probability
that a buyer is successful (i.e. P(ep, = 1)) is denoted as p(b;) and that the
seller is successful (i.e. P(es; = 1)) as p(s;). For example, after ¢; ;(q), if
ep = 1 and e; = 0, buyer b; has paid for a service, but s; did not provide
that service. In general, every agent a; is assigned a certain Probability of
Success (POS) p(a;) € [0,1], which indicates the likelihood that an agent will
honour its agreement.

Given the execution (ep,es) of a transaction, the agents derive utility as

follows:
62’ —q ,es=1
witssahed = { 470 el
(3.1)
q— E; ,€p = 1

w3 (ti5(a), e) = { —4

where £? is the limit price of b; (i.e., the maximum b; is willing to pay) and &
is the cost price of s; (i.e. the minimum price at which s; is willing to sell).
These functions follow naturally if we assume that agents are not malicious;
i.e. regardless of their own success, they will incur the cost associated with
the action they agreed to perform. For example, when a buyer pays ¢ and if
he receives the goods (or service), which are worth £¢ to him, he will derive a
utility of £2 — g. Otherwise, his utility is —q. Given this definition of utility, the

IFailure is binary to simplify our analysis, but this work can easily be generalised to be
continuous, to reflect partial success or failure if that is appropriate in a given setting.
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expected utility of a transaction is given by:
af(tij(@) = u)(ti;(@), 1)p(s;) +uf(ti;(q),0)(1 — p(s;))

(3.2)
ai(tii(q) = uj(ti;(q), )p(bi) +ui(ti;(g),0)(L —p(bi))
= qp(bi) — €5 .

That is, the utility of each outcome multiplied by the probability of that out-
come, summed over all possible outcomes (i.e. the normal probabilistic inter-
pretation of expected utility).

Note that our model is equivalent to the setting in which the CDA is normally
evaluated, when p(a;) = 1; Va; € A. In that case, the expected utility functions
are simply u?(t; ;(¢),1) = ¢¢ — q and ui(tij(q),1) =q—£;.

3.1.3 Trust

Now, we have defined how a trader should evaluate its expected utility, given
perfect and complete information. However, since in general we cannot assume
that agents have perfect and complete knowledge of each other’s POS, agents
hold an estimate of the POS of the other agents. Thus, each agent a; has a trust
Sfunction:

trust; : A — [0,1] , (3.3)

which represents its best estimate of the probability of success for each other
agent. So ideally, trust;(a;) ~ p(a;). This allows a; to estimate the expected
utility @ (Equation [3.2)) of a transaction:

ﬂé’(ti’j () = uf(ti,j(q), 1)trust;(a;) + uf(ti’j (g),0)(1 — trust;(a;)) (3.4)
ﬂj(t”(q)) = uj(ti,j(q), 1)trust;(a;) + u‘;f(ti,j(q), 0)(1 — trust;(a;)) - ’

It is rational to agree to a transaction only if the estimated expected utility
U;(t) > 0. Here we remain agnostic to the origin of this trust function; agents
might learn the reliability of others through the observation of market interac-
tions, or they could have some outside source of information.

In summary, a model was defined in which trading agents are endowed not
only with their private valuation of a resource, but also with their private POS.
The POS determines the likelihood that an agent successfully delivers the re-
source or completes the payment. Since it is unrealistic to assume agents know
each other’s POS, we assume each trader will have an estimate of this infor-
mation, represented by a trust function. The notation introduced is listed in

Table [3.11

3.2 Market Equilibria

As was discussed in Section [2.2] in a market without execution uncertainty,
the demand and supply curves meet at the competitive market equilibrium
(Definition . At this equilibrium price, the social welfare of the system is
maximised. Now, having defined the expected utility functions for the traders
(Equation , we can ask whether such an equilibrium exists for a market with
execution uncertainty.
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Symbol Meaning
B The set of buyers
S The set of sellers
A The set of agents A= BU S
b; A buyer b; € B
85 A seller s; € S
a; An agent a; € A
2 Limit price of buyer b;
15 Limit price (or: cost price) of seller s;
ti.i(q) Transaction between b; and s; at price ¢
€y, Outcome of an execution for b;
€s; Outcome of an execution for s;
p(a;) Probability of success of agent a; (i.e. P(eq, = 1))
u?, uj Utility function of b; and s;, respectively
ay, uf Expected utility function of b; and s;, respectively
trust;(a;) | Trust of agent a; in a;
a?, uj Estimated expected utility function of b; and s;, respectively

Table 3.1: Overview of notation

Theorem 3.1. In the model defined by Section[3.1], in general, a market equi-
librium (Definition [2.1]) does not eist.

Proof. A counter-example will show that a single equilibrium price does not
exist. Hence, a market equilibrium as per Definition [2.I] does not exist. Note
that for a price to be the equilibrium price, no agent may trade at negative
expected utility and social welfare must be maximised. Consider the following
market:
B = {bl,bg,} S = {82,84}
plb) =1 =1 plss)=1 £5=1
p(bs) =05 3=2 p(ss) =1 €5=

(3.5)

Now, using Equation for each pair of buyer and seller, we can calculate
a minimum price at which a transaction is possible, by solving u;(t; j(¢q)) = 0
for ¢. The maximum transaction price can be found by solving u?(¢; ;(¢)) = 0
for g. In this instance, the solutions are:

(3.6)

where each pair represents (min, max). Thus, each pair of buyer and seller can
transact. In this case, any potential transaction would have zero expected utility,
but assuming (as in Section that goods are desirable, two transactions
should take place. For example, an optimal solution would be 1 2(1) and ¢35 4(2).
Thus, there is no single equilibrium price.

One might object that the above counter-example is defeated if the assump-
tion that goods are desirable is dropped. However, the counter-example holds
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for any 5 = ¢ > 0.5. To see this, specifically consider ¢35 = ¢; = 0.8:

by (0.22,1) (0.24,1) (3.7)
by (1.6,2) (1.6,2)

Again, two transactions should take place. In fact, in this case two transactions
are required in order to optimise social welfare. The choice of which pairs of
traders transact is arbitrary. Hence, to optimise social welfare we can optimise
the expected utility derived from each single transaction, defined as the sum of
the individual expected utilities:

Uij(a) = @ (tij(a)) + @5(ti (@) = €2p(s;) — &5 + a(p(bs) — 1) . (3.8)

Note that when p(b;) < 1, we maximise U; ;(¢) by minimising ¢. When p(b;) = 1,
¢ has no impact on U; ;(q). Hence, in the above market, if we choose (b1, s2) and
(b3, s4) to transact, we must choose t34(1.6), because p(bs) = 0.5 < 1. We are
free to choose 0.8 < ¢ < 1.0 in 1 2(q), however. In any case, the transactions
take place at different prices. O

The above proof shows that in general, there is no equilibrium price. How-
ever, in special conditions an equilibrium could exist. Specifically, if p(a;) =
1; Va; € A (i.e. no execution uncertainty), an equilibrium is known to exist.
The remainder of this section analyses different cases to give a clear intuition
of when equilibria exist.

From the proof, we know that an equilibrium price does not exist if buyer
limit prices and POS differ. By a similar counter-example, an equilibrium price
does not exist if seller limit prices and POS differ.

Even if we set p(s;) =1; Vs; € S and p(b;) =p; Vb; € B, fora 0 <p < 1,
an equilibrium price does not exist. To show this, let us examine the acceptable
prices for a seller s;:

a3 (tij(q)) = qp(b;) — €5 >0 (3.9)
ap— 5 >0 (3.10)

&
0> (3.11)

Because Equation [3.8 implies that, in order to optimise U; ;(g), we must choose
the smallest possible g, a transaction between s; and b; should take place at:
/3
J
a=2 (3.12)
p
which means that the desirable transaction price depends on the seller’s limit
price and hence that no single equilibrium price exists.
Besides a market without execution uncertainty, we identify one special case
in which an equilibrium does exist. Say p(b;) = 1 ; Vb, € B and p(s;) =
p; Vs; € S, with 0 < p < 1. Now a buyer b; would be willing to transact if:

@ (tij(q)) = €p(s;) —q >0 (3.13)
Bp—qg>0 (3.14)
q<lp (3.15)
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Here, every buyer’s maximum transaction price is multiplied by p. However,
because buyers have POS 1, we are free to choose any g between the buyer’s
limit multiplied by ¢ and the seller’s limit. Hence, in this case the seller’s
lower but identical POSs merely causes a shift in the demand curve. Thus, an
equilibrium exists.

Undoubtedly, it is possible to construct different constraints on the endow-
ments or POS that force an equilibrium price to exist. However, in the above we
identified the major situations based on POS and noted whether an equilibrium
exists or not. In general, there is no equilibrium price in the trading environ-
ment defined in Section Since finding the optimal allocation and, hence,
the market efficiency in the CDA depends on finding the equilibrium price (see
Section , a different way of finding the optimal allocation is required.

3.3 Optimal Solution

In this section, we define and find the optimal solution, given complete and
perfect information of all agents. This provides an upper bound on the efficiency
we can expect from our mechanism. Given our model, we aim to find the
allocation that maximises the sum of the expected utilities of the individual
agents, subject to certain constraints. Specifically, an allocation is a list of
transactions that take place between agents. Thus, we need to decide which
agents shall transact and at what price. In this section, a linear program that
finds the optimal solution is developed.

First, let us consider how to choose the transaction price given that two
agents interact. In order to optimise efficiency, we should maximise the sum of
the agents’ individual utilities (Equation :

Ui j(q) = €p(s;) — €5+ q(p(b;) — 1) . (3.16)

From the above formula, we see that when the probability of success of the buyer
p(b;) = 1, the transaction price ¢ has no influence on the total expected utility
of the transaction. However, when p(b;) < 1, a higher transaction price leads
to a lower expected utility. Therefore, if we choose ¢ to optimise U; ;, sellers
will derive negative expected utility. Hence, participation is not individually
rational.

To remedy this, we could demand that 4} (% ;(¢)) > 0, however when p(b;) <
1, the result will be that sellers will always break even and thus have no incentive
to take part in the market. Instead, we demand that the expected utilities of
both parties are equal, to achieve a fair distribution of utility between buyers
and sellers:

a3 (ti.j(a)) = 45(ti5(q)) - (3.17)

Substituting Equation [3.2]into Equation [3.17) completely determines the accept-
able transaction price:
 Op(sy) + £

3.18

1+ p(bi) (3.18)
This then also determines the transaction utility:
. Op(sy) + 65

Uiy = €p(s;) =05+ ==L (p(b:) = 1) , (3.19)

1+ p(b:)
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where the argument ¢ from equation [3.16| is omitted, since there is only one

acceptable price g. These U; ; together define a |B| x |S| matrix U. Now define
the decision matrix T' € {0, 1} BI¥I5I as follows:

| 1 b; and s; transact

Tis { 0 otherwise. (3.20)

Our objective is to find the matrix 7 that maximises the total expected
utility in the system, given that every agent transacts at most once. The exact
formulation is given in Algorithm

Algorithm 3.1 Linear program to find the optimal allocation

Maximize
> > WU-Diy
i:b;€EB j:s;€S
subject to
> Ti;<1; Vises ,
jis;€S
> Tij <15 Viges
i:b,€EB

where - denotes the Hademard (entry-wise) product of two matrices.

After translation into a standard notation, this specification can be executed
by an integer programming package. Note that some constraints, such as equal-
ity of buyer and seller utility (equation do not need to be represented
explicitly, as they are enforced by the definition of U seen previously. The value
being maximized over is called the objective function; in this case it is the sum of
the expected utilities of all agents. Because buyer and seller utilities are equal,
the sum of the expected utilities of all buyers is half that value.

Now we know how to calculate the optimal allocation using perfect and
complete information of the playing field, given all of the assumptions of the
model discussed in Section [3:I] This gives an upper bound on the performance
of our proposed mechanism, which does not depend on the use of perfect and
complete information or said assumptions.

In more detail, U gives an upper bound on the performance of the T-CDA,
under the constraint that utility is equally distributed between buyers and
sellers. However, the solutions the T-CDA finds do not necessarily obey this
constraint, since the allocation emerges from the interactions between traders,
rather than being determined by a central auctioneer. Therefore, in evaluating
the mechanism, we must separately compare both buyer and seller utilities to
0.5U.

3.4 Desiderata

Given our problem setting, we define a number of desiderata that we believe our
mechanism should exhibit, based on the research objectives stated in Section|1.3
In particular:
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e The market mechanism should be efficient: it should maximise the sum of
the expected utilities of the individual agents, since we want to maximise
social welfare;

e It should also be individually rational, i.e. individual agents will not par-
ticipate in loss-making transactions. This ensures that we do not disin-
centivise agents from participating in our market;

e Furthermore, an equal and, thus, fair distribution of profits between buy-
ers and sellers is desirable (again to ensure we have approximately equal
numbers of each);

o Additionally, since our model incorporates the notion of POS, we desire
the mechanism to be robust against agents having an inaccurate repre-
sentation of each others’” POS, since in the real world, it is unrealistic
to assume that agents have perfect and complete information about the
reliability of other agents.

Given these desiderata, since the addition of execution uncertainty intro-
duces a number of new problems for the mechanism and the traders, empirical
evaluation (Section should focus on this aspect. Hence, even though we
could investigate any number of demand and supply curves, it is more inter-
esting to fix demand and supply and vary the POS we assign to the agents.
Moreover, the trust function is a new addition and it is interesting to study how
the mechanism responds to different properties of the trust model. Specifically,
it should be investigated how performance breaks down as trust information
becomes less accurate. This is done in Section 4.5

3.5 Summary

In this chapter, a formal model of the trading environment was developed.
Then, it was shown that in general, no equilibrium price exists in this model.
Furthermore, the optimal allocation was defined and a method of finding it
was given. Against that background, desiderata for the mechanism were made
explicit, as well as directions for its evaluation. This further clarifies and makes
concrete the research objectives stated in Section [1.3

Given this, in the remainder of this thesis, the T-CDA mechanism and the
T-ZIP strategy are developed and implemented. Both are empirically evaluated
within the framework specified by this chapter.
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Chapter 4

Trust-Based CDA

The Trust-Based CDA (T-CDA), a new mechanism based on the CDA, is in-
troduced. This mechanism allows traders to take execution uncertainty into
account in their decision making, whilst maintaining the decentralised nature of
the CDA. First, the new mechanism and the design decisions that were made are
outlined in Section Then, Section defines a baseline trading behaviour,
while the way the trading process is simulated is detailed in Section [£.3] The
T-CDA simulator is used in Section [.4]to empirically evaluate the T-CDA mech-
anism. Finally, Section concludes and summarises the main points. In this
way, this chapter addresses our first research objective (Section : to design
a new mechanism based on the CDA that is robust to execution uncertainty,
and the second research objective: to study its properties.

4.1 The T-CDA Mechanism

As we pointed out earlier, traditional market mechanisms ignore the execution
phase present in every interaction. Given this, here an extension to the CDAE|
is proposed, the T-CDA. Unlike the CDA, the T-CDA allows agents to factor
the execution phase into their decision making.

In more detail, the CDA is modified to additionally let agents accept or re-
ject transactions based on the identity of the other agent. To this end, agents
not only submit their bids or asks to the market, but also have to explicitly
indicate their willingness to interact with a specific agent before a transaction
takes place. We call this declaration of willingness a commitment. This allows
us to leave most of the rules and structure of the CDA intact and also main-
tains the decentralised nature of the CDA, by leaving the management of trust
information and the decision making up to the agents themselves. Indeed, our
mechanism does not require agents to reveal this information. As in the CDA,
the T-CDA merely provides the necessary means for the agents to communi-
cate their desires effectively. Conversely, this means that agent strategies will
be more complex and play an important role in determining individual agent
utilities as well as system efficiency, as is the case for the CDA.

In more detail, if b; € B has placed a bid of and s; € S has placed an ask 0,

b

we denote the commitment of b; to a transaction based on o? and 03 as ci(o;],03).

1 See Section for a detailed description of the CDA.



32 Chapter 4. Trust-Based CDA

A commitment by s; would be ¢; (o, oj). Two matching commitments result in
a transaction. We do not allow more than one commitment by an agent on its
own shout, since there can be only one transaction based on a particular shout.
However, we do allow agents to withdraw a commitment, for example because
the other agent is not responding. Agents may reject a commitment made by
others on their shout. The market maintains a list of all current commitments,
in the commitment book. The mechanism is defined in detail in Box which
explains how the T-CDA extends the CDA, as defined in Box

We may think of the mechanism as consisting of three components: the bid-
ding and clearing components identified earlier and a new one, the commitment
component, which manages the interaction with the commitment book, through
the commitment accepting rule. This is visualised in Figure

To illustrate the trading process, consider a scenario with one buyer, by,
with p(bg) = 1 and ¢4 = 8 and one seller, s1, with p(s;) = 0.85 and ¢ = 5.
For simplicity, assume both agents have perfect knowledge of p(-). After some
bidding, we have the offers o} = 7 and of = 6.8 in the order books. Now,
in the traditional CDA, the market would immediately clear and a transaction
would take place at price ¢ = 6.9. However, in the T-CDA, agents consider their
expected utility (Equation in order to decide whether to commit. It happens
that 45 (t9.1(6.9)) > 0, so s will commit to c¢1(0}, 0}). However, 4} (to.1(6.9)) <
0, so by will reject the commitment, removing it from the commitment book.
If s; were to improve its ask to of = 6.4, both agents have positive expected
utility (at price ¢ = 6.7) and they will both commit, resulting in a transaction
t0,1(6.7).

4.2 Zero-Intelligence Behaviour

In order to evaluate the mechanism presented above, agent behaviours must
also be defined. To this end, this section explains how the ZI strategy can be
used in the T-CDA.

The ZI strategy (see Section, although surpassed in terms of efficiency
by more modern strategies, remains important for the evaluation of mechanisms,
as its uncomplicated behaviour allows the mechanism itself to be investigated,
in the absence of the complex effects of a more advanced strategy. Moreover,
performance with ZI traders can be said to give a lower bound on the expected
performance of traders in the mechanism, because ZI agents have practically
no intelligence. Therefore, here the ZI strategy for the CDA is adapted to the
T-CDA.

Now, in the traditional CDA, an agent’s strategy is specified through its
bidding behaviour, which dictates the offers an agent submits in the market.
In additon to this, a commitment behaviour is also required when trading in
the T-CDA, to determine when an agent commits. In order to make informed
decisions about when to commit, an agent needs to evaluate the utility it expects
to derive from each of the possible transactions. This is given by the estimated
expected utility @ (Equation . A rational agent should only commit when
the estimated expected utility is non-negative.

Given this, the commitment strategy is based on a single heuristic: if the ex-
pected utility is non-negative, an agent a; is keen on transacting. This heuristic
was chosen for its simplicity, easing both analysis and implementation. Other
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The T-CDA extends the traditional CDA by separating the bidding and com-
mitment phases implicit in the trading process. Thus, the market no longer
clears automatically when a bid and an ask match. Rather, agents themselves
must take the initiative in committing to a specific (bid, ask) pair.

In addition to the order books, the T-CDA has a commitment book, in which a
list of all current commitments is maintained. We define an additional rule and
adapt the Clearing Rule to deal with commitments:

Commitment Accepting Rule A commitment ck(of,oj) is accepted when
the prices of the shouts concerned match (i.e. o} > 0;) and one of the
shouts was made by the agent committing (i.e. k =iV k = j). Further-
more, any agent may have only one commitment for a specific shout in the
commitment book at any one time. Commitments can be withdrawn by
the agent that made them, or rejected by the agent that is being commit-

ted to. In either case, the commitment is removed from the commitment

book.
Clearing Rule Two commitments match when both the buyer and the seller
commit. So, commitments ¢;(0Y, 0%) and ¢; (0}, 03) match and would result

in a transaction t; ;(q), where ¢ is a transaction price determined by the
Pricing Rule. After the matching, both the commitments and the shouts
concerned are removed from the books.

Box 4.1: The T-CDA protocol is an extension of the CDA protocol (BOX.

Bidding Component Clearing Component

trans-
action

Commitment Component
Agent ' Y

Commitment
book

........................................

Figure 4.1: Information in the T-CDA flows through three different components.
The Commitment component distinguishes the T-CDA from the traditional

CDA (Figure .
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strategies may be equally appropriate, e.g. explicitly trading off the utility of
transacting now against the possibility of a better transaction later, estimated
according to some probability distribution. Hence, the following actions are
tried in order:

1. Given commitments to its own shout, a; picks the best and commits if
u > 0;

2. If a; is already committed, it does nothing more;
3. Given compatible shouts, a; picks the best and commits if @ > 0;
4. a; submits an offer based on the ZI strategy.

If necessary, the agent a; will withdraw a previous commitment, while any
unaccepted commitments on its own shout will be rejected.

In summary, a simple heuristic commitment strategy is added on top of the
Z1 bidding behaviour, to define a minimally intelligent lower bound strategy for
the T-CDA. Although this strategy is minimally intelligent, it is rational in
the sense that it will not engage in transactions that would result in negative
expected utility. In Chapter p| a more intelligent trading strategy is developed.

4.3 The Simulation

So far, we have defined the T-CDA mechanism as well as a baseline trading
strategy for the evaluation of the mechanism. In order to empirically investi-
gate the T-CDA, an environment in which to run experiments is required. An
overview of the design and capabilities of the simulator is given in Appendix [E]
Here, we detail how the trading process is simulated.

In the T-CDA simulator, a market definition consists of the definition of
several groups of traders (usually two: buyers and sellers). For each group,
a strategy, endowment source, execution model and trust source is specified.
A run of a market definition is subdivided into an arbitrary number of days.
Every day is subdivided into a pre-specified number of time steps. The time
step uniquely identifies every moment in simulated time within a run. Hence, if
a run consists of n days and m time steps per day, the time step counter ranges
from 0 to nm — 1.

Every time step, the runner selects a random trader to submit its desired
actions (shout, commitments) to the market. The market (in concert with the
auctioneer) processes the requests from this trader and attempts to clear the
market (i.e. perform as many transactions as possible). The market notifies all
traders of any changes. The new information is then processed by the traders
and the runner moves the simulation along to the next time step.

Now, there are two exceptions to this normal flow of time in the simulation.
First, under specific circumstances, it is possible to determine that no further
transactions are possible during the current trading day. In such a case, the run-
ner may stop executing time steps for the current day and move the simulation
along to the next day immediately. The time step counter is also incremented
to the first step of the next day, to preserve correspondence between time step
number and day.
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Second, if during a time step an agent a;, commits to a transaction with an
agent a;, the agent a; is allowed to immediately respond to this by either ac-
cepting, rejecting or ignoring the commitment. This is called the Instantaneous
Response Step (IRS) assumption, and is optional, but default, behaviour of the
simulator. This is done for two reasons:

1. In order to compare the T-CDA to the CDA, it is important that the new
mechanism with ZI traders reduces to a normal CDA given

pla;))=1; Va, € A

In that way, the impact of one factor (the POS) on the CDA and T-CDA is
measured, without confounding the results with differences due to timing.

2. Without the IRS, experiments require a greater number of time steps
to run (trials indicate a factor of 10 increase). Therefore, statistically
significant results are more readily arrived at when the IRS is enabled.

It is assumed (and verified by trial runs) that the IRS does not have a relevant
impact on the eventual efficiency derived by the system. This is supported by
the experiments in Section [5.3.3

4.4 Empirical Evaluation

Now that we have defined the T-CDA, the agent behaviours and the simulation
environment, we next detail the empirical evaluation of the T-CDA. In par-
ticular we aim to see how it performs with respect to the desiderata specified
in Section [3.4] Specifically, we investigate the efficiency of the mechanism and
the distribution of utility between buyers and sellers, and the robustness of the
mechanism to errors in the trust information. In what follows, we first detail the
experimental setup. Then, we detail the results and discuss their implications.

4.4.1 Experiment Settings

This section details the experiment settings. For some variables, although they
may impact on the performance of the mechanism in some way, the results
obtained here are not sensitive to their specific values. Therefore, for these
variables, reasonable default values were chosen (Table [4.1)).

More specifically, there are 50 buyer and 50 seller agents. The agents’ endow-
ments, which determine the orders the agents have to complete, are generated
from a uniform distribution with the range [6, 8] for sellers and [10, 12] for buy-
ersﬂ The maximum price is set to 15. As agents do not learn over trading days
(see Section , a run will consist of a single trading day. Experiments consist
of 300 runs per condition. The buyer POS is fixed at 1, because this allows for
more insightful analysis, though similar results occur if failure is two-sided.

2 Although it appears that all traders should transact, this may not be the case, because
not all traders may be matched with positive expected utility due to execution uncertainty.
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Independent Variables. There are three independent variables. The first
two are the expected value E(pos) and variance Var(pos) of the probability of
success of sellers. In total, 65 combinations of these variables are run (Table[d.2).
If Var(pos) = 0, every seller has POS E(pos). Otherwise, POS values are
drawn from a Beta distribution with appropriately chosen parameters. The
Beta distribution was chosen because it generates values in [0, 1] and allows
flexible configuration of y and o2 (see Appendix [A| for details).

The third variable determines the way in which trust (in sellers) is initialised
for the buyers. If trust is CDA-LIKE, a trust of 1 is placed in every seller.
This condition thus exhibits the same behaviour as the traditional CDA. With
RANDOM trust, trust values are drawn from a uniform distribution. Trust can
also be initialised as the MEAN seller POS (i.e. an agent will believe every agent
to be as reliable as the population mean reliability), or as a PERFECT copy of
the POS value of each seller (i.e. an agent has perfect knowledge of each other
agent’s POS). Finally, to simulate unreliable trust, the NOISE trust condition
initialises trust to the true POS with a certain error value added to it. The
trust settings are summarised in Table

Metrics. Performance is measured as the sum of the actual (derived) utilities
of all buyers, Vg, and the sum of the actual utilities of all sellers, Vg. When
the optimal allocation has an expected utility U # 0, we may express these
measures relative to the optimum, as 2VpU ! and 2VsU !, respectively.

Now, we analyse the performance of the mechanism, given that agents have a
correct perception of their counterparts’ probabilities of success. The analysis
serves three main goals. First, it confirms that the emergent behavior of the
system is as we expect (Section . Second, we evaluate the behaviour of
the mechanism, in comparison to the traditional CDA (Section and with
respect to the optimal performance (Section. Finally, in Section we
evaluate the robustness of the mechanism to errors in the trust information.

4.4.2 Positive Payoff

First of all, calculating the optimal allocation tells us when a positive payoff is
possible. We expect that given perfect information, on average, the mechanism
will derive a positive utility if that is at all possible.

Hypothesis 1. If for a certain setting of E(pos) and Var(pos), the optimal
buyer utility is positive, so is the expected performance for the PERFECT trust
setting.

For the 60 out of 65 combinations of E(pos) and Var(pos) where the optimal
expected utility is greater than zero, we do a t-test with the null hypothesis that
the mean buyer utility is equal to zero. The alternative hypothesis is that the
mean is greater than zero. At the a = 0.05 level, we reject the null hypothesis
in 56 of the 60 casesl]

In the cases where the null hypothesis is not rejected (and the mean buyer
utility is thus roughly equal to zero), the estimated mean is greater than zero,

31f we protect the null hypothesis against spurious results by setting o/ = 1 — 0.951/65
(Cohen} [1995)), the null hypothesis is rejected in 54 cases.
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Variable Value  Unit
# of buyers 50 agents
# of sellers 50 agents
Maximum price 15 -

Seller endowments  [6, 8] -
Buyer endowments [10,12] -

Table 4.1: Fixed variable values

Var(pos)
0.000 0.010 0.045 0.085 0.125 0.155 0.185 0.205 0.235 0.245

0.10
0.30
0.50
0.60
0.70
0.75
0.80
0.85
0.90
0.95
1.00

v v
v

E(pos)

N N NN NENEN
N N N NN NENEN
SN N N N NENEN
ENENENENENENEN
ASNENENENENEN
SNENENENEN

SNENENEN

SR N N NN

Table 4.2: Levels of E(pos) and Var(pos). A checkmark in the table indicates
a combination of E(pos) and Var(pos) that has been run.

condition | initialisation

NAIVE trust;(a )—-1

RANDOM | trust;(a;) =

MEAN trust;( J) = SI ZS;‘GSPS(Sk>

PERFECT | trust;(a;) = ps(a;)

NOISE trust;(a;) = ps(aj) + N(0,z), bounded to [0, 1]
x € {0.05,0.10, 015 0.20,0.25,0.30,0.40,0.50}

Table 4.3: Trust levels. U is the Uniform distribution. NNV is the Normal (Gaus-
sian) distribution. The NOISE condition is introduced in Section
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Figure 4.2: Buyer and seller utility for the Trust-based CDA given PERFECT
trust and the normal CDA. In (a), PERFECT trust avoids making a loss, where
the CDA does make a loss. Panel (b) shows that the normal CDA allows
unreliable sellers to exploit buyers.

so we need not consider the alternative that the actual mean is smaller than
zero. Furthermore, these cases all have a very small optimal expected utility.
Hence, in general, the mechanism does derive a positive expected utility if this
is possible.

4.4.3 Comparison to the CDA

It has been shown that, given PERFECT trust information, ZI traders in the
T-CDA avoid making a loss and turn a profit whenever possible. Now, we also
show that they do better than agents that do not take trust information into
account, as in the CDA-LIKE and the RANDOM conditions.

To this end, Figure shows a typical outcome when Var(pos) = 0,
for different levels of F(pos). The PERFECT condition does not trade for low
values of F(pos), where a profit is not possible. For higher values of E(pos),
the utility for the PERFECT condition increases more or less linearly. For the
CDA-LIKE condition, the relationship between E(pos) and buyer utility is linear,
which is what we expect, since it will ignore the probability of success of sellers
altogether. Hence, it derives a (very large) negative utility for low E(pos).
Beyond a certain threshold, there is very little distinction between the PERFECT
and CDA-LIKE conditions. This is to be expected, since then transactions are
usually desirable and given random (ZI) bidding both conditions will lead to
approximately identical results.

In Figure we see that the influence of F(pos) on seller utility is quite
different. Clearly, accurate trust information prevents the buyers from being
exploited by sellers. We return to this point later, in Section [£.4.4]

The above conceptions are formalised as follows:

Hypothesis 2. Under any setting of E(pos) and Var(pos), PERFECT trust will
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do at least as well (in terms of buyer utility) as the RANDOM, CDA-LIKE and
MEAN conditions.

To test this hypothesis, for all combinations of E(pos) and Var(pos), pair-
wise comparisons of the PERFECT condition were done against the other condi-
tions. Two t-tests were performed for each pair, in both cases the null hypothesis
is that the means are equal. In the first test, the alternative is that the mean
in the PERFECT condition is greater, in the second, that the mean is less. The
resulting p-values were inspected at o/ = 1 — 0.95'/6% protecting the null hy-
pothesis (no difference) against spurious results. Here, the important results
are given. A comprehensive view of the data is provided in Appendix

Note that given the experiment settings, when Var(pos) = 0 and E(pos) >
0.82, the decisions made by CDA-LIKE trust are, on average, rationalﬁ Hence,
we cannot expect much advantage from good trust information in that case.
In comparison to MEAN, we expect no difference when Var(pos) = 0. Also
see Figure [£:4] Table [f.4] and the corresponding discussion, which show that for
E(pos) > 0.80 and Var(pos) = 0, errors in the trust information have very little
impact on the overall system performance.

Looking at the ‘PERFECT > other’ alternative hypothesis, at o/, PERFECT is
significantly better than RANDOM in 64 of the 65 cases, better than CDA-LIKE in
57 of the 65 cases and better than MEAN in 43 of the 65 cases. The cases of no
difference correspond to the expectations mentioned above. For the ‘PERFECT
< other’ alternative, there are no significant differences at o’.

Thus, it is safe to say that the PERFECT condition improves upon the control
conditions RANDOM, CDA-LIKE and MEAN. Moreover, it is clear that the T-
CDA does better than the CDA when faced with uncertainty about the result
of transactions.

4.4.4 Benchmark

In this experiment we benchmark the T-CDA’s performance against the op-
timal performance and make some overall qualitative observations about its
behaviour.

To this end, Figure shows the total utility achieved by the system,
normalised by the maximum expected utility from the optimal allocation. The
mechanism does well when either Var(pos) is high, or E(pos) is high, or both.
This is because, in both cases, the part of the population from which profit can
be derived have E(pos) =~ 1. Hence, when buyers bid randomly from [0, ¢], they
are submitting profitable bids. If, however, a large group from which profit may
potentially be derived has a low POS, the bidding strategy does poorly. This is
because it submits bids that are too high (overbidding). Hence, the agent itself
is not willing to transact at that price, given the execution uncertainty. This
means that the number of transactions that occur is reduced, in turn reducing
total utility. Hence, the figure reveals the need for an agent’s bidding strategy
to be informed by its trust function in order to bid appropriately.

Another relevant aspect of the behaviour is the balance of utility between
buyers and sellers. This is shown in Figure In the Var(pos) = 0 case, it

4 Assume the transaction price is, on average, the equilibrium price ¢ = 9. Then, given the
average limit price for buyers, £2 = 11 and that all sellers have the same POS p, we can find p
such that expected buyer utility (Equation , on average, is non-negative: ub = ¢bp — g >
0=p>2 ~082
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Figure 4.3: The normalised utility or efficiency derived by the mechanism and
the disparity between seller and buyer utilities.

appears that sellers are the first to profit from an increase in E(pos), with the
balance being restored only for the highest values of E(pos). Specifically, for
E(pos) = 0.60, observe that the difference of seller and buyer utility is almost
identical to the total utility in the system, i.e. only the sellers turn a significant
profit. The higher Var(pos) levels show an imbalance that decreases when
E(pos) increases. Once again, the imbalance is caused by the bidding strategy,
which is uninformed about the actual worth of the sellers’ offers.

4.4.5 Effect of Noise

Now, we analyse the effect of the degradation of trust information on the mech-
anism. To simulate unreliable trust information, each buyer’s trust function is
initialised to the actual POS values with some arbitrary level of Gaussian noise
applied to it. Figure [£.4] provides an overview of the results.

The figure provides a number of interesting insights. First, if the noise
level is high, performance degrades almost linearly with E(pos). This is to be
expected, since interaction partners are chosen almost completely at random,
and this randomness leads to a linear relationship between buyer utility and
E(pos). Second, if E(pos) is very low, performance increases linearly with a
decreasing noise level, until a ‘plateau’ is reached where utility is zero. A linear
regression (Table shows that a linear relation can indeed account for a large
proportion of the variance in these cases. Adding noise means that agents will
overestimate POS in some cases and hence that they may transact even if it is
not in their best interest, leading to losses. The ‘plateau’ where utility is zero
exists because even with some overestimation of the POS, agents do not see
transactions as desirable.

Last, when E(pos) > 0.80, the noise level seems to have very little impact on
the total utility derived by buyers, rather increasing linearly with an increasing
E(pos). Linear regression of buyer utility on noise (Table confirms this.
This may be explained by the fact that in Figure Var(pos) = 0 and hence
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Figure 4.4: Performance degrades when E(pos) is lowered and when more noise
is added to trust values. The noise level represents the variance of the Gaussian

noise distribution that is applied to individual agents’ trust function.

E(pos) noise r? F D
0.10 [0.15,0.50] 0.74 280 <« 0.01
0.30 [0.10,0.50] 0.70 226 < 0.01
0.50 [0.05,0.25] 0.61 155 < 0.01
0.80 [0.00,0.50] 0.00 0.15 > 0.50
0.85 [0.00,0.50] 0.00 0.04 >0.50
0.90 [0.00,0.50] 0.00 0.01 >0.50
0.95 [0.00,0.50] 0.00 0.01 > 0.50
1.00 [0.00,0.50] 0.00 0.00 > 0.50

Table 4.4: Linear regression of buyer utility on noise, for Var(pos) = 0, signif-
icance tested against F' distribution. r? is the proportion of the total variance
accounted for by the regression line. F' is the value of the F-test statistic for a
linear regression and p is the significance of the regression line given by an F'

distribution.
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there is no benefit in distinguishing between sellers. The intuition behind this
is that the application of noise introduces an arbitrary preference for certain
sellers, which is different for each buyer, and transactions are usually desirable.
Thus, the effects of noise on the individual cancel out over the entire population.

4.5 Summary

This chapter has provided an overview of the T-CDA mechanism, which allows
traders to take execution uncertainty into account in their decision making.
Specifically, it allows agents to use the trust they place in each other in order to
decide which potential transaction to commit to. The decentralised nature of
the CDA is preserved, by requiring traders to take the initiative in committing
to a transaction based on a bid and an ask previously placed in the market.
Moreover, the ZI bidding behaviour for the CDA is adapted to the T-CDA
by adding a simple heuristic commitment behaviour on top of the unmodified
bidding behaviour.

Subsequently, the T-CDA simulator that is used for the empirical investiga-
tion of the new mechanism has been described and, specifically, the way time
is simulated has been discussed. Then, the mechanism has been empirically
investigated with ZI traders. It has been demonstrated to be robust against
increasing execution uncertainty. The CDA on the other hand, is shown to
break down. Moreover, the effect of unreliability of trust information on market
efficiency is shown to be linear.

Thus, this chapter has addressed the first two research objectives (Sec-
tion , to develop an extension of the CDA that is robust to execution un-
certainty and to study its properties. However, although unlike the CDA, the
T-CDA does not derive negative social welfare when execution uncertainty is
high, market efficiency in the T-CDA decreases with increasing execution uncer-
tainty. It was hypothesised that this is because the bidding range of ZI agents
is inappropriate. To show that this is indeed the case, in the next chapter, a
rudimentary trading strategy based on ZIP is developed. Moreover, its evalua-
tion provides further insights into the T-CDA mechanism and the challenges in
designing trading strategies for this new mechanism.
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Chapter 5

Designing a Trading
Strategy

This chapter details the Trust-Based ZIP (T-ZIP) strategy. T-ZIP is a rudimen-
tary trading strategy for the T-CDA. The main aim in developing this strategy
is to show that the inefficiency of the T-CDA with ZI agents when the prob-
ability of success is low, is indeed a result of the inappropriate bidding range
of the ZI agents rather than an inherent weakness of the T-CDA mechanism.
Therefore, the T-ZIP is a straightforward adaptation of the ZIP strategy (see
Section and it is not designed with all possibilities in mind. Specifically,
it is assumed that although in general there is no single equilibrium price (Sec-
tion, there is a single equivalent price (see Section that traders should
converge to.

Thus, the T-ZIP strategy serves as a further demonstration of the capabilities
of the T-CDA mechanism and as a starting point for good trading strategies,
but not as a generally applicable trading strategy in its own right. Within the
context of the research objectives of Section this Chapter mainly addresses
objectives three and four, concerning the development and analysis of a trading
strategy of the T-CDA, but also furthers the fulfillment of the second objective,
the study of the properties of the T-CDA mechanism.

The T-ZIP strategy is detailed in Section[5.1] Its implementation is discussed
in Section and it is empirically evaluated in Section A discussion of the
results and recommendations for trading strategies are given in Section
Finally, Section [5.5] summarises the main points.

5.1 The Trust-Based ZIP Strategy

A trader a; employing the ZIP strategy uses bid and ask prices to determine
a target price 7;(t). Then, it applies a machine learning algorithm (adaptation
mechanism) that updates the profit margin p; of the trader by adjusting it
so that its shout price ¢; (Equation goes towards 7;(t). For a detailed
description of ZIP, refer back to Section [2.3.2]

The ZIP strategy cannot be applied directly to the T-CDA, for the following
reasons:
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1. In the T-CDA, shout prices cannot be taken at face value, because exe-
cution uncertainty needs to be taken into account when determining the
value of a shout;

2. Because of the introduction of the commitment step, learning opportuni-
ties in the T-CDA differ from those in the CDA;

3. As noted previously, ZIP works under the assumption that there is an
equilibrium price it should converge to. This is not always the case in the
T-CDA.

Now, when developing the T-ZIP strategy (as mentioned above), we choose to
assume that there is a price an agent should converge to. Thus, in designing T-
ZIP, the first two problems must be addressed. First, we need to define how the
target price 7;(t) is set and, then, we need to re-define the rules that determine
when and how to update the profit margin. The adaptation mechanism does
not need to be modified.

5.1.1 Setting the Target Price

In the ZIP strategy, the profit margin is adjusted to approach a target price
7;(t). The target price 7;(t) is calculated from a shout price or transaction price
q(t) by applying small random perturbations (Equation . However, in the
T-CDA, we need to take Execution Uncertainty into account. Specifically, if we
wish to update the profit margin based on a transaction price ¢(t), we need to
take the POS of the traders involved into account. For example, if a buyer b;
with POS 1 wants to adjust its margin based on a transaction price ¢(t), and
if the buyer b; involved in the transaction also has POS 1, the target price can
simply be based on ¢(t). However, if b; has POS 0.8, then b; could get away
with bidding a lower price, since we assume sellers make their choices based on
the expected utility of an offer.

Therefore, an agent a; should calculate an adjusted price v;(t) that represents
the equivalent value of a shout or transaction price relative to its own POS. The
target price 7;(t) may then be redefined based on the equivalent value v;(¢):

Ti(t) = Ri(Dvi(t) + Ai(t) (5.1)
where R; and A; are the random perturbations defined in Section Com-

pare this equation to Equation

In the following, the equivalent value v;(¢) is derived from the expected util-
ity function 4; (Equation . Buyers and sellers are considered separately.
Note that in defining v;(¢), the POS function p(-) is used. In practical im-
plementations, agents will substitute their trust function for the actual POS

function.

Buyers Now, we consider how a buyer b; should calculate the equivalent value
of a certain price ¢(t). Say that ¢(t) was shouted by a buyer b;, or that b;
transacted at price ¢(t). Now, we must determine what value b; would need to
shout to make an offer of the same value (expected utility) to a seller s;. This
can be expressed as the following equation:

a (tik(vi(t))) = @i (tk(a(t))) - (5:2)
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Here, v;(t) is the price at which b; would transact with s, such that sy derives
the same expected utility from this transaction as it would derive from a trans-
action with b; at price g(t). When substituting the definition of expected utility
(Equation into this equation, we obtain the following equality:

vi(t)p(bi) — £ = q()p(bs) — £3 (5.3)
which reduces to the following solution for v;(¢):
p(b;)
v;(t) = q(t 5.4
(1) = a2 (54)

Hence, to find the equivalent price of ¢(t), we normalise it with the ratio of the
competing buyer’s POS to the agent’s own POS. Intuitively, this is because
sellers scale the transaction price according to (their estimate of) the buyer’s
POS when determining the utility of a transaction. Thus, if the other buyer has
a higher POS, we would need to bid a higher value, which is what one would
expect. Note that the solution is independent of the identity of the seller sy.

Sellers We have defined equivalent prices for buyers. Now, we consider how
a seller s; should calculate the equivalent value of a price ¢(t). Say q(t) was
shouted by a seller s;, or s; transacted at price ¢(t). We determine what value
seller s; would need to shout to make an offer of the same value to a buyer by.
Again, using expected utility (Equation , we derive the following equation:

ap (tri (vi (1) = a3 (tr; (q(t))) (5.5)
Gop(si) — vi(t) = Gp(s;) — q(t) (5.6)

Again, v;(t) is the price at which seller s; would transact with by, such that by
derives equal expected utility from this transaction as from a transaction with
b; at price g(t). Solving for v;(t):

—vi(t) = Gp(s;) — a(t) — Gp(s:) (5.7)
vi(t) = Gu(p(si) = p(s;)) +q(t) - (5-8)

This solution is strikingly different from Equation because here v;(t) is
proportional to the difference of the agent’s POS with the POS of the competing
seller, not the ratio between the two. Moreover, this solution is problematic, as
the equivalent value depends on the limit price of a buyer. This, of course, may
vary from buyer to buyer and hence there is no single equivalent value. The
intuition behind this is that, unlike sellers, buyers do not scale the transaction
price according to (their estimate of) the POS of the seller, but adjust their
limit price accordingly. Hence, the relationship between the transaction price
and the equivalent price is not as straightforward as for sellers.

We do know that £ > 0 and thus, the sign of the difference p(s;) —p(s;) will
tell us whether v;(t) > q(t), v;(t) = q(t) or v;(t) < ¢(t). However, we do not
know the relationship between v;(t) and g¢;, the price s; would currently shout
in the absence of this information.

Now, we cannot make any assumptions on 62, except that it has a certain
relation to ¢(t). Therefore, to simplify Equation we introduce a parameter
ki that expresses this relationship:

& = q(t) - ralt) - (5.9)
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Now, k, may be thought of as the inverse profit margin, by rewriting the pre-
vious equation as follows:

L)
Iﬁ:k(t) fz

=1+, (5.10)

where the last equality is due to Equation[2.2 From Equation[5.10]and the limits
on py in Section we know that for buyers, u, € [—1,0], so ﬁ(t) € [0,1]
and hence ky, € [1,00).

The parameter i allows us to eliminate the limit price fz from the equivalent

price formula, by substituting Equation [5.9] into Equation

vi(t) = (q(t)rk () (p(s:) — p(s5)) + q(t) (5.11)
= q(t)(kr(t)(p(si) = p(s;)) + 1) - (5.12)

It seems that we have gained little by this transformation: this formula still
contains an unknown. However, kj, abstracts away the price level in the specific
market. Thus, we can more easily come up with reasonable assumptions on y,
without knowledge of the specific market.

Now, from Algorithm we know that based on a competing ask, we can
be asked to either raise or lower the profit margin. For the sake of brevity, define
d = p(s;) — p(s;) and note that d € [-1,1]. In order to decide whether to raise
or lower the margin, we need to decide the following inequalities:

¢ < vi(q) = q(t)(krd + 1) (5.13)
¢ > vi(q) = q(t)(ked + 1) (5.14)

These are the analogues of ¢; < ¢ and ¢; > ¢ in Algorithm respectively.
Now, because we do not know xj, we cannot do this exactly. Therefore, an
approximate answer is required. Because we do not want to raise or lower
the margin unnecessarily, we define two conservative estimates: fu; for when

the margin should be raised and vil for when the margin should be lowered.
To be conservative (i.e. prevent unwarranted adaptation of the margin), these
estimates should satisfy the following constraints:

if ¢; < UZ-T(q) then ¢; < v;(q) (5.15)
if ¢; > Uil(q) then ¢; > v;(q) (5.16)

Assume we have bounds ki, and Kpax for ki that satisfy:
Kmin < Kk < Kmax ; Vk (5.17)

Then we can define the estimates UZ-T and vii as follows:

f a@®)(Fmmd+1) d>0

vl = { Z(t)(nmader 1) d<0 (5.18)
(t)(Fmaxd+1) d >0

v = { Z(t)(nmmd +1) d<0 (5.19)

Now, it must be shown that these functions are indeed conservative estimates
of v;(q), as defined by Equation and Equation
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Theorem 5.1. The definition in Equation[5.18 satisfies the constraint given in

Equation given that Equation holds. Specifically, for all d € [—1,1]
and q(t) > 0, if ¢; < UZ-T (¢) then ¢; < v;(q).

Proof. Note that to show that Equation [5.15] holds, it suffices to show that:
vl (q) < vilg) (5.20)

Case I: d > 0. In this case, Equation defines viT as:

v (@) = g(t) (Fmind + 1) (5.21)

By substituting Equation[5.21] and Equation [5.11]into Equation [5.20, we obtain:
vl (q) < wvilg) (5.22)

q(t) (Fmind + 1) < q(t)(krd + 1) (5.23)

Fmind +1 < krd + 1 (5.24)

Emind < Kid (5.25)

Now, because d > 0, this reduces to:
RKmin S Rk (526)
This holds because of Equation [5.17, Thus, when d > 0, the theorem holds.

Now, it remains to show the same for d < 0.

Case II: d < 0. In this case, Equation defines U; as:

] (@) = q(t) (Fmaxd + 1) (5.27)

Again, substituting the relevant definitions into Equation [5.20] gives:
vl (q) < vilq) (5.28)
q(t) (Fmaxd + 1) < q(t)(krd + 1) (5.29)
ﬁmaxd S /ikd (530)

And because d < 0, this reduces to:

Bmax > Kk (5.31)
This holds according to Equation [5.17 O

Theorem 5.2. The definition in Equation|5.19 satisfies the constraint given in

Equation given that Equation holds. Specifically, for all d € [-1,1]
and q(t) > 0, if ¢; > vii (¢) then ¢; > v;(q).

Proof. Analogous to the proof of the previous theorem. O

Therefore, Equation and Equation indeed provide conservative
estimates of v;(¢q). These estimates can be used both to decide when to raise or
lower the margin and to set the target price 7;(¢). Note that for buyers, we can
define these functions as v] (t) = v} (t) = v;(t).

For now, let Kpin, and kmax be parameters to the algorithm. Note that they
have no impact on v; in the case that d = 0, i.e. when Var(pos: S) = 0. A more
advanced strategy could attempt to estimate these values with more accuracy

and on an agent-by-agent basis.
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5.1.2 Bargaining Strategy

In the ZIP bargaining mechanism, an offer successfully being accepted as a trans-
action or not is the input for the learning mechanism. If a transaction occurs,
this is interpreted as positive feedback. If it does not, this is considered negative
feedback. However, given that we additionally have commitments, these events
cannot be interpreted in the same way. Specifically, the fact that an offer is
submitted and no transaction immediately results does not necessarily consti-
tute a negative response to that bid. On the other hand, when a commitment
is made to a bid, this is unmistakably a positive reaction. Similarly, a rejection
of a commitment is a negative response. Therefore, we consider commitments
as a learning opportunity.

In addition to this, we might encounter a situation in which no commit-
ments are being made, perhaps because at the current prices, no commitments
are desirable. Hence, we also need to consider lowering the margin when no
commitments are being made, to improve the chances of transacting.

Commitment-based Bargaining

Now, we consider how an agent can update its profit margin when a commit-
ment is made in the market. Before discussing the learning rules in detail, we
introduce a general framework that clearly shows the extension of the ZIP rules
to the T-CDA.

Specifically, we generalise the bargaining mechanism given in Algorithm
and Algorithm such that it is valid for both buyers and sellers (Algo-
rithm . First, ZIP defines two learning opportunities: ‘the last shout re-
sulted in a transaction at price ¢’ is considered as positive feedback on the price
g and ‘the last shout, at price ¢, did not result in a transaction’ is considered
as negative feedback. These rules are denoted by eventg, and eventg, respec-
tively.

Furthermore, there are rules that determine when to raise or lower the mar-
gins based on this feedback. In response to positive feedback, the margin can be
either raised or lowered. After a negative feedback, the margin can only be low-
ered. The rules that determine whether to do this are condRg, condLg and
condLg. Finally, the previous section has shown that when lowering and rais-

ing the margin, the appropriate target price differs. Therefore, Uil (¢) and ’UZ-T (q)

are specified explicitly as targets in Algorithm For ZIP, vil(q) = ’UZT (9) =q.
Now, we discuss these five rules in turn. This consists of the rule as adopted
by ZIP and the rationale behind it. Then, the new rule for T-ZIP is derived.

eventg In the ZIP strategy, a transaction occurring immediately after a shout
is submitted is considered positive feedback. As was noted before, in this section
we consider a commitment on a shout as positive feedback. In more detail, a
commitment by an agent a; to transact with agent a; at price g is considered
positive feedback on the price q.

eventg Originally, no transaction resulting from a shout is considered nega-
tive feedback. However, in the T-CDA, because agents must take the initia-
tive in committing to transactions, transactions never immediately result from
shouts. Therefore, we cannot always consider this as negative feedback. Here,
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Algorithm 5.1 Revised bargaining algorithm
if eventg then
if condRg is met then
raise profit margin towards ’UZ-T (9)
end if
if condLg is met then
; {
lower profit margin towards vy (¢)
end if
else if eventg then
if condLg is met then
; i
lower profit margin towards vy (¢)
end if
end if

we consider negative feedback based on commitments (negative feedback based
on shouts will be considered later). If an agent a; has committed to a transac-
tion with a; at price ¢ and if a; rejects this commitment by a;, that is considered
negative feedback on the price q.

condRg A trader can raise its margin regardless of whether it is active or not.
The intuition behind raising the margin after positive feedback is that positive
feedback to a certain price ¢ must mean that ¢ is a competitive price. Hence, if
bidding ¢ would mean a higher margin to an agent a;, that means a; can raise
its margin. For example, a ZIP buyer would raise its margin if ¢; > UiT (q), ie.
if it would have bid a higher value than ’UZ»T (¢). However, a commitment in the
T-CDA is one-sided feedback (i.e. a commitment by a buyer to transact with
a specific seller does not give us any information about the seller’s willingness
to transact with that buyer), unlike a transaction in the CDA, so T-ZIP buyers
should only learn based on feedback by sellers and vice versa.

a. Buyers: last commit (price q) is by a seller and ¢; > viT (q)

b. Sellers: last commit (price ¢) is by a buyer and ¢; < UiT (9)

condLg The margin should only be lowered when an agent is active, because
if it is inactive, this means it has already successfully filled all its orders. Hence,
the agent has no incentive to lower its margin. For a seller, if there is a posi-
tive reaction to an ask that would imply a lower margin, this means that the
seller risks being undercut by the competition. Thus, the seller should lower its
margin. The same holds for buyers and competing bids.

The risk of being undercut by the competition exists for agents in the T-
CDA as well. However, they must deal with an additional problem, namely,
that they can lower their margin too much. That is, the limit price alone does
not fully determine the price for which @; > 0, rather it is also determined by
the POS of the trading partner. Hence, the margin might be lowered to such a
point that the agent itself is not willing to trade at that price. E.g. a seller s;
is at risk of being undercut by another seller s, because b; has committed to a
transaction t; 1 (¢). However, if s; were to transact at the equivalent price, this
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would result in negative utility: faj(tu(vzl (g))) < 0. Hence, s; should not lower
its marginﬂ Thus, we arrive at the following rules:

a. Buyers: last commit (price ¢) is by a buyer AND ¢; < Uil(q) AND
b

al(t; (v} (q))) > 0; s, the seller involved in last commit
b. Sellers: last commit (price ¢) is by a seller AND ¢; > vil (¢) AND

as (t“(vzl(q))) >0 ; b; the buyer involved in last commit
condLs As noted previously (see condLg), an agent should only lower its
margin when it is still active in the market. In the original ZIP, a seller would
lower its margin when there is a negative response to an offer with price ¢ <
¢, since an offer it would make at ¢; would similarly be rejected. The same
basic reasoning holds for the T-ZIP as well, though we now compare ¢; to the
equivalent price ’Ul-l (¢). The risk of lowering the margins too much, identified for

condLg, holds here as well. Hence, the new rules are as follows:

a. Buyers: last rejection (price q) is by a seller AND ¢; < vil (¢) AND
@b (t; (v} (q))) >0 ; s, the rejected seller

b. Sellers: last rejection (price ¢) is by a buyer AND ¢; > vil (¢) AND

ﬁs(tj7i(vl-l(q))) > 0 ; b; the rejected buyer

i

Shout-based Bargaining

Having designed the rules for commitment-based learning, we now turn to shout-
based bargaining. Shout-based bargaining is required because in certain market
conditions, it may be the case that bids and asks are being submitted, but no
commitments are yet being made, because the bid-ask spread does not allow it,
or traders do not expect positive utility from a transaction at current prices.
Therefore, it is necessary to lower the margin based on shouts being submitted
to the market to ensure that trade actually occurs. Note that in the T-CDA,
shout-based bargaining is always negative feedback. Positive feedback is always
a commitment being made.

The question, then, is: when is it appropriate to lower a trader’s margin
based on competing shouts being submitted? Here, the approach we adopt is
to view shouts that are being submitted as an information source inferior to
commitment information. Hence, for a seller, when there currently are commit-
ments on asks by other sellers, there is no need to lower the margin based on
new asks being submitted. Given this additional source of negative feedback,
we extend the rule eventg with the following:

a. Buyers: A shout was submitted, and the commitment book contains no
commitments by sellers.

b. Sellers: A shout was submitted, and the commitment book contains no
commitments by buyers.

L Agent s; should not lower its margin to vil (¢). However, a scheme could be devised that

sets an alternative target price. Several approaches were tried and the one adopted here seems
to work well (i.e. not lowering the margin at all).
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Now, we must also define how to decide whether to update the margin. First
of all, the margin should only be updated according to competing shouts (for
buyers, based on bids; for sellers, based on asks), because our motivation for
lowering the margin is to avoid being undercut by the competition. Furthermore,
we must determine whether a transaction at a price equivalent to our current
price would be desirable. However, unlike in the case of a rejection, it is not
clear which agent the transaction would be with. Thus, we must pick an agent
to evaluate this against. The approach chosen herdﬂ is to evaluate against the
agent with the highest POS of all agents of the opposing type that currently
have a shout in the order book.

Based on this, a rule can be defined, that determines when to lower the
margin based on the shout-based negative feedback. condLg is extended by
the following:

a. Buyers: last shout was a bid AND ¢; < vil (¢) AND
@b (t; 5 (v} (g))) > 0 ; s; best seller in order book

b. Sellers: last shout was an ask AND ¢; > vil (¢9) AND
ﬁf(t”(vll (g))) > 0; b; best buyer in order book

This concludes the description of the T-ZIP trading strategy for the T-CDA.
A method was developed to set the target price for the adaptation mechanism,
taking the different estimated POS of different agents into account. Next, the
rationale behind the ZIP bargaining rules was applied to the T-CDA in order
to derive the bargaining rules for T-ZIP. It must be noted that T-ZIP does
not yet constitute a generally applicable trading strategy for the T-CDA, as
the assumption that there is a single market equilibrium has been inherited
from ZIP. This means that T-ZIP agents will always set a single specific profit
margin, even though there may not be an equilibrium price. Because of this,
their chosen profit margin could be inappropriate in the market. Section [5.3.2
will show that, indeed, markets exist in which T-ZIP performs poorly for this
reason. Section provides further insight into how this occurs.

5.2 Implementation

The T-ZIP strategy described above was implemented into the T-CDA simula-
tor (Section . In this section, the implementation is discussed by examining
some example runs. The aim is to provide an illustration of market dynamics
with an adaptive strategy compared to the lower bound, which is the ZI strat-
egy. Some qualitative observations are made, which are supported by empirical
results in Section 5.3

In more detail, the example runs all have the same endowment and POS
settings. Here, all sellers have a POS of 0.85 and buyers have a POS of 1.
Endowments are generated from [1.0,1.5] for both buyers and sellers. Runs
typically consist of 10 days. When we consider market shocks, a run consists of
20 days, with a market shock on day 11. The parameters inherent to ZIP are set

20ther approaches are possible, e.g. this could be the agent with the lowest POS or the
median POS. However, the highest POS was chosen initially as an educated guess and appears
to work well.
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Figure 5.1: Behaviour with ZI-C.

to values randomly selected from the ranges in Table The T-ZIP specific
parameters are set to Kmin = 1.05 (corresponding to p = —0.05) and Kpax = 2
(= —0.5). All these values are educated guesses suitable for a wide range of
market settings and have been derived by experimental trial-and-error.

In more detail, ﬁgureshovvs a run with the ZI-C strategy (Section [2.3.1]).
Compare this to the T-ZIP strategy (Figure without, and Figure h
shout based bargaining). In addition to this, Figure shows a T-ZIP run
where a market shock takes place: all limit prices are shifted by one price unit.
Note that the scale on these figures varies.

From these figures, we observe that the trading process is faster with the
T-ZIP strategy. Furthermore, T-ZIP (with shout-based bargaining) performs
the most transactions (averaging around 41 transactions per day), followed by
T-ZIP without shout-based bargaining. T-ZIP agents outperform ZI, because
T-ZIP buyers are not prone to overbidding: they do not bid a value they are
not truly willing to pay. Moreover, T-ZIP with shout-based bargaining performs
more transactions than without, because without shout-based bargaining, the
market can stagnate when no commitments are being made. Also note that
trading prices for T-ZIP are lower (around 1.4 instead of 1.55). This is to be
expected, since sellers fail and hence it is appropriate to bid a lower value.

One important property of a learning strategy is that it can recover from
market shocks. Figure [5.4]shows such a scenario. As can be seen, prices quickly
converge to the new equilibrium when there is a market shock.

In a static market, we want the transaction price to converge, that is, we
want to reduce the volatility of transaction prices, as is typically the case in the
traditional CDA. Figure [5.8 shows that this is indeed the case. Note that here,
we do not consider convergence within a trading day, but across trading days.
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The ZI-C strategy will typically (in a symmetric market) show convergence
within a trading day (Gode and Sunder}, [1993)), but not between trading days.

5.3 Empirical Evaluation

Previously, we describe the design and qualitative behaviour of the T-ZIP strat-
egy in a typical market. Now, a more complete empirical evaluation is per-
formed. This includes:

e A comparison to the original results on the ZIP strategy (Cliff and Bruten),
1997) within a CDA-equivalent setting of our mechanism;

e A comparison of performance of T-ZIP against results with ZI agents in
the T-CDA;

e An experiment where a market shock occurs;

e An evaluation of the effect of disabling the Instantaneous Response As-
sumption (recall the discussion in Section [4.3]).

It is not only the T-ZIP strategy that we evaluate here. The results also provide
further insights into the T-CDA mechanism and confirm that previously shown
weaknesses are not due to the mechanism per se, but can be alleviated by a
minimally intelligent strategy.

First, in Section it was shown that, in general, there is no equilibrium
price. Therefore, Smith's measure of price convergence (Equation cannot
be used. Hence, an alternative measure is required. Because the equilibrium
price ¢* does not exist, any measure of convergence can only be descriptive,
whereas |[Smith’s measure is normative. In order to measure price volatility, ¢*
can be replaced by the mean transaction price §:

1IN (5 7)2
\ Zz:i(% q) (5.3

q

d:

where the §; are a history of n transaction prices. Because there is no normative
standard against which to evaluate the transaction prices, this measure of price
volatility is necessarily less informative than [Smith/s.

5.3.1 Comparison to ZIP

This section qualitatively compares the behaviour of the T-ZIP strategy in the
T-CDA to the results in |Cliff and Bruten| (1997). In particular, it is shown
that prices still converge to the theoretical equilibrium, in spite of the differ-
ences between the CDA and T-CDA and between the ZIP and T-ZIP strategies.
Hence, the strategies are weakly equivalent (i.e. they exhibit approximately the
same behaviour, although exact quantitative correspondence is not expected or
required) when there is no Execution Uncertainty in the system.

In more detail, |Cliff and Bruten| specify four different demand and supply
schedules and show that over trading days, the mean transaction price with
ZIP traders converges towards the theoretical competitive market equilibrium,
whereas ZI traders only converge towards this theoretical equilibrium in one of
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four cases. In every case, the theoretical equilibrium price is 200. The four
markets are:

Symmetric demand/supply: 11 buyers and 11 sellers, with limit prices rang-
ing from 75 to 325, in steps of 25.

Flat supply: Demand as in the previous case, but all 11 sellers have limit price
200.

Excess demand: There are 11 buyers with limit price 200 and 6 sellers with
limit price 50.

Excess supply: There are 6 buyers with limit price 320 and 11 sellers with
limit price 200.

The results are shown in Figure Although the standard deviation of
transaction prices appears to be less for the excess demand and excess supply
cases than what |Cliff and Bruten|report, the observed convergence is very similar
to their results for all four markets.

In addition to these static markets, |Cliff and Bruten| investigate dynamic
markets. The dynamic market they consider is one in which a market shock
occurs on day 11. They consider both an increase and decrease in buyers’ limit
prices. Here, the experiment where the buyers’ limit prices are increased is
repeated. Figure shows the result. After the shock, prices converge quite
quickly, as is the case in |Cliff and Bruten| (1997)).

In conclusion, qualitatively, the T-ZIP behaves in the same way as the ZIP,
in these markets. Therefore, T-ZIP appears to be an appropriate adaptation of
the ZIP to the T-CDA.

5.3.2 Comparison to ZI-C

Now, the T-ZIP strategy is compared to the ZI-C strategy, primarily in terms
of market efficiency, in a wide variety of market conditions. It is shown that
the T-ZIP strategy indeed alleviates the shortcoming of the T-CDA with ZI
traders identified in Section [4.4.4 market efficiency does not decrease signifi-
cantly when Var(pos) = 0 and E(pos) decreases. However, it turns out that
the T-ZIP strategy is not robust to high Var(pos) and in some cases may even
be outperformed by ZI.

Moreover, in Section [4.4] it was assumed that the seller-side failure scenario
is representative of the general case. In order to support this assumption, a more
complete coverage of the POS space is achieved in this experiment. Specifically,
not only seller-side failure, but also buyer-side and two-sided failure are consid-
ered.

All experiments in this section were run with the simulation parameters set
as for the experiments in Section (Table . The T-ZIP parameters were
the defaults (Table Kmin = 1.05, Kmax = 2). For every condition, 20 markets
were generated, consisting of a limit price and POS for every agent. Every run
consists of 10 trading days. For T-ZIP, every market was repeated 500 times; for
71, 100 times. The time limit for a trading day was set to 5000 time steps. This

3 The format of these figures deviates somewhat from the regular format of this thesis, in
order to allow direct comparison to the results by |Cliff and Bruten| (1997).
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Figure 5.6: Experiments by |Cliff and Bruten|repeated for T-ZIP in the T-CDA
(which can be compared to|Cliff and Bruten, [1997, Fig. 28-29, p. 26 and Fig 32—
33, p. 27). Transaction prices should converge on the theoretical equilibrium
price, 200, in all of these cases. The solid line represents the mean transaction
price on a particular trading day. The dashed lines indicate the mean plus and
minus one standard deviation.
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Figure 5.7: Market shock experiment by |Cliff and Bruten| repeated for T-ZIP
(compare |Cliff and Brutenl 1997, Fig. 39, p. 29). This is a symmetric demand
and supply market, where every buyer limit price is increase by 50 at the start
of day 11. The equilibrium price increases from 200 to 225.

means that per condition, for T-ZIP and ZI combined, a maximum of 6 x 108
time steps are requiredEI

Trust was initialised to the actual POS values, to enable meaningful com-
parison to the optimal allocation. Not exploring the other alternatives reduces
the number of independent variables, to enable a more thorough comparison on
the basis of POS settings. Specifically, both buyer-side and seller-side failure
are considered, as well as two-sided failure.

One-sided failure To make this feasible, the number Var(pos) settings is re-
duced from the experiments in Section by choosing several settings that are
distinctive in terms of both empirical results and distribution shape. Again, the
Beta distribution is used. For example, Figure [4.3|shows that Var(pos) = 0.045
and Var(pos) = 0.155 produce quite dissimilar results, whereas Var(pos) =
0.155 and Var(pos) = 0.205 produce similar results. Now, Var(pos) = 0.045
has a bell shape and Var(pos) = 0.155 has a U-shape. The transition is
at Var(pos) = 5/60, which is the uniform distribution for E(pos) = 0.5.
See Appendix [A] for a discussion of the Beta distribution and the shape of
the distribution for several values of E(pos). Hence, the values chosen are
Var(pos) € {0,0.045,5/60,0.155}.

Now, in choosing the E(pos) values, Var(pos) = 0 must be treated sepa-
rately, because at low POS (E(pos) < 0.5), no transactions are possible. Hence,
the range from 0.6 to 1.0 is chosen, with steps of 0.1. For the other settings,
the range 0.2 to 0.8 is chosen, with steps of 0.1. In total, there are 53 one-sided
failure conditions.

4 The original estimate of execution speed was 5x 103 time steps per second (on the + 2GHz
AMD Opteron nodes of the University of Southampton’s Iridis2 cluster). That would imply a
running time of around 30 hours per condition. However, many cases run in around 15 hours
whereas others may take more than 60.
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Figure 5.8: Price volatility with ZI and T-ZIP traders contrasted. Note that
the scale on the y-axis differs. Market: FE(pos : S) = 1, E(pos : B) = 0.8,
Var(pos : B) = 0.

Two-sided failure These experiments are run only for Var(pos) = 0 and
for E(pos) from 0.75 to 0.95 in steps of 0.05, all combinations. The numbelﬂ
of two-sided conditions is 35. Unfortunately, it is not feasible to include the
Var(pos) > 0 cases, as the number of conditions to run would be enormous.
Furthermore, the results would be difficult to visualise and analyse, since the
number of independent variables would increase from three to five.

An overview of the results is provided here. Further empirical data can be found
in Appendix [C}

Improved efficiency

As was noted in Section [4.4.4] market efficiency with the ZI strategy decreases
when FE(pos) decreases beyond a certain threshold, because the bidding ranges
of the ZI agents become inappropriate. Therefore, as the T-ZIP strategy was
designed specifically to converge on an equilibrium price (see Section , it is
expected to do well when such a price exists (i.e. when Var(pos) is close to
zero).

This fundamental difference between ZI and T-ZIP behaviour is illustrated
by Figure which shows price volatility (Equation for ZI and T-ZIP
markets. On the first trading day, price volatility is smaller for T-ZIP than for
Z1. Moreover, price volatility with T-ZIP traders decreases further over the next
trading days and converges on a certain minimal level. By contrast, ZI price
volatility fluctuates randomly.

Figure[5.9)reproduces the seller-side failure condition that was also evaluated
in Section [4.4.3] (see Figure [{.2(b))), for Var(pos : S) = 0. As was noted there,

5 Note that the total number of conditions is 88. At 30 hours per condition, a single node
would require 16 weeks to run the complete experiment.
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Figure 5.9: Seller-side failure, with Var(pos) = 0, comparing T-ZIP (circles)
and ZI (triangles). Error bars indicate the 95% confidence interval, omitted
where they are smaller than the plot symbol. Data was drawn from the final
trading day.

ZI agents are not robust to a decreasing E(pos : S). In contrast, T-ZIP is close
to optimal for all levels of E(pos : S).

The same pattern is visible for buyer-side failure (Figure and two-sided
failure (Figure. In each of these cases T-ZIP is robust to decreased E(pos),
because traders are able to adapt their shout prices to the market conditions
and ensure that they do not shout a price that they would not want to transact
at.

In addition to improved efficiency, we also want to achieve a fairer distribu-
tion of profits between buyers and sellers. The figures shown here are typical,
with deviation from the ‘zero difference’ ideal usually less pronounced for T-
ZIP than for ZI. However, there are exceptions to this rule. Specifically, T-ZIP
deviates more when market conditions are difficult, i.e. for the extremely low
values of E(pos). This is to be expected, as in this case a number of agents may
effectively not be realistic trading partners, creating excess demand or supply —
hence, on the basis of normal market dynamics, unequal distribution of profits
is to be expected. Note that T-ZIP does not exhibit the peak in utility differ-
ence for intermediate E(pos) that is typical for ZI (Figure [£.3(b)). More data
to support our results is provided in Appendix

To conclude, in Section we hypothesised that the fact that the inef-
ficiency of the market with ZI traders when F(pos) is low, is caused by the
inappropriate bidding behaviour of the ZI agents. Here, it was shown that a
simple adaptive strategy does not exhibit the inefficiency of ZI. Therefore, the
hypothesis is confirmed; this loss of efficiency is not inherent to the market and
can easily be overcome by adopting a minimally intelligent strategy.
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Figure 5.10: Buyer-side failure, with Var(pos) = 0, comparing T-ZIP (circles)
and ZI (triangles). Error bars indicate the 95% confidence interval, omitted
where they are smaller than the plot symbol. Data was drawn from the final
trading day.

Two sided failure Two sided failure
o |T
“Te . . . .
1 2 1

© T .

° T 1 8 N a 8 a
z ] A
] a K . .
5 34 R : . .
e z 3 é
& E l
2 3 3

=
0

8 4 24

2 |

S

T T T T T T T T T T
0.75 0.80 0.85 0.90 0.95 0.75 0.80 0.85 0.90 0.95
E(pos : B) E(pos : B)
E(pos :S)=0.8 E(pos:S)=0.8
(a) Total utility (b) Utility difference

Figure 5.11: Two-sided failure, with Var(pos) = 0, comparing T-ZIP (circles)
and ZI (triangles). Error bars indicate the 95% confidence interval, omitted
where they are smaller than the plot symbol. Data was drawn from the final
trading day.
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Figure 5.12: Buyer-side failure, with Var(pos) = 0.155, comparing T-ZIP (cir-
cles) and ZI (triangles). Error bars indicate the 95% confidence interval, omitted
where they are smaller than the plot symbol. Data was drawn from the final
trading day.

Failure of T-ZIP

A T-ZIP trader determines its profit margin based on the assumption that a
single equilibrium (equivalent) price exists. However, when Var(pos) > 0, such
a price does not necessarily exist. In those cases, we would expect T-ZIP to
perform less well. Specifically, we look at such a case (Figure and provide
some insight into what goes wrong.

The most salient feature of the figure is the fact that ZI performs better
than T-ZIP. This may seem surprising, as ZI bids randomly, whereas T-ZIP
attempts to estimate a good price to bid. However, if we consider the shape of
the Beta distribution when o2 = 0.155 (Figure , it becomes apparent that
in this trading environment, most buyers are clustered near the 0 and 1 POS
values. Hence, the ZI-C assumption that it is safe to shout any price within
the limit price is valid here (as discussed earlier, in Section . However,
for intermediate values of E(pos : B), the T-ZIP assumption that there is a
single price it should converge to appears to break down. In Figure [5.13] one of
these cases, E(pos : B) = 0.5, is shown per trading day. Indeed, transaction
prices converge toward some value. However, as prices converge, total utility
decreases. So, in this case, price convergence is harmful to the overall system.

The second important observation to be made regarding Figure is the
fact that buyer utility is consistently much higher than seller utility. This is
also explained by the fact that a significant portion of the buyer population has
a POS close to zero, effectively making them unavailable as trading partners.
Thus, the effective buyer group is smaller than the seller group, creating excess
supply. Thus, and especially with T-ZIP traders, prices are driven down towards
the sellers’ limit prices, creating larger profits for the buyers. Hence, in this type
of market, equal distribution of utility is not possible, due to the competitive
nature of markets.
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Figure 5.13: Harmful convergence with T-ZIP. As transaction prices converge,
the market efficiency decreases. Market: FE(pos : S) = 1, E(pos : B) = 0.5,
Var(pos : B) = 0.155.

In summary, although T-ZIP clearly outperforms ZI when Var(pos) = 0, it
is not equipped to deal with T-CDA type markets where Var(pos) > 0 and it
may even result in lower market efficiency than the ZI strategy. This is caused
by harmful convergence, i.e. convergence on an undesirable transaction price,
as a result of which both the number of transactions occurring in the market
and the market efficiency achieved decrease.

5.3.3 Instantaneous Response Step

In this section, a limited experiment is done to support the assumption that the
IRS (see Section |4.3)) does not impact the empirical results in any significant
way. This assumption was made for two reasons:

1. In order to compare the T-CDA to the CDA (Section7 it is important
that the new mechanism with ZI traders reduces to a normal CDA given
pla;) = 1; Va; € A. In that way, the impact of one factor (the POS)
on the CDA and T-CDA was measured, without confounding the results
with differences due to timing.

2. Without the IRS, experiments require a greater number of time steps to
run (pilots indicate an increase of a factor 10). Therefore, statistically
significant results are more readily arrived at when the IRS is enabled.

Now, it is also important to realise that the time model without the IRS is not
necessarily more realistic than that with the IRS. This would depend on the
scenario in which the mechanism is being evaluated. In one instance, commu-
nication delays may be significant and, hence, the additional commitment step
introduces significant overhead. However, in another instance, communication
delays may be much less important than the time taken to calculate potential
bids, for example. If in this case the decision to accept or reject a commitment
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Figure 5.14: Price convergence in a buyer side failure market (E(pos : S) = 1,
E(pos : B) = 0.8, Var(pos : B) = 0). Prices still converge when the IRS is
disabled.

can be made much more efficiently, the model with the IRS would be more
realistic. Real world scenarios might be expected to lie somewhere in between
these two extremes.

In evaluating the influence of the IRS, it is not important that the results
are identical, or that the difference in some measure is statistically insignificant,
but rather that the behaviour does not break down in any relevant way. Addi-
tionally, it is interesting to see whether there is a simple relationship between
transaction times in the T-CDA with and without the IRS.

Because experiments without the IRS are expensive to run, even more so
when ZI agents are employed, only a small number of settings is evaluated, with
T-ZIP agents only. These settings are:

e No execution uncertainty (CDA);

e Buyer-side failure: F(pos: B) = 0.8, Var(pos : B) = 0;
o Seller-side failure: E(pos: S) = 0.8, Var(pos:S) =0;
e Two-sided failure: E(pos: S) = E(pos: B) = 0.85.

The limited number of experiments means that results can be discussed on an
individual basis.

Price volatility for IRS enabled and IRS disabled runs are shown side by
side in Figure [5.14] As can be seen, convergence is preserved when the IRS is
disabled. It is even true that in all four experiments, the level of price volatility
reached without the IRS is slightly lower. The number of transactions and the
efficiency reached are also similar. This data is available in Appendix

Let us now turn to the times at which transactions occur when IRS is enabled
or disabled. For this, Figure [5.15] provides box plots of transaction times over
500 runs with IRS enabled and 300 runs with IRS disabled. On the left, actual
transaction times are displayed. On the right, the times with IRS are multiplied
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Figure 5.15: Transaction times in a buyer-side failure market. Panel (a) shows
real transaction times for IRS enabled (left) and IRS disabled (right). In Panel
(b), the IRS enabled transaction times are multiplied by 12.

by 12. Although the non-IRS case has a wider tail, there is a very good match
between the two cases. The same holds for the other three experiments: a
factor 12 aligns the boxes neatly, with the non-IRS case having a wider tail (see
Appendix |§| for these results). Thus, it seems that there is approximately a
factor 12 difference in median time to transactions, but no such relationship for
the maximum time to transaction.

To conclude, far from invalidating the results obtained with the IRS enabled,
these experiments suggest that the assumption is valid. If anything, T-ZIP trad-
ing behaviour is somewhat more stable with the IRS disabled. Both the lower
price volatility and the smaller (relative to the interquartile rangeﬂ) maximum
transaction times provide evidence for this observation.

5.4 Discussion

The previous section details the empirical evaluation of the T-ZIP mechanism
in a wide range of execution uncertainty conditions. Against this background,
this section will discuss what this means for the T-CDA mechanism and why
the T-ZIP strategy fails when Var(pos) > 0. After identifying the weaknesses
of the T-ZIP strategy, approaches to building a generally applicable strategy
will be proposed. Moreover, the appropriateness of the ZIP as the basis for a
general T-CDA strategy will be evaluated and alternatives explored.

5.4.1 General results about the T-CDA

As was shown in Section [£:4.4] the T-CDA with ZI agents does well when
the part of the agent population with which profitable trade is possible has

6 The interquartile range is the difference between the third and first quartiles. It is a
robust measure of statistical dispersion.
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E(pos) ~ 1. This means that, when either there is no variance and E(pos) is
high, or when there is high variance so that most agents have a POS close to
the extreme values, the T-CDA with ZI agents has a high market efficiency.
For other cases, however, performance is far below the optimum. This is shown
clearly by the results in Figure [5.9] It was hypothesised that this is not caused
by a shortcoming of the mechanism, but rather by the fact that the ZI bidding
behaviour, although appropriate in the CDA, is not appropriate when execution
uncertainty is introduced. The intuition behind this is that the range of prices
that are acceptable to a trader are determined not only by its limit price, but
also by its trust in other traders. Specifically, ZI agents in the T-CDA may
shout prices that they themselves are not willing to transact at, diminishing
their chances of transacting.

Given that the ZIP strategy was designed to converge on the market equi-
librium price and that the T-ZIP strategy carries this behaviour over to the
T-CDA, it is expected to shout appropriate values when an equilibrium price
exists. Therefore, unlike the ZI strategy, it should exhibit near-optimal effi-
ciency when Var(pos) = 0. Indeed, this was shown to be the case. Hence,
we may conclude that the inefficiency of the T-CDA with ZI agents found in
Section [£.4.4)is due to the inappropriate bidding range of ZI agents.

Furthermore, when Var(pos) = 0, buyer and seller profits with T-ZIP agents
are close to equality. This contrasts with ZI, where, especially for the lowest
values of FE(pos) shown in Figure profits tend to go mainly to the side
on which failure occurs. This was also explained by the inappropriate bidding
range of ZI agents. For example, when buyers fail, sellers will not be willing to
trade at their cost price, but rather at a certain higher price. However, being ZI
traders, they will still submit prices between their limit price and gnax. Hence,
depending on E(pos : B), a certain proportion of sellers will have shouted a
price that is below the price that is actually acceptable to them. Thus, if they
transact at all, this is likely to take place at a price close to the limit where their
expected utility is zero. The fact that T-ZIP does achieve balanced utilities in
these cases confirms this explanation.

With regards to the balance of buyer and seller utility, the T-ZIP results
allow several further observations to be made. The first has to do with the
impact of Var(pos) on the market. As can be seen in Figure where failure
is on the buyer side and Var(pos) = 0.155, even when the T-ZIP strategy does
well, the majority of utility is allocated to buyers. In Appendix [C} it can be
seen that the same holds for other levels of variance, to a lesser degree. With
seller-side failure, sellers are allocated a larger portion of profits. Now, as was
pointed out in Section[5.3.2} the high variance means that a relatively large part
of the population has a POS close to zero, making them essentially unavailable
as trading partners. In this way, high Var(pos) creates a market with excess
supply (in case of buyer-side failure) or excess demand (seller-side failure). Thus,
although the limit prices were initialised to create a symmetric market, in which
buyers and sellers should have approximately equal utility, execution uncertainty
can transform supply and demand in such a way as to create an unbalanced
market. This is important to realise when evaluating the balance of buyer and
seller utilities. Although it may be desirable to distribute utility fairly, in the
case of Figure [5.12] normal market dynamics dictate otherwise. And hence, to
foster a healthy competitive trading environment, we must sacrifice balanced
utility in this case.
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The second observation regarding the balance of buyer and seller utility
is that when Var(pos) = 0, they are approximately equal. This means that,
although the solution that optimises global welfare (Section would min-
imise seller utility, in the T-CDA, sellers are still able to obtain a positive
utility. Indeed, buyer and seller utilities are approximately equal. Thus, for the
Var(pos) = 0 case, the constraint that buyer and seller utilities should be equal
in calculating the optimal allocation appears to be appropriate. However, as is
remarked above, under specific market conditions, this may not be appropriate
as the competitive nature of markets will necessarily marginalise the profits of
either buyers or sellers. In those cases, it is unclear how to define the optimal
allocation. It can be argued that the optimum without the constraint of equal
utilities is more appropriate, since it will at least define a standard that cannot
be surpassed. However, the optimum thus found may be unrealistically high.

In conclusion, it can be said that, especially when Var(pos) > 0, our mech-
anism needs to be improved methodologically: we lack both a good baseline
strategy to provide a lower bound (ZI and T-ZIP may outperform one another
in different situations) and a well-defined optimal allocation to provide an upper
bound. Therefore, for efficient T-CDA markets, a minimally intelligent strategy
that can be generally adopted is required. Both ZI and T-ZIP are inadequate
in this regard, as the first breaks down when F(pos) is low and the second
when Var(pos) > 0. Moreover, our definition of the optimal allocation is inad-
equate when Var(pos) > 0. A possible way around this can be to define the
allocation that optimises social welfare (without constraints) as a standard to
measure efficiency against and then to evaluate performance against the spe-
cific desiderata of the envisaged application. In any case, market behaviour and
strategies cannot be evaluated purely on the basis of market efficiency, since it
is an ambiguous measure when execution uncertainty is taken into account.

5.4.2 Designing T-CDA strategies

Having discussed how the results in this chapter reflect on the T-ZIP strategy
and the T-CDA mechanism in general, the following will provide the intuition
behind the failure of the T-ZIP strategy when Var(pos) > 0, and propose ways
to avoid it.

The T-ZIP strategy works on the premise that there is a single transaction
price that it should converge towards. When Var(pos) is very low, this is
a reasonable assumption. However, the experimental results show that even
with moderate variance, this assumption breaks down and causes significant
loss of efficiency (Definition 2.3). As was noted before in Section this
is caused by harmful convergence: under the learning regime, prices converge
to an undesirable level. At this level, a number of potential transactions are
prevented. This is what causes the diminished efficiency. We now investigate
what goes wrong exactly, by analysing an example market where T-ZIP fails.

Analysis of the failure of T-ZIP

The example market we will investigate is one with buyer-side failure, where
E(pos : B) = 0.4 and Var(pos : B) = 5/60. This market was chosen because it
is a clear example of harmful convergence (see Figure and analysis with
buyer-side failure is more straightforward due to the form of the utility functions.
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Figure 5.16: T-CDA market behaviour with T-ZIP traders. E(pos : S) =
1, E(pos : B) = 0.4, Var(pos : B) = 5/60. Market efficiency decreases as
price volatility decreases. Results were calculated over 500 runs of one concrete
market.

Now, as was explained before, for every condition, 20 distinct concrete markets
are generated. To avoid averaging out differences between markets and thus
to allow more insightful analysis, only the first such concrete market will be
considered here. In this example market, Figure [5.16 shows how price volatility
and market efficiency changes over trading days. As can be seen, although
efficiency is not very good to start with, it decreases even further as prices
converge.

In order to understand why this happens, we must find out what is causing
this decrease in efficiency. It could be the case that this is caused by high
transaction prices (in Section it was shown that lower transaction prices are
more efficient), or it could be the case that the number of transactions that occur
is decreasing. To this end, Figure|5.17(a)|is a box plot of transaction prices over
trading days, while Figure the number of transactions occurring
over trading days. It appears that prices and the number of transactions are
driven down. This rules out the possibility of transaction prices being too high
and supports the hypothesis that the reduction in market efficiency is due to
the number of transactions decreasing over trading days.

Hence, in our example the number of transactions that occur decreases over
trading days, causing reduced market efficiency. We have also observed that
transaction prices decrease over trading days. Now, it is vital to understand
the relationship between these two observations. To support our understanding
of market conditions, Figure [5.18(a)| shows market structure, where buyers are
represented by points on the graph, indicating their price and POS. Since sellers
all have POS 1, their distribution of limit prices is too compact to be shown
as individual points. Therefore, sellers’ limit prices are represented by a box-
and-whiskers plot. This is not very informative: we would like to see which
transactions are possible in the market. Because the sellers have POS 1, buyers
are willing to transact at any price below their limit price. Sellers, on the other
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Figure 5.17: Convergence of transaction prices and the number of transactions
in the market of Figure

hand, must trade off price and POS when deciding to transact. Using expected
utility (Equation [3.2)), we can find the acceptable transaction price given a seller
s;’s limit price and a buyer b;’s POS:

@;(tii(q)) = qp(bi) — £ = 0 (5.33)
ap(b;) = £ (5.34)

G
1= ) (53)

In Figure instead of the box-and-whiskers plot, the threshold price at
which the seller with the lowest (at 6), the median (at 7.185), and the highest
(at 7.98) limit price would be willing to transact are shown. Transactions are
possible with buyers that are above and to the right of these lines. It appears
that there are only 11 buyers with which a transaction with positive expected
utility is possible, given the lowest limit price.

Given that we now understand the market structure well enough to predict
when transactions can happen, we can analyse how convergence of transaction
prices as shown in Figure[5.17(a)|impacts the number of transactions. To do this,
for a price ¢, we can draw a horizontal line that intersects the three limit lines.
Then, assuming that transactions take place at this price, the intersection point
determines the minimal POS at which a transaction is possible. Figure
shows the third quantile transaction price on day 0 (9.31) superimposed on the
market structure of Figure For each class of seller, transactions are
only possible right of the dashed vertical lines. For the lowest limit price, the
third quantile transaction price disqualifies only two potential buyers. For the
median, however, all but two potential buyers are inaccessible. Contrast this
with Figure which shows the third quantile price for day 9 (8.12). Here,
the lowest limit price allows just four transactions and the median allows none.

Given this, we understand that in Figure the number of transac-
tions decreases between trading days, because the transaction prices decrease
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Figure 5.19: The third quantile transaction price (Figure is shown
as a dashed horizontal line superimposed on Figure Vertical lines are
drawn where it intersects the limit curves. Only buyers to the right of these
lines are accessible to the corresponding seller, at the third quantile transaction
price. This shows the impact of lowering the transaction prices as happens in
this market.
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Figure 5.20: Market forces: in the market structure shown in Figure |5.18(b
excess supply lets buyers continue to decrease prices, even though this means
that viable lower POS buyers lose their chances of transacting.

(Figure , causing the sellers to be unwilling to transact with all but a
few traders. Now, we understand how price convergence to an undesirably low
level causes the number of transactions to decrease. However, it must also be
explained why prices converge to this level in the first place. To understand
this, we go back to the realisation that given the sellers’ limit curves, there are
at most 11 buyers that can transact at all. As we also noted in the previous
section, this essentially creates a market with excess supply: for each of these
11 buyers, more than one seller would be willing to transact. Given this, buyers
can decrease their prices until the limit curve is reached, by the argument that
if one seller does not take the offer, there is another that will, because there is
excess supply.

Figure[5.20|visualises that buyers drive down prices. When transaction prices
are forced down, even more buyers become unavailable. Among the remaining
buyers, the ones with the highest POS force the price down even further, until
finally a level is reached where the number of buyers and sellers is balanced, i.e.
until all sellers with a relatively high limit price are forced out of the market
by the low transaction price. Thus, high POS buyers force prices down to a
level that forces their lower POS competitors out of the market, even though
the price these low POS buyers are willing to pay would make them attractive
transaction partners to many sellers.

In conclusion, price convergence is harmful, because intra-marginal traders
are forced out of the market by competitors with a higher POS. This is possible
because execution uncertainty causes excess supply (or excess demand in the
case of seller-side failure) and this allows buyers (sellers) to force prices down
(up) to level at which some potential transactions become impossible. Note
that even though buyers force prices down, as is expected in an excess supply
market, this is harmful because the sellers indiscriminately learn a single price,
even though transactions could take place at higher prices with buyers that have
a lower POS.
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Figure 5.21: Transaction prices and market structure in a market where limit
prices are highly correlated with POS. T-ZIP traders, through their convergence
behaviour, again create a market with excess supply.

Failure in a segmented market

From the above discussion, it is clear that the inefficiency of T-ZIP is caused
by its very nature: convergence on a single price. This in itself is not surprising
and in fact this assumption was known in advance to be false. However, the
way in which failure occurs is more surprising. One might expect the strategy
to fail to distinguish between two sets of traders and thereby arrive at a price
level that is inappropriate for both groups.

Specifically, an experiment was run to observe this failure type. In this
experiment, seller limit prices are still drawn from [6, 8], but buyers are separated
into two groups of 25 agents each. The first group has POS 0.7 and limit prices
from [10,12], and the second group has POS 1 and limit prices from [7,8.4].
From the point of view of sellers, trade with either group should be desirable,
but at different price levels. Now, the presence of these two groups could prevent
price convergence.

Indeed, prices are more volatile (a* ~ 0.02) in this market than in those
studied before (usually 0.001 < o* < 0.01). However, as can be seen from a
plot of transaction prices and the market structure (Figure , prices clearly
converge - to the lowest price level. Hence, the group with lower POS has a
diminished chance of transacting. So, even in this market, the market behaviour
can be explained by the fact that an excess supply situation is created by the
convergence of prices, not by a failure to converge to an appropriate price.

The intuition is as follows: several examples of trade at the lower price level
will cause sellers to assume they are pricing themselves out of the market. Thus,
they will gradually lower their profit margin. The margin needs only be lowered
a little to exclude the low POS buyer group from trade. Thus, the more sellers
lower their margin below this limit, the more examples of trade at the lower
price level will occur and the more sellers will drop below this margin.

Therefore, although having two buyer groups of equal utility but different
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POS does cause suboptimal behaviour, this is explained in the same fashion as
for less structured markets. Indeed, prices do not fail to converge, as one might
expect, but rather favor the group with higher POS.

Designing a general strategy

In case the failure is caused by prices failing to converge, a solution would be
to let traders group their opposing traders and let them learn an appropriate
price for each group. However, as is shown above, a continuum of different
levels of POS and excess supply or excess demand may also cause the T-ZIP
strategy to fail. In this case, a solution is less obvious. Perhaps one of the
challenges is to ascertain whether markets in general resemble the market of
Figure |5.21(b)| or that of Figure|5.18(b)l For now, we assume that either may
occur and, specifically, we assume we may encounter markets where there is very
little structure on which to base a ‘grouping’ of agents, as in Figure

In that case, a possible solution is to make the profit margin a function of
the agent’s trust in the trading partner. Of course, a trader will not be able to
gather experience on all different levels of trust and hence there will need to be
some sort of interpolation to provide the appropriate margin for each level of
trust. However, the ZIP learning rules would need to be replaced by another
set of rules, based on machine learning.

Alternatively, the limit price could be made a function of the trust a trader
places in the other party, letting this be the zero-utility price for each level of
trust. In that case, the profit margin could be a fixed value. However, if the
margin is fixed, this may lead to the agent failing to take advantage of a segment
of the market where a greater margin is possible. On the other hand, it has the
advantage that no safeguards are required to make sure that the profit margin
does not imply a negative utility for the agent.

Finally, the two approaches can be combined by having both the profit mar-
gin and the limit price as functions of the trust value. This would bring the
advantage of fine-tuning the margin for specific levels of trust and not having
to safeguard against setting the margin too low. However, it might also be the
most dependent on the trust model and therefore require the highest level of re-
liability in trust information. Specifically, the interaction of two functions that
depend on trust may amplify errors present in the trust information.

In either case, the bidding strategy will need to be revised. It is no longer
appropriate to just submit a bid based on the profit margin, as the price that
we should bid is now a function of trust. Thus, a trader needs to take the
current outstanding bids and asks into account as well as the reliability of the
traders. Perhaps a technique to estimate the chances of transacting, similar to
what is done by the GD strategy (Gjerstad and Dickhaut), [1998)), could be useful
(see Section . On the other hand, if a technique where the profit margin
depends on trust is adopted, the trader could simply target the agent(s) that
would allow the highest profit margin.

Generalising from the above discussion, whichever path of adaptation in
the T-CDA is chosen, it would seem that a general trading strategy would
hardly resemble ZIP any more. T-ZIP has been valuable in pointing out what
is required of a trading strategy, but the value of ZIP as a basis for a general
strategy is questionable. Therefore, it seems prudent to also take notice of
techniques used by other strategies such as those discussed in Section [2.3.3] as
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well as the more general machine learning literature.

5.5 Summary

In this chapter, a simple adaptive trading strategy for the T-CDA was designed,
with the aim of showing that high efficiency is achievable by the T-CDA mech-
anism even when F(pos) is low. Results with ZI traders (Section [4.4.4)) seem to
suggest otherwise, but it was hypothesised that the low efficiency of the T-CDA
in those cases is attributable to the simplistic and uninformed bidding behaviour
of ZI agents. The T-ZIP strategy developed in this chapter is designed to con-
verge to the appropriate transaction price and hence, it should achieve close to
optimal results when Var(pos) = 0.

However, it is not designed with the Var(pos) > 0 case in mind. In more
detail, it inherits the assumption that a single market equilibrium exists from
the ZIP strategy. Therefore, T-ZIP could fail when this is not the case.

The T-ZIP strategy is a relatively straightforward adaptation of the ZIP
trading strategy for the CDA to the T-CDA. A new way to set the target price
for the learning algorithm was derived as part of this work and, because market
events in the T-CDA are different from the CDA, the events that trigger the
learning mechanism were also redefined.

Several example runs were examined and show a significant qualitative dif-
ference with ZI-C trading behaviour, as well as improved efficiency and a greater
number of performed transactions. This impression is confirmed by an empir-
ical evaluation. When Var(pos) = 0, T-ZIP indeed derives close to optimal
efficiency, even when E(pos) is small. Furthermore, there is clear convergence
of transaction prices. However, as expected, when Var(pos) > 0, the T-ZIP
traders are not efficient. It turns out that prices do converge, but to an unde-
sirable value. Because of this harmful convergence, efficiency decreases between
trading days.

In addition to an evaluation of the trading mechanism, the influence of the
IRS is examined in a limited experiment. If anything, price volatility is lower
when IRS is disabled than when it is enabled. Efficiency and the number of
transactions do not differ in a relevant way. The timing of transactions was
investigated and a rough factor 12 slowdown (in terms of the number of time
steps required to complete a trading round) when disabling IRS was found. This
should be interpreted carefully, as only a small number of cases was investigated.
However, the data does suggest that the results in this thesis will still be valid
when the IRS is rejected.

Finally, suggestions for the development of a generally applicable trading
strategy for the T-CDA were discussed, as well as alternatives to the ZIP as the
basis for derivation.



75

Chapter 6

Conclusions

In this thesis, the Trust-Based CDA (T-CDA) was developed. This is a novel,
decentralised, trust-based market mechanism derived from the CDA. The T-
CDA is robust to execution uncertainty, by allowing agents to use a trust model
in their decision making. Moreover, a rudimentary strategy for the T-CDA,
Trust-Based ZIP (T-ZIP), was developed. Although it is not a generally appli-
cable strategy for the T-CDA, it provides further insights into the market and
a starting point for more general strategies.

In what follows, the research contributions made in this thesis are evaluated
against the research objectives (Section . Then, directions for further work
are identified.

6.1 Conclusions

In this section, the research objectives stated in Section [1.3| are revisited and
we discuss how this thesis addresses each of them in turn. Then, we evaluate
how this reflects on the main research question.

Objective 1. The first research objective is to create a novel trading mech-
anism, based on the CDA, that is robust to execution uncertainty, by allowing
agents to use a trust model in their decision making during the trading process.

In Chapter [4 the T-CDA mechanism was outlined. The T-CDA separates
the commitment from the bidding process: in the CDA, when an agent submits
a bid or ask, the agent is automatically committed to a transaction with any
agent it is matched with. In the T-CDA, commitments are made explicit. To
transact, in addition to submitting a bid or ask with a competitive price to the
market, the trader has to indicate its willingness to transact by committing to
a transaction with a specific other trader.

Thus, in the T-CDA, agents can differentiate between their potential transac-
tion partners. This allows them to use their beliefs about the reliability of others
in choosing a specific transaction. These beliefs can be modelled by a probabilis-
tic trust function. Then, agents can balance price and execution uncertainty in
their decision making, by estimating the expected utility of transacting.

In this way, the T-CDA addresses execution uncertainty in a decentralised
manner: it merely provides a framework in which an agent can express its desires
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effectively. When it comes to dealing with uncertainty in the market, the onus
is placed entirely on the agent. Specifically, the agent is responsible for making
sure their trust function is accurate and to behave in a strategic way in order
to derive maximum profit.

The T-CDA is empirically shown to be robust to execution uncertainty, in
Section [44] Specifically, the CDA breaks down when execution uncertainty
increases in the system: agents derive negative utility. It is shown that in the
T-CDA, this does not happen: on average, agents will derive a positive payoff
if this is at all possible.

Objective 2. After developing the T-CDA, the second objective is to study
its properties with minimally intelligent traders. In Section [£.4] it is shown
that, even with ZI traders, even when reliability differences between agents are
very large, the mechanism derives a profit that is close to optimal as long as
the agents with whom profitable transactions are possible have a POS close to
1. However, efficiency decreases significantly when this is not the case. It is
argued that this is caused by the inappropriate bidding behaviour of ZI agents.
In particular, buyers bid prices that are too high and sellers ask prices that are
too low. At these prices, they themselves are not willing to transact, causing
decreased overall utility. Thus, the ZI strategy is not an adequate benchmark
of the T-CDA.

This is addressed in Section [5.3] where it is shown that the decrease of
efficiency shown with ZI traders is avoided by the T-ZIP traders developed in
Chapter [5] Specifically, with T-ZIP traders, efficiency is close to the optimum,
whenever Var(pos) is close to zero. Hence, social welfare is close to optimal
in the T-CDA, given reliable trust information and given an adequate trading
strategy.

Another desideratum is individual rationality, which is addressed in the T-
CDA by giving the agents control over who they transact with. Thus, agents can
ensure they only transact when they expect a positive utility. Since the system
achieves positive social welfare and does not discriminate between agents in any
way, if an agent has gathered reliable trust information, it can expect a positive
payoff from participating in the mechanism.

Related to this is the balance of utilities derived by buyers and sellers. In
general, if there is balanced (symmetric) demand and supply, and both buyers
and sellers employ adequate strategies, they will derive approximately equal
utilities (see Section. However, as is pointed out there, the POS distribution
transforms the demand and supply and hence some of the investigated markets
have excess demand or excess supply — severely skewing the balance of profits.
This is unavoidable in a market, as it is a direct result of the competitive nature
of such institutions.

Finally, in Section it is shown that the mechanism is relatively robust
to errors in the trust information. That is, performance degrades linearly with
the error that is introduced on the trust function.

Objective 3. Complementary to the new mechanism developed in this thesis,
is a trading strategy that operates within the new mechanism. In Chapter [5]
the T-ZIP strategy is detailed. It is an adaptation of the ZIP strategy for the
traditional CDA. Designing the T-ZIP was a significant challenge, as the op-
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portunities for learning presented by trade in the CDA do not translate directly
to the T-CDA. In addition to this, in the T-CDA, prices cannot be taken at
face value and an agent must therefore calculate an equivalent price in order to
adjust its own profit margin based on prices in the market.

Objective 4. Finally, we aim to study the properties of T-ZIP and to bench-
mark its performance. The T-ZIP strategy is shown to exhibit the same be-
haviour as the original ZIP strategy (Section [5.3.1). That is, price volatility
rapidly decreases during trade and the strategy recovers after a market shock.
Furthermore, even in non-symmetric markets, prices eventually converge on the
theoretical equilibrium price.

As was mentioned above, the T-ZIP achieves close to optimal efficiency
when Var(pos) is close to zero. However, it is also shown to break down when
Var(pos) is large (Section. This is a direct result of the price convergence
behaviour the T-ZIP strategy exhibits. Specifically, the price a T-ZIP agent
shouts is indiscriminate to the current population of the market. Therefore, as
prices converge, an increasing number of traders is excluded from taking part
in transactions.

When taken together, we have seen how this thesis meets its stated research
objectives. Now, we will see how the overall research question is answered. In
Section the research question is formulated as follows: may the Continuous
Double Auction be extended by a component that enables agents to balance cost
and reliability of the transactions they agree to, by incorporating a trust-model
in their decision making, in a way that achieves close to optimal social welfare
even when faced with execution uncertainty?

Based on the work in this thesis, the answer to this question is yes. The
T-CDA is such an extension of the CDA. However, the potential of the T-CDA
is not yet realised completely, for lack of a generally applicable trading strategy.
Thus, further work is required to give a more definitive answer to the stated
research question. However, we believe the design of an adequate strategy for
the T-CDA is feasible.

6.2 Further Work

The previous section outlines the contributions made by this thesis. Now, we
outline directions for further work. First and foremost, as is pointed out above,
the T-CDA currently lacks an adequate strategy that realises the full potential
of the mechanism and that can serve as a benchmark to evaluate other, possibly
more advanced, trading strategies against. The development of a generally
applicable trading strategy should be the top priority, since without it market
efficiency may, in specific conditions, reduce to a fraction of the optimum. Hence,
currently there is little incentive to use the T-CDA in a real-world application.

Second, the T-CDA has thus far been evaluated using a simulated trust
model. One of the possible sources of trust information is market events. Not
only can agents learn about the reliability of others by direct interactions, but
the commitment behaviour of others can be observed and possibly used as an in-
direct source of reputation: unreliable agents will be shunned by knowledgeable
traders. Alternatively, a more elaborate simulation of trust models could be
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implemented, showing how certain properties of the trust model impact on the
mechanism. For example, the trust model could have a certain rate at which it
converges toward the true POS of an agent. Then, it is interesting to investigate
the effect of a sudden or gradual change in agents’ POS on the market.

Third, in order to be able to compare the results obtained with the T-CDA
against an optimal solution, the model in which the T-CDA is evaluated is
currently simplified in various ways. Since the T-CDA was contrived to be
a resource allocation mechanism for large scale, open, distributed systems, it
should be evaluated in more realistic scenarios where some, or all, of these
assumptions are relaxed. In such a context, the T-CDA should be compared to
other resource allocation mechanisms.
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Beta Distribution

The beta distribution is a family of continuous probability distributions de-
fined on [0,1]. It has two shape parameters, o and /3, which must be positive.
Depending on these parameters, the distribution takes on different shapes (Ta-
ble .

Now, if we know the distribution mean p and variance o2, the parameters o
and 3 can be calculated, as was shown in [Teacy| (2006, app. B):

2 _ 3
a:#—u (A1)

g

ﬁ:%—a (A.2)

Since the parameters must be positive, with Equation and a > 0 we
can bound the variance o2 that can be achieved with a beta distribution for a
specific pu:

2 3
p = p
P 0 (A.3)
p? = p® > po’ (A.4)
p— > o’ (A.5)

Note that the 5 > 0 constraint will not introduce any additional constraints on
p and o2,

Having introduced the beta distributions and how to find its parameters «
and 3 from the desired p and o2, the distribution shapes for three important
settings of o2 are illustrated on the following pages.

a=1 =1 | uniform
a<l pg<1| Ushape

a<l g>1 . .
a=1 B>1 strictly decreasing
a=1 pg<1

a>1 B<1 strictly increasing

a>1 (>1| unimodal (bell shape)

Table A.1: Beta distribution shape depends on « and (.
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Figure A.1: Beta distribution for o2 = 0.045.
because of symmetry.

0=2.277778, =2.277778 (=0.5, o> =0.045)

(d) p=0.5

Plots for p > 0.5 are omitted
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probability density for beta function
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Appendix B

T-CDA: CDA Comparison

This appendix overviews experimental data that goes with the comparison of the
T-CDA with the traditional CDA, described in Section [£:4.3] Each of the tables
in this appendix compares the PERFECT trust condition to another condition on
realised buyer utility. Comparisons were run at different POS levels (rows) and
different levels of variance (columns).

For every comparison, two t-tests were done. In either case, the null hypoth-
esis was that the means are equal. For one test, the alternative is that PERFECT
has a higher mean, for the second that PERFECT has a lower mean. The ‘¢’
column gives results at the o = 0.05 level, which would be appropriate if we run
just one comparison. The ‘e’ column, on the other hand, gives results at the
o =1-0.95'/% which protects the null hypothesis against spurious results. A
‘+’ indicates that PERFECT has a significantly higher mean, ‘-’ indicates a lower
mean and ‘0’ indicates no significant difference.

In general, given the number of comparisons, spurious results are expected
to occur at the « level, especially in the high POS cases, where we expect
little or no difference because the problem is ‘easy’ in these cases: transactions
are generally desirable. In order to provide the most informative results, in
stead of providing only the level o’ or « results, both are included, allowing the
differences to be analysed.

Specifically, it must be noted that there are two instances in Table [B2]
(comparison of PERFECT and NAIVE) where NAIVE has a significantly higher
mean buyer utility at the « level. However, these results are insignificant even
if we view the eight instances that show no significance at the o' level as a
separate experiment in which we try to show that naive does better. That is,
these results are insignificant even at a* = 1 — 0.95'/8. Also note that both
occur for high values of POS and that therefore, true means are likely to be
equal. Thus, these results are likely to be spurious. The same discussion applies
to similar cases in other tables.
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Appendix C

T-ZIP: ZI-C Comparison

This appendix provides a more complete overview of the data obtained in the
experiment comparing the T-ZIP strategy to ZI-C (see Section. Although
many hundreds of pages could be dedicated to plots of price volatility over
trading days, distribution of transaction times, distribution of transaction prices,
convergence of efficiency or the number of transactions (and indeed this was done
as part of the analysis of this experiment), only the essential data is provided
here.

Specifically, for the one-sided failure experiments, plots of last-day buyer and
seller efficiency, as well as overall efficiency and discrepancy of buyer and seller
utilities are provided. For the two-sided failure experiment, only plots of overall
efficiency are provided, as T-ZIP will achieve near-perfect balance of utilities
in every case, whereas ZI traders exhibit an imbalance as expected from the
one-sided experiments (that is, the lower POS group extracts more profits).

In all plots, error bars indicate a 95% confidence interval and are omitted
where they would be smaller than the plot symbol.
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cles) and ZI (triangles).
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Appendix D

T-ZIP: Instantaneous
Response Step

In this appendix, figures are provided that enable comparison of the T-CDA with
T-ZIP traders where the IRS is enabled and disabled. These results should be
compared on a qualitative basis: although a great correspondence between the
two conditions is expected, quantitatively identical results are not.

The first four figures enable comparison on the basis of price volatility, mar-
ket efficiency and number of transactions over trading days. The final four
figures show transaction time distributions for IRS enabled and IRS disabled
runs side by side in a box plot. There are two sub-figures: one where times are
plotted as-is, and one where the transaction times with IRS enabled are multi-
plied by twelve, to show the correspondence between the resulting boxes. The
left-hand box has IRS disabled, whereas the right-hand box has IRS enabled.
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Appendix E

The T-CDA Simulator

This appendix describes the simulation software that implements the T-CDA,
the trading environment in which it operates and the agents and agent strategies
that are evaluated in this thesis.

The T-CDA simulator is based on multi-unit CDA simulation software by
Vytelingum| (2006)). The software has been extensively refactored to improve its
overall design, robustness and configurability, as well as to accommodate the T-
CDA mechanism. The graphical user interface (GUT), however, has been reused
practically without modification. Figure provides a high-level overview of
the architecture of the simulator.

Because the simulator was originally targeted at a different variant of the
CDA and because one of the goals of refactoring was to preserve the original
functionality, the simulator can, through configuration, support different market
rules, agent behaviours and time models. The simulator can be run with GUI
or without it. Data recording is pluggable (different modules can be selected
based on experiment needs) and all parameter settings and selection of specific
implementations (runner, auctioneer, strategies) is done through a plain-text
settings file.

In the simulator, a market definition consists of the definition of several
groups of traders (usually two, a group of buyers and a group of sellers). For
each group, a strategy, endowment source, execution model and trust source is
specified. The endowment source and execution model can be generated on-the-
fly by the simulator, or read from a data file, to support repeatable experiments.
The trust source is currently always generated on-the-fly.

The simulator can run any number of market definitions without restarting,
or reloading its configuration. This is supported through the cycle () methods
seen in Figure which move the simulation along to the next market defi-
nition. Moreover, the reset () methods reset the simulation to a clean state,
so that one market definition can be run any number of times. Finally, the
simulation can be (re-)started from any specific market definition, enabling a
single simulation configuration to be run in parts, or restarted after a failure.
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Main Simulation MarketRunner
+main() +initialize() +run()
+run() +runMarket(runs:int) +getCurrentTime(): TimeStamp
+dryRun() +dryRun()
+cycle() +cycle()
+reset() +reset()
. 1 1 " 1
Aucti Market TimeStepRunner Endower
+acceptAsk(): boolean +openMarket () +endow(traders)
+acceptBid(): boolean +receiveShout () +cycle()
+acceptCommit(): boolean +clearMarket() 1 +reset()
+clearMarket(): MarketClearing +closeMarket () ExecutionModel
+placeA§k() +execute(buyer,seller): Execution
+placeBid() +eycle()
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|PerfectTrust| |NaiveTrust| |RandomTrust| |NoisyTrust|

Figure E.1: Class diagram of the T-CDA simulator; provides a high-level
overview only. The entry point is Main.main(). Note that through abstrac-
tion, different market rules (CDA, T-CDA and multi-unit CDA) and different
agent behaviours as well as varied time models are supported. Only those parts
relevant for the T-CDA are shown here, however.



109

References

AAMAS’02 (2002). Proc 8rd Int Conf on Autonomous Agents and Multi-Agent
Systems, Bologna, Italy.

AAMAS’04 (2004). Proc 8rd Int Conf on Autonomous Agents and Multi-Agent
Systems, New York, USA.

Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M., and Werthimer, D. (2002).
Seti@home: an experiment in public-resource computing. Commun. ACM,
45(11):56-61.

Buyya, R., Abramson, D., and Giddy, J. (2000). An economy driven resource
management architecture for global computational power Grids. Las Vegas,
USA. CSREA Press.

Buyya, R., Abramson, D., and Venugopal, S. (2005). The Grid economy. Proc
of the IEEE, 93(3):698-714.

Buyya, R. and Bubendorfer, K. (2009). Market-Oriented Grid and Utility Com-
puting. John Wiley & Sons Inc, New Jersey, USA.

Chevaleyre, Y., Dunne, P. E., Endriss, U., Lang, J., Lemaitre, M., Maudet, N.,
Padget, J., Phelps, S., Rodriguez-aguilar, J. A., and Sousa, P. (2006). Issues
in multiagent resource allocation. Informatica, 30:2006.

Clearwater, S. H., editor (1995). Market-Based Control: A Paradigm for Dis-
tributed Resource Allocation. World Scientific, New Jersey, USA.

Cliff, D. (2005). Zip60: Further explorations in the evolutionary design of online
auction market mechanisms. Technical Report HPL-2005-85, HP Laboratories
Bristol.

Cliff, D. and Bruten, J. (1997). Zero is not enough: On the lower limit of
agent intelligence for continuous double auction markets. Technical Report
HPL-97-141, HP Laboratories Bristol.

Cohen, P. R. (1995). Empirical Methods for Artificial Intelligence. MIT Press.

Dash, R. K., Parkes, D. C., and Jennings, N. R. (2003). Computational mech-
anism design: A call to arms. IEEE Intelligent Systems, 18(6):40—47.

Dash, R. K., Ramchurn, S. D., and Jennings, N. R. (2004). Trust-based mech-
anism design. In AAMAS’04| (2004), pages 748-755.



110 References

Dash, R. K., Vytelingum, P., Rogers, A., David, E., and Jennings, N. R. (2007).
Market-based task allocation mechanisms for limited capacity suppliers. IEEE
Transactions on Systems, Man and Cybernetics (Part A), 37(3):391-405.

Foster, 1., Jennings, N. R., and Kesselman, C. (2004). Brain meets brawn: Why
Grid and agents need each other. In AAMAS’04| (2004)), pages 8-15.

Foster, I. and Kesselman, C. (2003). The Grid 2: Blueprint for a New Comput-
ing Infrastructure. Morgan Kaufmann, San Francisco, CA, USA.

Foster, I., Kesselman, C., Tsudik, G., and Tuecke, S. (1998). A security architec-
ture for computational grids. In CCS ’98: Proc of the 5th ACM Conference

on Computer and Communications Security, pages 83-92, New York, NY,
USA. ACM.

Gjerstad, S. and Dickhaut, J. (1998). Price formation in double auctions. Games
and Economic Behavior, 22:1-29.

Gode, D. K. and Sunder, S. (1993). Allocative efficiency of markets with zero-
intelligence traders: Market as a partial substitute for individual rationality.
The Journal of Political Economy, 101(1):119-137.

Gomoluch, J. and Schroeder, M. (2003). Market-based resource allocation for
Grid computing: A model and simulation. In Proc of the First International
Workshop on Middleware for Grid Computing. Rio de, pages 16-20.

He, M., Leung, H. F., and Jennings, N. R. (2003). A fuzzy logic based bidding
strategy for autonomous agents in continuous double auctions. IEEE Trans
on Knowledge and Data Engineering, 15:1345-1363.

Krishna, V. (2002). Auction Theory. Academic Press.

Ogston, E. and Vassiliadis, S. (2002). A peer-to-peer agent auction. In |AA-
MAS’02/ (2002), pages 151-159.

Porter, R., Ronen, A., Shoham, Y., and Tennenholtz, M. (2008). Fault tolerant
mechanism design. Artificial Intelligence, 172(15):1783-1799.

Pourebrahimi, B., Bertels, K., Kandru, G., and Vassiliadis, S. (2006). Market-
based resource allocation in Grids. e-Science and Grid Computing, 2006.
e-Science ’06. Second IEEE International Conference on, pages 80-80.

Ramchurn, S. D., Huynh, T. D., and Jennings, N. R. (2004). Trust in multiagent
systems. The Knowledge Engineering Review, 19(1):1-25.

Schnizler, B., Neumann, D., Veit, D., and Weinhardt, C. (2008). Trading grid
services - a multi-attribute combinatorial approach. Furopean Journal of
Operational Research, 187(3):943 — 961.

Smith, V. L. (1962). An experimental study of competitive market behavior.
Journal of Political Economy, 70(2):111.

Stein, S., Payne, T., and Jennings, N. (2008). Flexible service provisioning
with advance agreements. In Proc 7th Int Conf on Autonomous Agents and
Multi-Agent Systems, pages 249-256, Estoril, Portugal.



References 111

Tan, Z. and Gurd, J. R. (2007). Market-based grid resource allocation using a
stable continuous double auction. In Proc 8th IEEE/ACM Int Conf on Grid
Computing, pages 283—290, Austin TX, USA.

Teacy, W. T. L. (2006). Agent-Based Trust and Reputation in the Context of
Inaccurate Information Sources. PhD thesis, University of Southampton.

Tesauro, G. and Bredin, J. L. (2002). Strategic sequential bidding in auctions
using dynamic programming. In AAMAS’02 (2002), pages 591-598.

Vytelingum, P. (2006). The Structure and Behaviour of the Continuous Double
Awuction. PhD thesis, Southampton, UK.

Vytelingum, P.; Cliff, D., and Jennings, N. (2008). Strategic bidding in contin-
uous double auctions. Artificial Intelligence Journal, 172:1700-1729.

Wolski, R., Brevik, J., Plank, J. S., and Bryan, T. (2003). Grid resource allo-
cation and control using computational economies. In Berman, F., Fox, G.,
and Hey, T., editors, Grid Computing: Making The Global Infrastructure a
Reality, Wiley Series in Communications Networking & Distributed Systems,
pages 747-771. John Wiley & Sons, Ltd.

Wolski, R., Plank, J. S., Brevik, J., and Bryan, T. (2001). Analyzing market-
based resource allocation strategies for the computational Grid. International
Journal of High Performance Computing Applications, 15:258-281.

Wooldridge, M. (2002). An Introduction to Multi-Agent Systems. J. Wiley.



	Introduction
	The Continuous Double Auction
	Execution Uncertainty
	Research Objectives
	Research Contributions
	Thesis Structure

	Literature Review
	Background
	The Grid
	Auctions
	Trust
	A Motivating Scenario

	The Continuous Double Auction
	Trading Strategies
	Zero-Intelligence
	Zero-Intelligence Plus
	Other Strategies

	Summary

	Problem Definition
	Modelling the Trading Environment
	Market Definition
	Introducing Execution Uncertainty
	Trust

	Market Equilibria
	Optimal Solution
	Desiderata
	Summary

	Trust-Based CDA
	The T-CDA Mechanism
	Zero-Intelligence Behaviour
	The Simulation
	Empirical Evaluation
	Experiment Settings
	Positive Payoff
	Comparison to the CDA
	Benchmark
	Effect of Noise

	Summary

	Designing a Trading Strategy
	The Trust-Based ZIP Strategy
	Setting the Target Price
	Bargaining Strategy

	Implementation
	Empirical Evaluation
	Comparison to ZIP
	Comparison to ZI-C
	Instantaneous Response Step

	Discussion
	General results about the T-CDA
	Designing T-CDA strategies

	Summary

	Conclusions
	Conclusions
	Further Work

	Beta Distribution
	T-CDA: CDA Comparison
	T-ZIP: ZI-C Comparison
	T-ZIP: Instantaneous Response Step
	The T-CDA Simulator
	References

