An Inquisitive Dynamic Epistemic Logic
with Factual Change

René Mellema
(s2348802)

8th July 2019

Master’s Thesis

Artificial Intelligence
University of Groningen,
The Netherlands

Supervisors:
Prof. dr. Rineke Verbrugge
Artificial Intelligence
University of Groningen

Dr. Floris Roelofsen
Institute of Logic, Language and Computation
University of Amsterdam

Abstract

Dynamic Epistemic Logic allows us to model the knowledge that agents have and the effects
of actions, such as announcements, on that knowledge. This knowledge also includes various
notions of group knowledge, such as common and general knowledge. A good example of such a
logic is the Logic of Communication and Change, since it allows us to express various notions of
group knowledge in a very natural manner. However, some of the things that it cannot model
are the questions that agents have, or the act of asking a question.

For this purpose, Inquisitive Semantics was created. Within this field lies the sub-field of
Inquisitive Dynamic Epistemic Logic. Inquisitive Dynamic Epistemic Logic is a relatively new
field that deals with knowledge, issues that agents have, and epistemic updates to that knowledge
and those issues. While the field has shown to be very promising by creating conservative
extensions for Epistemic Logic, Public Announcement Logic, and Action Model Logic, it cannot
currently model actions with factual change, or (the effects of actions on) common knowledge
and public issues.

In this thesis we combine these two forms of Dynamic Epistemic Logic into one unified
framework. We will do this by first creating an inquisitive epistemic logic of relativized group
knowledge, based on Propositional Dynamic Logic (PDL), which we will call Inquisitive Epi-
stemic Propositional Dynamic Logic (IE-PDL). We will show that any Inquisitive Epistemic
Logic formula can be translated into IE-PDL, and that it is sound and complete with respect
to its semantics. This completeness proof differs from the standard construction in Inquisitive
Epistemic Logic in that it only works for a finite number of worlds instead of the usual infinite
construction.

After the creation of IE-PDL, we extend it with action models similar to Action Model Logic
with Issues, which results in a logic which we call the Logic of Communication, Change, and
Issues (LCCI). Unlike in Action Model Logic with Issues, these action models can also model
factual change. We then show that LCCI can be reduced to IE-PDL using the idea of program
transformers from the Logic of Communication and Change. We then used this reduction to
show that LCCl is sound and complete with respect to finite models and that is is a conservative
extension of Action Model Logic with Issues.

Acknowledgements

First of all, I would like to thank my supervisors, Rineke Verbrugge and Floris Roelofsen. Their
comments helped shape not only the logics, but also the text of the thesis, and without their
help I would have not been able to solve some of the problems that I encountered. I would like
to thank them in particular for their patience, since this project has been going on for quite a
bit longer than was planned.

Furthermore, I would like to thank Ivano Ciardelli and Thom van Gessel for sitting down
and discussing my thesis with me. Their comments and questions have helped me greatly in
improving my thesis. I would also like to thank Vit Puncochar for being willing to share his
work with me. Seeing a different approach to the same problem was very insightful.

I would also like to thank Laura van de Braak, Jan van Houten, and Lotte Bouma for their
comments on earlier versions of my thesis. Without their input, this thesis would not have been
as clear or readable.

Lastly I would like to thank everyone that shared the gradation rooms with me, before and
after the move. You guys provided me with nice distractions from time to time, and that made
the whole process more pleasant. This goes in particular for Kim van Prooijen and Laura van
de Braak, who have been at this for almost as long as I have.

Contents

|12 Background|

[2.3 Inquisitive Epistemic Logic| oo oo

......................................

2.3.3 Entertaining and wondering|o
2.3.4 Common knowledge and public issues|
2.3.50 Properties|o
2.3.6 Resolutionsl
2.4 Action Model Logic|.
[2.5 Logic of Communication and Change|.
2.5.1 Propositional Dynamic Logic|
2.5.2 Substitutions
2.5.3 Logic of Communication and Change|.
2.6 AML and Inquisitive Semantics| L Lo
2.6.1 Syntax and Semantics|o
12.6.2 Properties|
2.7 Structure of this Thesis| o

13 Inquisitive Epistemic Propositional Dynamic Logic]

BI Tntroductionl.

3.4 xamples| e e e

.0 Properties| e e

vii

CO 0O 3O O OO i W W o

e e e e e e
O UL W R = OO

CONTENTS

B.8.1 Fmtailmentl 39
8.8.2 Proof system| 39
8.8.3 Completeness| L 41

B.9 Conclusionl e 57
4 Logic of Communication, Change, and Issues]| 58
4.1 Introductionl. 58
4.2 Definitions. e 58
...................................... 58
4.2.2 Update Models| 59
4.2.3 Update Execution| oo 59
24 Semanticd 60

4. xamples| L 60
.. 62
4.4, declaratives|. L 63
442 Resolution|. oL 64

EE Reductionl . - - -« v v v oo 65
EET ATOME - -« o v v o e e e e e e 65
4.5.2 Conjunction and Inquisitive Disjunction| 66
4.5.3 Implication| 67
KMhH4 Modalities|.o 67
55 Fullreduction].« o oo 73
4.6 Axjomatisationl oL Lo 76
[4.6.1 Completeness| 77

E7 Reduced Formulasl v v vt 77
E71 Differences with AMLI 78
4.7.2 Analysing Public Announcements|. 79

4.8 Conclusionl e 80
[Comparison with other work] 81
Bl _TCCand E-PDIl. . . . o o oot 81
B2 AMITandTEL] e 82
qPDL| . e e e 82

6 __Conclusion and further researchl 84
6.1 Conclusionl e 84
6.2 Further workl 85
6.2.1 TImplications for IEL| 85
6.2.2 Fxtensions to [E-PDLlo oo 86
6.23 Usesfor LCCH 86
|A_Implementation| 88
[AT The Hexa Gamel . . . - o o oo vt et 88
[ATT The Gamel. 88
IA.L2 Setting up|. o Lo 89

IA. 1.3 The Modell o 90
IA.1.4 Tt’s Time for Actionl o . . o 94

IA. 1.5 Other Uses of Formulag 97

A.2 Simplify| e 98
[A.3 _Conclusionl e e 100

CONTENTS

ix

101

CONTENTS

Chapter 1

Introduction

In many situations in modern life we are dealing with situations where we have to reason about
both the knowledge and issues of other people, and also about the changes that happen in the
world. An example of such a situation would be the game of Citadels, also called Machiavelli in
some parts of the world. In this game, the goal of the players is to build a city that gets them
the most points by building several buildings. For this the players all get to pick a different
character each round in order to use its abilities, which differ between the characters.

Because there are multiple characters and actions that players can take, the selection of a
character is an important step in a round of Citadels. Just knowing what would be good for your
city is not enough, since you also need to keep in mind what the other players need to achieve,
and what their options are. The modelling of such a game could be done in a framework such as
the Logic of Communication and Change (LCC) |18]. For this we need to model the knowledge
relations for all the agents, and create update models for the different types of actions that can
be taken in the game.

The only problem with this is that this leaves out a valuable part of the analysis, namely the
issues that the different agents have at different points in time. For example, when an agent is
presented with the choice whether or not to select the Condottiere as their character in order
to destroy the building of one of the other players, they should instantly wonder whether or not
that player has selected the Preacher as their character, which would block them from using their
power. This issue can however not be represented within the framework of LCC.

A similar situation holds for the effect of certain actions. At the start of the game, it is not
extremely relevant which cards get added to the closed hand of a fellow player. However, later
on in the game the exact hand of each player can be quite relevant, since this can determine in
how many rounds the game will end. In order to properly model such phenomena we will need
to somehow enrich our models of knowledge.

For this, we can borrow from the field of Inquisitive Semantics [4], which has introduced
questions in logic. Of particular interest in our case is Inquisitive Epistemic Logic (IEL) [2] and
its action model variant Action Model Logic with Issues (AMLI) |22], since both these logics can
already model knowledge, the issues that agents have, and announcements.

This thesis will set out to combine the ideas from LCC and AMLI into one framework that
will incorporate the knowledge and issues of agents, announcements, and factual change. Since
both these logics are generalizations of Action Model Logic (AML) [1] these ideas should be able
to fit together quite nicely.

Along the way, we will also introduce an Inquisitive version of Epistemic Propositional Dy-
namic Logic (E-PDL). E-PDL is used in LCC as the basic epistemic language instead of the usual

CHAPTER 1. INTRODUCTION

S5 that IEL is modelled after. We will show that this new logic has a sound and complete

axiomatisation, and that it can be used as a replacement for IEL.
The next chapter will start with an introduction into Citadels and the relevant background

theories. The chapter will then end with the outline for the rest of this thesis.

Chapter 2

Background

First we will explain the rules of the game of Citadels, which we will use for the examples
throughout this thesis. Then we will introduce the background ideas that go along with this
thesis. These two ideas are the idea of Inquisitive Semantics [4], and the Logic of Communication
and Change (LCC) [18]. We will end this chapter with an overview of how these ideas can be
combined.

2.1 Citadels

Citadels is a card game in which the goal of the players is to build a set of eight buildings. They
can do this over a number of rounds. During each round, the player plays as a certain character,
which is chosen at the start of the round. There are eight characters in total. The game ends at
the end of the first round in which at least one player has built their eight buildings.

Each of the buildings is worth a certain number of points. They also all have a colour, which
is either yellow, blue, green, red, or purple. Building one of these buildings also costs a set
number of coins, which is the same as the number of points they are worth. The player that
has the most points is the player that wins. The players can also get bonus points for being the
first to build their eight buildings, having eight buildings without being the first, or having one
building of each colour.

The game is played in a number of rounds, of which the exact execution is dependent on
the number of players. For simplicity’s sake, we will limit ourselves to situations with three
players, which we will call Alice (a), Bob (), and Claire (¢). In order to avoid a combinatorial
explosion, we will also leave out three of the characters, one of the building colours (purple) and
will constrain ourselves to a total of 12 buildings, three for each colour. Of these three, one is
worth one point, one is worth three points, and the last is worth five points. An overview of the
characters that we will use, and the order that they get to act in, can be found in Table 2.1}

A round starts with the starting player collecting and shuffling all the character cards. The
starting player then takes the top card of the deck, looks at it, and places it on the table face
down. The player then goes through the rest of the character cards and picks one. They then
pass on the rest of the character cards to the second player, which then also picks a card, and
hands the last two characters to the third player. This player picks a card, and puts the last
remaining card face down on the table. This means that everybody has a character, but the
players only know which character they themselves have.

After this, the players get to act in the order of their characters. So the first player to act
is the player that has the character of the king. First they get to take either two coins, or one

CHAPTER 2. BACKGROUND

Table 2.1: The roles in Citadels

Order Role Colour Description
1 King Yellow The next starting player
2 Preacher Blue Buildings cannot be destroyed by
the Condottiere
3 Merchant Green Gets one extra gold coin
4 Architect — Gets two extra building cards,

can build two more buildings
5 Condottiere Red Can destroy one building each
round for its cost minus one

building card. After this, they get to build a building from their hand. They can also use the
special property that comes with their character at any point during their turn. If the character
has an associated colour, they also get to get a number of coins equal to the number of buildings
of that colour that they have build. After the turn of a character is done, the next character gets
called and gets to act. In this way, the order of the characters is always the same, but the order
of the players can differ, since they might have different characters each round. The last round is
the round in which a player has built their eighth building. This round is finished as normal, so
every player gets the same number of turns. Any player that has eight or more buildings cannot
have any of their buildings destroyed.

2.2 Inquisitive Semantics

In general, logics and formal semantics are concerned with the truth and falsehood of statements.
For single statements in two-valued logics this is not a problem, since most statements are either
true or false, but for questions, this leads to problems. It is not possible to say whether a question
is true or false, since a question does not necessarily carry information. This means that the
standard definition that is used in logic for propositions will not work with questions.

For this purpose the framework of Inquisitive Semantics [4] was defined. This framework
takes a slightly different look at sentences and propositions, and under this definition questions,
or interrogative sentences, can be modelled in a natural way. The rest of this section will introduce
these various notions.

2.2.1 Possible Worlds

In formal semantics, we normally discuss the truth or falsehood of a proposition with respect to
a certain model. This model normally specifies a number of worlds, one of which is the actual
world, while the other ones are alternatives for the actual world. These worlds are called the
possible worlds of a model. The set of all possible worlds is traditionally denoted as V. This is
also sometimes called the logical space.

So if we, for example, wanted to model the propositions p: “It rains in Amsterdam”, and ¢:

“It rains in Groningen”, we would need four worlds, one for each possible truth assignment. We
could then draw this model as well, as seen in Figure

2.2. INQUISITIVE SEMANTICS

11 10

01 00

Figure 2.1: An example of a logical space, where the names of the world give the valuation for
that world. In 11, both p and ¢ are true, in 10 p is true, but ¢ is false, etc.

2.2.2 Information States

The second notion that we need is the notion of an information state. If one of the possible
worlds is the actual world, then an information state can be seen as a way to pinpoint the actual
world by limiting the logical space.

Definition 2.1 (Information State). An information state s is a subset of the possible worlds,
sCW.

We will also use the word state to refer to an information state.

Now, if we have two information states s and ¢, such that ¢ C s, we then know that ¢ holds at
least as much information as s, since it locates the actual world with at least as much precision.
This might seem counterintuitive, since t might contain fewer worlds, but this also means that
it has a higher “signal-to-noise” ratio.

In our previous drawing of the possible worlds, we can also draw information states. If we
for example wanted to show the information that it rains in Groningen, we could show that as

in Figure [2.2]

R
11 10
01 00
«

Figure 2.2: An example of an information state, namely the one that says that it rains in
Groningen.

There is one information state that is special, namely @. In this information state all possible
worlds have been discarded as candidates for the actual worlds. This means that the available
information has become inconsistent. This is why we will also refer to it as the inconsistent state.

2.2.3 Issues

Issues are at the heart of Inquisitive Semantics, and they are used to actually model questions.
The meaning of issue here is a point of discussion. For example this could be a question that
was raised, or some other matter for which a solution has not yet been found. In Inquisitive
semantics, an issue is represented by the situations in which it is resolved. That is to say, an
issue is represented by all the information states that contain enough information to solve it.
Since if s contains enough information to resolve the issue, any subset ¢ will also contain enough

CHAPTER 2. BACKGROUND

e N
11 10

L J

e N
01 00

L J

Figure 2.3: An example of an issue, namely the question “Does it rain in Amsterdam?”

information to resolve the issue, this means that if s is in the issue, ¢ will also have to be contained
in the issue.

Definition 2.2 (Issues). An Issue is a non-empty set I of information states that is downward
closed. This means that for all s C W, if s € I and t C s, then ¢ € I. The set of all issues is
denoted by Z.

Because issues are downward closed, if W is finite they can be defined in terms of their
largest sets. For example, if we have the information state {w;,ws}, then we can construct
an issue from this by taking the downward closure of the set {{wi,ws}}, which would be
{{wy,ws}, {w1}, {wz},0}. This operation is also written down as ¥. So we could write the
previous issue as {{w, wy}}*.

Since an issue can be defined in terms of its biggest elements, these elements also have a
special name:

Definition 2.3 (Alternatives). The maximal elements of an issue I are called its alternatives.
The maximal elements are the elements that are not a subset of another element in I, s € I such
that there isno t: t € [and s C t.

Like possible worlds and information states, Issues can also be shown graphically. An example
of this can be seen in Figure where the question “Does it rain in Amsterdam?” is represented.
When drawing an issue, we only draw the alternatives to keep the figures free from clutter.

2.2.4 Support

As mentioned before, it is impossible to see if an issue is true or false in a given world. Because
of this, we will use a different notion instead of truth, namely the notion of support. We will say
that an information state s supports a formula ¢ in a model M in the case that it resolves the
issue of . The notation for this stays the same, M, s | ¢.

For example, in Figure if we take ¢ to be “Does it rain in Amsterdam?”, then the upper
alternative resolves the issue, since it tells us that it rains in Amsterdam. We would write this
down as M, {{11,10}}* = ¢.

2.3 Inquisitive Epistemic Logic

An example of a logic based on Inquisitive Semantics is Inquisitive Epistemic Logic (IEL). IEL
is similar to standard Epistemic Logic, but here it is also possible to model the issues that the
agents entertain.

This section will give a short introduction into IEL, based on the work in [6].

2.3. INQUISITIVE EPISTEMIC LOGIC

2.3.1 Syntax

The syntax of IEL is similar to the syntax of Epistemic Logic, but with two small changes. The
first of these is the introduction of the inquisitive or (V) and the second is the addition of an
entertain (E,) modality.

The new inquisitive or is what we will use to introduce issues into our new language. If we
only kept the classical operators, we would only be able to create classical structures.

The entertain operator works as a standard modal operator, but instead of going from worlds
to information states, this one goes from worlds to issues. This in turn allows us to express what
an agent entertains, instead of only what an agent knows. More explanation of how the entertain
operator works can be found in Section [2.3.3

Definition 2.4 (Formulas of IEL). Given a finite set of propositional variables P, and a finite
set of agents A, with p ranging over P and a ranging over A, the formulas of IEL are given by:

pi=LlplerApa| o1 = @21V | Kap | Eap
For the language, we will also use the following abbreviations:
—pi=p— L
P1 V2 1= (21 A —p2)
P14 2= (p1 = p2) A (P2 = ¢2)
70 =WV
To continue on our earlier weather examples, we could now represent the issue in Figure [2.3

as 7p, which means that we can represent that Alice (a) entertains that it rains in Amsterdam
as FE,7p.

2.3.2 Semantics

The structure of models for IEL is similar to the structure of models for standard epistemic logic.
The big difference is that the inquisitive state of an agent needs to be incorporated as well.
This is done by assigning to each agent in a world an issue that that agent entertains in that
world instead of the usual set of worlds that are indistinguishable. Because |IEL is meant to treat
knowledge, we would also like these inquisitive states to have properties similar to reflection,
transitivity, and symmetry. The first one is now called factivity, and the second two are put
together into introspection, to add the axiom for truth and introspection, respectively.

Definition 2.5 (Models for IEL). An Inquisitive Epistemic Logic model for a finite set P of
propositional variables and a set A of agents is a triple M = (W, ¥ 4, V), where:

e W is a set of possible worlds,

o Y4 ={%,|ac€ A} is aset of state maps, each of which assigns to every world w an issue
Y. (w) such that it has the following properties:

Factivity: for any w € W, w € g4(w)
Introspection: for any w,v € W, if v € o4(w), then X, (w) = X, (v)

where o,(w) = |J X, (w) represents the information state of the agent a in world w.

e VW — p(P)ﬂis a valuation map,

Lo(P) is the powerset of P, so a set of all subsets of P.

CHAPTER 2. BACKGROUND

The conditions put on the state maps are necessary in order to ensure that the agent’s
information states are truthful, and that the agents are aware of their own knowledge and issues.
This is similar to the conditions put on the knowledge relations in standard Epistemic Logic.

Now we can give the definition of the interpretation of IEL sentences.

Definition 2.6 (Interpretation of IEL formulas). Let M be an IEL model and s an information
state in M.

M,sEp < pe V(w) for all worlds w € s

M,sE L < s=10

M,sE p1 Npy <= M,sp; and M, s | ¢

M,s|E p1WVps < M,s k= p; or M,s = ¢

M,s|E 1 = pg < foreveryt Cs, M,t|= ¢ implies M,t = ¢
M,s = Kyp < for every w € s, M,0,(w) = ¢

M,s|E E,p <= forallwes, forallt e X,(w), M,t =

While truth is a derived notion in Inquisitive Semantics, we can still give a definition for the
truth of a IEL formula in a world.

Definition 2.7 (Truth in IEL). Let M be an IEL model and w be a world in M.
MwEe <= M{w}Ee

2.3.3 Entertaining and wondering

The entertain modality F, is used in IEL to express that an agent a wants to know something.
This is done by making F,¢ supported in those cases where ¢ is supported in all the states in the
inquisitive state of agent a. This works well for most cases. For example, if we look at F,7¢ this
is supported if in all the worlds in the inquisitive state of agent a, either ¢ or = is supported.

However, the current entertain modality is not without its problems. A peculiar property
that it has is that if an agent knows whether ¢ is true or false, they also entertain whether or
not . This is because of how K, is interpreted. If we have that M, s = K¢, we know that for
all w € s, M,0,(w) = ¢. This means that ¢ is supported in all worlds in o,(w), and therefore
also in all issue states in ¥,(w). Therefore we get that K, implies E,p. This is not a good
definition of the natural language concept of entertaining.

Therefore, the entertain modality is mostly used in a technical sense, and for most cases
we will actually use a new modality, called the wonder modality. The wonder modality is an
abbreviation that will give us exactly what we need to specify that an agent wants to know
something, but does not know it yet. It is defined in the following manner:

Wap = Koo AN Eqp

So if an agents wonders whether ¢ is supported, we can now express that in the following way:
Wo 7.

2.3.4 Common knowledge and public issues

The language of IEL can also be enriched by the notions of common knowledge, like standard
epistemic logic, and its inquisitive counterpart, public issues. Since we are not working with
relations, this cannot be done in the standard way, by taking the reflexive transitive closure of
the union of relations for the agents. However, it is possible to do something similar. Consider
public issues. Something is a public issue if both:

2.3. INQUISITIVE EPISTEMIC LOGIC

e all the agents entertain it;
e cach agent knows that the others entertain it.

This can be seen as iteratively finding all the worlds that a number of agents consider, so including
the ones the other agents in the group “believe” the others consider, and see which issues they
have in this worlds. An issue would then be a public issue if it is an issue for all agents in those
worlds. This is leads to the following definition of a new state map, called X, which is used for
the interpretation for public issues:

Definition 2.8 (Definition of X..).

Y. (w) = {s | there exist vg,...v, € W and ay,...a, € A such that
Vo = W, Vip1 € 0q; (v;) for all i <n, and s € Z,, (v,)}

We now also get a map called o, for the knowledge relations that correspond to what we
would get if we took the common knowledge construction on the individual information maps
04 This map is defined in the usual way o.(w) = [J X4 (w).

Now two new operators can be defined, called K, for common knowledge, and F, for public
issues. The support definitions for these are as follows.

M,s EK,.p < for every w € s, M,0.(w) E ¢
M,s EE.p < for every w € s, for every t € ¥, (w), M,t E ¢

With K, and F, we can also define an operator W, that says that a group of agents publicly
entertain ¢ and that ¢ is not publicly settled.

Wep =K. N Ep

It should be noted, however, that while there is sound and complete axiomatisation for IEL,
this axiomatisation is no longer complete when we introduce common knowledge and public
issues into the language. We will have more to say about this in the conclusion.

2.3.5 Properties

Since IEL is the basic logic on which most other logics in this thesis are based, it is a good idea
to look at the properties of IEL. Later on we will see if these properties also hold for the other
logics. All of these come from |[3].

Fact 2.1 (Persistency of support). For all models M and all information states s C W, for all
t Cs,if M,s = ¢ then M.t | .

Fact 2.2 (Empty State Property). For all models M and all formulas ¢, M, | ¢.

This second property is also why () is called the inconsistent state, since everything is sup-
ported there.

There is a set of formulas in IEL that have the special property of being truth-conditional.
This means that the support conditions in a state s boil down to the truth conditions in each
w € S.

Definition 2.9 (Truth-Conditional). A formula ¢ is truth-conditional if for all models M and
information states s, M,s = ¢ <= M,w = ¢ for all w € s.

CHAPTER 2. BACKGROUND

For some formulas it is possible to see that they are truth-conditional based on their syntax.
We call these formulas the declaratives. Any formula that is not declarative will be called
interrogative. The notation for the declarative fragment of a language L is L;.

In the rest of this thesis, we will us the following notational convention: «, 3,y will range over
declaratives, u, v, A will range over interrogatives, and ¢, 1, x will range over the (then relevant)
whole language.

Definition 2.10 (Declaratives of IEL). The declarative fragment of IEL is given by:
a:=p|L|Kup|Eap|larAhas | p = «
Fact 2.3. Any o € LIF! is truth-conditional.

Another nice property that declaratives have is that given a declarative a, K« and E,« are
equivalent.

Fact 2.4. For all models M and information states s C W, given any declarative a € L{F-, the
following holds:

M,s|E Koo <= M,s k= E,a
2.3.6 Resolutions

Resolutions form a notion that will play an important role in tying an interrogative sentence
to a declarative counterpart. Intuitively, resolutions can be seen as declarative sentences that
describe the different ways in which a formula can be settled.

Definition 2.11 (Resolutions in IEL). The set R(p) of resolutions of a formula ¢ is defined
recursively as follows:

R(a) = {a} if « is a declarative
R(p1Vp2) = R(p1) UR(p2)
RuAv)={anB|aeR(p) and § € R(v)}

R(p — p) = /\ a — f(a) | f is a function from R(p) to R(w)
a€R(p)

The use of resolutions also gives us some new facts. The first says that to resolve an inter-
rogative is to establish some resolution of it.

Fact 2.5. For any M, s, and ¢, M,s = ¢ <= M,s = « for some a € R(p)

This also leads to the second result, which defines a normal form: every formula ¢ is equivalent
to an interrogative made up of its resolutions.

Fact 2.6 (Normal form). For any ¢, ¢ <= WVaer(p) @
Using the resolutions, the presupposition of an interrogative can be defined.

Definition 2.12 (Presupposition of an interrogative). The presupposition of an interrogative
is the declarative \/ ,cr () o

We can also generalize this notion of resolutions to sets of formulas, which will come in useful
later.

10

2.4. ACTION MODEL LOGIC

Definition 2.13 (Resolutions of a set). The set R(®) of resolutions of a set ® contains those
sets I' of declaratives such that:

o for all ¢ € @ there is an o € T' such that a € R(p).
o for all « € T" there is a ¢ € ® such that o € R(yp).

This means to say that the resolutions of a set ® is a set of declaratives which is obtained by
replacing each formula in ® by one or more resolutions. Since declaratives have themselves as
their only resolutions, we get that the declaratives in ® are also in every I' € R(®). In particular,
if T is a set of declaratives, then then R(T") =T.

Fact [2.5|also generalizes to sets. Here M, s = ® where @ is a set of formulas means M, s = ¢
for all p € .

Fact 2.7. For any M, s, and ®, M,s |=® <= M,s =T for some I' € R(D).

2.4 Action Model Logic

This section will give a quick, mostly conceptual, understanding of Action Model Logic (AML)
[1]. The ideas presented in this section will be expanded upon in Sections and and can
help in their understanding.

The main idea behind action model logic is to extend a standard epistemic logic, which is
called the static language, with one new operator, [U,x] ¢, that takes an action x and an action
model U, whose intuitive reading is: after the execution of x, the formula ¢ holds. Formally, this
operator is interpreted by augmenting the static language model M that [x] ¢ is interpreted in
with the given action model U, which results in a new model called M o U in which the formula
@ is then evaluated.

Of course, not every action can be executed in every world. For example, if Alice is not the
architect, then she does not get to build more than one building in a turn. Because of this, every
action x has a so called pre-condition, written as pre(x). All the preconditions for the actions are
stored in the model U.

It is also not the case that every agent knows about the execution of every action. For example,
if Claire gets to pick a character, then only she will know which character she picked. However,
Bob will have more knowledge about which action occurred than that Alice has. Because of
this, there is also a relation in U for each agent a, called R,, that relates two events x and y if
they are indistinguishable to agent a. This relation is similar to the relation R, from the static
language. So for example, if the static language is S5, then it is normal to make sure that R, is
also reflexive, transitive, and symmetric.

The model M o U should be a valid model for the static language, and has as worlds ordered
pairs of worlds and actions, where a propositional atom is in the valuation of world (w,x) if it
is in the valuation of w. The new relation R/, is created by combining the relations R, and R,,
where two worlds (w,x) and (v,y) are related if agent a cannot distinguish between w and v, nor
between x and y. This should give a complete model for the static language.

2.5 Logic of Communication and Change
The Logic of Communication and Change (LCC) is a logic that was introduced in [18]. Tt is a logic

that combines announcements, both public and private, factual change, and epistemic operators.
It achieves this by building a generalization of AML which allows for substitutions and which

11

CHAPTER 2. BACKGROUND

uses Propositional Dynamic Logic (PDL) as its static language. This section of the background
will start out with an introduction into PDL, followed by an explanation of substitutions. The
section ends with an explanation of the workings of LCC.

Since PDL also uses the word ‘action’ and we want to avoid ambiguity, we will refer to action
models as update models, and the actions in such a model as events for the rest of this section.

2.5.1 Propositional Dynamic Logic

Propositional Dynamic Logic (PDL) is a modal logic which allows us to reason about the execution
of sequences of actions, usually called a program [12|. This works by having a set of atomic
programs that can influence the state of the world. This is modelled by having a modal operator
that takes programs, where the relation for each program represents the possible worlds after the
execution of that program. These atomic programs can also be combined into larger programs,
using operators to combine the atomic programs.

The language of PDL is defined by mutual recursion over formulas and programs. The
structure of formulas is mostly the same as that for propositional logic, with the addition of
a modal program operator [r]p. This formula says that ¢ is true after the execution of the
program 7.

For the creation of programs we also have several operators. The first of these is 71; w2, which
is called sequence, and executes program mo after m;. This is used to execute multiple complex
programs in sequence, or to embed sequences of programs in other larger programs. The second
is w1 Umg, which is called choice, and executes either 71 or o non-deterministically. This is useful
to model branching paths in programs. The operator ‘7o’ is called test, and this operator tests
if a formula ¢ holds in the current world, and aborts the program otherwise. The last operator
is 7* which is called unbounded iteration, and executes the program 7 zero or more times. This
is used to execute a program multiple times.

Definition 2.14 (Formulas of PDL). Let a finite set of propositional variables P and a set of
atomic programs A be given, with p ranging over P and a ranging over A. The language of PDL
is given by:

p:=TI[p|-p|v1Ap2|[r]e
mi=a|@?|m;my | T U | T

We employ the usual abbreviations:
L:i==T P1V @2 := (71 A —p2)
1= 2 1= (1 A p2) P14 P2 1= (1 = P2) A (P2 = ¢1)

These formulas can be interpreted in relation to standard multimodal Kripke models, with a
relation for each atomic program.

Definition 2.15 (Models of PDL). A Propositional Dynamic Logic model for a finite set P of
propositional variables and a set A of atomic programs is a triple M = (W, R4, V'), where:

e W is a set of possible worlds

e R4=1{R,|ac A}isaset of relations, R, : W x W, where every relation gives the worlds
that are possible after the execution of action a

oV:W—>p('P)

12

2.5. LOGIC OF COMMUNICATION AND CHANGE

Currently, the relations are only given for the atomic programs. The relations for the com-
posite programs are as follows:

Ry iz, = Ry, 0 Ry,

Re Uny = Rp, URL,
Ryr = {(w,w) | M,w |= ¢}
Ry = (Ry)"

where R, o R, is the composition of R,, and R,,, and R* is the reflexive transitive closure of
R.
Now we can give the truth definitions for PDL formulas in models.

Definition 2.16 (Truth definitions for PDL). Let M be an PDL models and w a world in M.

M,wlET <= true

M,wlEp < peV(w)

M,wlE-p < M,wl} @

MwEp1 ANpa <= M, w1 and M, w = @
M,w =[]y <= for every wRrv, M,v = ¢

In LCC, instead of using PDL for its usual purpose, as a language for analysing the execution of
programs, PDL is used as a rich epistemic language. This does not change any of the behaviours
of the language, but only our interpretation of it. In order to make this distinction clearer, this
epistemic reading is called E-PDL.

In E-PDL, the relations for atomic programs become the accessibility relations for agents, and
are in that way similar to the state maps from IEL. Sequences like a1;as will be the ‘levels of
knowledge’ of Parikh [14]. If a; and ag are agents, and ¢ is a formula of E-PDL, then [a;;as]¢
means that a; knows that as knows ¢. Furthermore, if A C A, then we will use [|J Alp as a
shorthand for [aq U---Uay,lep. In this way, we can express the common knowledge of a group of
agents as [(|J A)"]p, while general knowledge of ¢ becomes [|J Aep.

2.5.2 Substitutions

The substitutions are the part of the update models that drive the factual change. They can be
seen as postconditions of an event that changes the world.

Definition 2.17 (Substitutions). £ substitutions are functions of type £ — £ that distribute
over all language constructs, and that map all but a finite number of basic propositional atoms
to themselves. £ substitutions can be represented as a set of bindings

{p1 =01, ;o= on}

where all the p; are different. If p is a £ substitution, then the set {p | p € P, p(p) # p} is called
the domain of p, denoted dom(p). Use € for the identity substitution. Let SUB. be the set of
all £ substitutions.

We can also update a model with a substitution. For this, we only have to change the
valuation, so we will focus on that.

13

CHAPTER 2. BACKGROUND

Definition 2.18 (Epistemic Models under a substitution). If M = (W,V, R) is an epistemic
model and p is a £ substitution (for an appropriate epistemic language L), then V{; is the
valuation given by

Vir(p) ={w| M,w = p(p)}
In other words, V}; assigns to p the set of worlds w where p(p) is true. For M = (W, V, R), call
M? the model given by (W, V{,, R).

The substitutions will be the driving force behind the factual changes, since they allow us
to model the changes in the world. To see this, we can have a look at the event of a player in
Citadels taking two coins at the start of their turn. For this substitution, we would want to map
the proposition that a player has x coins to the proposition that a player has x — 2 coins. If we
take c(a,%) to mean that player a has at least ¢ coins, this substitution would look like this:

{c(a,1) — T,c(a,2) — T,c(a,i) — c(a,i — 2) where 2 < i < 10}

This means that after the application of this substitution, ¢(a, 1) and c(a, 2) are true, c¢(a, 3) has
the truth value that c(a, 1) had before and so on.

2.5.3 Logic of Communication and Change

The Logic of Communication and Change (LCC) |18] is an action model logic that uses PDL as its
static language. Its syntax is the same as that of PDL, with the addition of an update operator
[U, €] ¢, which means that after the execution of event e from update model U, ¢ is true.

In that respect LCC is not much different from AML, but it differs on two accounts. The first
of these is that LCC allows for the addition of factual change to action models. While this was
already mentioned in [1], the mechanisms for it were not yet incorporated into AML. The second
difference is that LCC has a neater completeness proof, since it is in dynamic-static harmony
thanks to the fact that it uses epistemic programs instead of the normal epistemic operators
for knowledge in groups. This also makes it easier to study the effects of epistemic actions on
aspects like general knowledge and common belief.

The update models from LCC are like action models from AML, but with an additional
function sub to assign a substitution to each event.

Definition 2.19 (Update Models). An update model for a finite set of agents A with a language
L is a quadruple U = (E, R, pre, sub) where:

e E={ey,...,e,} is a finite non-empty set of events
e R: A — p(E?) assigns an accessibility relation R(a) to all agents a € A
e pre: F — L assigns a precondition to each event
e sub: E — SUB_,,, assigns a substitution to each event
A pair U, e is an update model with a distinguished event e € E.

These update models are then combined with the underlying static language, to create a new
PDL model. This process is called update execution. The definition of the resulting model is
given below.

Definition 2.20 (Update Execution). Given a static epistemic model M = (W, V| R), a world
w € W, an update model U = (E,R, pre,sub) and an event e € E with M, w = pre(e), we say
that the result of ezecuting U,e in M, w is the model M o U, (w,e) = (W', V', R'), (w,e) where

14

2.6. AML AND INQUISITIVE SEMANTICS

e W = {(v,f) | M,v |= pre(f)}
o V'(p) ={(v,f) e W' | M, v |= sub(f)(p)}
o R, ={((v,f),(u,g)) | (v,u) € R, and (f,g) € R(a)}

The interpretation of LCC functions is also the same as the interpretation of PDL formulas
with the following addition:

M,w=[U,elp <= MoU,(w,e) =y

As mentioned before, one of the nice properties of LCC is that it is in dynamic-static har-
mony, which means that the language is completely reducible to the underlying static language.
This reduction is done by so called program transformers. These program transformers take an
epistemic program that is supposed to be run in the updated model, and transform it into a
program in the original model.

The base idea behind the program transformers is that if the formula [U, €] [n]y is true in
some model M and world w, then ¢ is true in each world on all m-paths in M o U. This means
that there is some path w---v in M and some path e---f in U where each event ¢ in e---f
can be executed in the corresponding world w; in w---v. These paths can be specified using
programs, as is normal in PDL, and the test whether an event can be executed can be done using
the test operator. This makes it possible to find an equivalent formula to [U, €] [r]p that does
not contain any action operators, which in turn allows for a full reduction of LCC into E-PDL.

This also explains why LCC needs E-PDL as its static language instead of classical epistemic
logic, since it needs to have an operator for iteration, to enable common knowledge, as well as
an operator to test if a formula is true, which needs to be able to be nested under iteration. As
E-PDL adheres to both these constraints, it is a good fit for a static language for LCC.

2.6 Action Model Logics and Inquisitive
Semantics

It is also possible to enrich Inquisitive Epistemic Languages, such as |[EL, with action models. For
this purpose two languages that combine IEL with action models were developed in [22]. Since
we want to use one of these logics as our basis for our own update models, we will quickly go
over the differences.

The two logics in question are Action Model Logic with Questions (AMLQ) and Action Model
Logic with Issues (AMLI). AMLQ works a lot like AML, but also allows actions to have a question
as a precondition, thereby allowing the logic to model the asking of a question. Since it changes
nothing about the relations between actions, after an action every agent entertains which question
was asked.

AMLI works differently, since it allows us to specify which agents are interested in which
actions. The downside of this is that the logic no longer allows the asking of a question as an
action. However, we can model the asking of a question as an action in AMLI by making multiple
actions, one for each alternative in the question.

Since we want our action models to be able to deal with arbitrary actions, and not just
announcements, being able to model the interest of agents in the different actions is important.
Therefore, we will base our update models on AMLI. The rest of this section will give a quick
overview of AMLI, based on the work in [22].

AMLI is an action model logic which uses IEL as its static language. This means that this
section will also borrow from Section for some definitions.

15

CHAPTER 2. BACKGROUND

2.6.1 Syntax and Semantics

The syntax and semantics of AMLI are defined by mutual recursion. In order to also allow for
AMLI formulas in preconditions, the logic is also defined in multiple levels, where each level allows
for the nesting of more complex action models.

Definition 2.21 (Syntax of AMLI). Let £AMMo = £IEL For > 0, LAMI: is defined as follows,
where s is a set of actions within the AMLI action model M of at most level ¢ — 1.

pi=plLlloiNpa [e1WVes | p1 = 2| Ko | Eap | [M,s]e

The full language is the union of all LAM: for all natural numbers i.

U [/AMLIi

i>0
We use the same abbreviations as for IEL with the following additions:

[s] := [M,s]¢ Where M is clear from context
[x]e = [{x}]e Where x is a single action

Because we are now working with a set of actions, the intuitive reading for [s] ¢ becomes a bit
different. It now means: “After the execution of some action in s, ¢ is supported.” The reading
of [x] ¢ stays the same, since there is only one action x, so it is the only one that can be executed.

The Action Models with Issues are defined as follows.

Definition 2.22 (Action Models with Issues). For ¢ > 0, an AMLI action model of level i is a
triple M = (S, A 4, pre), where:

e S is a finite domain of actions.

e Ay ={A,|ae A} where A, maps every action to a non-empty downward closed set of
sets of actions.

E{\Mui E!AML"" to each action x € S.

e pre: S — is a function that assigns a precondition pre €

Since we want the updated model to be an IEL model, there are a lot of similarities between A 4
and X 4, since they serve similar goals. In particular, the factivity and introspection conditions
apply to A4, as they did to X 4 in IEL. For each a € A, there is also a §, = |J A, similar to o,
in IEL.

These action models can then be combined with IEL models to get the model after execution.
For this we will want two functions to map states in the updated model to their state in the IEL
model or the Action Model.

Definition 2.23 (Projection operators). If s C (W x S), then:

m1(s) = {w | (w,x) € s for some x}

ma(s) = {x | (w,x) € s for some w}
The definition of the updated model is a follows.

Definition 2.24 (Product Update). Let M be an IEL model and M an AMLI action model.
Then M oM is the product update of M and M, defined as the triple (W', V', ¥/,), where:

16

2.6. AML AND INQUISITIVE SEMANTICS

e W = {(w,x) | M,w = pre(x)}

o V'(p) = {(w,x) |w e V(p),x €S}

o ¥ ={%) | a € A} where s € X/ ((w,x)) iff
1. mi(s) € Zg(w)
2. mo(s) € Ag(X)

Since we work with states and not worlds in Inquisitive Semantics, we will need to tie our
states in the original model to states in our updated model. For this the definition of an updated
state is used.

Definition 2.25 (Updated State). Given an |IEL model M, an information state s in M, an
AMLI action model M, and a set of actions s in M, the updated state s[M,s] is the information
state in M o M such that:

s[M,s] = {(w,x) e W' | w € s,x € s}
The support conditions for the formulas are the same as for IEL with the following addition:

M,s = [M,slp <= (M oM),s[M,s] E¢

2.6.2 Properties

As one would suspect, AMLI has much of the same properties as IEL has. All of the following
results come from [22].

Fact 2.8 (Persistency of Support). For all models M and all information states s C W, for all
t Cs,if M,s = ¢ then M.t = .

Fact 2.9 (Empty State Property). For all models M and all formulas ¢, M, | ¢.

Since AMLI’s action operator also operates on sets, the action operator can also have these
properties, which it in fact does.

Fact 2.10 (Modal Persistence). For all models M, all information states s C W, all action
models M, and all states s, if M, s = [M,s] ¢ and t C's, then M, s = [M,] ¢.

Fact 2.11 (Modal Empty State). For all models M, all information states s C W, all action
models M, and all formulas ¢, M, s = [M, 0] ¢.

AMLI also has a declarative fragment, which is given below. For AMLI the declaratives
are even more important than they are for IEL, since all the preconditions of the actions are
declaratives.

Definition 2.26 (Declaratives of AMLI). The declarative fragment of AMLI is given by:
a:=p|L|Ksp| Eop|[sla|arNas| ¢ — a
As in IEL, the declaratives for AMLI are truth-conditional.
Fact 2.12. Any a € LMY s truth-conditional.

AMLI also has a set of resolutions. These are the same as for |IEL, with an addition for the
update modality.

Definition 2.27 (Resolutions for AMLI). The set R(¢p) of resolutions of a formula ¢ is defined
by extending Definition with the following;:

R(M, s) = {[M,s]a [v € R(p)}

17

CHAPTER 2. BACKGROUND

2.7 Structure of this Thesis

Since it is not immediately clear how all the logics from this section fit together and how they
can be combined, we will now spend some time on laying out these plans. In order to better
visualize this, we have included a diagram of the relations between these logics and the ones that
have yet to be developed in Figure 2:4] This diagram will also aid us in determining what the
rest of the thesis will look like.

IEL —> AMLI

™~

AML IE-PDL —— LCCI

>

E-PDL ——> LCC

Figure 2.4: The relations between the different Logics in this thesis. A blue arrow means that
the logic on the left is used as the static language for the logic on the right. A green arrow means
that the logic on the right is an inquisitive variant of the logic on the left. A red arrow means
that the logic on the right borrows ideas from the logic on the left.

The first step is finding a logic that can function as our static language. As for LCC, this
language needs to have PDL-like program operators, but it also needs to be an adequate replace-
ment for [EL. Such a logic does not yet exist. Because of this, we will create an Inquisitive
Epistemic Propositional Dynamic Logic (IE-PDL) which adheres precisely to these requirements.
In Chapter 3, we will define this language, give examples of its use using Citadels, show that
it generalizes IEL, and give a sound and complete axiomatisation. Because of the nature of IE-
PDL, this will be the first language that we know of that will have both a sound and complete
axiomatisation, and operators for common knowledge and public issues.

After that, we can start to define our main new language, the Logic of Communication,
Change, and Issues (LCCl). Chapter 4 will start out with defining this new language and showing
some examples of its use (including factual change). The rest of that chapter will show how to
reduce LCCI to IE-PDL, how this leads to a sound and complete axiomatisation, and it will study
some of these reductions.

Chapter 5 will then compare our work with logics with similar goals to IE-PDL and LCCI, in
particular LCC and AMLI. Chapter 6 will conclude this thesis by giving some concluding remarks
on the project and exploring some avenues for further research, such as further extensions that
can be given to LCCI similar to the ones for LCC.

18

Chapter 3

Inquisitive Epistemic
Propositional Dynamic Logic

3.1 Introduction

In this chapter we will start with the new additions that this thesis proposes. Here we will define
the new logic called Inquisitive Epistemic Propositional Dynamic Logic (IE-PDL) which we will
use as the basis for our later logic. |IE-PDL is an inquisitive variant of E-PDL, and will therefore
have the same basis on Propositional Dynamic Logic.

The logic of IE-PDL will give us an epistemic language that is richer than both E-PDL, since
it will allow us to model the issues that agents have, and IEL, since it will allow us to model
different knowledge relations in the same model.

We will start with the definition of the syntax, which is followed up by the definition of the
models of |IE-PDL, and how to interpret formulas in these models. Then we will discuss the
properties of IE-PDL and how they differ from IEL and AMLI. We then show that IE-PDL allows
us to model anything that we can model in IEL. This chapter will end with giving a sound and
complete axiomatisation of IE-PDL.

3.2 Syntax

The definition of IE-PDL is similar to the definition of E-PDL, with the same set of operators
to combine the epistemic relations of single agents. The differences are that there are two new
operators. The first of these new operators is the inquisitive or (\v). We will need this operator
to introduce issues into our new language. It operates in the same way as in IEL.

We will also need to introduce a new modal operator, which is similar to F,p from IEL. For
this we use [7]p, which means that the issues in ¢ are resolved in every state accessible via T,
or in other words, that the issues in ¢ are entertained by 7, where 7 is taken to be an agent, or
a group of agents.

Like in E-PDL, the formulas of IE-PDL are defined by mutual recursion.

Definition 3.1 (Formulas of IE-PDL). Given a finite set of propositional variables P and a finite
set of agents A, with p ranging over P and a ranging over A. The language of IE-PDL is given

19

CHAPTER 3. INQUISITIVE EPISTEMIC PROPOSITIONAL DYNAMIC LOGIC

by:
p:=Llplei g2l —= 2|1V |[rle|[r]e
mi=al|lp|m;me | M U | 7*
We employ the following abbreviations for formulas:
pi=p = L
T:=-1

01V @z = (1 A)
P1 ¢ p2 7= (1 = p2) A (P2 = 1)

Furthermore, if B C A, we will take the program |J B to mean:
e
beB

as in E-PDL. We will also use n™ as a shortcut for sequences, in the following manner:

a0 =T
7T1 =T
7_‘,nJrl — "

)

This means that, in IE-PDL, common knowledge of ¢ within a group of agents B C A is
represented by [(lJ B)*]e, general knowledge of ¢ is [|J B]y, and ¢ is a public issue within a
group of agents if [(|J B)] is supported.

Also of note is that, unlike in IEL, we do not define 7y := ¢\ —¢p. The reason for this is that
this operator would cause ambiguity with the program ?¢, which could then be both a program
and a formula, so it has been left out.

Now we have defined everything related to the syntax, we can move onto the definition of the
semantic structures.

3.3 Semantics

Before we can define how we can interpret the formulas of |IE-PDL, we will first have to define
the relevant models in which we will interpret them.

Unlike what is normal in Inquisitive Modal logics, we will work with relations from information
states to information states for IE-PDL. While the state map approach works well for encoding
knowledge and issues for agents, it makes combining the actions harder, since operations like
composition do not work on statemaps. However, for the knowledge and issues for the agents, it
is easier to use a statemap, so we will use those as our basis, and later on transform a statemap
into a relation from states to states for interpreting the composed epistemic relations.

Definition 3.2 (Models for IE-PDL). An Inquisitive Epistemic Propositional Dynamic Logic
model for a finite set P of propositional variables and a finite set A of atomic actions is a triple
M = (W,X4,V), where

e)V is a finite set of possible worlds,

20

3.3. SEMANTICS

o V:W — p(P) is a valuation map,

o Y4 :{X,|ae€ A} is a set of state maps, each of which assigns to every world w an issue
Yo (w).

Note: Since we want our results to hold for all these state maps, we do not enforce factivity
or introspection as requirements on X, since we want to show that these properties are
not necessary for the technical results in this thesis.

Now we still have to define the relations for the epistemic relations. The one for single agents
is easy, a state t is reachable from a state s iff there is a w € s such that ¢t € ¥,(w). This gives
E —ap and [a]e the same support conditions, as we will later see. For the composition programs,
we will use the standard definitions from Propositional Dynamic Logic, with the exception of
test and unbounded iteration.

Thanks to the fact that we no longer interpret formulas in worlds, but in sets of worlds, we
cannot use the normal definitions which are dependent on reflexivity. With test, the problem
with this is that it would break the persistence property (Proposition , since every formula
that is not supported in a state might be supported in a subset of that state, where the formula
after the modal operator would not be supported. Because of this, the definition for test is
based upon the support condition for implication, where it returns all the subsets of a state that
support the formula being tested. Because of this, [?¢]¢ can also be read as: “Assuming that ¢
holds, 1) holds”.

For iteration, the problem is a bit different, and has to do with the declarativeness of [7*]¢.
If 7* is reflexive, then the support condition for [7*]y in a state s would depend on the support
condition of ¢ in that state s. This would mean that if ¢ was declarative, so would be [7*]¢,
even when [7] was declarative. For our interpretation with IE-PDL as an epistemic language,
this is a harmful property. To solve this problem, we have at least two options:

1. make reflexivity only matter on the level of worlds;
2. use only the transitive closure, instead of the reflexive transitive one.

Option [I| would be in line with the factivity requirement from IEL, which is why it seems like a
good candidate to solve this problem. However, we think that option [2] is more in line with our
current approach. Since the state maps for the agents are not factive either, it seems counter-
intuitive to require that the “common knowledge” of one agent would have to be factive. Because
of this, we will go with option[2 As we will see in Section this will not lead to any problems
for translating from IEL. We will also have more to say about this subject in Section [6.2.2

Definition 3.3 (Compositional actions). Given two relations R, and R.,, the compositional
action state maps are defined by:

R, ={(s,t) |wes, teX,(w)}
Ry .z, = Re, 0 Ry,
Ri Uy, = R, UR,,
Ror ={(s,t) | Mt |= ¢,t C s}
Ry = (Ry)*

Here R™ is the transitive closure of R. If sR.«t, then we will say that there is a 7 path from s
to t.

21

CHAPTER 3. INQUISITIVE EPISTEMIC PROPOSITIONAL DYNAMIC LOGIC

We will also introduce the following notation:

R (w) := (J{t [{w} Rt}

R, is to R, as o, is to 2.
With Definitions [3.2] and [3:3] in place, we can now define the support conditions for the
different formulas.

Definition 3.4 (Support of IE-PDL Formulas). Let M be an IE-PDL model and s an information
state in M.

M,sEp < pe V(w) for all worlds w € s

MsE L < s=0

M,sE p1 Npy <= M,sp; and M, s |E p9

M,sE o1 \Vps < M,s ¢ or M,s = ¢

M,sE o1 = pg < foreveryt Cs, M,t | ¢ implies M,t = ¢
M,s =[]l <= foreveryw €s, M,R (w) = ¢

M,s = [r]¢ <= forevery sR;t, M,t|= ¢

This gives us the support conditions for information states, but truth in a world is still an
important notion for inquisitive logics. Luckily, we can treat a world as a singleton information
state, and define truth in that way.

Definition 3.5 (Truth in IE-PDL). Let M be an IE-PDL model and w a world in M:

Mw ¢ <= M{w} g

3.4 Examples

Let us now look at some examples of IE-PDL models. For these models, we will focus on one
specific aspect of Citadels, this being the selection of roles. For a quick overview of the rules we
use see Section We will take a scenario where the players are sitting in alphabetical order,
and where Alice is the first to select a character. In the example, ak means that Alice is the
king, ap means that Alice is the Preacher, aa means that Alice is the Architect, am means that
Alice is the Merchant, and ac means that Alice is the Condottiere. For Bob we have bk to mean
that he is the King etcetera.

In this scenario, Alice only has one gold, but she does have four cards in her hand. She also
has already built six buildings, meaning that she is close to the required eight. Bob on the other
hand, has six coins, three buildings in his city, and no cards on hand. Claire has five buildings,
has two coins and two cards to choose from.

Alice shuffles the stack and takes off the first card, which is the King. She puts it aside and
looks at the rest of the cards. Since she has three blue buildings in her city, she can get three
extra gold coins if she selects the Preacher, which would give her enough money to build one of
the buildings in her hand. As a benefit, the Condottiere would not be able to destroy any of
her buildings this round. She could also select the Architect and try to finish the game in this
round, but it is not possible for the game to end this round otherwise, so this does not give Alice
much benefit. Therefore, she selects the Preacher, and then hands over the cards to Bob.

Bob is behind on the number of buildings in his city, so he picks the Architect, in order to get
more buildings build before the game ends. He then hands the remaining two cards to Claire.

22

3.4. EXAMPLES

ak ap aa am ac
Y W o ! (Ffffﬁffr***\‘x
|
bk | ws wy |\ fwig | Wi |
! o |
|

‘ N ;
{7 [|

[
bp | wy w1 |\ i Wid w1g |,
| |
! N }
! o }

[
ba || w2 We ffwis | (e |
- W o |
! I
) () (2B }
bm || w3 wr w11 wao |
| |
l l
| |
be || w4 ws Wiz Wi6 !
1 _J . _J . J !

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3.1: The epistemic and inquisitive state of Claire (c)

When we get to Claire, things get interesting. This is because Claire is trying to stop Alice
from winning, so that she can win herself, and therefore has to try to guess which character
Alice has picked to counteract that. Because Claire gets two cards, she knows that Alice has
not picked the Condottiere or the Merchant, since she has those in her own hand. We will now
use an |E-PDL model to study the inquisitive and epistemic state of Claire. Since giving the full
relation R, would not be extremely insightful, we will only give a visual representation. The
epistemic and inquisitive state for Claire can be seen in Figure [3.1

In this representation, we assume that a relation for a state with two or more members is built
up from the relations for the singleton states that are its subsets. A singleton state is related to
all the larger states within the dashed lines it is drawn in. The larger states are shown by drawing
them within a grey box. So in this picture, {w1}R.{ws,ws}. All the rules from Definition
for relations are applied as well, so we also get {w;}R.{ws} and {w;}R.0. The actual world is
shown by underlining the name of that world. In this example, that world will be wg.

In the model, we can see that Claire knows which characters Alice and Bob do not have, since
the actual world (wg) has no relation to a state where any of am, ac, bm, or be is supported.
We can also see that Claire does not know which characters Alice and Bob have chosen, since
we have M, {wg} £ [clak V [c]ap V [c]aa for Alice. For Bob a similar inference holds, namely
M, {ws} ¥ [c]bk V [c]bp V [c]ba. This is something which we could have modelled in standard
Epistemic Logic as well. This model also gives us something which we could not model in
standard Epistemic logic however, and that is the interest that Claire has in which character
Alice has chosen.

In the scenario, Claire is only interested in the character that Alice has chosen, but not in
the one that Bob has. We can also see that in the relation for Claire. We have M,{ws} E
[c](ak\V ap\V aa), since for all the ¢ such that {ws}R.t, M,t = ak\V ap\WV aa. This holds because
in all those ¢, exactly one of ak, ap, and aa is supported. This does not hold for the character
that Bob has chosen. This is because there are states ¢ such that {we} R.t where neither bk nor
bp or ba are supported. An example of such a state is {ws, wg}.

With IE-PDL we can also look at higher-order knowledge. For this we will also need to
introduce the epistemic and inquisitive state of the other players. For Alice this can be found
in Figure [3.2] and for Bob in Figure [3.3

Now, we can express that Claire knows that Bob does not know which character Alice has

23

CHAPTER 3. INQUISITIVE EPISTEMIC PROPOSITIONAL DYNAMIC LOGIC

am ac

aa

e N\ \

I L [0 =) =N

| — ,, — — N |

T = S s |

QS \ NS Y

T (e A 3

oo |0 = 10 ©

N — (. — — —

1A= T = 3 3

e =

) ,\\\\OW \\\\\\\\\\\\\\\\\\\ %.\u,
I —

= = = S

I I w w w

A S =

(——\ o T U N\

(T I 6_ - 0

= = 3 3

N— S
= S
e = ™ ™ ~
I s S s
(S————_—,"Se——— _/

~e 3 Q
S = B S B

Figure 3.2: The epistemic and inquisitive state of Alice (a)

ac

am

ak

\\\\\

e N i N N e N
| ~ |) D | o |
s T (s B O (R) AT U
1A= T =T (=R ! s |
I I |
\ ! b P \
I I | o
I L b L T Y
|68 o= 0 e e |
S (N (R N (] ! [I I
A A = (R A~ T=E
e e 2 b |
I I |
o ____ I
N) ” i I
] = P R 1 e L S B
= 5 | 5 S
! W | w 1 | w ” | w ”
! ! I I I
! P I I b "
I D | gm==== | n !
! ol [[b |
I 10| L 6_ [~ | 0|
T L S
— L Ly Ly !
! (I P b |
" | W ! P! |
R Y R N T [TR~ [R !
1 =T I =T | = Rl FT A= B
e e e
=2 =3 3 Q
= =S) ..m S

Figure 3.3: The epistemic and inquisitive state of Bob (b)

24

3.5. PROPERTIES

selected in the following way: M, {ws} = [¢]-[b](ak\ ap\V aa). This inference holds, since for all
states that are reachable from {wg} via R, there are states reachable via R, where ak\W ap\ aa
is not supported, such as {wa, wg}.

Using |IE-PDL, we can also study general and common knowledge and public issues in groups.
While it is possible to build this into IEL, in its standard form this can only be done for the full
group of agents. We will, however, start off with an example that shows common knowledge for
all agents. Among the agents, there is the general knowledge that Alice has not selected the
Merchant or the Condottiere, since both Bob and Claire have seen these cards. We can express
the general knowledge about this by saying that all of the agents individually know. In IE-PDL
we can express this in the following shorthand form: [aUbUc]—=(am V ac), which by our short-cut
for groups of agents becomes [J A]-(amVar). In order to express that this is common knowledge
(which it would become after Bob reveals his role), we have to take the transitive closure for the
knowledge of the set of agents. This we can do by simply applying the * operator to the program
in the previous sentence to get the following result: [(|J.A)*]=(am V ar).

We can do the same thing for public issues. For example, we could say that it is a public issue
for Alice and Claire which card Alice has selected in the following way: [(a U ¢)*](ak\V ap\V aa)lﬂ
These methods can also be combined to make more interesting claims. For example, for all the
agents in the model it is common knowledge that which card Alice has selected is a public issue
for Alice and Claire, which we can express in the following way: [(.A)"][(a U ¢)"](ak\V ap\V aa).
This means that IE-PDL gives us a flexible way to create groups of agents and reason about their
knowledge and issues.

3.5 Properties

We would also like to see which properties |IE-PDL shares with |IEL and AMLI. Most of the
properties are the same, but some of them have some extra constraints put on them.
The persistence property and the empty state property still work for IE-PDL.

Proposition 3.1 (Persistency of Support). For all IE-PDL models M and information states
SCW, forallt Cs, if M,s = ¢, then M,t = .

Proof. The proof is the same as for |EL except for [r]p and [r]p. Therefore, only those two
cases are given.

[r]o: M,s |= [n]p <= for every w € s, M,R_(w) = ¢. If this holds for every w € s, then it
also holds for every w € ¢t where ¢ C s. Therefore M,t |= [y for all ¢ C s.

[7]: This proof works by induction over the structure of programs.

a: M,s | [a]e < for every sR,u, M,u = ¢. For all t C s, if tR,u, then sR,u, so if
for every sR,u, M,u = @, then it is also the case that for every ¢t C s, for every tR,u,
M, u = ¢. Therefore M,t |= [a]¢ for every ¢ C s.

o M,s = [¢?] <= for every sRyru, M,u = 1. Following Definition these are
all ¢ C s such that M,¢ |= . Therefore we get M,t |= ¢ implies M,t = ¢ for all
t C s. Then by the inductive hypothesis we get that for all ¢’ C ¢, M,t' |= ¢ implies
M,t" | 4. Therefore M,t |= [¢?]¢ for all t C s.

Take two arbitrary programs m; and m such that if M, s = [m]e, then Mt = [m] for
all t C s, and if M, s | [m2]e, then M, t |= [ma]p for all ¢ C s.

Tt might seem weird that this is an issue for Alice, but this is because of the definition of entertain. See Sec-

tion @

25

CHAPTER 3. INQUISITIVE EPISTEMIC PROPOSITIONAL DYNAMIC LOGIC

m;me: M, s = [m;me]p < for every sRx, .ru, M,u = ¢ <= for every sR.,t, tR; u,
M,ulE ¢ < M,s = [m][r2]e. Then by applying the inductive hypothesis we get
that if M, s |= [r1;m2]e, then Mt |= [71; ma]p for all ¢ C s.

mUme: M,s E [m Umslle <= for every sRq,umt, M,t E ¢ <= for every sR,t,
M,t E ¢ and for every sRr,u, M,u = ¢ < M,s = [m]e and M, s = [m2]e. By
the inductive hypothesis we get if M, s = [m1 U ms]p, then M, t |= [m U ms]p for all
t Cs.

m7: Take some model M and some state s in M such that M,s = [77]p. Now assume
that there is a t C s such that M,t [~ [7]]e. That means that there must be some
tR,T;u such that M,u [~ ¢. However, then we either have that SRWTU or SR,FI u' such
that u C v/, so we would have M, s [~ [7i]p. This is however not the case, so our
assumption must be false.

This concludes the proof. O

Proposition 3.2 (Empty state property). For all IE-PDL models M and all formulas o, M, |=
©.

Proof. The proof is the same as for IEL except for [7]¢ and [n]¢. Therefore it is only given for
those formulas.

[r]¢: By the support definition of the modal operator, we get that M,{ = [r]¢ <= for every
w € 0, M,R,(w) E ¢. But since there is no w € () this means that M,0 = [r]p <
M, 0 = ¢, which holds by the inductive hypothesis.

[7]¥: By the support condition of [r]e we get that M, 0 |= [r]p < for every OR.t, M,t = .
However, by Definition [3.2] there is no ¢ C W such that (R, so this statement is vacuously
true. Therefore, M, 0 = [7].

This concludes the proof. O

Before we can define the declaratives of IE-PDL, we will first have to denote the declarative
programs. This is subset of all the programs that allows [r]¢ to be declarative. This is necessary
because [¢?]¢ functions like a conditional, and therefore is only declarative if ¢ is. This means
that there are two conditions when [7]p is declarative, when 7 does not contain test, or when
o is declarative. We will now give the definition of the declarative programs, which are the
programs which contain no test.

Definition 3.6 (Declarative Programs). The declarative programs, written as I, and ranged
over by w (pronounced varpi) are given by:

w:=a|w;7m|w Uws | w"

Besides being useful in the definition of the declaratives for IE-PDL, the declarative programs
also have an interesting property that is worth mentioning.

Proposition 3.3. For any declarative program w, sR,t <= there is some w € s, such that
{w}Ryt.

Proof. This proof works by induction over the structure of the declarative programs.

a: sR,t < for some w € s, t € ¥,(w) <= for some w € s, {w}R,t

26

3.5. PROPERTIES

For the inductive hypothesis, take two arbitrary declarative programs w; and ws and assume
that:

e sR,,t <= there is some w € s, such that {w}R,t

e sR_,t <= there is some w € s, such that {w}Ry,t

wy;m: Take some arbitrary program m, such that sRy, . u. This means there is some state ¢
such that sR5,t and tR;u. By the inductive hypothesis, there is some w € s such that
{w}Ry, t. This also means that there is a w € s such that {w} Ry, .ru. Since we took an
arbitrary m, we can assume this holds for all program .

w1 U@y SRy, Uwyt <= SRyt or sRy,t <= there is some w € s, such that {w}Ry,t or there is
some v € s, such that {v}Ry5,t <= there is some w € s, such that {w} Ry, Uw,t-

wi: This step follows from the step for sequence.

Since we took wy and wy arbitrary, we can assume that for all declarative programs w: sRot <
there is some w € s, such that {w} Ryt O

Now we can go on to the definition of the declaratives for IE-PDL.

Definition 3.7 (Declaratives of IE-PDL). The declarative fragment of IE-PDL, written as E'!E'PDL
is given by:
a=p|L][re|[@]e]|[rlalanaz|e—a

Proposition 3.4. The declarative fragment of IE-PDL is truth-conditional.

Proof. The proof for all the formulas except for [r]p, [w]¢ and [r]a are as for IEL. Therefore,
we will only discuss the proof for [r]p, [@]p and [r]a.

[mlp: M, s = [n]¢ <= for every w € s, M,R.(w) = ¢ <= for every w € s, M,w = []e.
[@]e: The proof for [@]¢ works by induction over II,.

a: M,s = [a]e < for every sR,t, M,t |= ¢. By Definition this means that for
all w € s, for all t € X, (w), M,t = ¢. This means that for all w € s, for all {w}R,t,
M,t = ¢. Therefore, for all w € s, M,w = [a]e.

Take two arbitrary declarative programs wwy and ws such that [w;]p and [ws]p are truth-
conditional for all formulas ¢.

wy;m M, s | o] <= for every sRu,.xt, M,t = ¢ <= for every sRy,t, for all
tRyu, M,u = ¢ <= for every sRy,t, M,t =[]l <= M,s = [owi][r]y. Now

by the inductive hypothesis we get that [wwy; 7] is truth-conditional.
wy Uy M,s = o Uwmsllp <= for every sRy uw,t, M,t = ¢ <= for every sRy,t,
M,t | ¢ and for every sRy,u, M,u |= ¢. Now by the inductive hypothesis we get

that [co; U ws]ep is truth-conditional.

wi: Take some model M and some state s in M such that M,s E [@i]e. M,s
[wi]e <= forall sRe:t, M,t = ¢ <= forall sRy,t, M,t = ¢ and for all tRg+u,
M,ul= ¢ < forall sRy,t, M,t = oA [wi]le <= M,s [[w](eA[wi]le). Now

by the inductive hypothesis we have that [cwwi]¢ is truth-conditional.

27

CHAPTER 3. INQUISITIVE EPISTEMIC PROPOSITIONAL DYNAMIC LOGIC

[7]: The proof for [r]a works by induction over the structure of programs. The only part that
is different from the case for [w]e is the case for ¢?, so that is the only case that is given.

o7 M,s = [¢p?]a <= for every sRt, M,t = o <= foreveryt C s, M,t = ¢
implies M, t = «. This formula is truth-conditional, so therefore [¢?]« is also truth-
conditional.

Since it holds for all cases, all declarative formulas are truth-conditional. O
Furthermore, we also have [r]-[7] equivalence for declaratives.

Proposition 3.5 ([r]-[r] Equivalence). For all IE-PDL models M, all information states s in
M, all programs 7, and all declaratives o, M, s = [rla <= M, s | [r]a.

Proof.

M, s | [r]a
—forallwes, MR (w) Fa«
<= for all w € s, M,U{t | {w}R:t} = o
<= for all w € s, for allveU{H{w}Rﬂt}, M,v =«
<= for allveU{t\sRﬁt}, M,v =«

< for all sR;t, M,t EF «
— M,s E 7]«

3.5.1 Resolutions

Since the resolutions will play an important role in proving the completeness of the logic later
on, we will also have to define these for IE-PDL. Here the existence of test poses a problem, since
we can now embed a question, so to speak, inside of the epistemic operators. This means that
we cannot find a simple resolution for for example [(?¢ U b) 4.

Since giving the resolutions for complex programs is quite tricky, we will derive the resolutions
from the reductions for IE-PDL (see Section. We can use this methodology since every formula
in IE-PDL can be rewritten as a formula without complex programs, thanks to the fact that we
only have a finite number of worlds in W.

However, the exact form of this reduced formula depends upon the number of worlds in a
model. Since there is no general upper bound upon this size, we will instead parametrize the
resolutions, based on the number of worlds.

Definition 3.8 (Resolutions for IE-PDL). The set R, (¢) of resolutions of a formula ¢ in models
with up to n worlds, is defined by changing every R in Definition to a R, and extending it
with the following:

Rn([#79) = Rn(e = ¢)
Ron([m1; m2]¢)) = Rn([m1][m2]¥)
) = Rl
) (

Ry ([m1 U me]p n ([A [r2])
Ry ([m*] W70 A 72T - [*]p)

28

3.5. PROPERTIES

To note here is that, since [a]p, [w]y, and [r]a are always declarative, and thus have
themselves as their only resolution, every formula will eventually boil down to a formula for
which we can calculate a resolution.

The properties that resolutions have in IEL can also be found in IE-PDL.

Proposition 3.6. For any M, s, and ¢, M,s |= ¢ <= for some o € Rw)(¢), M,s F «

Proof. The proof works by induction over the structure of formulas of IE-PDL. The proof for all
formulas except for []¢ is as in IEL (Fact 2.5). The proof for [r]¢ is given below. This part
works by induction over the structure of programs.

a: Since [a]p is declarative, this case is trivially true.

©?: The resolutions for [p?]u are the same as those for ¢ — p, and since those sentences are
also equivalent, this holds.

For the inductive hypothesis take two arbitrary programs 7 and o such that for any M, s,
and p, M,s = [mi]e <= for some a € R)y([m1]y), M,s = aand M,s = [m]p <= for
some a € Ry ([m2]p), M,s = a.

m;me: M, s | [m;me]e <= M, s | [m][m2]e. Now, by the inductive hypothesis we know that
M,s = [m]y <= for some a € Ryy|([m1]v), M,s E a. So if we take ¢ := [m2]p, we
get the wanted outcome.

mUmy: M,s = [m Um]e < M,s | [m1]e A [m2]e. The resolutions for the sentence [m1]p A
[ma]e are {a A B | a € Ryw([71]e), B € Ryw|([72]w)}. By the inductive hypothesis we
know that there is an a € Ry |([m1]¢) and a 8 € Ryw([m2]¢) such that M,s = o and
M, s = . Therefore, there is also an a A B € Rpy|([m1]p A [m2]) such that M, s = a A B.

m* M,s k= [rile < M,s E [ri]e A [72]e- - [[w‘lp(w)l]]go. The resolutions for this sen-

tence are {Algngnfw Bn) B € R‘p(w)‘([[ﬂ'ﬂ](p)}. We know that thereis a 3,, € Ry ([71]»)
for each 1 < n < |P(W)]| by the inductive hypothesis and repeated applications of the
case for sequence, such that we have that M,s |= 8, for all 1 < n < |P(W)|. There-

fore, there is also an 81 A B2+ Bpow) € Ryw([ri]e A [7%]¢ - [[W!LP(W”]]QD) such that
M,s = Bi A B2 Brpowy)-

This concludes our proof. O
Now we also get the normal form result as a corollary.
Corollary 3.7 (Normal form). For any M, s, and ¢, M,s = ¢ <= M,s =\ Rjw|(¢)-

Proof. From Proposition we know that M,s = ¢ <= M,s = «a for some a € Ry |(p).
By Definition we also have that M,s = aWVf <= M,s E «a or M,s = 3. Therefore, if
we know that M, s = a, we can use the definition to get M,s = f1\V - «a- -\, for any S;.
Therefore we can also get that for some o € Ry (@), M,s = a <= M,s =\ Rw|(y). From
this we can conclude M,s = ¢ <= M,s =\ Rjy|(@). O

For our purposes, it will also be useful to define the resolutions of a set, for which we will use
Definition 2.13] as in IEL. Proposition [3.6] also generalizes to sets of resolutions.

Corollary 3.8. For any M, s, and ®, M,s = ® <= for some T' € R)y|(®), M,s =T

29

CHAPTER 3. INQUISITIVE EPISTEMIC PROPOSITIONAL DYNAMIC LOGIC

Proof. We will start with the direction from left to right. Suppose that M, s = ®. We will now
build a resolution I" of ® and show that M,s = I'. For each formula p; € ® take a resolution
a; € Ryw|(¢) such that M,s = «;. By Proposition we know that this resolutions exists.
Now we take I = {«; | ¢; € ®}. Now M, s =T by construction.

For the right to left direction, suppose that M,s = T'. Now, since I' € R‘W|((I>), for each
a € T, there is a ¢ € ¢. By Proposition we also have that M, s |= ¢ for all those ¢. Now,
by Definition there are also no ¢' € ® such that there is no o’ € I' with o' € Ry |(¢').
Therefore M, s = ¢ for all ¢ € ®, and thus M, s = ®, as required. O

3.5.2 Substitutions

As was the case with LCC, the factual change that we will build in Chapter [4] will depend in a
large part on the existence of substitutions over the language of IE-PDL. Because of this, we will
have to define substitutions for IE-PDL, and we will show some properties that the substitutions
have.

However, before we can start with defining what a substitution is, we should first consider
what properties we would want a substitution to have. Since the substitutions represent the post-
condition for an action and should not raise any new issues, we would want that a substitution
will map the propositional atoms to truth-conditional sentences. This is something that we can
enforce by only allowing the binding to go from propositional atoms to declaratives.

Definition 3.9 (IE-PDL Substitution). IE-PDL substitutions are functions of type L'E-PPL —
L'EPPL that distribute over all language constructs, and that map all but a finite number of
basic propositional atoms to themselves. |[E-PDL substitutions can be represented as a finite set
of bindings

{pr1 = a1,...,pn— an}

where all the p; are different, and each «; € E!E'PDL. If p is an |IE-PDL substitution, then the
set {p | p € P,p(p) # p} is called the domain of p, denoted dom(p). We use € for the identity
substitution. Let SUBe.ppL be the set of all I[E-PDL substitutions.

Now we know what |IE-PDL substitutions look like, we can also define how they should be
distributed over formulas. If p = {p; — «a1,...,pn — a,} is an |IE-PDL substitution, we use ¢©”
for p(¢) and 7* for p(m). The definition of p for formulas is as follows:

17 =1 a’ =a
P’ = p() (p7) = pP?
(@)pZﬁ (771;772)/]—77{);772

(1 Ap2)’ = o Al (1 Um2)’ =77 U]
(1 = 2)” = o} — ¥h ()" = (7P)"
(1 V)" = i Vb

([7]p)” = [*]p”

([7]9)” = [*]¢”

Since our definition for the valuation is a bit different from the one in [18], we will also have
to update the definition of a model under a substitution.

30

3.5. PROPERTIES

Definition 3.10 (IE-PDL model under a substitution). If M = (W, V, R) is an |IE-PDL model
and p is an |E-PDL substitution, then V}; is the valuation given by

Vir(w) ={p| M,w = p(p)}

In other words, V{; assigns to w the set of propositional atoms for which p(p) is true in w. For
M = (W,V,R), call M* the model given by (W, V{,, R). Furthermore, we use R” for a relation
where 7y is interpreted using M? instead of M, but which is otherwise the same as R.

This definition is defined in terms of truth, but since the binding only maps truth-conditional
formulas to other truth-conditional formulas, this is not a problem.

Besides these two definitions, there is also one last property that we would like the substitu-
tions to have.

Lemma 3.9 (Substitution). For all IE-PDL models M, all IE-PDL formulas ¢, all IE-PDL pro-
grams 7, and all IE-PDL substitutions p:

M,sE¢’ < M sk
(s,t) € Rpp <= (s,t) € RY
Where RE is the relation of m in MP?.
Proof. The proof goes by simultaneous induction on the structure of formulas and programs.

p: M,s Ep’ < M,s k= pp) < M,wkE p(p) forallw e s < pe Vi (w) for all
wes < MP skEp

1l: MsEL1P < M,sE1l < s=0 < Mr,sE=1
a: (s,t) € Ryp < (s,t) € R, < (s,t) € R

As inductive hypothesis, assume we have two arbitrary formulas ¢ and 1 and two arbitrary
programs 7, and 7y such that

M,s =@’ < M sk (s,1) € Rpe <= (s,t) € R},
M,sEyYf < M’ sk (s,t) € Rep < (s,t) € RY,

eAY: MysE (pAY)’ <= M,s|E o’ AP < M,s = ¢ and M,s E P < M’ sk p
and MP, s =19 <= MP,sl= @A

oWV M,s | (W)’ < M,sE PV < M,sE ¢" or M,s =¢? < MP,s|= por
MrP sEY < MP,skE oWy

o= Mys E (p—) < M,sE ¢ — ¢ <= for every t C s, M,t = ¢” implies
Mt =P < for every t C s, MP t = ¢ implies MP t EY <= MP,sl=¢ — ¢

[mi]e: M, s |= ([m1]e)” <= M,s |= [n]p? <= for every w € 5, M,R, (w) | ¢’ <= for
every w € s, M,R2(w) = ¢pf <= for every w € s, MP,RE(w) = ¢ < MP, s = [m]p

[m]e: Mys | ([nlp)” <= M,s | [7°]¢? <= for every sRyot, M,t |= ¢ <= for every
sRP.t, Mt = @f <= forevery sR. t, MP,t =@ <= M’ s = [r]e

0?7 (s8,t) € Riprye <= (5,1) € Rpor = (s,t) € {(s',') | M, V' | 0P, t' C5'} <= (s,t) €
{(8") | MP ¥ |E o, t" Cs'} <= (s,t) € R,

31

CHAPTER 3. INQUISITIVE EPISTEMIC PROPOSITIONAL DYNAMIC LOGIC

w1 (s,t) € R,r1) = (8,t) € Rppipe < (s,t) € Rpp o Rpp <= (s,u) € Rype and

(s,

(u,t) € — (s,u) € Re, and (u,t) € Re, <= (s,t) € (R0, o R,) <= (s,t) €

RE r,

T Ut (8,8) € Rimyum)r < (8,1) € Rpeune < (s,t) € (Rre URpe) < (s,t) € Ryp or
(5,1) € Ryy <= (s,t) € RE, or (s,f) € R, <= (s,t) € (R}, URL) < (s,1) €

R‘n'l UTre

T (8,1) € Razye <= (5,t) € Riuryr <= (s,t) € (Rur) = (s,1) € (B)" =
(s,t) € R7.

This concludes the proof. O

3.6 Reduction Axioms

While the compositional operators allow us a great degree of freedom in defining epistemic
relations, it would also be nice if we could simplify statements. For this we found the following
reduction axioms. The first are a subset of the classical axioms for Propositional Dynamic Logic,
all of which still work, except for the ones for unbound iteration. This is thanks to the fact that
* is now no longer the reflexive transitive closure, but just the transitive one. The reduction
lemmas for 7* have now been replaced by new ones.

Lemma 3.10 (K). For all models M, all information states s, all programs © and all formulas
p and 1, the following holds:

M,s k= [r](e = ¥) < ([x]e = [7]y)
Proof.

M;s = [r](p = ¢)
< for every w € s, M,R (w) = p = ¢
<= for every w € s,

M,R (w) | ¢ implies M, R, (w) = v
< M, s [7]y implies M, s = [n]¢
= M,s k= [xlp - [y

This lemma allows us to push the modal operator into an implication.

While test can still be applied, it does work a bit differently than it does in PDL. This is
because it only works on declarative consequents. As we will see later, the inquisitive version of
test works for all formulas.

Lemma 3.11 (Test). For all models M, all information states s, all formulas @, all declaratives
«, the following holds:

M, s = [pla < (¢ = a)

32

3.6. REDUCTION AXIOMS

Proof. Since both [p?]a and ¢ — « are truth-conditional, we only have to look at their truth
conditions.

Myw - [¢7]a
< M, Ry, (w) F
< M,w = ¢ implies M,w = «
— M,wkEy¢—a
O

For the following two proofs, we will not use the abbreviation R, (w) because this makes the
proofs easier to follow.

Lemma 3.12 (Sequence). For all models M, all information states s, all programs 71 and s
and all formulas o, the following holds:

M, s = [m1;malp < [mi][m2]p
Proof.

M, s = [mi; malep

for every w € s, M,U {t | {w}Rr, .mt} E @

for every w € s, M,U {t | {w}Rs, o Rr,t} E ¢

for every w € s, M,U {t |u CW,{w}Rr u,uR,t} E ¢
for every w € s, and every {w}R., u, M, U {t | uR~,t} E ¢
for every w € s, M, U {u | {w}Rr u} E [m2]p

M, s |= [m][ma]e

[I A

O

This lemma simply states that having knowledge of some else’s knowledge, is the same as
knowing that the other agents knows something.

Lemma 3.13 (Choice). For all models M, all information states s, all programs w1 and mo and
all formulas ¢, the following holds:

M, s |= [m Umalp < ([m]e A [m2]e)
Proof.
M, s = [m Umsp
<= for every w € s, M,U{t | {w}Rr umt} E @
<= for every w € s, M,U{t | {w}(Rr, UR)EE @
<= for every w € s, M,U{t | {w} R+ t} E ¢ and
M| J{u | {w}Reyu} o
M, s = [m]p and M, s |= [m2]p
M, s = [m]e A [ma]e

[

33

CHAPTER 3. INQUISITIVE EPISTEMIC PROPOSITIONAL DYNAMIC LOGIC

This lemma states that if something is general knowledge is a group of agents, then all the
agents must know it.

Lemma 3.14 (Unrolling). For all models M, all informations states s, all programs m and all
formulas ¢, the following holds:

M,sE[m*e < M,sk[r'eA e [xPONp

Proof. This proof needs to be given in both directions, we start by going from the left to the
right.

=: Take arbitrary model M and information state s such that M, s |= [7*]¢. By the definition
of the support conditions, this means that we have that for all w € s, M, R .(w) = . Now
suppose that M, s = [r]p A [12]@ - - - [7IPOM)]p. Then there must be some 1 < n < [P(W)|
such that M, s [~ [7"]¢ and thus for some w € s, M, R, .(w) = ¢. However, by definition
R, (w) C R,.«(w), which leads to a contradiction. Therefore, our earlier assumption must
be wrong, and M, s =[] A [72]p - - [1IPOV)]p, as required.

<: This proof also works by contradiction. Assume that there is some M, s, and ¢ such
that M,s = @ A [r!]--- [7/PO)]p but not M, s = [7*]¢. Then there must be some t
such that sRy«t, while s # ¢, not sR;t ...not sR_»owyt. This ¢t must be a subset of W
however, since otherwise we could not have sR;«t. Since we only have a finite number
of worlds, only |P(W)| information states are possible in the model M. Since there is a
7 path from s to ¢, this path can therefore also not be longer than |P(W)| steps. But
that means that there must be a 7™ with 0 < n < P(W) such that sR;»t. This means
that M, s £ [7"]e. This conflicts with our earlier assumption, leading to a contradiction.
Therefore, M,s = ¢ A [1']p--- [PV = M, s |= [1*]e.

O

This lemma states that every formula with a star can be rewritten into one without the star.
While this is not true in PDL, this is a side effect of the fact that we have a finite number of
worlds, and will be used later in the completeness proof for IE-PDL.

Besides these standard ones, we also found that similar axioms hold for the Inquisitive Action
Operator.

Lemma 3.15 (Inquisitive K). For all models M, all information states s, all programs © and
all formulas ¢ and ¥, the following holds:

M, s = [7](e = ¥) < ([x]e = [7]¥)
Proof.

M, s = [7](¢ = ¢)
<= for every sR;t, Mt =p = ¢
<= for every sR,t, M,t = o implies M,t = 1
<= M, s = [n]¢ implies M, s |= [x]y
= M,s = [r]e =[]y

34

3.6. REDUCTION AXIOMS

Lemma 3.16 (Inquisitive Sequence). For all models M, all information states s, all programs
w1 and wo and all formulas ¢, the following holds:

M, s [= [msme]e < [m][m]e
Proof.

M, s = [m1;ma]e

for all sRy,.x,t, M,t =

for all s(Ry, o Ry,)t, M,t = ¢

for all sR;,u, and all uR,,t, M,t = ¢
for all sRx,u, M,u = [ma]e

M, s k= [m][me]e

Freny

O

Lemma 3.17 (Inquisitive Choice). For all models M, all information states s, all programs m
and mo and all formulas ¢, the following holds:

M, s k= [m Uma]p < ([mle A [rale)
Proof.
M,s | [m1 Ums]p
< for all SRy ,un,t, M,s =
<= for all s(Rx, URy,)t, M,s =
< for all sR.,t, M,s = ¢ and all sR,,u, M,u = ¢
< M, s | [m]e and M, s E [r2]e
— M,s | [m]e A [r2]e

O

Lemma 3.18 (Inquisitive Test). For all models M, all information states s, and all formulas
@ and 1, the following holds:

M,s = [¢?]¢ < (9 = 1))
Proof.

M;s = [¢?]y
<= for all sR,2t, M,t =1
< foralltCs, M,tE o implies M,t =¥
= MskEe—

This lemma states that if ¢) holds in a world where ¢ is true, then ¢ implies .

Lemma 3.19 (Inquisitive Unrolling). For all models M, all informations states s, all programs
m and all formulas o, the following holds:

M,sE[r']le <= M,sk[r'loA[m?]e- [PV

35

CHAPTER 3. INQUISITIVE EPISTEMIC PROPOSITIONAL DYNAMIC LOGIC

Proof. This proof needs to be given in both directions, we start by going from the left to the
right.

=: Takes some arbitrary M and s such that M, s = [7*]¢. Now assume that M, s = [r]e A
[72]--- [xPOV)]p. That means that there is some 1 < n < [P(W)| such that M,s
[7"]¢. In turn, this means that there is an sR;nt such that M,t [~ ¢. By Definition
this means that sR;«t, but this leads to a contradiction. Therefore, our earlier assumption
must be wrong, and we get M, s = [7]o A [72]¢- - [7IPO)]y, as required.

<: This proof also works by contradiction. Assume that there is some M, s, and ¢ such
that M,s = o A [7'] - [xPO)]p but not M,s = [7*]¢. Then there must be some t
such that sRy«t, while s # ¢, not sR;t ...not sR_»powvt. This ¢ must be a subset of W
however, since otherwise we could not have sR;+t. Since we only have a finite number
of worlds, only |[P(W)| information states are possible in the model M. Since there is a
7 path from s to ¢, this path can therefore also not be longer than |P(W)| steps. But
that means that there must be a 7™ with 0 < n < P(W) such that sR,~t. This means
that M, s [~ [7™]¢. This conflicts with our earlier assumption, leading to a contradiction.
Therefore, M,s = ¢ A [1']p--- [7fIFON]p = M, s = [*]¢.

O

Beside the standard axioms from PDL, we also get an axiom from |EL, namely the distributiv-
ity of the [m] operator over interrogatives, as follows:

Lemma 3.20 ([x] distribution over interrogatives). For all models M, all information states s,
all programs =, and all formulas ¢ and v, the following holds:

M, s = [r](pWV) < ([tle V [r]y)

Proof. Since both [7](¢pW) and [r]¢ V [y are truth-conditional, we only have to show that
they have the same truth conditions.

M, w k= [7](¢ V1)
= MR (w) E oV
= MR, (w) b or MR, (w) = o
< M,w = [r]p or M,w |= x|y
= M,w|=[x]p V[r]

3.7 Translation from IEL

Since both |IE-PDL and IEL are languages that contain epistemic operators, one might wonder
what the relation between the two languages is. The relation of these two languages is that every
formula in IEL can be translated into a equivalent IE-PDL formula. In this section, we will show
that this claim holds.

Since the models for IEL and IE-PDL are almost the same, we won’t have to translate between
the two. The only problem is that the results in this section only hold for finite IEL models, since
IE-PDL only allows for finite models. With this note out of the way, we can start with the
definition of the translation of formulas.

36

3.7. TRANSLATION FROM IEL

Definition 3.11 (Translation of IEL formula to IE-PDL). Given an IEL formula ¢ we will define
the IE-PDL formula ¢’ to be:

p’ = p for propositional atoms

1'=1
(1 Ap2) = @1 Al
(1 WV@2)' = 0] Wy
(1 = p2) = ¥1 = ¢y
(Kap)' = [a]¢’
(Eap) = [a]¥’
(.0 = [(U4)]¢

(N

Before we can move on to prove that ¢ and ¢’ are equivalent, we will first have to prove that
oq(w) is equal to R, (w) and that sR«t iff for some w € s, t € ¥, (w), since we will need these
in the proof for the epistemic operators.

Lemma 3.21. For any model M, any world w € W, and any agent a € A:

0a(W) = Ry (w)

Proof. For a singleton state, {w}, Definition [3.3]becomes {({w},t) | t € £4(w)}. This means that
{t | {w}R4t} is equivalent to {t | t € ¥,(w)} = E4(w). So therefore, R, (w) = J{t | {w}R.t} =
UXe(w) = 0q(w). O

Lemma 3.22. For any model M, information states s,t CW, and set of agents A:
R(UA)*t iff for some w € s,t € X, (w)

Proof. This proof works in two parts. We will start with the direction from left to right.

=-: Take an arbitrary information state ¢ such that sR(U A)*t' This means that there is
an |JA path from s to ¢, which in turn means that there exist a ug,...u, C W and
ao, - .. a, € A, such that ug = {w}, u; Rs,u;11 for all i < n, and u, R,, t. Since (|J.A)" and
all its subprograms are declarative programs, we know that all u; can be singleton states
{v;}. This means that it is equivalent to Definition and therefore ¢ € ¥, (w).

<: Suppose there is some information state ¢ such that ¢ € ¥, (w), but not SR(UA)*t. By

Definition this means that there must be an agent a, and a world v, such that
t € X, (vn) and v, ...v, € W such that v;11 € 04,(v;). But if v1 € 04, (w), then, by
Lemma [3.21] it is also in some u such that {w}R,,u. By Definition this means that
{w}R(UA)*u. This also means that v; € R(U ne (w) for any ¢ < m, by the same reason-
ing. Then we must also have {w}R(UA)*t. By Proposition we get sR(U A)*t. This
contradicts our earlier assumption, so the assumption must be false. Therefore, sR(U A)*t

if for some w € s, t € X (w).

37

CHAPTER 3. INQUISITIVE EPISTEMIC PROPOSITIONAL DYNAMIC LOGIC

To show that the formula ¢’ corresponds to the formula ¢, we will have to show that if
M,s = @, then M,s = ¢'.

Theorem 3.23. For every IEL formula ¢ the corresponding IE-PDL formula ¢’ is such that:

M,s = iff M,s = ¢

Proof. The proof goes by induction. The base cases are trivial, since p=p’ and 1L = 1.
Now suppose we have two arbitrary formulas ¢ and ¥ such that M, s | ¢ iff M,s = ¢’ and
M,s = iff M,s =1

WA UE

AVATE

M,s E oAy iff M;s |E ¢ and M,s = 1. By the inductive hypothesis we get that
M,s = oA iff M,s = ¢ and M, s |= 4. By Definition [3.4] and Definition we get
that M,s = o Ay iff M,s = (o A).

M,s = owo iff M,s |E ¢ or M, s |E 1. By the inductive hypothesis we get that M, s =
eW iff M,s = ¢’ or M,s | 4¢'. By Definition and Definition we get that
M,sE oWV iff M,s = (o).

: M, s |E o — 1 iff for every t C s, M,t |= ¢ implies M, t = 9. By the inductive hypothesis

we get that M, s = ¢ — ¢ iff for every t C s M, ¢ |= ¢’ implies M, t = 1¢'. By Deﬁnition
and Definition we get that M, s E o = ¢ it M, s E (¢ —).

: M,s E Ky,p < forevery w € s, M,0,(w) |E ¢. By the inductive hypothesis we get

that for every w € s, M,04(w) = ¢'. By Lemma we get that M,o,(w) E ¢ iff
M,r,(w) E ¢’. By Definitions and this is the same as M,s | (K,p). So
M.l Kup = M,s = (Kap)'.

: M,s|E E,p < for every w € s, for every t € X,(w), M,t | p. Now, by the inductive

hypothesis, for all w € s, and every t € ¥,(w), M,t | ¢ ifft M,t | ¢'. By Definition
this gives that for all w € s, and every {w}R,t, M,t = ¢’. By Proposition this means
that for every sRyt, M,t = ¢', so M,s = [a]¢’ which by Definition is equivalent to
M,s |E (Eo¢'). So M,s|E Eyp <= M,s = (E.p).

: M,s |E Kyp < for every w € s, M,0.(w) = ¢. By the inductive hypothesis we get,

for all w € s, M,o0.(w) | ¢, iff M,0.(w) | ¢'. This is the same as for every w € s,
M,UZ.(w) | ¢'. Now, by Lemma we get that this is the same as for every w € s,

M, {t | {w}R(U A)*t} = ¢'. In turn, this is the same as M,s = [(J.A)"]¢’, which by
Definition is the same as M, s = (K.p)'. So, M,s |E K.p <= M,s = (K.p)'.

: M,s E E.p <= for every w € s, for every t € ¥.(w), M,t E ¢. By the inductive

hypothesis we get, for all w € s, for every t € X, (w), M,t = ¢ iff M,t = ¢’. Now, by
Lemma we get that this is the same as for every sRi A)*t7 M,t E ¢'. In turn, this

is the same as M, s = [(IJ.A)"] ¢, which by Definition [3.11]is the same as M, s |= (E.¢)’.
So, M,s = E.p < M,s = (E.p).

O

Something to note is that this translation only goes one way. While every formula in IEL
has a corresponding formula in IE-PDL, the reverse is not true. Take for example the following
formula in an arbitrary IE-PDL model: [a](p A [a]e). This formula means that agent a beliefs ¢,
and believes that he believes . This has no corresponding formula in IEL, since |IEL only deals
with knowledge and not belief.

38

3.8. AXIOMATISATION

3.8 Axiomatisation

In this section we will give a complete axiomatisation for |IE-PDL, based on the proof system for
IEL |2] and the standard axioms from PDL [12]. Because the logic of IE-PDL is a bit nonstandard
for Inquisitive Semantics, since it is only defined for finite models, we will also incorporate the
ideas from [9] with regard to sets of relevant formulas. We will start with defining a notion of
entailment. Then we will introduce the new proof system and we will end with proving that it
is complete.

3.8.1 Entailment

The notion of entailment that we will use is the same as the one used in IEL and classical logic.

Definition 3.12 (Entailment). ® |=,, ¢p <= for any model M with at most n worlds and for
all states s, if M, s = ® then M, s E ¢

Since we now have a notion of entailment, we can also prove that [7] and [r] are monotonic,
which is one of the steps for the soundness proof for our axiomatisation.

Proposition 3.24 (Monotonicity of [r]). For all ® C LIEFPL qnd ¢ € LIEFPL if & |= 4, then
[7]® =[]y, where [r]® = {[r]¢ | p € }.

Proof. Suppose ® |= 1. Now take an arbitrary |IE-PDL model M and information state s such
that M, s = [7]®. This means that for all w € s, M, R, (w) |= ®. Since we have ® |= 1), we now
get for all w € s, M, R, (w) |= 1. This in turn leads to M, s = [7]¢. O

Proposition 3.25 (Monotonicity of [r]). For all ® C L'EFPL and ¢ € LIEPPL if & =, then
[7]® =[x, where [7]® = {[x]¢ | ¢ € ®}.
Proof. The proof follows the same structure as the proof for Proposition and is omitted. O

3.8.2 Proof system

We will give a system for natural deduction, based on the proof system for IEL |2]. The propos-
itional fragment of the proof system is the same as the proof system for IEL, and can be found
in Figure Here we follow the usual conventions that ¢ and v are arbitrary IE-PDL formulas,
and that o and § are declaratives of the same language.

While most of the rules are available for both interrogative and declarative sentences, there
are some exceptions. These are the introduction of an interrogative, which can only be done
from declarative sentences, and the double negation axiom, which can also only be applied if the
consequent is a declarative.

The proof system will also need rules for the modalities, which can be found in Figure [3.5
Here we run into the same problem as we had with the definition of resolutions with that
some axioms depend on the number of worlds in the underlying model. Therefore we will also
parametrize the proof system on the number of worlds, n, in the model. The axioms here are
mostly related to the reduction axioms from Section Furthermore, we also have [r]-[7]
Equivalence (Proposition and Necessitation (Propositions and .

Now we have the rules of the proof system defined, we can define some notation to specify
that something is provable for models with at most n worlds.

Definition 3.13 (Proof system). We write P : ® b, 4 if there is a proof P for models with at
most n worlds whose conclusion is v, and whose premises are included in ®. Furthermore, we
write ¢ -, 9 if ¢ and 1 are provably equivalent, which means that ¢ -, ¥ and ¢ F, ¢.

39

CHAPTER 3. INQUISITIVE EPISTEMIC PROPOSITIONAL DYNAMIC LOGIC

Conjunction Implication
(]

e Y PAY N Y R
pAY @ G =Y (3
Interrogative Falsum

[aa] o]
. .o fe% \\/ PP \\/ (6%

Q; %0 4 ' " £
a1WV...Wa; V... \Vam © ©
Kreisel-Putnam axiom Double negation
(a = (B1WV-VPBm)) = (= 1V Va — Bn) - —

Figure 3.4: The propositional fragment of the proof systems for every n € N.

Distributivity
[T)(p =) = (7)o — [7]) [l =) = ([7]e = [=]v)
[Tl(e Vo) = ([xe V [x])

Sequence
[m15 2] < [m][m2]e [m1; 2] <+ [m][m]e

Choice
(1 U sl < ([m1]ep A [m2]ip) [Ume]p < ([rile A [m2]e)

Test
[p?a < (¢ —) [?T < (@ —)

Unrolling

[< ([P Alr2e---[72"]e) [7*]e < (I e A [r2]e- - [7*]p)

Equivalence

[rla + [7]a

Necessitation

_P _Y
[r]e []e

Figure 3.5: The modal fragment of the proof system, for models with at most n possible worlds.

It is straightforward to check that the proof system is sound with respect to the semantics of
IE-PDL.

Theorem 3.26 (Soundness of |IE-PDL). If ® |-, ¢ then @ |=,, ¥.

40

3.8. AXIOMATISATION

Proof. The propositional part of IE-PDL is proven to be sound in [5], so we will focus on the
modal part of the axiomatisation, for which we will give a proof sketch.

The soundness of the axioms has already been proven in Proposition and Section [3.6]
This means that only the proof for necessitation still has to follow. Assume we have ® b, 1.
By necessitation it follows that [7]® -, [7]. We also get ® =, ¢ by the inductive hypothesis.
Then by Proposition we get [7]® =, [7]Y. Therefore necessitation preserves validity for
[w]i. The proof for the necessitation of [x] is similar. O

Another useful result about the proof system, is that if you can prove something for models
with at most n worlds, then you can prove it for models with m < n worlds.

Proposition 3.27. If ® , ¢, then for allm <n, ®+,, ¥ for alln € N.

Proof. Assume some arbitrary n € N, &, and % such that ® , . This proof goes by the
induction over the structure of proofs, but all steps are trivial except for the ones for unrolling.

Take some arbitrary m € N such that m < n. Then 1 is [7*]x and [r']xA[x?]x - - - [72"]x € ®.
Since m < n, ® b, [7]xA[r?]x - [7%"]x, and thus by the inductive hypothesis and conjunction
elimination and introduction ® F,, [7']x A [72]x---[7%"]x. Then via Unrolling, ® I, [7*]x, as
required. The proof for the other direction is similar, and the proof for [x] is the same. O

Since the number of worlds actually only plays a role when unrolling is used, we can also
prove something else.

Proposition 3.28. If ® does not contain any formula that contains ©*, and ¢ is a ™ free
formula, then ® F,, ¢ implies ® -, Y for any n,m € N.

Proof. This proof works by induction over the structure of proofs. In each step, it needs to be
shown that the value of n does not matter, which is trivial, except for the unrolling axioms. But
there either ® or 1 is not m* free, so those cases are irrelevant. O

This proposition is especially useful for formulas that can be proven in the propositional
fragment of the language, since this means that everything that can be proven in the propositional
fragment of |IEL also holds for IE-PDL.

3.8.3 Completeness

To prove that the proof system for IE-PDL is complete, we will follow the structure from [2],
but only for finite models. This means that the structure is as follows: First we will establish a
tight connection between the formulas of IE-PDL and their resolutions. Then we will construct a
counter-model for each declarative o, whose worlds are relevant theories of declaratives. We will
prove that this counter-model is a valid IE-PDL model, and that the compositional relations are
also still available. Then we will prove the finite support lemma, which is like the truth lemma
from classical logics, but augmented for the support relation. Then we will use the support lemma
to show that whenever F/,, ¢, it is also the case that [~ ¢, using the states in the counter-model.

We will start with establishing the connection between formulas and their resolutions by
showing that a formula and its resolution are provably equivalent.

Lemma 3.29. For any formula ¢ and alln € N, ¢ 4, \V R, (v).

Proof. The proof for the propositional fragment of IE-PDL is as in [5], and the proofs for [r]ep,
[w]e, and [r]a are trivial, since they are their own only resolutions. Therefore we only give the
proof for [7]u.

41

CHAPTER 3. INQUISITIVE EPISTEMIC PROPOSITIONAL DYNAMIC LOGIC

Consider an interrogative formula [7]u and suppose that the inductive hypothesis holds for
, that is, suppose that p =, \V R, (1). We now need to show that [r]u 4, \V R, ([7]r). We
will do this by induction over the structure of programs.

a: For atomic programs, [a]u ", \V R, ([a]r) holds by definition, since the only resolution
of [a]u is the formula itself.

?¢: The resolutions for [?¢]p are the resolutions for ¢ — u, and these two formulas are provably
equivalent (via test). The rest of this proof is then the same as the proof for implication.

For the inductive hypothesis assume that we have two arbitrary programs m; and w5 such
that for any formula ¢, [m1]e "+, \V R ([m1]e) and [m2]e A, WV Ry ([72]).

w7 [me]u Abn [m][m2]p. Now by the inductive hypothesis we get that [m]|[me]pe —Fn
WV Ry ([71][72]). Since the resolutions for [m1;m2]u are the resolutions for [m][ma]p, we
have that [m1; ma]p Tn \V R ([7r1; ma]).

m Umg: [m Ume]u Ay [ri]u A [r2]p. We know from the inductive hypothesis that [m]u -,
VR ([m1]p) and [mo]p -, WV Ru([m2]p). Putting these together we get that [m]u A
[r2]e A0 W R ([71]) AN R ([2]). Then the proof works the same for conjunction to
get that \V Ry, ([m1]0) AN R ([r2] 1) A0 \V Ry ([m1] A [7r2] 11). Now, since the resolutions
for [m Uma] it are the same as those for [m JuA[me]i, we get that [m Uma]u 4k, WV Ry ([m U

ma]p).
it [wi]p A [7i] A [73]p- - - [73 Jp. If we now use the proofs for sequence we get [71]u A

n

[75 - It D A VR ([mi0) ANV Ra([7f]) -V R ([Jpn). If we then use the
proof for conjunction then we get that \V R, ([71]u) AN R ([72]p) - - - \V R ([72 Jpe) b0
W R ([71]p A 73] - - - [73"Ju). Since the resolutions for [7F]u are the same as those for

[rile A lnfli- - 72" Jn, we get that [ri]u A WV Ra([7i]n).
O
As a corollary, we now get that every formula is derivable from any of its resolutions.
Corollary 3.30. If « € R,,(¢), then a by, .

Proof. If o € R, (¢), then by a single application of Vv introduction we have a F, \V R, (p).
Then by Lemma [3.29) we get that a b, . O

Furthermore, thanks to the distributivity axioms and the necessitation rules we can ensure
that the modalities are monotonic.

Lemma 3.31. If p1,...,0m Fn ¥, then Opy,...,0¢y, b O for all O € {[x], [x] | * € I1}.

Proof. This proof works via the distribution and the necessitation rules. From ¢1,...,¢0m Fn ¢
we can prove by, (1A -App,) — 1, which using necessitation gives us -, O ((¢1 A+ A om) —)
for all O € {[x], [x] | ® € II}. Using the distribution rules we then get F,, (w1 A -+ A Op,,) —
Oy for all O € {[x],[r] | # € II}, from which we can prove O1,...O¢,, F, Oy for all
O e {[x], [x] | # € II}. O

Like in IEL and AMLI we also get the result that we can express a formula of the form [r]p
in terms of [7]. As a result of this, we can completely paraphrase [7] out of the language.

Lemma 3.32. For any ¢, 7] 1, \/aeRn(w) [r]a -y, \/aeR"(@) [7]ex.

42

3.8. AXIOMATISATION

Proof. From Lemma we have that ¢ 4, \V R, (). From Lemma we get that [7]p -,
[T]WVR(#) -0 Vaer, (o) [Tl Now with a simple application of the equivalence of [r] and [r]
on declaratives, we get that [m]o ",V cr, o)[mle A0 Vioer, (o [T O

Then lastly we have the resolution theorem. This theorem states that we can derive v from
® iff we can derive some resolution « of 1 from some resolution I' of ®. Before we can cover this
theorem, we will first have to establish two other lemmas. The first of these is a standard lemma
from IEL, but the second one is new. Normally, a modal formula is its own resolution, which
simplifies the Resolution Theorem. However, since [?¢] is not its own resolution, this does not
hold, which means that we will need an additional lemma. We will first cover the first lemma.

Lemma 3.33. If @ I/, ¢ then there exists some I' € R, (®) such that T' 1/, ¢ for all n € N.

Proof. The proof of this lemma is as in [2], but with the addition of taking some arbitrary n for
the proof system and resolutions. O

Lemma 3.34. If f € R,(p) and o € Ry ([7]¢), then 7] Fn for all n € N.
Proof. This proof works by induction over programs 7. We fix some arbitrary n € N.
a: [a]e is its own resolution, so this follows from 3+, ¢ and Lemma [3.31]}

?: [?]¢ has the same resolutions as 1) — ¢, so we have to find an o € R, (¢p — ¢) such
that [?¢]8 b, «. Now, for all v; € R, (¢), we can get a proof @; : v; b, [thanks to
Corollary and ¢ — [, which means we get /\WERn(w) ~; — B, which is a resolution of
1 — . And since we have [?¢] 5 b, ¥ — 3, we get that [?¢]8 b, a where o € R, ([?¢]).

For the inductive hypothesis we take some arbitrary m; and ms and suppose that:
o if 5 R, (p) and a € R, ([r1]e), then [m]8 Fn «;
o if B € Ru(p) and o € Ry, ([m2]¢), then [m2]8 by .

my;me: Take some [such that 5 € R, (). By the inductive hypothesis we get that [m2]8 b, v
where v € R, ([m2]¢). By applying the inductive hypothesis again we get that [m]y Fp, «
where a € R, ([m1][m2]¢) and thus also R, ([71;m2]¢). By applying Lemma [3.31] on the
first one, we get that [m1][m=2]8 Fn [m1]y, and from sequence we get that [m1;m2]8 Fnp
[r1][m2] 8. Putting this all together we get [m1;m=2]8 Fn a.

m1 Uma: So we have some a € R,,([r1 U ma]e) which is of the form 1 A vo with v1 € R, ([71]p)
and 2 € Ry, ([m2]¢). Then we get [m1]8 Frn 71 and [ma]8 Frn 72 for all 8 € R, (p) by the
inductive hypothesis. Since we get [Ums]S by, [m1]8 A [7m2] 3, by choice, if we put it all
together we get [m Ums] 8 Fp a.

7 A resolution o € R, ([7*]¢) has the form A, _,, ., Ym where v, € R, ([7™]¢). Now take
some 8 € Ry(p). Since [1*]8 b Ajcpmenlm™]6 and [7"]8 Fn vm (by the inductive
hypothesis), we get that [7*]8 Fn Ajcppep Y-

Since we fixed some arbitrary n € N, we can conclude that this holds for all n € N. O

Basically, this lemma tells us how we can give the proof [7]8 F, [r]e for all 8 € R,(¢).
Corollary and Lemma already guaranteed us that this proof exists, but the proofs for
Lemma [3:34] and Corollary [3:30] also give us the structure for this proof itself.

43

CHAPTER 3. INQUISITIVE EPISTEMIC PROPOSITIONAL DYNAMIC LOGIC

Theorem 3.35 (Resolution theorem). For alln € N: @ b, ¢ <= for allT € R, (®) there
exists some o € Ry, () such that Tk, «.

Proof. We will start with the left to right direction of the proof: if ® derives 1, then any
resolution I' of ® derives some resolution « of 1. The proof is by induction on the complexity of
a proof P : ® I, 1. In the interest of space, we will leave out the rules from the propositional
fragment of the proof system, since these have already been shown in [2]. For all of these steps
we will fix some arbitrary n € N.

e ¢ is an undischarged assumption, ¥ € ®. In this case, any resolution I' of ® contains a
resolution « of 1 by definition, so I' I, a.

e) is an axiom. If ¢ is declarative, then the claim is trivially true. If ¢ is interrogative, it is
either an instance of the Kreisel-Putnam axiom, for which a proof can be found in [2], or
one of the reduction axioms for [r]. This last group we can put into two categories: the
distributivity axiom and the reduction axioms for programs.

We will start with the distributivity axiom, ¢ := [7](¢ — p) — ([r]¢ — [r]u). Take
a= /\ﬂeRn([[rr]](wau)) B — f(B): «is aresolution of ¢, and because of the function f, itself
an instance of the distributivity axiom. Therefore we have I' F,, « for any set T'.

For the reduction axioms for programs, we will pick one to use as an example, so we take
) = [mUm]e < ([m]eAlmly) <= ([mUmle = ([mi]eAlm]e)) A(([mleAlr]e) —
[Um]p). Now take o = (81 — fB2) A (B3 — B1) where B1, 81 € Rn([m Uma]p) and
B2,P3 € Ru([m]e A [m2]le). Since R, ([r1 U m]e) = Ru([m1]e A [72]p), we can take
B1 = B2 and B3 = B4. Then we get a = (B1 — S1) A (B3 — B3) which is a resolution for ¢
and, since it is a classical tautology, we get I' F,, a for any set T

The proof for the rest of the reduction axioms, except for unrolling is similar. The unrolling
axioms are given in separate steps.

e) = [7*] was obtained from an application of the unrolling axiom. Then the immediate
subproof of P is a proof Py : ® F, A;<,,<,[7"]¢ and a proof P, : U {/\1<m<n[[7rm]]<p} F
[7*] using the unrolling axiom. Take any resolution I' of ®, and take «,, to be a resolution

of [7™]¢. Then by the inductive hypothesis we get a proof Qo : I' = A; ., <,, &m, of which
the conclusion is a resolution of [7*]¢. -

o = A<, [m"]¢ was obtained from an application of the unrolling axiom. Then the
immediate subproof of P is a proof Py : ® b, [r*]¢ and a proof P, : ® U {[7*]¢} Fp
Ni<m<nlm™]p using the unrolling axiom. Take any resolution I' of ®, and take a,, to be a
resolution of [7™]p. Then by the inductive hypothesis we get a proof Qo : I'+ A, <, <, Qm.
of which the conclusion is a resolution of A, ., [T™]e. -

e) = [r]p was obtained from a [7]-necessitation rule from . Then the immediate subproof
of P is a proof Py : ® I, . Since there can be no undischarged assumptions for the
necessitation rule, we also know that ® = (). Now consider a resolution I" of ®, where
I' = (), since that is the only resolution of ®. Then by the inductive hypothesis we have
some proof @ : ', 8 for some 8 € R, (p). Then by Lemma we get that I' F,, [7]p.
Now by Lemma we get that [7]8 b, a for some a € R, ([7]p), which in turn allows
us to conclude IT' -, o, which is what we needed to prove.

This covers the left to right direction of the resolution theorem. The right to left direction
depends on Lemma and is the same as in [2]. O

44

3.8. AXIOMATISATION

As a corollary of this theorem, we also get the following, since the resolutions of a set of
declaratives are that set itself.

Corollary 3.36 (Split). Let T’ be a set of declaratives. If T' b, ¢ then T F, « for some
a € Rp(v) for allm € N.

Counter-Model

Unlike what is usual in modal logic, we will not be using the usual method of defining a canonical
model. This is because our models need to be finite, so the model we use in the completeness
proof also needs to be finite. Since our logic is an inquisitive logic, we will also need a richer
structure than a standard Kripke model, which also presents a problem.

The second of these problems we will solve by using a similar model construction as in [2],
the most relevant part of which right now is the use of complete theories of declaratives (CTD)
as the worlds instead of the maximally consistent sets from modal logic.

To then solve the second problem we will constrain our CTDs to sets with only relevant
formulas for the proof, as is also done in [9]. As [9] only does this for Epistemic Logic, we will
use the definition of a subformula from [11] for defining the set of relevant formulas, which we will
call the closure of a formula ¢. We can then use this set to build relevant theories of declaratives
(RTD) for a given declarative formula a.

Before we will jump into the definitions, we will first have to consider what the relevant
formulas are. Like in |9} |L1] we are interested in the subformula of a given formula . However,
in the RTD, we will only want declarative formulas. Therefore, one might be tempted to build a
closure of a formula based on the resolutions of that formula. While this would work well in the
general case, we can only calculate the resolutions with respect to a certain number of worlds,
a number that we currently do not know. This means that we will have to go about this in a
bit of a roundabout way and postpone the taking of the resolutions when this number of worlds
is known. However, when we talk about relevant formulas, we mean both the subformulas of ¢,
and their resolutions with respect to a certain maximum number of worlds.

Definition 3.14 (Closure of a formula). The closure of a formula ¢, C(y) is the smallest set
such that:

* peC(y)

o if =) € C(p), then ¢ € C(p).

o if 1) € C(p) and © is not a negation, then —) € C(y).
o if) A x € C(p), then ¢ € C(p) and x € C(p).

o if)\ x € C(p), then ¢ € C(p) and x € C(ip).

o if p — x € C(p), then ¥ € C(p) and, if x # L, x € C(p).
o if Oy € C(p), then ¢ € C(p) for O € {[n], [r]}.

o if [?Y]x € C(p) or [?Y]x € C(¢p), then ¢ € C(p).

o if [m1;mo]y € C(yp), then [m][m]ih € C(e).

o if [mi;me]th € C(p), then [m][m2]y € Cy).

o if [m; U]y € C(p), then [m1] € C(p) and [m3] € C(p).

45

CHAPTER 3. INQUISITIVE EPISTEMIC PROPOSITIONAL DYNAMIC LOGIC

o if [y Uma]yp € C(p), then [m] € C(p) and [r2] € C(p).
o if [7*]v € C(¢p), then [r][x*]¢) € C(p).
o if [7*]¢p € C(¢p), then [x][7*]v € C(y).

Since the negation of a formula v is an abbreviation for ¢» — L, but L is not relevant for
the closure of this formula, we specifically do not add it to the closure when it appears in the
consequent position of an implication.

Before we will continue with the definition of the model, we will first prove some things about
the closures. The first of these have to do with the size of the closure of a given formula, which
we would like to express in terms of the length of that formula. For this, we will first have to
introduce the length of a formula.

Definition 3.15 (Length of a formula). The length of a formula is defined by simultaneous
induction on the structure of formulas and programs:

pl =1 la| =1
o APl = [l + 1+ (9] 7ol = 1+ e
oW = [el + 1+ (Y] [m1;ma| = |mi| 4 1+ |mel
lo =¥ = ol +1+[¢] [m U] = |m[41+ ||
[l =[] + | +1 | = || +1

[mleol = Il + ol +1

Now we can go on and determine the maximum size of a closure and its maximal consistent
subsets.

Proposition 3.37. |C(¢)| < 2|¢|.

Proof. This proof works by induction over the structure of ¢.
p: [C(p)| = {p, —p} =2 =2Jp|.

Now take two arbitrary formula ¢ and ¢, such that:
o |C(p1)] < 2[ep1]
* |C(p2)| < 2|2

1 A @o: This proof also works by rewriting.

IC(p1 A p2)| = {1 A w2, (01 A p2)} UC(p1) UC(p2)]
< Her A w2, (01 Apa) } + [C(1)] + [C(w2)]
< 24 2|p1] + 2|2
=2 x ([p1| + |p2| +1)
= 2|1 A o]

1 W o: This step is analogous to the step for conjunction.

1 — wo: This step is analogous to the step for conjunction.

46

3.8. AXIOMATISATION

[7]e1: This step goes by induction on the structure of programs.
a: [C([alpr)| = Klales, lalpr} U C(er)l < [{laler, mlaler}] + IC(e1)] < 2+ 2fpa]| =
2x (1+p1]) <2 % (2+ |a]) = 2[[ale]|
209t |C([7@2]e1)] = {[Tpa)er, [Te2]p1} UC(w2) UC(p1)|. From this point onward it is the

same as the case for conjunction.

Now take some arbitrary programs m; and ms such that for ¢;:

= C([mler) < 2[[mi]en]
= C([ma]r) < 2|[mo]pn]|
m1; T2 In this step we need to built the closure of C([m1][m2]) out of the closure of C([m1]¢1)

and C([m2]p1), which is a bit tricky. This is done by taking the closure of C([m1]¢1),
and subtracting the extra elements, which are the elements of C(¢1) and [m1]¢1 and

—[mi]epr.
IC([m1; maler)| = [{[m1; m2]pr, ~[mi; malior, [m1][m]pr, =[mi][ma]pr } U C([p2]p1)U

(C([m1]e1) \ (Clep1) U {[m1]eo1, m[mi]p1}))]

< HIm1; meler, lmas maler, [m][m2]er, =[m][me]er H + [C([p2]e1)U
(C([m]e1) \ (Clp1) U{[mi]epr, =[mi]er}))]

<4+ 2[C([p2lp1)| + 2IC([m1]p1)] — 2

< 2+ 2[C([p2]p1)| + 2IC([m1]p1)]

=2 x (|C([m1]e1)| + [C([m2]1)| + 1)

< 2|[my; 2|

w1 Umg: This step is analogous to the case for conjunction.

[7}]p1: Here we run into the same problem as with sequence, so we will yet again have to
remove [m1]¢1 and —[m1]e1 from the set.

IC([r1]e0)| = {m*]e1, =[m]n, [m][m*]o1, =[m][mT]er pU
C([m1]er) \ {[miler, =[mi]e1}]
= {[7*]1, =[7*]epr, [ma][m*]ep1, = [m][7T)1 H+
IC([m1]e)| = {[miler, ~[mi)er
<4+ 2|[m]p1]| =2

= 2+ 2[[m1]ep1 |
= 2|[7"]ep1]

[7]e1: This step is the same as the step for [7]¢;.

Definition 3.16. A maximal consistent subset of a closure C(y) are all & C C(y) such that:
e & is consistent, which means that ® t,, | for all n € N;

e there is no set ® C C(p) such that & C &’ and P’ is consistent.

el

Proposition 3.38. A closure C(¢) has at most 2~ 2 mazimal consistent subsets.

47

CHAPTER 3. INQUISITIVE EPISTEMIC PROPOSITIONAL DYNAMIC LOGIC

Proof. In order to prove this, we will have to establish the following two things:

1. a maximal consistent subset ® of C(p) has either ¢ € ® or —¢p € ® for all non-negated
¥ € C(p);

2. |C(p)] is even;

The first follows from the fact that ® is both maximal and consistent. If it would have both,
it would not be consistent, if it had neither, there would be some set, namely either ® U {4}
or ® U {—}, such that ® would be a proper subset. So it must contain either ¢ or = for all
non-negated 1) € C(p). The second is true by Proposition m

This means that if we were to build a maximally consistent subset ® of C(¢), for each formula
¥ € C(p) we can have maximally 2 choices, and we only get this choice for half of the formulas,

for if we have =) € ®, we cannot include ¥ is @, because it needs to be consistent, and we were
. . . leto)l
to include neither, & could not be maximal. So we have 2 2 different choices for maximally

consistent subsets of C(y). O

Corollary 3.39. A closure C(p) has at most 2!¥! mazimal consistent subsets.

Now we can use the closure of a formula to build up a RTD. While closures are defined for
all formulas p, RTDs will only be defined for declaratives. This is because they are only required
for declaratives in order to make the completeness proof work. However, since the closure of a
declarative can contain interrogatives — [w]p has p as a subformula — we will have to replace
those interrogatives in such a way that they still prove . Luckily, we can use the resolutions of
@ for that purpose. And since the RTDs will function as worlds in the counter-model, we will
now also know for how many worlds we maximally need to calculate the resolutions.

We will define these RTDs in terms of certain functions, called resolution functions, that will
map every formula in a closure C(a) onto exactly one of its resolutions.

Definition 3.17 (Resolution function). A resolution function of a set ® is a function f, : & —
R, (®) such that for each ¢ € @, f,(¢) € Rn(p). A resolution function is called n-consistent,
meaning consistent for models with at most n worlds, if {f,,(¢) | ¢ € ®} V/,, L for that n € N.

By Lemma [3.33] we know that for every consistent set of formulas and every n € N, there is
at least one n-consistent resolution function.

Definition 3.18 (Relevant theory of declaratives). A relevant theory of declaratives (RTD) T’
for a given declarative « is the image of C(a) under an 2/®l-consistent resolution function for
Cla).

We will use RTD () for the set of all relevant theories of declaratives for o under resolution
function fyja.

Since we now replace every maximally consistent subset of C(«) with at most one new set,
there are also maximally 2!/*! RTDs for a given formula a.
For ease of reading, we will also introduce notation for the set of relevant formula.

Definition 3.19 (Relevant formula). For a given formula «, its set of relevant formula RC(«)
is defined as:

RC(a) = C(a) U J Ry (C(a))
Like CTDs, the RTDs also have the disjunction property.

Fact 3.1 (Disjunction Property). If T'is a RTD and o1 V- -+ V a, € T, then a; € T for some i.

48

3.8. AXIOMATISATION

However, it is now no longer possible to extend an arbitrary set of formulas into an RTD.
Luckily, we also only have to deal with a subset of the formulas in IE-PDL, which allows us to prove
a similar lemma. Before we can do this however, we will first have to prove the Lindenbatimchen
Lemma, which shows that every subset of C(y) is extendible into a maximally consistent one.

Lemma 3.40 (Lindenbaiimchen Lemma). If ¥ is a consistent subset of C(p), then U is a subset
of some mazimally consistent subset of C(p).

Proof. We can enumerate all of the formulas g, 1, ... om € C(a) and define a sequence of sets
of formulas

UVgC¥, C---C V¥,

as follows, by induction on m:

Uy =0
v U, U{to} If O, U {9y, } is consistent
T g, otherwise
V=] ¥
m’'<m

We now need to show that this set ¥’ is a maximally consistent subset of C(p). Since it is
consistent by construction, we will focus on the second claim.

Suppose that ¥’ is not a complete subset of C(¢). Then there must be some non-negated
X € C(¢) such that neither x € ¥’ nor ~x € ¥', while either ¥/ U{x} or ¥’ U{-x} is consistent.
Take x to be t; in the enumeration. Then ¥; U {1);} must be inconsistent, since otherwise v;
would have been included in ¥’. But then ¥’ U {¢);} is also inconsistent, which contradicts the
earlier assumption. Therefore, ¥/ must be a complete subset of C(y). O

Since we will have to deal with both interrogatives in C(«) and the resolutions of C(«) in the
following completeness proof, we will have to prove the following lemma as well.

Lemma 3.41. If ® C RC(x) is consistent, then there is some ® C C(x) such that for all
Y €C(X), D haop ¥ iff Y Fop ¥

Proof. First, we will start by building a set ® C C(x) where all of the resolutions of formulas
from C(x) have been replaced by the formulas for which they were added as a resolution.

' = (2NC() U{nlneCx),B e (®\C(X)),B € R (1)}

Since a formula might be a resolution of multiple other formulas in C(x), the set ®' might be
larger than the set ®. However, it is still consistent. For if it was not consistent, then there
must have been added some p such that ® U {4} is not consistent. But, since there was some
B € Roxi(p) in @, & Fy15 1, which would mean ® is not consistent. This is in contradiction
with our earlier assumption, so ®’ must be consistent.

These two sets also share one other property, since for all ¢ € C(x), @ by ¥ iff & by 2.
The right to left direction comes from the fact that for every formula ¢’ € ®’, either ¢’ € ® or
there is some 8 € Ry v (') such that 8 € @', so via Corollary Dby ¢

The left to right direction is a bit more involved, and proceeds by induction on the structure
of x. The case for propositional atoms and L are trivial, since then ® = ® by construction. For
the inductive hypothesis, take two arbitrary formulas x;1 and ys such that:

49

CHAPTER 3. INQUISITIVE EPISTEMIC PROPOSITIONAL DYNAMIC LOGIC

X1 A\ X2:

X1 WV xa:

X1 — X2:

[7lxa:

For all ®,, C RC(x1) that are consistent, there is some ®) ~C C(x1) such that for all
Y € C(x1), if @y, Foixar ¥, then @ oy 9.

For all ®,, C RC(x2) that are consistent, there is some ®) C C(x2) such that for all
’l/l S C(Xg), if (I)X2 |_2\x2| 'l/), then CDIX2 }_2|><2\ ’l/)

Now C(x1 A x2) = {x1 A x2,7(x1 A x2)} UC(x1) UC(x2). Now take some arbitrary set
Dy inve © RC(x1 A X2) If @y ay, Faixi ¥, for some ¢ € C(x1 A x2), then either it can be
proven using a subset of RC(x1) or RC(xz2), in which case it can be proven from & . .
by the inductive hypothesis, or ¢ is either x1 A x2 or =(x1 A x2). In the first case, we
need two subsets @y, C @y, ay, to prove @y, o1 x; for ¢ € {1,2}, which by the inductive
hypothesis means that (I);a Foix xi fori € {1,2}. Since <I>;<i - (I);a/\xw q);a/\m Foixl X1 AX2-
The argument for the second case is similar. Since ®,, Ay, Was chosen arbitrarily, it holds

for all subsets of RC(x1 A x2)-

Now C(x1Wx2) = {x1WVx2,~(x1Wx2)} UC(x1) UC(x2). Now take some arbitrary set
D W ERC(X1WVX2) IR\, Mo ¥, for some ¢ € C(x1 WV x2), then either it can be
proven using a subset of RC(x1) or RC(x2), in which case it can be proven from KID;(I WV xa
by the inductive hypothesis, or v is either x1 W x2 or =(x1 WV x2). In the first case, the proof
is trivial, so we will focus on the second case. This formula is actually (x1 WV x2) — L, so
we will need a proof for —x; and —x2 and then use Interrogative Elimination to arrive at
1, which means we can introduce the implication. Since —x; € C(x1) and —x2 € C(x2),

this holds by the inductive hypothesis.

Now C(x1 — x2) = {x1 = Xx2,7(x1 = Xx2)} UC(x1) UC(x2). Now take some arbitrary
set Dy, 5y, € RC(x1 — x2). If @3\, Foia ¥, for some ¢ € C(x1 — Xx2), then either it
can be proven using a subset of RC(x1) or RC(x2), in which case it can be proven from
<I>;<1_,X2 by the inductive hypothesis, or v is either x1 — x2 or =(x1 — Xx2). In the first
case, ® yixsxal X1 — X2. Either x1 — x2 € ®,,_,,, in which case (I);a—»@ Folxi—xal ¥
by construction, or there are two subsets @, ., ®,, C ®,, _,,, such that &, UD,, Fyxqxs
X1 — Xx2. Since for i € {1,2}, x; € C(x;) and ®,, € RC(x;), by the inductive hypothesis
we get that <I>;<1 U <I>;<2 Foixi—=x2l X1 — X2, which means that @;(1_)X2 Foixi—xal ¥. Since we

chose an arbitrary ®,,_,,,, this holds for all subsets of RC(x1 — Xx2).

In order to do this, we will need to use induction of the structure of w. The case for atomic
programs follows from the inductive hypothesis, and the case for [?x2]x1 follows from the
step for implication.

For the inductive hypothesis, take two arbitrary programs m; and 7y such that for some
formulas x’:

— For all ®p,1,» € RC([m1]x’) that are consistent, there is some @, ;.. € C([m]x')
such that for all b € C([m1]x’), if @y x Faltmiixs ¥, then (I),[[m]]x/ Foltmixt U

— For all ®p,},» € RC([m2]x’) that are consistent, there is some @, ., € C([m2]X’)

such that for all w € C([[Tl'g]])(/)7 if ¢[772]]X, |_2H[7f2]]x/\ ¢, then @ﬁﬂ,zﬂx, |_2H17V2]]X'\ ’(/)

m1;ma: Now C([my; me]x') = {[m1; ma]lx’s —[m1; m2]x'} U C([m1]l[72] x’). Now take some arbit-

rary set @ .,y € RC([r1;m2]x’). If @pryimopy Faixi @, for some ¥ € C([mry; m2]x’),
then either it can be proven using a subset of RC(x2), in which case it can be proven
from (DE[T"I'T"Z]]X/ by the inductive hypothesis, or 1 is either [my;ma]x’, —[m1;m2]X/,
[m1]y" or =[m]y’, for some ¢’ € C([m2]x’). Since the first two are special cases of

50

3.8. AXIOMATISATION

the latter two, we will focus on those. Since ¢’ € C([m2]x’), @’[[Wz]]x, Foltmatxt ¥
by the inductive hypothesis. And since C([m1]x’) contains all subformulas of 7,
Py ln' YU Plmaln Fattmiimanxt [m1]9’. This, in turn, means that @,z)y Foitrrimain
[r1]e’. The second case is similar. Since @7, ;mo] Was chosen arbitrarily, this holds
for all subsets of RC([m1; m2]x’)-

w1 Umg: This step is similar to the step for conjunction. The only difference is that now there
are extra steps to go from [m U)X’ to [m]x’ A [m2] X’ and back.

mi: Now C([77[X') = {I=1 X, =[=1 X", [7][="]x", ~[=][=7]x"} UC([x]X’). Now take some
arbitrary set ®pr:pv € RC([77]x'). Now @r:,s can only prove a formula ¢ €
C([77]x') if that formula is already in @]/, or if it is provable via the (contraposi-
tion of) the unrolling axiom, in which case the substeps must be provable from some
subset contained in RC([7]x’), which means that, by the inductive hypothesis, we get
(I)TIWTHX' Eyitmyin - Since @[+, was chosen arbitrarily, this holds for all subsets of

RC([77]x")-
[7]x": The proofs here are the same as the one for [r]y’, but using the axioms for [r].

Since x1 and x2 were chosen arbitrarily, this holds for all formulas x. This concludes the right
to left direction, and the proof as a whole. O

Lemma 3.42. If ® C RC(«) is consistent, then there is some I' € RTDy(cv) such that for all
¥ € Cla), if ® Foal ¥, then T Fya @ for all 21%-consistent resolution functions f.

Proof. Take some arbitrary 2/%l-consistent formula fya;. Using Lemma we can replace ®
by a set ® C C(«a), which we can extend to a maximally consistent subset ®” of C(«). Then
the I' € RTDy(a) is simply the RTD that is the image of ®” under fya. To show that this
proves all the ¥ € C(a), assume that I’ /9o ¢ for some ¢ € C(«). This means that there is
no € Ryal () such that T' Fya 8, and therefore, ®” tfya . Since &' C " & oy 2.
Then by Lemma [3.41} ® t/51 ¥. But that contradicts our earlier assumption, so I' Fyja| % for all
¥ € C(a) such that ® ko 1. Since we took some arbitrary fy(a;, this holds for all 2/*/-consistent
resolution functions. O

Now that we know that for every set of relevant formulas there is an RTD that proves the
same formulas of C(«a/), we can define our counter-models. The definition of the model should be
familiar from PDL, but it differs in three big aspects. The first of these is that the models are
defined with respect to a certain formula «, and the second difference is that this is done using
RTDs. The third has to do with the definition of 3¢, since this is now a state map, and not a
relation between states. For this we will borrow the definition from [2].

Definition 3.20 (Countermodel for IE-PDL). The counter-model for a given declarative |IE-PDL
formula a is the model M* = W<,V RY), where:

o W is RTDj(«) for some consistent resolution function fya.
e VeT)={plpeC(a),pel}
o T X)) iff NT Fyiel ¢ whenever [a]p € T, where () = LIEPPL

Now we will still need to show that M is a proper |IE-PDL model by showing that X% (T") is
downward closed and non-empty for every a and I'.

Lemma 3.43. The model M is a proper IE-PDL model.

o1

CHAPTER 3. INQUISITIVE EPISTEMIC PROPOSITIONAL DYNAMIC LOGIC

Proof. In order to show this, we have to show that:
1. 3%(T') is downward closed for all agents a and worlds T';
2. € Z%(T) for all agents a and worlds I'.

Take some arbitrary agent a and world I' € W<,

1. Assume that T' € 3¢(I"). We now have to show that for all 7" C T, T7 € ¥¢(T"). Since
AT C N1, and we know that (T Fgja ¢ for any [a]e € T, we also have (1" Fya) ¢ for
any [a]e € ' and therefore also 77 € 3¢(T").

2. Since (0 is defined as £L'EPPL () Fyja; ¢ for any formula ¢, so also every formula ¢ such
that [a]e € T'. Therefore, § € X2(T).

Since a and I' were chosen arbitrarily, we can conclude that this holds for any agent a and world
I' € W*. From this, we can conclude that M® is a proper |IE-PDL model. O

Since the counter-model only gives the state map, we will also want to know that the complex
programs for the counter-model are well behaved.

Lemma 3.44. If SRXT and (S Faiel [7]p, then T Faiar .
Proof. This proof goes by induction over the structure of .

a: Suppose (S Fya [a]o. Then consider any I' € S. Since (]S C T', we have T Fyjal [a]e.
Then by Definition we have that SRST if and only if [T Fyiel ¢, as required.

?¢p: Suppose (S Fajal [?¢] ¢, which means we also have (S Fgjal ¥ — ¢. By Definition
SR, TiT C Sand M, T |=1. Since T'C S, (1S C (T, and therefore (V1" Fyja) ¥ — ¢
Combining this, we get that (7T g ¢, as required.

For the inductive hypothesis, take two arbitrary programs m; and 7o and suppose that for all
states S and formulas ¢:

o if SRY T and (S Fyjal [m1]e, then (T Fya ¢;
o if SRS T and (S Fyjal [m2], then (T Fyja .

m1;Te: Suppose (]S Fylal [71;2]l. Then we also have that () S Fgjar [m1][72]¢. Now by applying
the inductive hypothesis once we get that if SRy U, then (U Fga [m2]p. By applying
the inductive hypothesis on this formula we get that if URS, T, then (T 5 ¢. So all
we have left is to show that SRY .. T. However, this holds by Definition F)E?l, so we have
the required result.

m Ume: Suppose (1S Fgal [m1 U me]p. Then we also have (S Fya) [m1]@ A [m2] and thus
NS Fyial [m1]p and (S Fajar [m2]. By the inductive hypothesis we therefore get that if
SRy U, then U Fgpa ¢ and if SR} U’, then (YU’ a1 . So all we have left to show
is that SRy ., T if SRy, T or SR} T, but this is true by Definition so we have the
required result.

mi: Suppose (15 e [77]p. Then we also get that (1.5 e A<, <oiai []¢. This means
that by repeated applications of the inductive hypothesis and the steps for sequence we get
that if SR2.T', then N T Falal @, as required.

This concludes the proof. O

92

3.8. AXIOMATISATION

Lemma 3.45. If (S Fyial [7]p, then for ollT € S, (\RE(T) Fyjal .
Proof. This lemma is analogous to Lemma, O

Now we have the counter-model we can continue onward to the finite support lemma. Before
we can establish this lemma we will need some extra results.

Lemma 3.46. For any state S C W* and any 8 € |JRTDy (), (1S Faal f <= B€)S.

Proof. If B € (S then also (S Fya1 B. For the other direction, suppose that (]S Fga 5.
Then, for each T" € S, since (1S C T, T ko) 8. Then, since I' is complete, § € I". Therefore,
geNs. O

We will also have to show that whenever [r]¢ ¢ T', there is some state {I'} R®T such that
NT Vel ¢

Lemma 3.47. Let I' € W* and let [7]p € C(a) be a declarative formula. If [n]e ¢ T, then
there exists a state {T}R2T such that T ts1e1 .

Proof. Suppose [1]¢ € T'. Now create I'l"l = {4 | [x]¥ € I'}. Note that not all formulas in T'[7]
are declaratives, since [7]¢ can be declarative even if ¢ is not.

We claim that TI7l |4, ¢. This proof works by contradiction. Suppose that Tl 5., .
Let 1, ...,%, € II7] be assumptions such that o1, .., ¢, Falal 0. By Lemma we then
have []ir, ..., [7]tn Fael [7]e. Since 91, ..., € Tl we have that [z]¢, ..., [7]¢, €T,
and therefore, T o) [1]e. Since T is complete and [r]p ¢ T, —[n]p € . But this leads to a
contradiction. Therefore T'I7] Folal ©.

Since TI7I 1,1 ¢, by Theoremwe have that there is some © € R(I'™]) which derives no
resolution of ¢. Now take any 5 € R(p). Since O lfyal 5, the set © U {=} must be consistent.
Otherwise, we would have had © k4o 8 since we would have had that ©,—f 4o L, which by
the rules of negation leads to © 4o = and then we can apply double negation elimination
since § is declarative. This means that © U{—/3} is consistent, and since it is build up of relevant
formulas for «, by Lemma we can extend it to some Ag € RTDs(«).

Now consider the state T'= {Ag | B € Rl (¢)}. We claim that {T'}RYT and that (T o«
. We will first prove the first claim.

For this, we will take some [r]¢ € T, which means that ¢ € I'l7l. Since © is a resolution
of TI"l it contains some resolution ~ of ¥. This means that every Ag Fgal Y as well, and
thus, in turn, there is some resolution 7' € Ryjai(¢) in each Ag. Since Ag is an RTD of «, we
can conclude that fya(¥) € Ag for each 8 € Ryjai(¢). Therefore, fyai(?0) € (T, and thus,
N T Fyal P. Therefore, (T Fyjar ¥ whenever [r]ip € ', which means that {T'}RT.

Then we still have to prove that ()T 9 ¢. Towards a contradiction, suppose that (7 Fga|
. Since (T is a set of declaratives, by Corollary we have that (T Fya S for some
B € Raai(p). Since Ag € T, we have that (T C Ag, so we would also have Ag Fya S.
However, this leads to a contradiction, since by construction =3 € Ag and Ag is consistent.
Therefore, (T t51a ¢, which proofs the lemma. O

However, unlike in |EL, this will not be enough to prove the finite support lemma for [7]e.
Normally, one would suppose that (]S sl [7]e, and therefore conclude that there must be a
I' € S such that [7]¢ ¢ I'. However, this does not work for IE-PDL, since [r]¢ is not necessarily
declarative. Therefore, we will need to prove an additional result.

Lemma 3.48. For all formulas ¢ € C(a), if we have that (T Vgal @ implies M, T (= ¢ for
all states T, then for each S, (S Valal 7] implies M*, S B [n]e.

93

CHAPTER 3. INQUISITIVE EPISTEMIC PROPOSITIONAL DYNAMIC LOGIC

Proof. This proof works by induction over m. We will start by assuming that for all states T,
N T Haal @ implies M, T B~ .

a: Suppose (S Fyial [a]e. Since [a]p is declarative, this means that there is some I' € S
such that [a]r ¢ T'. Then by Lemma we get that there exists a state {T'}RST such
that (T tyial ¢. By the assumption we then get that M<, T [~ . Then by Definition
we get that SRYT. Therefore we get that M%, S el [a]e.

?9p: Suppose (S Folal [?9]. Then we also get that (.S Fyal ¥ — . Now by the step for
implication we get that M, S ~ ¢ — ¢, which means that we get M*,S [~ [?¢]¢ by
Lemma [3.18] as required.

For the inductive hypothesis, take some arbitrary programs m; and o and assume that for all
states S and formulas ¢:

o if (S el [m1] then M, S - [m1]p.
o if (1S tgrar [m2] then M*, S B [ma]e.

m1;me: Suppose (S Fael [71;m2]p. Then we also get that (S el [m1][m2]e, and by the
assumption M, S B~ [m1][m2]¢. By Lemma we then get M<, S [~ [r1; m2]p.

71 U ma: Suppose (S Fylal [r1 Uma]l. Then we also get that (S Fyjal [m1] A [72] @, which means
that either (S g [m1]e or (1S Vol [m2]e. By the inductive hypothesis we get that
M, S W [mi]p or Me, S B~ [ma]lp, which means that there must be some state T such that
SRS T or SRy T where M, T [~ ¢. This means that SR ., T as well, and therefore
M*>, S |7é H7T1 U’iTQ]](p.

mi: Suppose (S Vel [77]p. Then we also get that (.S e A<, <o [77]p, and thus

NS Hopal [7*]p for some 1 < m < 2%l By the steps for sequence and the inductive
hypothesis, we then get that M®, S j= [7™]¢p for that 1 < m < 2/, By Deﬁnition this
means that M*, T }~= ¢ for some SR?TT. By Deﬁnitionwe get that SR?; T. Therefore,

M, S [m]e.
This proves the lemma. O

Since [7]¢p is always a declarative formula, we can use the same method as in |EL here, which
means we will only need to establish an analogue to Lemma [3.47]

Lemma 3.49. Let I' € We. For all formulas [r]e € C(), if [t]¢ € T, then (R (T) Haial .

Proof. Suppose that [r]ep € T, and let R(p) = {51,...,8n}. By Lemma we know that
[r]e 4= [7]B1 V- -+ V [7] B, which means that we also have [7]f1 V -+ V [7] B, ¢ T. Since T is
consistent, it can therefore not contain any of [7]f1, ..., [7] 5.

Because of this, by Lemma there exists a state T; such that {T'} R2T; and (T} Kol Bi-
Now we have that T; C RY(T"), and therefore (\R2(T") C (T;. Since (T} toal Bi, we also have
that (YR (T") tger Bi- Since [NRE(T) is a set of declaratives and does not derive any resolution

of ¢, by Corollary we get that (\RE(T) Hojal ©. O

Now we have all the ingredients to go and prove the support lemma.

Lemma 3.50 (Finite Support Lemma). For any S C W?* and any ¢ € C(a), M*, S |E p <—
ﬂS }_2|o¢\ @Y.

o4

3.8. AXIOMATISATION

Proof. This proof goes by induction on the structure of formulas ¢. The cases for atoms and
falsum are trivial, so we will only show the proofs for the other connectives.

For the inductive hypothesis we will take two arbitrary formulas ¢1, @2 € C(«) such that for
all S:

° ﬂS Falal ©1 iﬁM“,S’|:<p1
° ﬂS Falal ©2 iffMa,S':@Q

conjunction: (]S Fyal 1 A o is the case iff (1S Fyal w1 and (S Fajal @2. Then by the
inductive hypothesis we get that this holds iff M* S | ¢; and M*,S = ¢2. Then the
support condition for conjunction tell us that this is the case iff M*, S E ¢1 A a9, as
required.

implication: Suppose (]S Fyial 1 — ¢2. Now consider any state T' C S such that M*, T |= ¢.
By the inductive hypothesis, we get that (T Fyial @1, and since T C S, (NS C T, so
AT Faal 1 — 2. Therefore, we get that (T Fajal 2, and thus by the inductive
hypothesis M, T |= ¢2. And since this works for any substate T' with M* T = o1, we
get that M, S = o1 — ¢a.

For the other direction, suppose that (S F51a1 1 — ¢2. This implies that (.S, @1 ol ©a,
and thus, by Lemma NS, B alal @2 for some B € Ryjai(p1). Then by Lemma [3.42]
there is also some resolution 5" € [JRTD () such that 8 € Ryjai (1) and (S, B’ Halal @2.
Now let Tg: = {I' € S| f/ € T'}. By definition we have 8’ € (\Tp, and thus (T Faiel 1
by Corollary All is now left to show that (T Hoial pa2.

Assume that (T Fgjal 2. Then by Corollary N Ts Falal v for some vy € Rojai (p2).
This means that by Lemma there is also a 7' € Ryjal(p2) such that 7' € [JRTDy(«)
and (Ts,7 Falel p2. Andsince Tgr C RTDy (), v € (\Tp. Thusforany I’ € T/, v/ € T.
As a consequence of this, I o) 8/ — 7/ and by Lemma thus also 8’ —+' € T.

Now consider any I' € (S\ Tp/). Then 8/ ¢ T', so =8’ € I'. The we get I' byl 8/ — 7/
and thus 8/ — ' € I'. Therefore 8/ — « € T for all T' € S. We can now conclude
B —= " € NS, and thus S, Faal 7' and S, 8" Fyal p2. But this contradicts our
earlier assumption of (S, 5" el @2, thus (Ts el @2. By the inductive hypothesis,
this gives us that M, T = wo. And since (T Fyial 1, by the inductive hypothesis
M, Ts |= 1. Then, by the support conditions for implication we get M*, S & ¢1 — 2,
as required.

inquisitive disjunction: Suppose (]S Fyal 1 W ¢a. Because [)S is a set of declaratives, by
Corollary we get that (S F S for some 8 € Ryjai(p1 WV p2). By the definition of
the resolutions, this 8 is either a resolution of i or ¢9, and therefore, (]S Fqyal @1 or
S Falal w2, and thus M, S |= @1 or M, S |= @2 by the inductive hypothesis. In both
cases, M, S |= p1\V pa.
For the other direction, suppose M* S = v1\ 2. Then by the support conditions for in-
quisitive disjunction we get that M* S |= 1 or M*, S |E . By the inductive hypothesis,
this means that either (.S Fyal ¢1 Or (S Faal p2. In both cases (S Fajal 1V 2, as
required.

[7] modality: Suppose (]S Fgjai [7]e. Then by Lemma we have that for all SR2T,
N T kgl ¢, which by the inductive hypothesis entails that M*, T = ¢. By the support
condition for [7]ep, this means that M, S = [r]e.

95

CHAPTER 3. INQUISITIVE EPISTEMIC PROPOSITIONAL DYNAMIC LOGIC

For the other direction, we make use of Lemma [3.48] By the inductive hypothesis we have
that T gl @ implies M T (= ¢ for all states T', so we can simply invoke the lemma,
which then gives us that (S Vgl [7]e implies M, S B~ [r]p. After an application of
contrapostion we then get M“, S |= [r]p implies (S Fayai [7]p, as required.

[7] modality: Suppose (S Fyjal [7]¢, which means that by Lemma we get that for all
I' e S, NRYT) Fgal . Then by the inductive hypothesis we get that for all T' € S,
M, r2(T") E ¢, which, by the support condition of [7]p gives us M*, S |= [¢], as required.

For the other direction, suppose (S 5a [7]¢. Then there is a I' € S such that [7]p €T,
since [y is declarative and I' is complete with respect to C(c). Then, by Lemma [3.49| then
we get that (\RY(T) tgal . By the inductive hypothesis this leads to M< R (T") [¢,
which in turn means that M<, S |~ [r]¢. By contraposition, we now get that M, S = [r]e
if and only if S Fyjal [7]p, as required.

This completes the lemma. O

With the finite support lemma in place, we can now prove the Completeness theorem. The
following proof is adapted from [2] and [9]. Since this proof will heavily use the resolutions of ¢,
here we run into the problem that we will also have to deal with formulas that might not be in
the closure of some resolution « of ¢, which adds some extra complexity to this proof.

Theorem 3.51 (Completeness theorem). If for some n € N, I/, ¢, then there is some m € N
such that t/,, ¢ and there is a model M and a state s such that M, s = ¢, where |W| < m.

Proof. Suppose t#,, ¥ for some arbitrary n. Now we have to find an m € N such that /., ¢ and
construct a model M with a state s such that M, s [~ . But before we do that, we will first
look at the resolutions of .

By Theorem we know that t/, a for any a € R,,(¢0). Now pick the longest a € R, (¥).
We now claim that we can take the m to be 2/°l or n and the model M to be M® as defined in
Definition [3:20} For the first we will have to consider two sub-cases, either ¢ is 7* free, or it is
not.

In the first case, yja ¢ and o) 1 by the contraposition of Proposition [3.28 In the second
case, we yet again have to consider two sub-cases, either the 7* in v is declarative, or it is not.
In the latter, we can use the contraposition of Proposition [3.27] and the fact that for formulas
with a non-declarative 7*, the length of the resolutions will at least be 2™ to get ya) ¥ and
Falal 9. In the former, either n < 2lel in which case we can apply the same reasoning as before,
or 2/l < n, in which case we can take n = m.

Now we have found an m, we only have to build a model for which |W| < m. The model M*
as defined in Definition [3:20] has this property. Left to show is that there is a state s such that
M s [~ . Since ~a € C(a) and tgial «, the set {—a} is consistent, and a subset of C(a), so
it can be extended to a I'y, € RTD¢(a). Since C(«) could contain other resolutions of ¢, we will
have to repeat this procedure for every 8 € (C(a) N Rojal (¥)).

Now we can take the state S = {I'g | 8 € (C(a) N Raai(p))}. We claim that M, S B~ 1.
In order to show this, assume that M, S | ¢. Then by Proposition there must be some
Bl € Ryjai (1) such that M*, S |= 5. Now there are two cases:

* 5i ¢Cla)
e BieCla)

o6

3.9. CONCLUSION

We will start with the second one. This would mean that (S Fya1 57, and thus that g € Lgr,
since I'g: © () S. But this is impossible, since I'g; is consistent and contains =, by construction.
Thus M“, S ¥ 5.

The proof for the first case goes by induction on the structure of). The cases where 1 is
declarative are trivial, for if ¢ is declarative, ¥ = o = 3], so 3 € C(a) by the definition of C(«).
In particular, this proves the base cases for v is a propositional atom and for ¢ = L.

For the inductive hypothesis, take two arbitrary formulas x; and x2 such that:

o for all y1 € Ryjai(x1), M, S F~ 715
o for all y2 € Ryjai(x2), M*, S = 2.

X1 A x2: For any v1 A y2 € Rajai(x1 A X2) not in C(«), either v; € C(a) or 72 & C(«). So by the
inductive hypothesis, M, T = v1 A 7.

x1 WV Xx2: This one follows directly from the inductive hypothesis.

X1 — Xx2: If ¥ = x1 — X2, then every I € S is based upon the negation of a conjunction of implica-
tions. That means that there must be some v, € (Rqjal(x1) NC()) such that M* T = v
but not M, T |= x2 for some x2 € (Rajal(x2) NC(a)) for each T' € S. This means that any
resolution of y; — x2 is going to run into some world I' € S where on of the implications
in its conjunction will be false, making the resolution false.

[7]x1: This formula is declarative, thus this is trivial.

[7]x1: This case goes by induction on the structure of programs. The case for atomic programs
is trivial, since [a]¢ is declarative for all ¢, and the other cases will all use the step for
implication, since 7w cannot be a declarative program, since then [r]x1 is declarative as
well. Therefore, all the resolutions for [r]x; that need to be considered are conjunctions
of implications, which go by the step for implication.

This ends the proof for the second case and shows that M*, S £ 3] for all 8; € Ryjai(¢0). But
this contradicts our earlier assumption, so therefore M*, S [~ 1, as required. O

This concludes our proof that the given axiomatisation of IE-PDL is complete with respect
to its semantics.

3.9 Conclusion

In this chapter we introduced the new logic IE-PDL, about which we have proven some properties
which are familiar from inquisitive semantics. We have also found several reduction axioms for
the new language, and we have shown that every IEL formula can be translated into an equivalent
sentence in |IE-PDL. Lastly, we have given an axiomatisation for |IE-PDL and proven that this
axiomatisation is complete.

o7

Chapter 4

Logic of Communication, Change,
and Issues

4.1 Introduction

This chapter will introduce the main new result of this thesis, namely the Logic of Communic-
ation, Change, and Issues (LCCl). Here we will combine the ideas from [18] and [22] to build an
inquisitive version of LCC.

This chapter will start off with extending the action models from AMLI into update models
for LCCI by defining a substitution for each action. We will then give an update mechanism that
will execute the update models in IE-PDL models. We will then discuss some examples of things
that we can now model in LCCI. After that, we will show that LCCl has the same properties that
one would expect from an inquisitive logic. Then we will give a reduction procedure to reduce
LCCI to IE-PDL and use that to give a sound and complete axiomatisation of the system. We
will end this chapter with examples of those reduced sentences.

4.2 Definitions

4.2.1 Syntax

Unlike in AMLI, the syntax for LCCl will be given in one definition. This is because in AMLI is it
possible to have an AMLI formula as a precondition for an action. For our purposes, this extra
expressivity is not necessary, but does lead to complications down the line. Therefore, we will
say that the preconditions for all actions have to be IE-PDL formulas.

The language of LCCl is the same as the language of |IE-PDL extended with an update
operator [U,s] ¢, which says that after the execution of some event in s, which is a set of events,
@ is supported.

Definition 4.1 (Language of LCCl). Given a finite set of propositions P, a set of relational
atoms A, and an LCCl update model U, with p ranging over P and a ranging over A. The
language of LCCI is given by:

p=p|LlpiApa[p1Voa |1 — w2 |[n]e|[r]e][U,s]e
mi=al|le | myme | M Ums | TF

o8

4.2. DEFINITIONS

We will use the same abbreviations as with |IE-PDL with the following additions:

[s]e = [U,s]¢ where U is clear from context

le] o = [{e}] ¢ where e is a single event

4.2.2 Update Models

The update models of LCCl combine the insights of AMLI and LCC into one model structure.
This means that we take the structure from LCC, but replace the relationships between events
by an epistemic state map as in AMLI. This gives us the substitutions from LCC, which drive
factual change, and allows us to model agents interest into the different actions, as in AMLI.
Unlike in AMLI we will not enforce the properties of factivity and introspection on the state
maps. This is to show that these properties are not necessary for the technical results of this
section.

Definition 4.2 (Update Models for LCCl). Given a set of agents A an update model for LCCI
is a quadruple U = (E, A 4, pre, sub) where:

e E={ey,...,e,} is a set of events

e Ay ={A, | ac€ A} is a set of inquisitive state maps that assigns an inquisitive state to
each event e;.

e pre: E— L’!E'PDL a function that maps every event to its precondition
e sub: E — SUBjeppL, a function that maps every event to its substitution.

These models are just like the Inquisitive Action Models from Chapter 4 of [22], with the sub
function from LCC, which is what drives factual change. This means that for events that do not
require factual change we can simply use the empty substitution €, which maps every formula
onto itself. Examples of this can be seen in Examples and below.

One thing to note about the substitutions is that they only map propositional atoms to
declarative formulas. This is because we deal with factual change, and not with the creation of
questions. However, this does not mean that events with a substitution cannot raise issues. This
happens in the same way as announcements raise issues, and can be seen in Example [4.4]

4.2.3 Update Execution

Update execution is also a combination of update execution in LCC and AMLI. Here we take the
update of the valuation from LCC, and the update of the state maps from AMLI. This gives the
following update procedure:

Definition 4.3 (Update Procedure for LCCl). Given an IE-PDL model M and a LCCl update
model U, M oU = (W', V', R;) is the result of executing U in M, defined as follows:

o W = {(w,e) | M,w [= pre(e)} is the new set of possible worlds
o V'(p) ={(w,e) | M,w [=sub(e)(p)} is the new valuation
ot € X ((we)) iff m(t) € Xo(w) and ma(t) € Ay(e). Here mp and w2 are the projection

operators from Definition 2:23]

99

CHAPTER 4. LOGIC OF COMMUNICATION, CHANGE, AND ISSUES

Since our possible worlds are now ordered pairs of worlds and events, our states are now sets
of ordered pairs of worlds and events, as in AMLI.
We will now need to show that the model M o U is an |IE-PDL model.

Proposition 4.1. For any IE-PDL model M and any LCCl update model U, M oU is an IE-PDL
model. That is to say, for any agent a and any wordl (w,e) € W', ¥/ ((w, e)) is non-empty and
downward closed.

Proof. Since both ¥, (w) and A,(e) were downward closed and non-empty, X/ ((w,e)) is also
downward closed and non-empty. O

4.2.4 Semantics

Lastly we have to extend the support definition for IE-PDL a bit to account for the new [U, €]
operator. For this, we will have to give a definition of updated states in LCCI as well.

Definition 4.4 (Updated state). Given an |IE-PDL model M, a LCCl update model U, an in-
formation state s in M, and a set of events s in U, the updated state in M o U is s[U,s] such
that:

s[U,s] = {(w,e) |w € s,e€s, M,w |= pre(e) }

Definition 4.5 (Support for LCCl). The support conditions for LCCI are the same as those for
IE-PDL, with the following addition:

M,skE=[Uyslp < MolU,s[U,s]E¢

4.3 Examples

Before we look at the properties of this system, we will first give some examples of how the
system works. For this we will yet again refer to the game of Citadels. We will start by using
the same situation as in Section 3.4l We will assume that Claire has selected the Condottiere as
her character. Now the game starts off with Alice calling for the king to reveal themselves. Since
no one has this card the turn of the king is skipped, and we move on to the next character.

Example 4.1 (Public Announcements). Since no one has the king, Alice calls for the Preacher,
and reveals that she has that character. This is similar to a public announcement that Alice
is the Preacher. In LCCl we could model this by making an update model with one action,
namely the action with ap as a precondition, the empty substitution e as the substitution, and
an epistemic state map which for all agents is A(e) = {{e},?}. This closely mimics the standard
behaviour for public announcements.

Example 4.2 (Raising Issues). The situation becomes more interesting when Alice is done with
her turn and calls for the Merchant. Every player has passed on the merchant, but this is only
known to Claire. However, calling for the Merchant does raise the question whether anyone
picked that character. We can also model this in LCCI. For this we need three events: one in
which Bob picked the Merchant as a character, one in which Claire did that, and one in which
neither of them picked that card. The precondition for the first event, e;, is bm, since in this event
Bob picked the merchant. The precondition for the second event, e;, the one where Claire picked
the merchant, is ¢m. The precondition for ez is =bm A —c¢m, since in this event, neither player
picked the card. Since this example does not involve factual change, all the events will have an
empty substitution. The state maps for the events for the different agents are as in Figure [£.1]

60

4.3. EXAMPLES

Since Alice does not know which cards the other players have selected, all the events are
possible for her. She is interested in which of the events is the actual one, since this is relevant
for the continuation of the game. Bob knows that e; cannot be executed, since bm is not true in
the actual world, so he can distinguish between e; and the other events. Since Claire put away
the Merchant, she can distinguish between all the events, since she actually knows where the
card is. This question does not raise any questions for her, since she already knows the answer.

For each possible world, only one event can be executed, thanks to the preconditions. This
makes showing the outcome of an event easier to see. In Figure [L.1d] the accessibility relation
for Bob is given, in the same manner as in Section Note, however, that the worlds on the
horizontal axis differ in which card Claire has, since we now know that Alice is the Preacher. We
can see that after Alice has called for the Merchant, Bob now wants to know if Claire has the
Merchant (M, {(wig,e3)} = [b](em\ —cm)). This is because there are three states reachable
from Ry, which are (), where everything is supported, {wi9,e3}, where —cm is supported, and
{w1s, €2}, where cm is supported. This is also the wanted outcome of the update.

Now as soon as Claire says that she is not the merchant, this counts as a public announcement
which works similarly to Example

——————————————— P

I ! i I !
0 ! t 2)/

(a) The State maps for Alice (b) The State maps for Bob (c¢) The State maps for Claire
after she called for the Mer- after Alice called for the Mer- after Alice called for the Mer-

chant. chant. chant.
ck cp ca cm cc
R) i (N N !
bk [ws,es wg,ea} | Wiz, €2 w17, €3 |1
| ol)
Y N \‘w‘
bp || w1, €3 wlan3J || w14, €2 w1, €3 |1
-«) o J J)
e — | FEEEssssT T T sssssss)
|
ba | W2,€3 wg,e3} I wis, €2 W19, €3 |
| |
e) e J)
o N v‘
bm ||l W3, €1 wr, €1 w11, €1 Wa0,€1 |
-~ oL
e — Y
be ||l wa,e3 ws, €3 Wiz, €3 W16, €2 ||
.00)

(d) The relations for Bob after Alice called for the merchant.

Figure 4.1: The state maps and relation for Bob for Example

Example 4.3 (Public Factual Change). Now we have arrived at Bob’s turn. He starts his turn
with taking two gold coins, in order to have more money to spend on building buildings. We can
also model this action in LCCI, by the use of our factual change mechanism. For this, we need
to make an update model with a set of events, one for each number of coins that a player can
get at once. Since this event happens out in the open, all of these events are distinguishable, so
for all agents and each event it is the case that the state maps only contain a set with the event
itself and the empty set. None of the actions have preconditions, so for each event we have that

61

CHAPTER 4. LOGIC OF COMMUNICATION, CHANGE, AND ISSUES

pre(e) = T. The substitutions do get more interesting now. Let’s have a look at the substitution
for the event in which Bob takes two coins. Let ¢bl stand for the proposition that Bob has one
coin, let ¢b2 stand for the proposition that Bob has two coins, etc.

For this substitution we want to represent the idea that Bob has picked up two coins. We
can do this by mapping each proposition to the proposition that represents that he has two coins
less. If that second proposition was supported before the update, then the first will be supported
after the update. We can write this in the following way:

sub(ez) = {¢b10 — ¢b8, ..., cb3 — cbl, cb2 — T,cbl — T}

We have to map ¢b2 and cbl to T, since these are most certainly true after picking two new
coins. If we were to do this for every number of coins that a player could pick, we would get a
full model for the economics in Citadels.

Example 4.4 (Private Factual Change). Besides factual change that is known to everybody, we
can also model factual change that is only known by some. An example of such a situation in
Citadels is the acquisition of building cards. If we continue where we left off in Example we
now get to the point where Bob uses his character’s special ability, which allows him to pick up
two cards, which he can then use for building. We will model the picking up of two cards as the
picking up of one card twice. Let hylb stand for the fact that the yellow building of cost one is
in the hand of Bob, hy3b stand for the fact that the yellow building of cost three is in the hand
of Bob, etc. and let bylb stand for the proposition that Bob has built the yellow building of cost
one. For the building of the events, we will only focus on one example for the precondition and
substitution, namely Bob picking up the green building of cost 5.

You cannot pick up a card if this card is already in your hand, or if you have already built
the building corresponding to it. We can encode this in the precondition by stating this in a
formula:

pre(e) = —hgbb A —bgbb

The factual change that happens is that you now have this card in your hand. We can do this
by mapping the proposition onto T:

sub(e) = {hgbb+— T}

The state maps can differ per person. For the sake of explanation, let us assume that Alice
does not care which card Bob picked, but Claire does. We can use this to shape the state maps.
As before, this means that for Alice we need to have that from each state, the state with all
events is reachable, whereas for Claire all the relations for the singleton states only need to be
reflexive. These state maps can be found in Figure

As can be seen in the examples, using LCCl we can model some aspects of the game which
could not be modelled beforehand. On the one hand we can now model the agents interest in
the questions and events that transpire around them, as in Example £:2] which is something
that was not possible to do in LCC and similar languages. On the other hand, we can now have
events that effect the world in other ways than just epistemic events, as in Example [£.3] which
is an improvement upon AMLI. The combination of both is also a possiblity, as can be seen in
Example [£:4] This makes LCCl more expressive than either of its inspirations.

4.4 Properties

For LCCI we also want the properties of persistence and the empty state property to hold.

62

4.4. PROPERTIES

i) N () ()
| |
! €r1 €r3 €r5 ! ! €r1 €r3 €r5 !
| ! [\) . J = 1
| ! 1 !
} 1 }f N e) e \;
: €g1 €g3 €g5 | | €g1 €g3 €g5 |
! | i J L J U h
! ! 1 !
! | — Y)
| eb1 €b3 €p5 |, | eb1 ep3 €p5 |,
! |) W))/
! | 1 !
! | I N N o}
7! €y3 €5 |, i &1 €y3 €5 |
e —

(a) The state map for Alice for Bob (b) The state map for Claire for Bob

picking a card. picking a card.

Figure 4.2: The state maps for Alice and Claire for the action of Bob picking a card.

Proposition 4.2 (Persistence for LCCl). For any LCCI model M and any state s in M, if
M,s ¢ andt C s, then M,t = ¢

Proposition 4.3 (Empty state property). For any LCCl model M and any LCCl formula ¢,
M,0 = .

Proof. The proof for both propositions is the same as that for |[E-PDL, (Propositions[3.1]and[3.2))
with the exception of the proof for [U,s] ¢, so only the proof for that formula will be given.
M,s = [U,s] iff MoU,s[U,s] = ¢. Since ¢[U,s] C s[U,s], M oU,t[U,s] = ¢. This is the same
as M,t = [U,s] ¢.

M., E [U;s]e iff M oU,0[U,s] = ¢. Since 0[U,s] = 0, this follows from the inductive
hypothesis. O

Like in AMLI, our [U,s] ¢ operator has these properties as well.

Proposition 4.4 (Modal persistence property). For any IE-PDL model M, any state s in M, any
LCCI update model U, and any set of events's, if M,s = [U,s] ¢ and t Cs, then M,s = [U,t] ¢.

Proof. M,s |=[U,s]¢ <= MoU,s[U,s] = ¢. Since s[U,t] C s[U,s], from Proposition 4.2 we
get MoU,s[U,t] Ep <= M,s = [U,t] . O

Proposition 4.5 (Modal empty state property). For any IE-PDL model M, and state s in M,
any LCCl update model U, and any LCCI formula », M, s = [U,0] ¢

Proof. M,s = [U,0l¢ <= MoU,s[U,0] = ¢. Since s[U,0] = 0, we get M o U, D = ¢, which
is true by Proposition Therefore, M, s = [U, 0] ». O

4.4.1 Declaratives

Just like IEL, AMLI, and IE-PDL, LCCI has a declarative fragment. This fragment is the same as
that for IE-PDL, with the addition of [U,s]a.

Definition 4.6 (Declaratives of LCCl). The declarative fragment of LCCl is given by:

a:=p|L[[e]|[@le]|lrlalVUs]alarnas e —a

63

CHAPTER 4. LOGIC OF COMMUNICATION, CHANGE, AND ISSUES

Proposition 4.6. The declarative fragment of LCCl is truth-conditional.

Proof. The proof for most of the formulas is the same as that for IE-PDL, (Proposition SO
we will only show the proof for [U,s] a.

M,skE=[U;sla <= MoU,s[U,s] Ea
<= for all (w,e) € s[U,s],MoU,(w,e) =«
< for all (w,e) € W such that w € s and e € s,
MoU,(w,e) Ea
<= for all w € s such that (w,e) €W and e € s,
MolU, (w,e) =«
< forallwes,M,w[U,s| F«
— forallwes,M,w k= [U,s|a

As one might expect, we also have a similar result for sets of actions, as in AMLI.
Proposition 4.7. If a is truth-conditional, then [s]a <= ., [e]a.

Proof. Since both formulas are truth conditional, we only have to show that they have the same
truth conditions.

M,wE[Ussla < MolUw[s] Fa

foralle e s, M oU, (w,e) E «

for all e € s, if (w,e) € W', then M o U, (w,e) F «
forallees,MoU,wle] F a

for alle € s, M, w |= [e]

M,w)z/\[e]oz

ecs

[N

4.4.2 Resolution

Like in IE-PDL and its predecessors, LCCl also has resolutions. Since LCCI is based on IE-PDL,
the resolutions for LCCI also need to be based on the maximum number of worlds in a model.

Definition 4.7 (Resolutions for LCCI). The resolutions for LCCl are defined as the resolutions
for IE-PDL (Definition [3.8)) extended with the following:

Ra([U,s]) = {[U,s]a | a € Ru(p)}

We now also get all the usual properties for resolutions.

Proposition 4.8. For any M, s, and p, M,s |= ¢ <= for some a € Ry |(v), M, s = a.

64

4.5. REDUCTION

Proof. This proof works the same as Proposition with the addition of [U,s] ¢, so only that
proof is given.
M,sE[U;slp <= MoU,s[s| EF¢
< MoU,sls|] = a for some a € Ry (p)
<= M,s = [U,s]a for some a € Ryyy|()
<= M, s |= « for some a € Ry ([U,s])

Corollary 4.9 (Normal Form). For any M, s, and ¢, M,s = ¢ <= M,s =\ Rjw|(v).
Proof. The proof is the same as Corollary [3.7] O
Corollary 4.10. For any M, s, and ®, M,s = ® <= for some I' € Ry (®), M,s = T.

4.5 Reduction

Now that we have seen how the system works and what its properties are, we can start to think
about what the axioms for this system are. For this, we can look at the axioms from AMLI and
LCC and combine their features so it fits with our system. For both of these systems, all axioms
are reduction axioms, since these languages are not more expressive than their underlying static
languages. Since this is also the case for LCCl, we should therefore be able to use a similar
technique.

4.5.1 Atoms

As is usual, we start with giving the reductions for propositional atoms and 1. Since any
propositional atom is truth conditional, and the substitution for a propositional atom will also
always be truth conditional, we can prove the reduction for propositional atoms in terms of single
actions and worlds.

Proposition 4.11. For any IE-PDL model M and any state s in M, M,s = [U,e]p <=
M, s |= pre(e) — p™b(e),

Proof. Since both statements are truth conditional, we only have to show that the truth condi-
tions are the same.

M,wl= [Uje]lp <= MolU,wle] Ep
< wle]=0or MolU,(w,e) Ep
— wle] =0 or M,w = p™°©
— if M,w |= pre(e), then M, w |= p>*()
— M,w = pre(e) — p*©

Now the following follows from the previous proposition and Proposition [£.7}

Corollary 4.12. For any IE-PDL model M and any state s in M, M, s |= [U,s|p <= M,s
Aees(pre(e) = p°(@)).

65

CHAPTER 4. LOGIC OF COMMUNICATION, CHANGE, AND ISSUES

Using a similar method we can also derive a reduction equivalence for [U,s] L.

Proposition 4.13. For any IE-PDL model M and any state s in M, M,s = [Uje] L <=
M, s |= —pre(e).

Proof. Since both formulas are truth conditional, we only have to show that the truth conditions
are the same.

M,wE[U,e]L < MoUwle =L
— wle]=0
<= M,w £~ pre(e)
<~ M,w |= —pre(e)

O
Corollary 4.14. For any IE-PDL model M and any state s in M, M,s = [U,s] L < M,s E
/\eEs ﬂpre(e) .

4.5.2 Conjunction and Inquisitive Disjunction

Like in both AMLI and LCC, we can distribute a dynamic modality across a conjunction.

Proposition 4.15. For any IE-PDL model M and any state s in M, M,s | [U,s] (p AY)) <=
M,s E[U,s] o A[U,s] 4.

Proof.

M,s = [Us](pAY) <= MoU,s[s] =N
< MoU,s[s]Epand MoU,s[s] =
<~ M,s = [U,s]g and M, s = [U,s] v
<~ M,skE=[U,s]oA[U,s|y

We can use a similar reduction for Inquisitive Disjunction.

Proposition 4.16. For any IE-PDL model M and any state s in M, M,s = [U,s] (p V1)) <
M,s = [U,s] oWV [U,s] 5.

Proof.

M,s = [U;s] (Vo) <= MoU,s[s| = oWV
<= MoU,s[s| EFpor MoU,s[s| E
<~ M,skE=[U;s|por M,s = [U,s]¢
<~ M,s k= [U,s]pWV[U,s]v

66

4.5. REDUCTION

4.5.3 Implication

As in |22] we do not have that [s] (¢ —) <= [s|]¢ — [s]®. This still makes it possible to
reduce the formula [s] (¢ — ¢), but we will have to do it using the normal form. However, like
in AMLI, we can reduce [s] (¢ — %) if s is a singleton.

Proposition 4.17. For any IE-PDL model M and any state s in M, M,s |= [U,e] (¢ = ¢) <
M,s = [U,e] ¢ — [U,e] .

Proof.

=: Suppose M,s | [U,e] (¢ — ¢). Then we get M o U,sle] = ¢ — ¢ from the support
condition for [s]. Now take any ¢ C s such that M, = [U,e]p. This means we get
MoU, t[e] E ¢ and by the support condition for implication M o U, t[e] = 9. In turn, this
means that M, ¢ = [U, e] ¥, which means we have M, s = [U,e] ¢ — [U, €] .

<: Suppose M,s | [U,e]o — [U,e]tp. Take any t' C s[e] such that M o U,#' = . Let
t = m1(¢'), so by the definition of updated states ¢ [e] = ¢'. Since we have M o U,t[e] = ¢,
M.t | [U,e]p. From the support condition for implication we then get M,t = [U,e] 4,
and therefore M o U, t[e] = ¢. Since t' was chosen arbitrarily, we can then conclude that
Mo U, sle] = ¢ — ¢ and therefore M, s = [U, €] (p — o).

O

While we cannot lift this to a full set s like we did with [U, €] p, we can use this together with
the normal form to get a full reduction of the formula.

4.5.4 Modalities

Because of the way in which programs work in LCCI, reducing formulas with modalities happens
differently from the way it happens in AMLI. However, since the logic also borrows heavily from
LCC, we can borrow some of their tricks for reduction as well.

The reduction for LCC works via so-called program transformations, which take a program
in the updated model and transform it into a program in the original model. The basic idea is
that [U,s] [r] is true in some model M iff there is a 7 path in M o U from s [s] to ¢ [t] where ¢
is supported. This in turn means there is some path s---t in M and some path s---t in U such
that in all the worlds in ¢, an event from t can be executed. Using the programs from IE-PDL
we can luckily specify exactly this condition in a formula, which we will call T (7). Eventually,
we will want to prove that s[s| Rit[t] <= sRpynt.

However, we will need to take into account that we are now not dealing with single events,
as was the case in LCC, but with sets of events instead. In particular, we cannot just check
whether agent a cannot distinguish between s and t, as we will illustrate with the following
example. Assume that s[s] R,t[t]. Now take some extra event e, such that there is no world w
in ¢ such that M, w = pre(e). In this case, t[t] =t [t U {e}], so s[s] R,t [t U {e}]. However, agent
a might be able to distinguish between an event in s and t U {e} happening, even if they cannot
distinguish between s and t. So in this case, when looking at Tslgtu { e})(a), we want to disregard
the event e, since it cannot be executed in ¢ anyway. We can do this by only looking at the
largest subsets u of t U {e} that a cannot distinguish from s, and making sure that the events in
the rest of tU {e} cannot be executed in ¢, while all the events in u can be executed. We will
have a similar problem for the set s[s], so we will also have to account for this there.

Luckily, we can check whether a set of events cannot be executed in a state by checking
whether none of the events in that set can be executed in any world in that state. Since all

67

CHAPTER 4. LOGIC OF COMMUNICATION, CHANGE, AND ISSUES

preconditions are declarative, we can test this for a set of events s’ in a state s’ with M, s’ |=
Aecs —Pre(e). This makes it possible to also trace all the ‘paths’ through (J.., Aq(e) that end
up in a subset of t that can be executed in full in ¢. If we then start all these paths from all the
subsets of s that can be executed in full in s, we alleviate all these problems. This gives us the
following definition of the translations.

Definition 4.8 (Program Transformations).

2oy =2\ e U [2\ -wre(e) 7/ (e -mre(e)

e€s s'Cs \e€(s—s’) tleUeEs' Ag(e),t/ Ct,t'#£0
7[U,slp iftCs
U) =
Tst (?SD) = s
71 otherwise

T3 (w3 m2) = U (Ta(m1); Ty (2))
uCE

Ty (m1 Ums) =T (m1) UTY (m2)
T3 (n*) = Kqg(m)

Here we take the empty disjunction to be L, so if there is no t’ for any s’ in the atomic case,
then T3 (a) =7\ e, pre(e); Uy cq (71) =7 \/eeS pre(e); 7L =71, as is also the case in LCC.

We need the additional program K3, for building paths that correspond to the transitive
closure of 7 in the updated model. For this, we need to take all the possible information states
between two states s and t into account. Intuitively, KY, () is a program for all the = paths
from s[s] to ¢ [t] that can be traced through M o U while avoiding a pass through intermediate
states which are not proper subsets of u.

An observation that helps in understanding these transformations is that ?T works well for
the empty path, which we now have to specifically account for, since, unlike in LCC, 7* is no
longer reflexive. This is done by adding ?T to each position that beforehand could have been
empty due to 7*.

Definition 4.9 (KY, transformer.). K3, is defined by recursion on E, the set with all events.

Kgy(m) = T (m)
U (KSu—en(™) ifs=u=t

ecu
U (Kslfj(u—{e})(ﬂ-) U?T); U Kb)t(u—{e})(ﬂ-) if s=u 7& t
ecu ecu
U *U?T ifso£u=t
u(u { } U Kitu—g })(W) Ut ifs#u
Ksléu (71-) = § ecu ¢ ecu (€)
U Ediwepy (@) (U&m@w
ecu ecu

U (Kl?u(u—{e})(ﬂ-)*U?T>;UKlEJt(u_{e})(ﬂ')> otherwise

ecu ecu

Now we have these transformers, we need one more result before we can get to proving
that formulas of the form [U,e][r]y and [U,e][r]¢ can be reduced. This result is that the

68

4.5. REDUCTION

translations specify that the paths in the updated model only exist if and only if there is a path
for the translated program.

Theorem 4.18 (Program transformation into IE-PDL.). For all update models U and all IE-PDL
programs T,
SRy (et < [R5t

Before we can prove this, we will need two auxiliary results.

Lemma 4.19. Suppose
SRTsltJ(W)§7 \/eEt pre(e)t < s]s R;t [t]

Then sR ()2 (et Uf there is a m path from sls] to t[t] in M o U that does not have

re(e
ect P

intermediate states u' [u'] with u’ € u.

Proof. The proof works by induction over the set of all events E.
Base case: A w path from s(s] to ¢[t] that does not visit any intermediate states can now
only be a single 7 step from s[s] to ¢[t]. Such a path exists iff

s[s|RLt[t] < SRTS?(W%?\/)t

ect pre(e

SRKS":Q (m);? \/eEt pre(e)t

Induction step: Assume that sR . 2\ pre(e)t for some e € u iff there is a m path
v ect

(m)
st(u—{e})

from ss] to t [t] in M o U that does not have intermediate states v’ [u’] with u’ Z (u— {e}). Now
we need to show that sR .y (m):7\/ t iff there is a m path from s|[s] to ¢[t] in M o U that

el
does not pass through any intermediate states u' [u’] with u’ € u.

Case's = u = t: A 7 path from s[s] to t[t] in M o U that does not have intermedi-
ate states u'[u’] with u" € u consists of an arbitrary composition of 7 paths from s to t.

By the inductive hypothesis, this is the case iff sR .y 7\ pre(e)t for some e € u iff
st—{ep) T Veer

Uy (18) 2V ot TG 12V e

Case s =u # t: A 7 path from s|[s] to ¢[t] in M o U that does not have intermediate states
u’ [u'] with u” € u consists of an arbitrary composition of 7 paths from s to u without intermediate
states v’ [u’] with u’ Z u or an empty path, followed by a 7 path from u to t without intermediate
states u’ [u’] with v’ Z u.

By the inductive hypothesis, this first requirement can be met iff

§ * u for some e € u
R(Ksl-ljj(u—{e})(ﬂ') urT)?\/ , pre(e) €

= SRUeeu (K e o 07 0TT)V, pree)

The second parts holds iff

uR . t for some e € u
K‘i(ui{e})(ﬂ'),? \/ o pre(e)

URUeEu Kitu—ten) (”)?Veg PVE(e)t

Putting these together we get

s (RUeEU (KY oy (m707T) 2\ pre(e) © RUeeu SN COL AV pre(e)) t

SRU e€u (KL o M VT)U.cy Kl on 57 Ve pre(e)”

— SRKslﬂu(Tr);? \/eet pre(e)t

69

CHAPTER 4. LOGIC OF COMMUNICATION, CHANGE, AND ISSUES

Case's #u =1t: A 7 path from s[s] to ¢t[t] in M o U that does not have intermediate states
u' [u'] with u" € u now consists of a 7w path from ss] to u[u] that does not have intermediate
states v’ [u’] with u’ Z u and either an arbitrary composition of 7 paths from w [u] to ¢ [t] without
intermediate states v’ [u’] with u” € u or an empty path.

By the inductive hypothesis, this first requirement can be met iff

for som
SRKi(u {e})(”)??\/ pre(e) W for some e € u

= sk
§ Ueew Kooty ™7 V., pre(e) !
The second step can be done iff

uR .) t for some e € u
Kt’t(u {e})(ﬂ-) L.I?T,\/eEt pre(e)

< URUeeu (K.i(uf{e}) (Tr)*U?T) i? \/eet pre(e)t

Putting these together we get

’ (RUeEu K e (e ™37V g pre(e) © RUeEU (Kb ey M 02T) 2V, pre(e)) !

<— sk . t
§ (Uecw B ten @Uees (K oy @707T) 7V pre(e))

= SRKs'iu(fr);? V.., pre(e)t:

Case's #u # t: A 7 path from s[s] to ¢[t] in M o U that does not have intermediate states
u' [u'] with u” € u now consists of a 7 path from s to t, or a = path with intermediate steps. This
inner w path would consist of a 7 path from s to u, an arbitrary composition of 7 paths from
u[u] to u[u] or an empty path, and a 7 path from wu [u] to ¢[t], all without intermediate states
o' [u] with v Z u.

This first requirement can be met, by the inductive hypothesis, iff

SRKt(u (M2 V. . Pre(e)t for some e € u

SRUeeu KsL:(u_{eH(ﬂ');? \/eet pre(e)
The first step of the inner path exists, by the inductive hypothesis, iff

f
SRKSUU(u ! v pre(e) W for some e €u

SRUE@ Kl ep M7 Vg, pre(e) !
By the inductive hypothesis, the second exists iff

uR oy u for some e € u

uu(u “h (m)*u?T;? \/e€u pre(e)

= URUeEU (K oy (m70T) 2V pree)

The last step of the inner path exists, by the inductive hypothesis iff

u t for some e € u
R :Jt(u {e})(ﬂ')??\/ ct pre(e) €

URUeEu ut(u {e})(ﬂ')v \/eEt pre(e)t

70

4.5. REDUCTION

Putting it all together we get

’ (RUeEu Koy (M7 V ¢ pre(e) Y <RUeeu K oy (M7, pre(e)®
RUeEu (Klgu(uf{e})(ﬂ')*u?—r) ;? \/eaI pre(e) © RUeeu K.i@,{e}) (m);? \/e€t pre(e))) t
° (RUeEu LSRN COL AV pre(e)V

RUeEu KSL'JJ(U—{E}) (ﬂ);Ueeu (K:JU(U—{E}) (W)*U?T) ;Ueeu K'i(u—{e}) (ﬂ);? Veet pre(e)> t
<~ sR . t
(Ueeu Kg(”*{e}) (W)U (Ueeu KSL'JJ(U*{e}) (Tr);UeEu (K'?“(U*{e}) (71’) U?T) ;Ueeu Kﬂ(“*{e}) (ﬂ')) 7 Veet pre(e))
SRK;{U(Tr);? \/eet pre(e)t

This concludes the proof. O

Lemma 4.20. Suppose sRTU(ﬂ),?\/ t iff there is a 7 step from s|[s| to t[t] in M oU. Then

er Pl

SRy (o0 V.., ore(eyt iff there is a m path from s([s] to t[t] in Mo U.

Proof. Suppose that sRTU(ﬂ)ﬂv ore(eyt 1ff there is a m path from s[s] to ¢[t] in M o U. Then,
st ’ ect

assuming that u = E, an application of Lemma yields that K3, () is a program for all the
7 paths from s [s] to ¢ [t] that can be traced through M o U, without stopovers at any v’ [u’] with

u" Z u. Therefore, sR .y (m):7\/ ore(ey Hf there is a m path from s[s] to ¢ [t] in M o U. O
Sttt Voeet

Now that we have these auxiliary results, we can go back to the matter at hand.

Theorem 4.18 (Program transformation into IE-PDL.). For all update models U and all IE-PDL
programs T,
R , t < s[s|RLt[t
SR\ _ pre(e) s [s] Rt [t]

Proof. The proof works by induction over the structure of programs 7.

Base case a: Assume that SRT;g(a);? \/eEt pre(e)t. This then means that there is some s’ C s such
that M, s |= \/ s pre(e), somes” C ssuch that M, s’ |= A s_s) 7Pre(e), that M, ¢ |= \/ ., pre(e),
that there is a t’ C t such that M,t = A ¢y —Pre(e), and that s'R,t and t' € Ugey Aa(e). By

Definition [4.3 this is the case iff s [s] R}t [t], as required.
Base Case 7p, subcase t C's:

s [s] Ryt [t] t[t] Csls] and Mo U,t[t] E ¢
tCsand M,t =[U,s]e

SRop g \/_ pree)

[

SRy)\ _ pre(e)t
Base Case 7, subcase t € s:
S [S} R/?(pt [t] <— sRot

= sByogo\ el

71

CHAPTER 4. LOGIC OF COMMUNICATION, CHANGE, AND ISSUES

Inductive Step: Now take two arbitrary programs m; and 7 and assume that
SRTSE(wl);? \/eEt pre(e)t > s [S] R;rlt [t] and SRTS'EJ(TI'Q);? \/eEt pre(e)t — S [S] R;rzt [t]

Case wy;my:

/

S [S] R(7T1 o)

t[t] <= for some u[u] C W', s[s] R, u[u] and u[u] R} t[t]

<= for some u[u] C W, SRTJJ(m);?\/ u and uRTﬁi(ﬂz)ﬁ\/

., pre(®) e
= SR (1)) 7\ pre(e)t

uCE\" s 7T ut 7 ect
= SRy imyr) pre(e)t

Case m Umy:

ss] zﬂwm)t[t] < s[s| R, t[t] ors[s| Ry t]t]
— SRTSLtJ(Trl);? \/eet pre(e)t or SRTSLtJ(Trz);? \/eet pre(e)tL
= SRy (m) Uty () 7\, pre(e)?
— sR

t
Ty (m1Um2);? \/eEL pre(e)
Case m*:

s[s| Ry .t[t] <= there is a m; path from s[s] to ¢[t] in M oU
R SRKSLiE(ﬂ'l);? \/eet pre(e)t

= SRy prele)t

O

Using this theorem, we can give the reductions for the modal operators, starting with [a]e.
Here, we run into the same problem as in [22] Proposition 14. However, since we are working
with more complex epistemic programs, we cannot use the solution employed there, which means
that we will go with the other proposed solution, which is quantifying over the resolutions.

An additional “problem” here is that the reduction can only be given for single events.
However, since both formulas are declarative, we can use Proposition [£.7] to still give a reduction
for formulas where there is more than one event.

Proposition 4.21. For any IE-PDL model M and any state s in M, M,s |= [U,e] [r]p <=
M, = Voer o) (Acel T (™1 o).

Proof. Since both formulas are declarative, we will show that it works for worlds.

M, w = [U,el[r]p <= MoV, wle = [r]e
<= M, w [= pre(e) implies M o U, U{t [t] | {(w,e)}RLE[t]} = ¢

= 20U {11t |t EtwdRyy oy ot}

“— Mo U,U{t[t]

tCE, {w}RTU (m);? \/eet Pre(e)t} |: \\/RWW((,D)

{e}t

72

4.5. REDUCTION

<= for some a € Ryy)(¢),

Mo Uv U{t [t] tC Ea {w}RT?e}t(T();? \/eEt pre(e)t}): «

<= for some a € R)y|(¢), for all (v,f) €

U{t [t] tCE, {w}RT{Ue}t(ﬂ—);? \/eet pre(e)t}7M oU, (U7f>): «@
<= for some o € R)y|(¢), for all t C E,
for all {w}R t, for all (v,f) €tt],M o U, (v,f) F «

Th (002 e

<= for some a € Ryy|(p), for all t CE,

for all {w}RT(Ue}t(’T)?? V... ore(e) b M o U, t[t] = o
<= for some a € Ryy(¢), for all t CE,

for all {w}RTFe}t(”)?? V.., ore(ey s Mt = [t] o
<= for some o € R (), for all t C E, M, s |= [T}, (m)] [t

<= for some o € Ry (¢), M, w = /\ [Tfe}t(w)] [t] o
tCE

—=MuwE\ [AL

a€R|w () \tEE

O

Proposition 4.22. For any IE-PDL model M and any state s in M, M,s = [U,s][r]¢ <=
M, s = Necel T (m)] [t .

Proof.

M,s k= [U,8] [nle <= MoU,s[s| = [xl¢

< for all s[s|RL.t[t], MoU,t[t] = ¢
<= forall t CE, if sRpy(,t then M.t |= [U,t] ¢
= M,s = \[T(] U, te

tCE

O

Using these two axioms, we can push the Action operator through any modal operator, which
will allow us to fully reduce any formula to an IE-PDL formula.

4.5.5 Full reduction

As in AMLI, we can now use these equivalences to reduce a formula of LCCl into an equivalent
IE-PDL formula. Here we also inherit the problem from AMLI that [s] (¢ — 1) can only be
reduced if ¢ — 1 is declarative. Luckily, the solution used there translates pretty well to our

setting.

The solution as used in [22] is as follows. They define a complexity measure over formulas,
since they cannot do straightforward induction on the structure of formulas. This is the case

73

CHAPTER 4. LOGIC OF COMMUNICATION, CHANGE, AND ISSUES

since the resolutions of ¢ — ¢ and [7*]¢ are more complex then the formulas themselves. This
complexity measure c has to have the following properties:

e If ¢ is a proper subformula of ¢, then c(p) > c(¢);
o If v is not a declarative, then o € R, (¢) implies c(¢) > c(a).

After this measure is defined, it is shown by induction over the structure of formulas, using c,
that every AMLI formula can be translated into an |IEL formula.

It is fairly easy to adapt this procedure for LCCl, but we have to keep in mind that for LCCI
the resolutions are defined for a maximum number of worlds, so we will also have to change the
complexity measure to account for that. Because of this, we will have to also take the maximum
number of worlds into account for the complexity measure.

This means that for LCCl we get that ¢ should have the following properties:

1. If 4 is a proper subformula of ¢, then c,(¢) > c,(¢), for all n € N.
2. If o is not a declarative, then « € R, () implies c,(¢) > c,(a), for all n € N.

A complexity measure that has both of these properties can be made by adapting and extending
the complexity measure from [22]:

Definition 4.10 (Complexity for LCCl formulas). The complexity for an LCCl formula ¢ with
respect to models with at most n worlds, ¢, (p) is defined as:

cn(p) =1

cn(L)=1
Cn(d}l A 7/}2) =1+ max(cn(qpl), Cn("/&))
cn (Y1 W) = 1+ max(cn (1), cn(¥2))

) 1+ max(cn(¥1), cn(¥2)) if ¢ is declarative
w12l =9, IRy (¥1)] + max(cp (¥1), cn(¥2)) otherwise.

Cn([7]h1) = 1+ (1)

14 cn(tn) if [7]l41 is declarative
cn(2 = 1) if T =710,
cn([n]pn) = < en([millm2]vn) if m1=mq;mo
1+ max(c, ([r1]vn), cn([m2]vr)) if @ =71 Umsg
142" + ¢, ([72" o) if =7}

Cn([s] ¢1) =1+ Cn(wl)

This definition has property [I] by construction, but we will have to show that the second
property holds as well.

Proposition 4.23. For alln € N, if ¢ is not a declarative, then o € R, (p) implies c,(p) >
cn(a).

Proof. For this proof we fix some arbitrary n € N. The steps for all but the modal operators
are as in [22], and the step for [r]¢ is trivial. Therefore, we only give the steps for [r]i. The
step for [?x]Jv goes via the step for implication, the step for 7y U ma]4 is the same as the one

74

4.5. REDUCTION

for conjunction, and the one for [m1; m2]y follows directly from the inductive hypothesis. That
leaves the step for [7*]v.

Take an arbitrary o € R, ([7*]¢). By the definition of resolutions, this will be a formula of
the form A, con am Where a,, € Ry ([7™]40). By the definition of ¢, its complexity is at most
the number of conjuncts minus 1, plus the complexity of the most complex conjunct, which by
definition is agn. This makes ¢, () = 2™ + ¢, (aan).

By the inductive hypothesis we get that if v is declarative, ¢, () > ¢, (8) for all 8 € R, ().
Then by the step for sequence we get that ¢, ([72"J¥) > c,(3) for all 8 € R,,([x%"]4). Therefore,
the complexity of our arbitrary resolution a cannot be bigger than 2" 4 ¢, ([72"Jt), which is in
turn smaller than ¢, ([7*]¢) by definition. Thus if [7*]+ is not a declarative, then o € R, ([7*]))
implies ¢, ([7*]¢) > cn(a).

Since we took some arbitrary n € N, this holds for all n € N. O

Now that we have our complexity measure, we can show that every LCCI formula can be
reduced into an equivalent |IE-PDL formula.

Theorem 4.24. For every LCCl formula ¢ there is an equivalent IE-PDL formula ¢’ such that
for all IE-PDL models M and state s:

M,sEp < MskEy

Proof. This proof works by induction on the structure of formulas. All steps are trivial, except
for the step for [s] 1. By the inductive hypothesis there is an IE-PDL formula ¢’ such that for
some arbitrary |IE-PDL model M and state s: M,s Ev¢ < M,s E .

The case for [s] Y’ now proceeds by induction on cpy(¢').

p: In this case we can apply Corollary Since pre(e) and sub(e)(p) are |IE-PDL formulas
by definition, A . (pre(e) — p**®) is an IE-PDL formula as well.

L: In this case we can apply Corollary with a similar reasoning as for p.

For the inductive hypothesis: for any formula x less complex than ¢’ and all sets of events t,
there is some IE-PDL formula x’ such that M,s = [t]x < M,s | x’.

" = x1 A x2: Now by Proposition M,s E [s]Y <= M,s k= [s]x1 Als] x2. Then by the inductive
hypothesis, we get x} and x4 such that M,s E ¢ < M,s E x} A xb, where x| A x5 is
an |E-PDL formula.

' = x1 W x2: The same as the step for conjunction, but using Proposition [4.16

' = x1 — x2: Here there are two cases, either x1 — x2 is declarative, or it is not. Lets first consider
the former. Then by Propositions and M,s E [s](x1 = x2) <= M,s =
Necs([e] x1 — [e] x2). Now take any e € s. By the inductive hypothesis, there are two
IE-PDL formulas x§ and x§ such that M,s E [e]x1 — [e]lxe <= M,s E x§ = X5
Since these formula exists for each e € s, we get that M, s = [s] (x1 = x2) < M,s
Nees(XT = X5), where A . (x§ — x5) is an IE-PDL formula.

Now suppose that x; — x2 is not declarative. In this case, we cannot apply Proposition|4.7]
so we will have to use a different method. For this different method, we can use the normal
form of a formula. Take any o € Ryy([s]%’). This a will always be of the form [s] 3
where 3 € Ryy|(¢'). Then by the inductive hypothesis, we will have some IE-PDL formula
o' such that M,s = [s]8 <= M,s E . Therefore, M,s E x1 = x2 < M,s |E
WVaeR (181001 —xa)) & Where Woer | 6l(xi—x)) @ 18 an [E-PDL formula.

75

CHAPTER 4. LOGIC OF COMMUNICATION, CHANGE, AND ISSUES

!Proposition IA l[n]
[e] p [s] (¢ A 9) U, €] [rle
pre(e) — psuble) [s] o A [s] 9 \/(XeRn(‘P) (/\th[Telg (m)] [t] O‘)
1 v]
le] L [s] (e V) U, s] [l
—pre(e) [s] WV [s] ¥ /\tgz[[TsltJ (m)] [s]»
IAUD I — RE
o €l (p = ¥) e
Aece €] @ €] ¢ — [e] ¥ xle/pl ¢ x[v/p]

Figure 4.3: The new fragment from the proof system for LCCI, for models with at most n possible
worlds.

¢’ = [r]x1: Now by Propositions 1.7 and M,s = [U,s][r]x1 <
M,s E Aecs (\/QER\W\(XI) (/\th[TsltJ(ﬂ)] [t] a)). Since a € R)yy|(¢), it is less complex
than +’. Then by the inductive hypothesis we get some IE-PDL formula o’ such that
M,s E [tja < M,s E o'. Then we get that M,s = [U,s][7r]lx1 <= M,s E

Nees (VQGR\W|(X1) (/\th[TsltJ(w)]a'>), where the latter is an |[E-PDL formula.

¢' = [r]x1: Now by Proposition m M,s = [U,s][r]xa <= M,s = Acg [T (7)] [s] x1. Then by
the inductive hypothesis we get M, s = [U,s] [r]x1 < M,s E /\tCE (T8 (=]]Xu where
/\tCE[[(m)] x4 is an IE-PDL formula.

This concludes the step for [s] ¢, and the proof. O

Now that we have shown that every LCCI formula is equivalent to an IE-PDL formula, we can
use this fact to create a complete axiomatisation for LCCI, as well as analyse some of the reduced
formulas for simple situations. The following two sections will be about these reductions.

4.6 Axiomatisation

This gives us everything we need to give a sound and complete axiomatisation for LCCl using
the reductions from Section and the inference rules for IE-PDL. Since it is based on the proof
system for IE-PDL, this proof system will also be parametrized on the number of worlds. The
new rules for models with at most n worlds can be found in Figure

As was the case for IE-PDL, there is one case where a rule is only applicable to declaratives
which is the rule !AUD. It is easy to see that this must be the case, as this rule corresponds

76

4.7. REDUCED FORMULAS

to Proposition £.7] which also only works for declaratives. Also of note is that none of the new
rules actually depend on the number n of new worlds, meaning that Propositions [3.27] and [3:2§]
also hold for LCCI.

It is easy to show that this proof system is sound with respect to the semantics of LCCI.

Theorem 4.25 (Soundness of LCCl). If ® -, v then ® =, .

Proof. We will only focus on the new rules, since we have already shown that the other parts
are sound in Theorem [3.26] Since these rules come directly from Section they are sound by

Propositions 417) [A.13], {.15] to [A.17], [£.21] and £.22] O

4.6.1 Completeness

To prove that the proof system for LCCl is complete, it is enough to show that every LCCl formula
is provably equivalent to an LCCl formula. In order to show this, we will adapt the completeness
proof for AMLI from [22]. First we have to show that every formula is provably equivalent to its
normal form.

Lemma 4.26. For any formula ¢, ¢ "+, \V Ry (p).

Proof. This proof works from Lemma so only the case for [s] ¢ is given. By the inductive
hypothesis, we have that ¢ 4k, \VRn,(¢). Then we can use RE to get [s] ¢ F, [s]\V Rn(¢).
Then by using !\ we get [s] 4, Voer,, () [s] @, of which the right hand side is the resolution
of [p], as required. O

Now we can show that every LCCI formula is provably equivalent with an IE-PDL formula.

Lemma 4.27. For any LCCl formula ¢, there is an IE-PDL formula ¢’ such that ¢ =, ¢ for
all n € N.

Proof. This goes by the structure of Theorem but using provable equivalence instead of
equivalent support conditions in a given model. Instead of the propositions, we use the deduction
rules from Figure [£.3]and we use RE for substitution of equivalents. We use Lemma [1.26] instead
of Corollary [£.9] O

This only leaves the completeness theorem for LCCI.

Theorem 4.28 (Completeness for LCCl). If for some n € N, t/,, o, then there is some m € N
such that V., ¢ and there is a model M and a state s such that M, s [= ¢, where [W| < m.

Proof. Suppose that I/, ¢ for some n € N. Then by Lemma[4.27] /,, ¢'. Then by Theorem [3.51}
there is some m € N such that t/,, ¢, and some model M and state s such that M, s £ ¢ and
[W| < m. Then by Theorem we have that M, s [~ ¢, as required. O

This shows that the given axiomatisation of LCCI is sound and complete with respect to its
semantics.

4.7 Reduced Formulas

Lastly, we also want to show some of the reductions that this system gives, and compare them
to the equivalent reductions in LCC. But first, we want to talk about the differences between the
reductions for the modalities between LCCl and AMLI.

7

CHAPTER 4. LOGIC OF COMMUNICATION, CHANGE, AND ISSUES

4.7.1 Differences with AMLI

The reductions for the modalities for AMLI are as follows:

Proposition 4.29 (AMLI reductions). Let M be an IEL model, s be a state in M, and let e be
an event in the AMLI update model U. We then have the following equivalences:

M,s = [e] Ko <= M,s = pre(e) = K, [0a(e)] ¢

M,s =[e]Eq.p < M,s |= pre(e) — /\ E,[sl¢
s€A,(e)

Now it would be interesting to see what the reductions for LCCI give us in these situations,
and to see what the differences are, if any.

Using the definition of T', we get the following reduction for the knowledge operator in LCCI:

M,s | [e][ap <= M,s}=\/ ATgy(@)] [a

a€ERw(p) \tEE

— M,s = \/ /\ [7pre(e); ?T;a;? \/ (Aree—r)—pre(f))] [t a

a€Rw|(p) \tCE t'EAg(e),t/ Ct,t/#0

— M,s = \/ [?pre(e)] /\ [a;? \/ (Aree—ry—pre(f))] [t a

a€R () tCE t'EA (o)t Ct,t/#0

Since we only allow for t' € A,(e), we can leave the other subsets of E out of the conjunction,
since if there is no t' € A, (e), the second test will test if t cannot be executed, leaving us in an
inconsistent state if it can be executed, and otherwise ¢ [t] will be empty, meaning that in those
cases « is supported anyway, so we can ignore them.

= M,sE\/ 2pree)] /\ lalftl

a€ERw (¢) teA(e)

<:>M,sj:\/ pre(e) — /\ [a] [t] «

a€ER | (¢) teA,(e)

As can be easily seen, there are differences between this reduction and the reduction for
the knowledge operator in AMLI, which are the disjunction over the resolutions of ¢, and the
conjunction over A,(e). This is because we took a different approach to find a reduction for
[s] [a]e then that was done in [22]. However, it can in fact be shown that this formula is logically
equivalent to the corresponding AMLI reduction, meaning that the reduction given for AMLI is
only a special case for the LCCI reduction.

78

4.7. REDUCED FORMULAS

If we do the same for the entertains operator we get:

M,s = [e][ale <= M, sk N\[TR(a)][t]¢
tCE

= M,sk= \[?pre(e); 7T;a;7 \/ (Aree—v)pre(F)] [t ¢
tCE /€A, ()t Ct,t/#D

= M,s = [?pre(e)] /\ [a;? \ (Atee—ey—pre(f))] [t] @

tCE t'EAL(e),t' Ctt/ #D

Using the same reasoning as before, we can simplify this to

— MiskDpre(e] A [alle

teEA,(e)

<= M,s = pre(e) — /\ [e] [t
teA,(e)

Which is the same as the reduction for the entertains operator for a single agent that AMLI
gives us, since here we did not have to deal with the added complexity of quantifying over the
resolutions of ¢. This means that here as well, the reduction for AMLI is only a special case of
the reduction for LCCI.

Since both reductions for AMLI are special cases for the LCCl reductions, namely the ones
where we only allow single agents as epistemic programs, it is probably possible to generalize the
state maps for AMLI in a similar way to the program transformations for LCCl to get a version
of AMLI with common knowledge.

4.7.2 Analysing Public Announcements

Like in the LCC paper [18], we also want to analyse the program transformations that are needed
to reduce formulas with update models for major communication types, like public announce-
ments and their effect on common knowledge. Studying these transformations can give rise
to reduction axioms for other systems, like Inquisitive Dynamic Epistemic Logic with common
knowledge and public issues, or the aforementioned extensions for AMLI. In order to make this
task easier, these reductions were done by a computer. The software used is introduced in
Appendix [A]

However, since the reductions for LCCI are quite complex, we will only look at the simplest
one, which is the public announcement of a declarative. Here we want to look at its effect on
common knowledge and public issues.

As was shown in Example [{] a public announcement of a declarative in LCCl is an action
model with one action, which has the declarative formula that is being announced as its precon-
dition. The state map for each agent a is then A,(e) = {{e},?}, and the substitution for the
event is empty. We will call this action model P,, since it is the public announcement of some
declarative a.

To test its effect on common knowledge, we will have to look at the reduction of the formula
[Po, el [(JA)], where A is some group of agents. The reduction of this formula depends on
ngi{e}((u A)*) and T;%((U A)*). The latter instantly devolves into ?_L, since it has no events,

so we only look at the former. In order to get the value for T{F; 5 {e}((U A)"), we need to know

79

CHAPTER 4. LOGIC OF COMMUNICATION, CHANGE, AND ISSUES

K?ea}{e}E((U A)) = Kf:}{e}{e}((u A)). Following the definition for K we get:
Pao — Pa '
Ko (U4)) = fL{J} (K75 e ((U4))
€€

= K{Pe(?{e}w((U A))*
= T&i{e}((U A))

Therefore, the reduction for [P,,e][(JA)]t with respect to models with at most n worlds
becomes Ve, () [(Ta; U A)*] [P, e1] B. The reduction tells us that commonly knowing whether
1 after the public announcement of « is equivalent to a group of agents commonly knowing one
of the resolutions of v if we assume that « is true.

What this formula expresses, is that it is commonly known whether v after the public an-
nouncement of « if one of the resolutions of ¥ is common knowledge when we assume that « is
true.

Interestingly enough, this is the same reduction that was found for public announcements
for LCC, meaning that LCCI, despite using different program transformations that use sets, does
arrive at the same reductions in some cases.

Of course, looking at the raising of an issue would be more interesting. However, since the
program transformers are dependent upon the number of events in the model, the complexity of
the reduced formulas quickly increases. This happens so quickly, in fact, that the reduction for
an action model with two events is already several lines long. The problem is that it has to go
through all the possible combinations of events, of which there are 3 (we ignore the empty set)
multiple times. This makes the resulting formulas quite long, and it would be a study in and of
itself to find the exact structure of these formulas. Therefore, we will leave the study of these
reductions for further research.

4.8 Conclusion

In this chapter we introduced the new logic LCCI, and showed that it has the normal properties
for inquisitive semantics, including the modal persistency and modal empty state properties from
AMLI. Then we found and discussed reductions that show that every LCCI formula is equivalent
to a corresponding IE-PDL formula. We then used this reduction to give a sound and complete
axiomatisation of LCCI, and studied some reductions.

80

Chapter 5

Comparison with other work

In this chapter, we will compare |IE-PDL and LCCl with some other logics with similar goals. We
will sometimes refer back to earlier chapters, if part of the comparison has already been made
before.

5.1 LCC and E-PDL

We will start with comparing |IE-PDL to E-PDL |12} [18]. If we look at the proof system for
IE-PDL as presented in Section [3.8.2] and then in particular at the modal fragment as presented
in Figure we can see that all the standard proof rules for E-PDL are available. For [r]-
distribution, [7]-necessitation, sequence, and choice, this is easy to see, as they are directly
present. For test, it might look like this is not the case because the rule is only applicable if the
consequent is declarative, but all functions in E-PDL are declarative, so the rule functions the
same in both systems. The only differences lie in the rules for unbounded iteration.

Part of this difference comes from the difference in rules, but a part of this also comes from
the fact that in IE-PDL 7* is interpreted on the transitive, not reflexive-transitive closure. This
means that the rules also need to be slightly different. However, these different versions of mix
and induction can also be proven to hold in IE-PDL, either semantically or using the proof system.
Therefore, IE-PDL is a conservative extension of E-PDL, if we take 7* to be interpreted on the
transitive closure.

When we start to compare LCCl and LCC [18] however, we start to see more serious differences.
While the two logics employ a similar mechanism for the reductions, LCC does this by recursion
over the set of events, while LCCI has to do this by recursion of the power set of the set of
events. This means that LCCl is not a conservative extension of LCC. However, this is not a real
problem, since the rules for LCC do not make sense if the agents wonder which event occurred.
One would probably find more LCC-like program transformers if one would redo this research
but using AMLQ as a basis instead of AMLI, since in AMLQ agents do not wonder about which
event occurred.

However, everything that we could express in LCC can be expressed in LCCI, since LCC update
models are a special case of LCCl update models. This special case is the case where every agent
is only interested in which event exactly occurred. This means that LCCl adds exactly the
expressivity to LCC that we wanted to bring, namely that we can express that the agents wonder
which event happened. While this cannot be directly expressed in the logic (since there is no
“event was executed” operator), we can see this in the state maps of the updated model. As a
side-effect, this also means that the agents are interested in the post-conditions of the events.

81

CHAPTER 5. COMPARISON WITH OTHER WORK

Because of these reasons, we can conclude that LCCl is an inquisitive version of LCC, even
when it is not a conservative extension of LCC.

5.2 AMLI and IEL

We will first compare |IE-PDL with IEL[2]. As was already shown in Section every |EL formula
can be translated into an equivalent IE-PDL formula. However, this equivalence only holds as
long as we restrict ourselves to models with a finite number of worlds, since IE-PDL is only defined
for models with a finite number of worlds. While this is a limitation in the current version of
IE-PDL, we believe this to be a technical limitation, and not a conceptual one. Therefore, we
can conclude that |IE-PDL is a conservative extension of IEL.

However, not every IE-PDL formula can be translated to an IEL formula, not even if we look
at a generalized version of |IEL where there are no constraints on the state maps for the agents,
i.e., no factivity or introspection. This means that IE-PDL is strictly more expressive than IEL,
which raises the question: What can we express in |IE-PDL that we cannot express in IEL? The
first class of formulas all contain group knowledge, which we cannot express using the common
knowledge and public issue operators from IEL. It is however possible to add these to IEL, and
then those formulas can be expressed.

There is, however, a large group of formulas that cannot be expressed in IEL, even if we
loosen its constraints a bit. These are formulas that use iteration in interesting ways, such as
[(a;b)"]p, which expresses that a knows that b knows ¢, and that a knows that b knows that a
knows that b knows ¢, etc. Since we keep alternating between the knowledge for a and b, this is
different from Common Knowledge between a and b. For example, if we are only dealing with
belief, so b’s beliefs might not be truthful, a does not have to believe whether ¢, even when b
does. Another example of this is a formula like [(a UbU?p)"], which states that ¢ is a public
issue between a and b assuming that ¢ is not supported. However, like in the case of LCC versus
standard epistemic logic, we have found no practical use for these kinds of formulas. So while
IE-PDL is more expressive than IEL, we do not believe that this additional expressivity actually
adds much to the language itself.

Then, we will move on to the comparison between LCCl and AMLI [22]. Using Section
and the fact that AMLI action models are LCCl action models without substitutions, we can also
find a translation from AMLI formulas to LCCl formulas. This translation extends Definition [3.11]
with the following clause:

([Uvs] ‘p)l = [Ulvs] 90/

where U’ is like U, but it also assigns the empty substitution to every event in U. Therefore,
we can also say that every AMLI formula, even if it includes K, or F,, has an equivalent LCCI
formula. Since we have already shown in Section[£.7.1] that the reduction equivalences from AMLI
still hold in LCCI, we can conclude that LCCI is a conservative extension of AMLI.

5.3 InqPDL

While the work on this thesis was ongoing, Punc¢ochar and Sedlar created a different inquisitive
version of PDL [16]. We would also like to compare this logic, called Inquisitive Propositional
Dynamic Logic (IngPDL), with IE-PDL.

While both logics are meant to be inquisitive versions of PDL, the two do have different goals.
While IE-PDL was designed to be used as an epistemic language, InqPDL is meant to be used as
a proper inquisitive version of PDL. This means that the intuitive interpretation of the modal

82

5.3. INQPDL

operators is slightly different. So while in IE-PDL [a](c\V) means that agent a knows whether
a\ B, the corresponding IngPDL interpretation is “after the execution of action a, is « or 8
supported?”.

Because of this difference in interpretation, |[E-PDL has an extra operator, namely the en-
tertain operator, [7]y, which has no corresponding operator in InqPDL. This also makes sense,
since in the interpretation of InqPDL there are no agents that can have issues or know things, so
we don’t need to be able to express this difference. However, it should be noted here that the
semantics for IE-PDL’s [r] and IngPDL’s [7]¢ are the same.

Beside this difference in interpretation, there are also a few other big differences between the
logics. The first of these is that IngPDL is based on the algebraic semantics of [15]. However, as
has already been pointed out in [16], this difference is not substantial. This is because sets of
possible worlds, such as are used in this thesis, are the primitive elements of a complete atomic
Boolean algebra of power sets, making it one of the possibilities for defining InqPDL models.

A bigger difference is that, unlike in IE-PDL, in IngPDL [r]¢p is interrogative if ¢ is interrog-
ative. This has to do with the fact that in IngPDL, unlike in IE-PDL, there are no restrictions on
the atomic relations between states. This means that, while it is possible to give an epistemic
reading to IngPDL, this has to be done in a different manner than it happens in IE-PDL. More
details about this can be found at the end of Section 4 in [16].

A last big difference is that InqPDL has an extra program operator. Being meant as a logic
to interpret programs, it also has an inquisitive choice operator, IU. While its standard choice
“executes” actions on the level of worlds, its inquisitive choice “executes” actions on the level
of states. In its epistemic interpretation, this would not create a group of agents, but choose
between the different agents. IE-PDL does not have a corresponding operator for this, since
we do not want to choose between agents, but we want to create groups of agents. However,
adding such an operator might lead to more interesting notions of “commonly believing whether”
than IE-PDL currently has, where all agents have to believe the same resolution of a formula to
commonly belief whether that formula holds.

One last interesting note to end on, is that both logics have the same semantics for the
test operator. While this semantics differs in interpretation from the default interpretation, the
currently employed solution might then be the most natural alternative in inquisitive settings.

All in all, while both are based on PDL, the two logics IE-PDL and InqPDL try to solve different
problems, and therefore are also quite different from one another. Our recommendation would
be to use |IE-PDL only if you want to reason about the knowledge of agents, but for anything
else, such as reasoning about program execution and the issues that they raise and resolve, it is
better to use InqPDL.

83

Chapter 6

Conclusion and further research

6.1 Conclusion

In this thesis, we set out to build a logical framework that extends both the Logic of Com-
munication and Change (LCC) with questions and issues, and Action Model Logic with Issues
(AMLI) with common knowledge, public issues, and factual change. We have been able to suc-
cessfully combine these systems with respect to finite models. We found that most of the ideas
from LCC were easily adapted into an inquisitive framework, which means that the Logic of
Communication, Change, and Issues (LCCI) is a rather natural extension of both LCC and AMLI.

Since this process required the combination of multiple logics in different ways, it might be
useful to refer back to Figure 2.4 which is also reprinted here as Figure This figure gives
the relations between the various logics that were used as basis or inspiration, or designed in this
thesis.

IEL —> AMLI

™~

AML IE-PDL —— LCCI

>

E-PDL ——> LCC

Figure 6.1: The relations between the different Logics in this thesis. A blue arrow means that
the logic on the left is used as the static language for the logic on the right. A green arrow means
that the logic on the right is an inquisitive variant of the logic on the left. A red arrow means
that the logic on the right borrows ideas from the logic on the left.

We started with the definition of the new logic, Inquisitive Epistemic Propositional Dynamic
Logic (IE-PDL), which is meant to be used as an Inquisitive version of Epistemic Propositional
Dynamic Logic (E-PDL). Here we ran into problems with the reflexive nature of some E-PDL
program operators, like Test. These problems were solved by interpreting the operators a bit
differently, but still in such a way that they are suitable for our purposes. Because of the
interaction between Test and unbounded iteration, we also ran into a problem when giving the
resolutions for [7*]u, which means that we were limited to models with a finite number of worlds.
This flexibility did give us an inquisitive epistemic language with common knowledge and public
issues for arbitrary finite groups of agents.

84

6.2. FURTHER WORK

During this process, we have established that IE-PDL is a conservative extension of Inquisitive
Epistemic Logic (IEL). We also provided a sound and complete axiomatisation of |IE-PDL with
respect to finite models. This makes |IE-PDL the first inquisitive epistemic logic with common
knowledge and public issues, that we know of, that has a sound and complete axiomatisation.

After that, we defined the action models for LCCI by extending the action models from AMLI
with a substitution for each event. This leads to a natural extension that can be reduced into its
underlying static language in a similar way to AMLI, with the exception of the modal operators,
for which we could apply the tricks used for LCC. We then used this reduction to give a sound
and complete axiomatisation of LCCI.

By combining features from both LCC and AMLI, LCCl extends its predecessors in the following
ways:

e It adds the ability to encode what an agent wants to know into the framework of LCC in
a natural way;

e It allows for the asking of questions as an action into the framework of LCC;

e It extends AMLI with the addition of common knowledge and public issue operators while
keeping the reduction;

e And it adds the ability to model factual change into AMLI.

Besides the technical results in this thesis, this project is accompanied by a computational
tool, about which more details can be found in Appendix [A]

6.2 Further work

We will end this thesis by discussing some ideas for further work. First we will discuss some
results we expect for IEL, then we will discuss some ways in which IE-PDL can be improved, and
we will end with some uses and extensions for LCCI.

6.2.1 Implications for IEL

Since IEL and IE-PDL have similar goals, there are some results for IE-PDL that we expect will
carry over to |IEL. The first of these is the soundness and completeness proof obtained in this
thesis. Using a similar approach as the one employed in this thesis, it should be possible to also
give a sound and complete axiomatisation for |IEL with common knowledge and public issuesE
We also expect that the soundness and completeness proof that this would give for IEL can be
simpler than the one given for IE-PDL, since one would not have to tie every proof to a maximum
number of worlds.

We also expect that it will be possible to use the IE-PDL semantics to build an extension for
IEL that has common knowledge and public issues for arbitrary groups of agents. The soundness
and completeness result discussed before should also carry over to this logic.

If this approach were to be used to give a completeness proof for |IEL, then that would mean
that IEL would have the finite model property. In turn this would mean that IEL would be
decidable, which would be a good first step towards a complexity analysis for Inquisitive Modal
logics, which has, to our knowledge, not been started.

LAn earlier version of this thesis used a completeness proof based on the work in |10, [17], which worked
for models with countably many worlds. While this approach did not work for IE-PDL, we expect that the
problems encountered do not carry over to |IEL, meaning that it should be possible to give a sound and complete
axiomatisation for IEL with models with countably many worlds.

85

CHAPTER 6. CONCLUSION AND FURTHER RESEARCH

6.2.2 Extensions to IE-PDL

There is still work to be done on IE-PDL itself. The first is to check whether there is a fragment
of IE-PDL that can be used as a basis for LCCI instead. Of particular interest for this are the
declarative programs. If we can find a subset of the declarative programs that we can use to
express everything that we want to express and that allows us to still have the full reduction
from LCCl into IE-PDL, then that would make working with the logic easier, since then we would
not have to specify a maximum number of worlds in the model.

This would probably require extending the declarative programs a bit more, since there
are currently programs in the reductions that cannot be expressed using only the declarative
programs. Therefore, a good start to tackle this problem would be to see what is required for
the reductions, and check whether those programs are declarative.

A different solution to the problem of specifying the maximum number of worlds every time
would require figuring out the maximum number of worlds necessary to falsify a certain formula.
If this number was known, then that could be used to calculate the resolutions of that formula.
For declaratives, this is possible to do, using the construction of the counter-model. However, for
interrogatives, the construction of the counter-model depends on the resolutions of that formula,
which depend on the maximum number of worlds again. We currently see no way to untie this
knot, but if it can be done, this would also solve the problem of calculating the resolutions
for IE-PDL, possibly making the proof system easier to use, and would lead to a more elegant
completeness proof.

Another open problem is to see if there are more fitting definitions for the test operator. A
few were tried over the course of this thesis, such as test being reflexive on the set itself, which
simply lifts the normal interpretation to the level of information states, or only testing at the
level of worlds, but none of these were found to be satisfactory. However, the current definition
might be the most useful one, since it is also used by InqPDL[16], see also Section for a
discussion.

There is still the issue of the usual reflexivity of the * operator that we chose not to investigate.
Both studying the semantics that result from our proposed solution, which was to make sure
that if w € s, then sR;-w for all programs 7, and finding other possible solutions would be of
interest.

It is also possible to extend IE-PDL itself further. For example, while IE-PDL can be used
as a language for belief, this is done without a preference order or any form of belief revision.
Therefore, it would be interesting to see if we can extend to a real language for belief revision.
We can see two approaches for this.

The first of these is to take the approach from [7] and extend the models for IE-PDL with
an ordering over information states. This approach would allow us to model different types of
belief revision into the logic and reason about the beliefs of agents that way. Results from this
approach will probably carry over to the corresponding version of IEL.

Another approach would be to extend the language of IE-PDL in a similar manner to how
van Eijck and Wang extended E-PDL in [21], i.e. by adding more program operators. The benefit
of this would be that this would not just allow us to model both knowledge and common belief
in one model, but also notions like conditional and safe belief. This approach will also include
common knowledge and belief. However, since we are extending the language with more program
operators, this will not carry over to other logics.

6.2.3 Uses for LCCI

Similar to how we can extend |IE-PDL in many ways, we can apply the same kinds of reasoning
to LCCI. LCC is used in a lot of applications and has many extensions, some of which could also

86

6.2. FURTHER WORK

be applied to LCCl. For example, |21] also has a method for extending LCC, which can probably
be applied to LCCl so it can be used for belief revision as well. Another potential extension could
be created by incorporating the ideas from [20], and create an inquisitive logic for lying agents.

Another interesting area to investigate concerns the effects of actions on common knowledge
and public issues, which is now feasible thanks to the reductions in LCCI. This could lead to
semantics and reductions for other Inquisitive Dynamic Epistemic Logics, such as extensions of
IDEL and AMLI where they have common knowledge and public issues. Especially finding the
reductions might not be trivial otherwise.

Besides these, there are many situations that can now be modelled using LCCI that could not
be modelled before. For example, now we can look at how the issues of agents change during
a game of Clue, or check whether the extra information that an agent might want to know a
specific card can help when playing Hanabi. However, LCCl might also be able to help in the
modelling of situations where one agent tries to figure out what an agent wants to know, which
might occur during a question session of a course, or during the questions after a seminar. Other
situations that involve factual change would be the effects of observed, but unknown actions,
such as something falling in another room but making noise, or as shown in the examples in this
thesis, drawing a closed card in a game.

87

Appendix A

Implementation

This thesis comes accompanied with an implementation, which is a Haskell library called LCCI . hs.
This library can be used as a model checker for LCCl and it can calculate the reduction for a
formula using the equivalences given in Section The program is open source and avail-
able online, so others can use and build upon it, and it can be found at the following url:
github.com/rmellema/LCCI.hs. Its intended use is as a library for programs that need to use
LCCI models in some way, or directly from an interactive read-evaluate-print-loop like ghci.

Since the library can be used as a model checker, it can also calculate product updates for
static and update models and how programs, i.e. agents, relate different states to each other.
Because it has to be able to give reductions, it can also calculate the resolutions for a formula
for a given maximum number of worlds. Besides these things, it also has various quality-of-life
utilities, such as a recognizable syntax for formulas and various functions for defining common
action models.

The rest of this chapter consists of two parts. In the first part we will show an example
application in which we will model some situations from the Hexa game [19]. In the second part,
we will prove that all the simplifications used by the simplify function are equivalences in the
language.

A.1 The Hexa Game

In this example, we will walk through the modeling of the Hexa game in LCCI, using the imple-
mentation to aid us in answering questions about the model. The Hexa game was first presented
in [19], and is used more often as a testbed for Dynamic Epistemic Logics. We decided to use
this as an example instead of Citadels since the models are smaller and easier to understand.

Since the implementation is written in Haskell, the example will also be given in Haskell.
While we will try to keep the example easy to follow for those who have no experience with
Haskell, if you want to use LCCI.hs yourself, it might be useful to read up on using the language.
For this we would recommend using The Haskell Road to Logic, Maths and Programming, Second
Edition [8]. If you are also interested in using Haskell as a general programming language, then
Learn you a Haskell |13] is also a good introduction.

A.1.1 The Game

Before we can start to model the game in LCCI, we will first have to understand the rules of the
game. In the Hexa game, there are three players, which we will call Ann (a), Bill (b), and Carol

88

https://github.com/rmellema/LCCI.hs

A.l1. THE HEXA GAME

(¢). Each of these players will get a unique card out of a deck of three. We will number the cards
0, 1, and 2. The goal of the game is to know the full deal of the cards by asking questions and
getting answers.

The only types of questions that we will allow are asking for a specific card. To make the
example more interesting and informative, we will also allow for different actions, in particular
the swapping of cards between agents.

A.1.2 Setting up

Before we can start to model the example, we will first have to set up some Haskell specific
things. In Haskell code is normally organized in modules, which are named after where they are
in the file system. Since this files lives in the LCCI/Examples folder and is named Hexa.lhs, the
module name will be LCCI.Examples.Hexa.

module LCCI.Examples.Hexa where

Since we did not want to reinvent the wheel, we will also need to import some other packages,
in particular packages for sets and maps. These come from the collections module from Hackage.

import qualified Data.Map as Map
import qualified Data.Set as Set

Now we can import the LCCl specific packages that we need. The first of these is the
LCCI.Issue package, which contains code for representing information states, issues, and state
maps.

import LCCI.Issue

We will also need to represent the models. The LCCI.Model package contains code for working
with and defining both the static models from |IE-PDL and the update models from LCCI.

import LCCI.Model

Besides needing to represent the models, we will also need to represent formulas of the
language, so we can ask questions about them to the implementation. For this, we will need to
import the LCCI.Syntax package.

import LCCI.Syntax

Because LCCI.Syntax defines the syntax in a way that is not as easy to read or write as one
might want, we will import the LCCI.Syntax.Pretty package to use functions that are a bit easier
on the eyes.

import LCCI.Syntax.Pretty

We will also want to be able to evaluate formulas in models, which we can do using the
supports function from the LCCI.Evaluation module.

import LCCI.Evaluation

There is also a module that has functions for the creation of action models for common
scenarios, which we will use in our discussion of action models.

import LCCI.Announcements

89

APPENDIX A. IMPLEMENTATION

When we want to define our own action models, we will also need to define the substitutions
for events, for which we will also need to import a package.

import LCCI.Substitution as Substitution

This are all the packages that we have to import, meaning we can now start to define the
actual model.

A.1.3 The Model
The Worlds and Valuation

The first thing that we need to define for the model itself, are the worlds. While it is usual to
number worlds in implementations, LCCI . hs is a bit more flexible. Because of this, we can also use
a different representation in the implementation. The only requirement that the implementation
has it that the worlds can be ordered. Thanks to this, we can use the representation that is
usual for the Hexa model, where each world is represented by the deal of cardsE]

We will represent a deal of cards by a triple of numbers, where the number is the card, so
one of 0, 1, or 2, and the position in the triple signifies the player, so a 0 being in position one
means that Ann has card 0, etc. Since triples can be lexicographically ordered, all we have to
do is tell Haskell that we want to use this to represent worlds. We do this by declaring a triple
as an instance of the type World.

instance (0rd a, Ord b, Ord c) => World (a, b, c)

We will also want to be able to show the worlds in a readable manner. This means we will have
to make our triples an instance of the class PrettyShow, which is what is used in LCCI.hs to
prettyprint objects.

instance (Show a, Show b, Show c) => PrettyShow (a, b, c) where
prettyShow (a, b, ¢) = show a ++ show b ++ show ¢

Now we can define our worlds. Since all the cards are unique and there are only three cards,
there is a total of 6 worlds.

-- | The worlds in the Hex model
w012, w021, w102, w120, w201, w210 :: (Int, Int, Int)

w012 = (0, 1, 2)
w021 = (0, 2, 1)
w102 = (1, 0, 2)
w120 = (1, 2, 0)
w201 = (2, 0, 1)
w210 = (2, 1, 0)

For the definition of the model later on, we will also need to have a set of all the worlds, which
we will already define here.

-- | The set of worlds
ws :: Set.Set (Int, Int, Int)
ws = Set.fromList [w012, w021, w102, w120, w201, w210]

LIf we wanted to, we could have also used the IntWorld data type that is already defined by LCCI.hs. Then
we wouldn’t have to define an instance of World or PrettyShow but we would give up the flexibility we now
have.

90

A.l1. THE HEXA GAME

Now we have our worlds defined we can start to define our valuation function. In LCCI.hs
the valuation is a function from a proposition to a world to a boolean. This function can be
defined directly, or built up from a Map from worlds to the propositions that are true in that
world, using the function valuationFromMap. Since we have a large amount of structure in our
definition of the worlds, we will go with the first option. This means that we will first have to
define our propositional atoms.

We will keep our propositional atoms simple, and add one for each combination of player and
card. In LCCI.hs propositional atoms start with a capital letter, in order to easily differentiate
them from agents.

-- | The propositions in the Hex model
a0, al, a2, b0, bl, b2, cO, cl, c2 :: Proposition

a0 = proposition "AO" -- Ann has card 0
al = proposition "A1" -- Ann has card 1
a2 = proposition "A2" -- Ann has card 2
b0 = proposition "BO" -- Bill has card O
bl = proposition "B1" -- Bill has card 1
b2 = proposition "B2" -- Bill has card 2
cO0 = proposition "CO" -- Carol has card O
cl = proposition "C1" -- Carol has card 1
c2 = proposition "C2" -- Carol has card 2

For the valuation, it is also very useful to split up this player card pair so we can compare it
with the card in the triple again. For this we will define two functions that extract the card or
player name from a proposition. Both of these depend upon the pretty string representation of
a proposition, which is just the string we gave it before.

-- | Get the number of the card for the given proposition.
card :: Proposition -> String
card = tail . prettyShow

-- | Get the identifier for the player in the given proposition.
player :: Proposition -> Char
player = head . prettyShow

So now we can define our valuation. The valuation compares the (string representation of) the
card that the player of a proposition p has in the world to the card that they have according to
the proposition. If they are equal, it returns True, and otherwise it returns False.

-- | The valuation of the propositional atoms
v :: Valuation (Int, Int, Int)
v p (ca, cb, cc)

| player p == ’A’ = show ca == card p
| player p == ’B’ = show cb == card p
| player p == ’C’ = show cc == card p
| otherwise = False

This ends the definition of the valuation, which means that we can now focus on the last part of
the static model, which is the state map.

The State Map

For the state map we will first have to consider exactly which scenario we want to model. Since
this is most interesting for our purposes, we will pick a situation where all of the agents have

91

APPENDIX A. IMPLEMENTATION

(a) The state map for Ann (b) The state map for Bill (c) The state map for Carol

Figure A.1: The three different state maps

been dealt a card, but where they have not looked at it yet. This means that in our initial
situation the agents have no information yet, beside the information on how the game works.
For simplicity, we will at first assume that the agents are only interested in knowing their own
card. This gives the state maps in Figure

Before we can define the state maps in LCCI.hs, we will also have to define the agents. This
is done by using the function atom, that defines an atomic program. In LCCI.hs, agents start
with a lower case letter, in order to differentiate them from propositional atoms.

-- | The "actions" in the Hex model (The knowledge relations)

a, b, ¢ :: Atomic
a = atom "a'"
b = atom "b"
c = atom "c"

In LCCI.hs, a state map for one agent is defined as a Map from worlds to issues, just as in LCCI.
We can define issues using the function issue, which takes a list of states and returns the issue
represented by those states. Similarly, we can create a state using the function state, that takes
a list of worlds, and returns the information state that contains only those worlds. This means
that we can define the state map for Ann as follows:

ann_map :: StateMap (Int, Int, Int)

ann_map = Map.fromList
[(w012, issue [state [w012, w021], state [w102, w120], state [w201, w210]1)
, (w021, issue [state [w012, w021], state [w102, w120], state [w201, w210]])
, (w102, issue [state [w012, w021], state [w102, w120], state [w201, w210]])
, (w120, issue [state [w012, w021], state [w102, w120], state [w201, w210]])
, (w201, issue [state [w012, w021], state [w102, w120], state [w201, w210]])
, (w210, issue [state [w012, w021], state [w102, w120], state [w201, w210]])

The full state map then becomes a mapping from agents to state maps like ann_map, as follows:

-- | The state maps for all the various agents.
s :: Map.Map Atomic (StateMap (Int, Int, Int))
s = Map.fromList
[(a, ann_map)
, (b, Map.fromList
[(w012, issue [state [w012, w210], state [w102, w201], state [w021, w120]])
, (w021, issue [state [w012, w210], state [w102, w201], state [w021, w120]1)
, (w102, issue [state [w012, w210], state [w102, w201], state [w021, w120]])

92

A.l1. THE HEXA GAME

, (w120, issue [state [w012, w210], state [w102, w201], state [w021, w120]])
, (w201, issue [state [w012, w210], state [w102, w201], state [w021, w120]])
, (w210, issue [state [w012, w210], state [w102, w201], state [w021, w120]])
n
, (c, Map.fromList

[(w012, issue [state [w012, w102], state [w021, w201], state [w120, w210]])
, (w021, issue [state [w012, w102], state [w021, w201], state [w120, w210]])
, (w102, issue [state [w012, w102], state [w021, w201], state [w120, w210]])
, (w120, issue [state [w012, w102], state [w021, w201], state [w120, w210]])
, (w201, issue [state [w012, w102], state [w021, w201], state [w120, w210]])
, (w210, issue [state [w012, w102], state [w021, w201], state [w120, w210]])

Now we have all the ingredients to define the static model, which we will call hexa.

--— | The actual model
hexa :: StaticModel (Int, Int, Int)
hexa = StaticModel ws v s

Now we can use the model to test some formulas. Formulas are made with the constructors
from the LCCI.Syntax package, or the functions from the LCCI.Syntax.Pretty package. First we
will check if in the entire model, so each world in the model, Ann wonders what her card is. We
can test this by loading up ghci with the current file and executing the following line:

supports hexa ws (wonder a (a0 \\/ al \\/ a2))

This line returns True, meaning that Ann wonders what her card is. We will now spent some
time explaining what this line does.

The function supports is used to check if a certain model and state support a given formula.
Here we want to know something about the hexa model, so we pass that as the model. Since
we want to know if the formula is supported in the whole model, we then pass the set of all
worlds (ws) as the second parameter. If the formula is supported in the set of all worlds, then,
by persistence, it is also supported in all subsets of the set of all worlds, and therefore in the
whole model. Then we need to pass the formula that we want to check to the function. For this
we use functions from the LCCI.Syntax.Pretty package. We use the function wonder to create
a formula akin to the wonder modality. The function takes two arguments, the first of which
is a program representing the agents that wonder something, in our case just a, and secondly
a formula that we want to know if the agent wants to know. For creating this formula we can
use the \\/ operator, which is inquisitive disjunction. Conjunction and classical disjunction can
similarly be written out using slashes. We have to make an inquisitive disjunction with all the
cards Ann might have, so we have to use all the propositional atoms we defined for Ann before.

We can now do something similar for Bill:

supports hexa ws (wonder b (a0 \\/ al \\/ a2))

As one would expect, since Bill is not yet interested in which card Ann has, this call returns
False. However, Bill should know that Ann does not yet know what her card is. We can check
for higher order knowledge like this by making more “complex” formulas.

supports hexa ws (knows b (neg (knows a (a0 \\/ a1l \\/ a2))))

93

APPENDIX A. IMPLEMENTATION

As we would expect, this returns True, since it is common knowledge that no-one has looked
at their card yet. The function knows in LCCI’s knowledge operator, and neg creates the negation
of a formula.

We can also check if some of the rules of the game are common knowledge. For example, we
can check if it is common knowledge that when Ann has card 0, Bill or Carol cannot have card
0:

supports hexa ws (knows (iter (a .+ b .+ c)) (a0 --> neg (b0 \/ c0)))

Which, as one would expect, returns True. Here we use the function iter to create an
unbounded iteration version of a program, and use .+, the choice operator, to combine the
various agents into one group. --> is implication.

A.1.4 1It’s Time for Action

Having the static model is nice, but we should also try to introduce some actions into our model.
For this we can create action models in a similar manner as we did for defining the hexa model.
Before we will dive into defining action models however, we will first show how to use them,
using the LCCI.Announcements package.

Announcements

The LCCI.Announcements package exports functions for the creation of public, private, and secret
announcements, based on a list of formulas and (one or more) lists of agents. We will use the
function privateInform to model the action of Ann looking at her card. This function takes 5
arguments. The first is the name of the model as a string, which is used when pretty printing
the model in a formula. The second is the group of agents that learn the information, the third
is the group of agents that see the information being shared and that are interested in what is
being shared, and the fourth is the group of agents that see the information being shared, but
don’t care. The last argument is a list of possibilities for the material that is being shared.

We will call the model read,, since Ann reads her card. She is the only one with which the
information is being shared, so the first list is just Ann. Bill and Carol are both interested in
which card Ann saw, so they want to know what she learned. Since these are all the agents,
the next list is empty. The last list contains the possible formulas that Ann might have learned,
but now wrapped in the function Prop. The reason for this is that LCCI.Syntax.Pretty is a bit
more liberal in the types of arguments that it accepts then that LCCI.Announcements is. When
we defined the propositions, we did not define them as formulas, but as propositions, and here
we use the function Prop to cast them to formulas.

ann_look = privateInform "read_a" [a] [b, c] [] [Prop a0, Prop al, Prop a2]
ann_events = Set.tolList $ events $ snd ann_look

Besides defining the model, we also extract the events from the model for later use.

Now we can ask the system about the properties that the model has after updating. There
are two ways in which we can do this. We can use formulas with an update operator, or we can
update hexa with ann_look to get a new model. For now, we will go with the former, but later
on we will show the latter.

Lets say that we want to express that after Ann looks at her card, that she knows which card
she has. For this, we will have to use the constructor Update, which takes an action model, a list
of events, and a formula to test in the new model.

supports hexa ws (Update ann_look ann_events (knows a (a0 \\/ al \\/ a2)))

94

A.l1. THE HEXA GAME

As one would expect, this returns True. We can also test if this is common knowledge among all
the agents. Since this line is a little long, we will split it across multiple lines. In ghci we can do
this by eclosing the line with :{ and :} on their own separate lines.

:{
supports hexa ws (knows (iter (a .+ b .+ c))
(Update ann_look ann_events (knows a (a0 \\/ al \\/ a2))))

:}

Which yet again returns True. Now, it is also important to check that Bill does not learn Ann’s
card from the announcement.

supports hexa ws (Update ann_look ann_events (knows b (a0 \\/ al \\/ a2)))

Luckily, this returns False. It is important that Bill now wonders which card Ann has.

supports hexa ws (Update ann_look ann_events (wonder b (a0 \\/ a1l \\/ a2)))

Which returns True, as expected. If fact, this is even a public issue between Bill and Carol:

supports hexa ws (Update ann_look ann_events (wonder (iter (b .+ c)) (a0 \\/ a1l \\/ a2)))

As mentioned before, we can also create a new model using an action model and a static
model. For this we can use the productUpdate function from the LCCI.Evaluation module. There
is similar function for making an updated state, which is the updatedState function. For example,
if we wanted to transform our model into a model in which every agent knew their card, we could
create that model by updating it with action models created by the privateInform function. Here
we would need to use the function snd to extract the action model and throw away the name.

hexal = productUpdate hexa $ snd ann_look
wsl = worlds hexal
hexa2 = productUpdate hexal $

snd $ privateInform "read b" [b] [a, c¢] [] [Prop b0, Prop bl, Prop b2]
ws2 = worlds hexa2
hexa3 = productUpdate hexa2 $

snd $ privateInform "read c" [c] [a, b] [] [Prop cO, Prop c1, Prop c2]
ws3 = worlds hexa3

Now we can use this new model to for example check if Bill knows his card.

supports hexa3 ws3 (knows b (b0 \\/ b1l \\/ b2))

Which, as one would expect, gives us back True.
Now we have seen how the update operator works in LCCI .hs, we will take a look at defining
action models.

Swapping cards

Bill and Carol are a bit mischievous and decided to swap their cards. This action can also be
modelled within LCCI .hs, since it also implements the substitutions from LCCl as well. Defining
an action model is similar to defining a static model, so here we will have to define the events
first.

The swapping of cards sounds like it would only need one event, but it actually will need a
bit more. The method we will use will require 3 events, one for Bill and Carol swapping cards 0
and 1, one for them swapping 0 and 2, and one for them swapping 1 and 2. Who holds which

95

APPENDIX A. IMPLEMENTATION

card is not important for this model. We will assume that all agents are disinterested in which
event actually happens. The reasoning for this is that, if the agents were interested in which card
one of the two had before the action, they will be interested after the action has been executed,
but if they were not interested, the swapping cards will have no effect on their state maps. This
gives us the following events and state maps.

el, e2, e3 :: Event
el = Event 1
e2 = Event 2
e3 = Event 3

ei :: StateMap Event

Map.fromList [(el, issue [state [el, e2, e3]]),
(e2, issue [state [el, e2, e3]]),
(e3, issue [state [el, e2, e3]])]

ei

em :: Map.Map Atomic (StateMap Event)
em = Map.fromList [(a, ei), (b, ei), (c, ei)]

Besides needing state maps for the event, we will also need preconditions for the events. The
precondition for swapping card 0 and card 1 is that the one agent has card 0 and the other has
card 1. Since the cards are all unique, we won’t have to worry about the agents swapping the
same card. This gives us the following preconditions.

pre :: Map.Map Event Formula

pre = Map.fromList
[(e1, (O /\ c1) \/ (b1l /\ c0))
, (e2, (10 /\ ¢2) \/ (b2 /\ c0))
, (€3, (b1 /\ c2) \/ (12 /\ c1))
]

That only leaves the substitutions, which work similarly to the preconditions, but have a
more complex structure. Instead of mapping every event to a formula, they map every event to
a substitution, which maps some propositional atoms to a formula. This is also why LCCI.hs
has such a clear divide between propositional atoms and formulas. We can make substitutions
using the Substitution.fromList function in a natural manner.

sub :: Map.Map Event Substitution
sub = Map.fromList
[(el, Substitution.fromList [(bO, Prop c0), (bl, Prop cl),
(c0, Prop b0), (cil, Prop b1)])
, (e2, Substitution.fromList [(bO, Prop c0), (b2, Prop c2),
(c0, Prop b0), (c2, Prop b2)1)
, (e3, Substitution.fromList [(bl, Prop c1), (b2, Prop c2),
(c1, Prop b1), (c2, Prop b2)])
1

Now we have everything to put together our action model.

swap_bill_carol :: UpdateModel

swap_bill_carol = UpdateModel (Set.fromList [el, e2, e3]) em pre sub
swap_events :: [Event]

swap_events = Set.toList $ events $ swap_bill_carol

96

A.l1. THE HEXA GAME

We can use this action model to create an updated model, but if we want to use it in formulas,
we will also need to give it a name. We can do this by wrapping it in a pair with a string.

swap_bill_carol’ :: (String, UpdateModel)
swap_bill_carol’ = ("swap(b,c)", swap_bill_carol)

Now we can use this version in a formula as we did before. We can for example say that,
after Bill has looked at his card and then swapped, that he knows which card he does not have.

o
supports hexa ws
(Update (privateInform "read b" [b] [a, ¢] [] [Prop b0, Prop bl, Prop b2])
[Event 1, Event 2, Event 3]
(Update swap_bill_carol’ swap_events
(knows b (neg b0 \\/ neg bl \\/ neg b2))))

Here the system gives us True, as expected.

A.1.5 Other Uses of Formulas

Besides checking is a formula is supported, there are also more interesting things that LCCI.hs
can do with formulas. The first of these is isDeclarative, which, as the name suggests, tests if a
certain formula is declarative. It only takes the formula to test for. So for example, we can test
if “Ann wonders what her card is” is declarative.

isDeclarative (wonder a (a0 \\/ al \\/ a2))

Since this formula is declarative, the system also correctly answers with True. We can also
try it out on a question, such as “Does Ann, Bill, or Carol have card number 07”.

isDeclarative (a0 \\/ b0 \\/ c0)

To which the system correctly responds with False. If this example would have been more
interesting, then one might have wondered what the resolutions for this formula were. Luckily,
LCCI.hs can also calculate this for us, using the function resolutions. This function takes two
arguments. The first is the maximum number of worlds for which we need to calculate the
resolution, and the second is the formula that you want the resolutions for. Since this formula
does not have a non-declarative iteration, the first argument is ignored, so we can pick any
number.

resolutions 0 (a0 \\/ b0 \\/ c0)

This correctly gives us back the three propositional atoms in the formula. Besides being
able to calculate the resolutions for a formula, it can also simplify (shorten) formulas using the
function simplify, and convert them into a I¥TEX version using the toTex function from the
LCCI.Util.Tex module. More importantly, it can also calculate the IE-PDL equivalent of every
LCCI formula using the functions in the LCCI.Reduce module.

The LCCI.Reduce module has as goal to implement the algorithm as laid out in Theorem [£.24]
including the T" and K functions from Definitions [{.8 and [£.9] This is also the module that
was used in Section [£.7] to calculate these reductions. The main functions in this package are
the reduce and reduceStep functions. Both of these reduce a formula, the first does it fully,
and the latter does one step from the proof, but works from the outside in instead of the inside
out. Both functions take two arguments, a number and a formula, where the number represents

97

APPENDIX A. IMPLEMENTATION

the maximum number of worlds that the formula needs to be reduced for, and is used in the
calculation of the resolutions of a formula. The second argument is the formula that needs to be
reduced.

As an example of this, this call is similar to the one used for the public announcement in

Section .7

alpha = Prop $ proposition "alpha'

beta = Prop $ proposition "beta'

:{

reduceStep 100 (Update (publicRaise "" [a, b, c] [alphal]) [Event 1]
(knows (iter (a .+ b .+ c)) beta))

1}

We will probably want to save this result. For that, ghci has the special variable it, which
we will reassign to a different variable.

reduced = it
prettyPrint reduced

This formula is a lot more complicated then the one given in Section [£.7] This is because the
formula in Section is simplified, so we will also inspect the simplified formula.

prettyPrint $ simplify reduced

This ends our usage of the implementation. We will end this chapter with a discussion of
what simplify does and show that this is correct.

A.2 Simplify

The function simplify, and its helper function simplifyStep can rewrite formulas in such a way
that the formulas become (hopefully) easier to understand. We wanted to spend some time on
explaining what this function does, and showing that it is indeed correct. To show this, we will
go over what it does for each type of formula.

When simplifyStep gets a formula, it first checks to see if it is a negation, —p. If ¢ is
either T or L, then it returns the other (since they are each others negation). If ¢ is itself a
negation, so the formula as a whole is a double negation, then it tries to apply the double negation
elimination rule if ¢ is declarative. In all other cases, it will try to simplify ¢ and wrap the result
in a negation. All of these rules either come from the proof system, or are abbreviations, so for
negations, simplifyStep will give an equivalent formula.

If the formula is a conjunction, it will test if one of the conjuncts is L. If this is the case,
then the function will return L, since the conjunction is false in any case. Then it will test if T
is one of the conjuncts, and if it is, it will be removed from the conjunction. If neither T nor
L is a conjunct, then it will simplify all the conjuncts and remove duplicates. So this will also
always lead to an equivalent formula.

If the formula is a disjunction or an inquisitive disjunction, simplifyStep will do the same
thing as for a conjunction, but with the roles for T and L reversed.

If the formula is a conditional, then simplifyStep will first test if the consequent is L, and if
so, return the negation of the antecedent, following the definition for negation. If the consequent
is not L, it will simplify both the antecedent and the consequent. The function executes this
second step also if the formula is a bi-implication.

For the modal operators, the function becomes a lot more complex. The first thing that it
tests for, is if the formula after the modal operator is T, in which case it returns T, since the

98

A.2. SIMPLIFY

formula is supported in all cases. Then it tests if the program is 7L or a sequence that ends with
?7 1. In both those cases it also returns T, since any program ending with ?_L ends in the empty
state, and thus every formula after it is supported there. If neither of these two cases are true,
then it will try to simplify the program that is inside the modal operator.

For atomic programs, simplifyStep simply returns the program, since it cannot be further
simplified. When it encounters a test, it will try to simplify the formula that is being tested.
When it encounters a sequence, it will first try to cut it off after the first ?_L. If there are no 7.1,
it will try to remove all the 7T except for the last one, since testing for T always returns the
current state and its subsets. If neither of these actions can be done, it will simplify the elements
of the sequence itself.

The section for the choice operator in simplifyStep is the most complicated one. First, it
tests if every element is either 7L or a sequence that ends with ?7_L. If this is the case, then the
last program executed will always be 71, so the function returns that. Then it will test if all
the options are the same, and if so, return that one option. If that is not the case, then it tries
to remove any (sequence that ends with) ?.L. This is safe to do, since it first already tested if
there are other elements in the program. After that, it checks if for some element 7, 7* is also
in the program. If so, it will remove the element from the options. This is safe from the fact
that R, C R+, so any state that is in R,y .+ is also in R,~. If that is also not the case, it tries
to use the equivalence from Lemma (m1: U, e mis Ml Tm Uy, e (m15mis m0)] e to push
the choice into a sequence. If all of these options failed, it will simply try to simplify all of the
elements in the choice, and return that.

Lastly, when it encounters unbounded iteration, it will test if the program being iterated is
a test, and if so, return that, since R, = R»,, for all formulas ¢. If that is not the case, it will
return an iterated version of the simplified inner program.

That only leaves us with the update operator. When it encounters the update operator it
checks if the set of events is empty. If it is, the function returns T, since that formula is then
always supported. If there are events being executed in the operator, it will return the same
update operator, but it will simplify the formula in its scope.

For most of the actions that simplifyStep undertakes it is easy to see or proof that they
are sound, with the exception of the equivalence for choice. Therefore, we will prove that one
equivalence.

Lemma A.1. For any number of worlds m,
o M Unepmismle Fm Uy, e (mimi 7)), and
o [miUr,epmii®le Fm [Un,ep (mms)]0
where B is a set of programs.

Proof. We will use the proof system to show this. Since we will only be using axioms that are
available to both operators, we will show the two at the same time, using [] as an example. We
will also fix some arbitrary number of worlds m.

First of all, by sequence we know that [m;\U, cpmi; 7] " [7][U,,cp mll7']p. And by
choice we get that [7][U,,cp millm']e A [7] (/\meB[[m-]] [7']¢). By the distribution of [r]
over A we get [r] (/\meB[[m]] [7'l¢) Fm Ar,eplmllmil[7']¢. Then, by using sequence and
choice again, we get A p[n][m:][7']e Hm Uy, ep (m5mi 7).

Since we have shown that this holds for an arbitrary number of worlds, we can conclude that
it holds for all m € N. O

Since all simplify does is call simplifyStep until it has no effect, this function is also sound
with respect to the semantics of LCCI.

99

APPENDIX A. IMPLEMENTATION

This concludes our discussion of the simplification functions.

A.3 Conclusion
This chapter showed how to use LCCI.hs, the software implementation that accompanies this

thesis. It also discussed the simplification algorithm used, and showed that it is sound with
respect to the semantics.

100

Bibliography

1]

A. Baltag, L. S. Moss and S. Solecki. ‘The logic of public announcements, common know-
ledge, and private suspicions’. In: Readings in Formal Epistemology. Cham: Springer,
Cham, 2016, pp. 773-812.

I. Ciardelli. ‘Modalities in the realm of questions: Axiomatizing inquisitive epistemic logic’.
In: Advances in Modal Logic 10, invited and contributed papers from the tenth conference
on "Advances in Modal Logic,” held in Groningen, The Netherlands, August 5-8, 2014.
2014, pp- 94-113.

I. Ciardelli. ‘The dynamic logic of stating and asking: A study of inquisitive dynamic mod-
alities’. In: Logics in Artificial Intelligence. Berlin, Heidelberg: Springer Berlin Heidelberg,
Aug. 2017, pp. 240-255.

I. Ciardelli, J. Groenendijk and F. Roelofsen. Inguisitive Semantics. Oxford Surveys in
Semantics and Pragmatics. Oxford: Oxford University Press, 2018.

I. Ciardelli, J. Groenendijk and F. Roelofsen. ‘On the semantics and logic of declaratives
and interrogatives’. In: Synthese 192.6 (2013), pp. 1689-1728.

I. Ciardelli and F. Roelofsen. ‘Inquisitive dynamic epistemic logic’. In: Synthese 192.6 (Mar.
2014), pp. 1643-1687.

I. Ciardelli and F. Roelofsen. ‘Issues in epistemic change’. In: Furopean Epistemology Net-
work Meeting. Madrid: John Wiley & Sons, Ltd, July 2014.

H. C. Doets and D. J. N. van Eijck. The Haskell Road to Logic, Maths and Programming,
Second Edition. College Publications, Dec. 2012.

R. Fagin et al. Reasoning about Knowledge. Cambridge, Massachussetts: The MIT Press,
1995.

R. Goldblatt. ‘An abstract setting for Henkin proofs’. In: Mathematics of Modality. Stan-
ford: CSLI Publications, 1993, pp. 191-212.

R. Goldblatt. Logics of Time and Computation. Menlo Park, Calif.: CSLI Press, 1992.

D. Harel, D. Kozen and J. Tiuryn. ‘Dynamic Logic’. In: Handbook of Philosophical Logic.
Ed. by D. M. Gabbay and F. Guenthner. Dordrecht: Springer, Dordrecht, 2001, pp. 99-217.

M. Lipovaca. Learn you a Haskell. 2011. URL: http://learnyouahaskell. com.

R. Parikh and P. Krasucki. ‘Levels of knowledge in distributed systems’. In: Sadhana 17.1
(Mar. 1992), pp. 167-191.

V. Puncochar. ‘A generalization of inquisitive semantics’. In: Journal of Philosophical Logic
45.4 (July 2015), pp. 399-428.

V. Puncochar and I. Sedlar. ‘Inquisitive propositional dynamic logic’. Manuscript.

101

http://learnyouahaskell.com

BIBLIOGRAPHY

[17]

G. Renardel de Lavalette, B. P. Kooi and R. Verbrugge. ‘Strong completeness and limited
canonicity for PDL’. In: Journal of Logic, Language and Information 17.1 (Sept. 2007),
pp. 69-87.

J. van Benthem, J. van Eijck and B. P. Kooi. ‘Logics of communication and change’. In:
Information and Computation 204.11 (Nov. 2006), pp. 1620-1662.

H. P. van Ditmarsch. ‘Knowledge Games’. PhD thesis. Groningen: ILLC Dissertation Series
2000-06., Nov. 2000.

H. P. van Ditmarsch et al. ‘On the logic of lying’. In: Games, Actions and Social Software.
Ed. by J. van Eijck and R. Verbrugge. Berlin, Heidelberg: Springer, Berlin, Heidelberg,
2012, pp. 41-72.

J. van Eijck and Y. Wang. ‘Propositional dynamic logic as a logic of belief revision’. In:
Logic, Language, Information and Computation. Ed. by W. Hodges and R. de Queiroz.
Berlin, Heidelberg: Springer, Berlin, Heidelberg, July 2008, pp. 136-148.

T. van Gessel. ‘Action models in inquisitive logic’. In: Synthese 21.3—4 (Aug. 2018), pp. 1—-
41.

102

	Introduction
	Background
	Citadels
	Inquisitive Semantics
	Possible Worlds
	Information States
	Issues
	Support

	Inquisitive Epistemic Logic
	Syntax
	Semantics
	Entertaining and wondering
	Common knowledge and public issues
	Properties
	Resolutions

	Action Model Logic
	Logic of Communication and Change
	Propositional Dynamic Logic
	Substitutions
	Logic of Communication and Change

	AML and Inquisitive Semantics
	Syntax and Semantics
	Properties

	Structure of this Thesis

	Inquisitive Epistemic Propositional Dynamic Logic
	Introduction
	Syntax
	Semantics
	Examples
	Properties
	Resolutions
	Substitutions

	Reduction Axioms
	Translation from IEL
	Axiomatisation
	Entailment
	Proof system
	Completeness

	Conclusion

	Logic of Communication, Change, and Issues
	Introduction
	Definitions
	Syntax
	Update Models
	Update Execution
	Semantics

	Examples
	Properties
	Declaratives
	Resolution

	Reduction
	Atoms
	Conjunction and Inquisitive Disjunction
	Implication
	Modalities
	Full reduction

	Axiomatisation
	Completeness

	Reduced Formulas
	Differences with AMLI
	Analysing Public Announcements

	Conclusion

	Comparison with other work
	LCC and E-PDL
	AMLI and IEL
	InqPDL

	Conclusion and further research
	Conclusion
	Further work
	Implications for IEL
	Extensions to IE-PDL
	Uses for LCCI

	Implementation
	The Hexa Game
	The Game
	Setting up
	The Model
	It's Time for Action
	Other Uses of Formulas

	Simplify
	Conclusion

	Bibliography

