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Introduction

What is this thesis about?

This thesis grew out of interests in understanding the principles of
ordinary or commonsense reasoning. This type of reasoning is easily per-
formed by most human reasoners, thus deserving the title of “ordinary”
and “commonsense”. Imagine that you were to see a picture of cherry
blossoms from Tokyo in an October newspaper edition. Knowing that
Japanese cherry normally blossoms in March or April, you reasonably
conclude that the photo must be at least half-a-year old. But were you
to further learn that the Tokyo temperatures this autumn are similar to
those of spring’s, you would be inclined to discard your original conclu-
sion that the photo is old. This phenomenon of withdrawing conclusions
upon considering additional information is known as “non-monotonicity”
of inference. A good deal of what commonsense reasoning is about is
connected to non-monotonic inferences. Although humans seem to easily
engage in commonsense reasoning, it is notoriously difficult to systemati-
cally explain its underlying workings. This problem came to the attention
of AI researchers who realized that the design of intelligent computer
programs requires understanding of and ability to engineer common
sense.

One distinctive feature of commonsense reasoners, as opposed to ideal
reasoners, is that they make errors. Reasoning errors often do not result
from obtuseness or irrational behavior, but rather from a need to draw
conclusions despite having only incomplete information about a relevant
subject matter. If an agent has complete information about a situation
and it is able to reason deductively, then its inferences are monotonic and
any addition of new information will not question previous conclusions.
Ordinary reasoners seldom (if ever) have complete information about any
contingent fact and they are “forced” to draw conclusions that can turn

1



2 INTRODUCTION

out to be wrong. From the 1970s onward, researchers in AI have noticed
the importance of reasoning errors. This has led to the later development
of formal systems with inference rules that hold other things being equal,
but fall short of deductive validity.

Recognizing that monotonic logics may not offer sufficient tools for
modeling ordinary reasoning has led some researchers to a more skep-
tical stance toward formal logics. While AI researchers accepted non-
monotonicity as one of the staples of the new types of logical systems,
some trends in the 20th century philosophy saw reasoning errors and
limitations of human reasoning as an indication that formal logics and
ordinary reasoning are not as closely connected as the philosophical
tradition has it.1 For example, Harman (1984, p. 112) defends a view
according to which logic has no “special role in reasoning”. He thinks
that logic is neither a descriptive theory of how humans reason nor a
prescriptive theory of how humans humans ought to reason.2

In contrast to such trends, the unifying idea behind this thesis is that
there are both non-monotonic logics that adequately describe ordinary
reasoning and those that show how logical norms are prescriptive in
ordinary reasoning. As it becomes clear throughout the thesis, we do
take reasoning errors and logical limitations of ordinary reasoning as
constituents of the systems we develop. However, we do not accept
skepticism regarding the role of logical norms in ordinary reasoning
and we do not accept skepticism regarding the role of logic in modeling
ordinary reasoning. In that sense, this thesis is an attempt to advance the
optimistic view of the connections between formal logic and ordinary
reasoning that currently has more proponents among AI researchers. A
long-term goal, however, is to advocate that understanding the logical
principles of commonsense reasoning should also be in the focus of
philosophical theories of reasoning.

One of the main steps that we plan to undertake in this direction is to
reinstate arguments as a subject matter of formal logic. The 20th century
witnessed formal logic and argumentation theory parting their ways,

1Notably, Kant (1781/1998, p. 194 A52/B76) claimed that logic is “the science of the
rules of understanding in general” and Frege (1893/1964, p. 12) saw logic as prescribing
“the way in which one ought to think if one is to think at all”.

2Traditionally, the view that logic is not a descriptive theory of human reasoning has
had many proponents, among them also Frege (1893/1964, p. 12). The view that logic is
not a prescriptive theory either is a more recent one, gaining its popularity throughout
the second part of the twentieth century. For example, one recent defense of such view is
given by Russell (2017).
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most famously in the seminal work of Toulmin (1958/2003, p. 111), who
believed that deciding on the tenability of (most) arguments requires
more than looking at their logical form. This trend gave rise to the field
of informal logic which aims to analyze those features of arguments that
are deemed out of the scope of formal methods.3

This trend has not curbed the development of formal methods that
deal with arguments. In the 1980s, researchers in the field of artificial
intelligence became interested in developing systems that formalize argu-
mentation. In this respect, Pollock’s work (1987, 1992, 1995) on defeasible
reasoning is a pioneering attempt to find a formal system for argument-
based inference (Prakken, 2017, p. 2186). However, the most influential
formal account of arguments has been Dung’s (1995) theory of abstract
argumentation frameworks. Although Dung’s frameworks do not repre-
sent arguments with the richness of their internal structures, they offer an
elegant mathematical account of oppositions or attacks among arguments.
A good amount of later research strove to find a comparably elegant
formal system that would also include the structure of arguments in
argumentation frameworks.

This thesis gives an answer to the problem of modelling structured ar-
guments from a formal logic perspective. To enable logical representation
of arguments, we first define a logical system with defeasible reasons
represented in its object language. The logic proposed here has two main
basic components. The first component is Artemov’s (2001) justification
logic. Justification logic is an extension of standard epistemic logic in
which we replace the ‘modal box’ operator preceding some proposition
formula, e.g. 2F for “F is known”, with a justification term or reason
term t that gives information on the source of epistemic justification for
F. The resulting expression t : F, called justification assertion, reads as “F
is known because of the reason t”. The format of justification assertions
alone is already suggestive of the paradigmatic pairs of reasons and
conclusions that are typically associated with structures of arguments.
In this thesis, we want to pin down the logical workings behind this
intuition.

The second basic component to our new system is non-monotonic

3Recently, Hample (2007) proposed that no symbolic representation of arguments, be
it in a formal or in a natural language, should be the primary object of argument analysis.
Instead, Hample suggests that the attention should be on arguers and that any symbolic
and textual form of argument is just an artifact of the process of arguing (Hample, 2007,
p. 164).



4 INTRODUCTION

reasoning or, more specifically, defeasible reasoning. To obtain the desired
connection between justification assertions and arguments, we need to be
able to model such reasons that are able to conflict and defeat each other.
This is the idea of defeasibility of reasons that permeates the formal
study of arguments in AI. What makes defeasibility central to the study of
arguments? The answer is that (most) arguments rely on reasons that, in
principle, cannot eliminate every possibility of encountering reasons that
would oppose them — this holds at least of those reasons that are not as
strong as mathematical proofs. Therefore, to develop a logical theory of
arguments, the logic needs to be able to deal with defeasible reasons.

Pollock (1987, p. 482) was the first to notice out that what philoso-
phers study as “defeasibile reasoning” had already been studied in AI
through what is known as “non-monotonic reasoning”. This connection
is important for the system that we present here. Our method to formal-
ize defeasible reasons is to define a non-monotonic logic with explicit
representation of defeasible reasons based on the language of justification
assertions. The AI tradition offers Reiter’s default logic (Reiter, 1980)
as a standard way to deal with the type of non-monotonicity that is
induced by allowing defeasible inferences.4 Reiter proposed inference
rules called “defaults”, which permit drawing defeasible conclusions
that hold normally, but not without exceptions, as long as drawing such
conclusions does not lead to inconsistency.

We adapt Reiter’s idea of inference rules with defeasible conclusions
to the mentioned calculus of reason terms in justification logic. The
resulting logic of default justifications fulfills the goal of representing
arguments in justification logic. The new logic brings value to justification
logic, which can now be considered as a general theory of reasons. By
extending the calculus of reason terms to the case of defeasible reasons,
justification logics can be fully integrated with the philosophical study
of (non-mathematical) reasons justifying contingent statements. This is
the key step to enable a formal account of the Platonic definition of
knowledge as justified and true belief.5

Default justification logic also brings value to argumentation theory.
Most importantly, it shows that tenability of arguments is a subject-matter

4Non-monotonic approaches in AI offer a variety of alternatives to formalize the ideas
of defeasible reasoning, including circumscription (McCarthy, 1980) and autoepistemic logic
(Moore, 1985).

5The idea of modelling justified true beliefs has been one of the focal points of
Artemov’s (2008) program for bridging justification logic and mainstream epistemology.
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of formal logic. One of the results is that our logic of default justifications
determines whether an argument is acceptable or not at a purely symbolic
level through a normative system with logical consequence. This is one of
the features that distinguishes our logic with structured arguments from
the existing structured argumentation frameworks.6 These frameworks
are less-abstract formal accounts of arguments compared to Dung’s
abstract argumentation frameworks, since they do attempt to represent
internal structures of arguments. What is new in our logic is that we
represent arguments as primary objects of the logical language and we
decide on their acceptability through a definition of logical consequence.
Thus the aim of the thesis is not only to use formal logic notions to
model arguments, but to define a full-fledged logic of arguments that
manipulates structured arguments at a purely symbolic level.

The way in which we interpret default assumptions in justification
logic provides a way to model the basic types of argumentative attacks
called rebuttal and undercut (Pollock, 1987, p. 485). The two concepts play
an important role in the semantics of justification logic default theories
and we want to introduce them here informally. Given a prima facie
reason7 and some conclusion justified by that reason, a rebutting defeater
is a reason for the opposite conclusion. An undercutting defeater for that
prima facie reason is a reason that attacks the connection between the
prima facie reason and the conclusion it supports. The logic we develop
in this thesis especially aims to advance the study of undercutting or
exclusionary defeat, which has been notoriously difficult to model by
logical means. To see why, consider that modelling rebuttals can be done
in a more straightforward manner, since rebuttals can be translated into
inconsistency among statements. However, to model undercutters, we
need a more expressive language that represents or “reifies” (Horty, 2007)
reasons in its object-level formulas. This is so because we cannot simply
reduce undercut to inconsistency. What we need instead is a way to say
that a default conclusion is normally acceptable when supported by a
given prima facie reason, but not under some exclusionary circumstances.8

In addition to undercutting and rebutting defeat, AI researchers have

6Some well-known structured argumentation frameworks are ABA (Bondarenko et al.,
1997), deductive argumentation (Besnard and Hunter, 2001), DeLP (Garcı́a and Simari,
2004) and ASPIC+ (Prakken, 2010).

7A reason that provisionally holds, unless disproved by new information.
8This challenge is recognized by Horty (2012). See (Horty, 2012, Ch. 5) for his variant

of default logic-based representation of undercutting or exclusionary defeaters.
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investigated an additional standard type of argument defeat called “un-
dermining” (van Eemeren et al., 2014, p. 626). Intuitively, an argument is
undermined when one of its premises is denied. This thesis also provides
a logical account of undermining in default justification logic. Notice
that undermining does not target default inference, as undercutting, or
default conclusion, as rebutting, but rather attacks an argument’s premise
as a starting point for default reasoning. This motivated the distinction
between default and plausible reasoning in formal argumentation that
we adopt in this thesis. In the plausible reasoning paradigm, fallibility
of reasoning results from adding new information that questions old
information and, thereby, it might question old conclusions.9 In contrast,
in the default reasoning paradigm, fallibility results from adding some
further true information on top of existing information and this new
information in turn gives reasons to question old conclusions, but they
do not question old information.10

In our default logic, reasoning starts from a set of facts (also called
“axioms” and “premises”), which is then extended by conclusions that
hold by default. We argue that modeling plausible reasoning and under-
mining defeaters in the view of default theories requires changing the
set of starting premises upon receiving new information. Thus we give a
dynamic aspect to our default justification logic and model changes to
premises using the techniques from the logic of belief revision (Hansson,
1999a). More specifically, undermining is modeled with belief revision
operations that include contracting the set of starting premises, that is,
removing some information from a set of facts.

Besides the logical system of default reasons, this thesis uses the idea
of defeasibility to shed a new light on the problem of normativity of
logical rules. This problem has its roots in Harman’s (1986) criticism of

9Rescher’s (1976, 1977) work is the landmark reference for the study of plausible
reasoning. Rescher (1977, p. 39) claims that “a thesis is more or less plausible depending
on the reliability of the sources that vouch for it”.

10Note here that Prakken (2017, p. 2198) refers to the difference between defeasible
and plausible reasoning, instead of default and plausible reasoning. To be clear about
the terminology, we use the etymologically close terms “defeasible” and “defeat” in a
more general sense, so that, e.g., undermining is normally also considered as a type
of defeat. This conforms to the standard usage of “defeat” and “defeasibility” which
simply mean that something is annulled. The term “default”, on the other hand, has a
more specific meaning related to default assumptions introduced by Reiter (1980, p. 82).
Vreeswijk (1993) introduced the distinction between the two kinds of non-monotonicity
to argumentation theory (using the term “defeasible”).
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the relevance of formal logic for human reasoning. Harman argues that
classical logic has neither a normative role nor an explanatory role in
human reasoning. His position on the role of logic in human reasoning
is known as “anti-psychologism”. According to Harman, if logical rules
had a normative role in human reasoning, we would be able to come
up with a normative principle that connects formal logic and human
reasoning.11

Harman considers multiple candidate principles to bridge logic and
human reasoning, only to reject each of them and to skeptically conclude
(Harman, 1986, p. 20) that “there is no clearly significant way in which
logic is specially relevant” for human reasoning. The idea of such princi-
ple spurred the “Bridge Principle” debate in the philosophy of logic, with
an aim to find a principle that fulfills Harman’s requirements. We argue
that Harman’s conclusion does not follow, once we take into account that
normative rules in human reasoning, just like normative rules in general,
are defeasible rules only. We offer a system that interprets logical rules as
default norms to show that Harman’s counterexamples to the normative
role of logic in human reasoning do not hold. Moreover, we argue that
it is not necessary to “bridge” logic and reasoning by coming up with a
bridge principle so as to claim that classical logic is normative for human
reasoning.

We stated in the introduction that we focus on fallible agents who,
unlike ideal agents, are prone to making reasoning errors. It seems that
such agents need to be aware of their fallibility and adopt a modest
attitude toward their ability to form true beliefs. This issue is known
as “doxastic modesty”. As a final topic of this thesis, we investigate the
limits on how far could a fallible and modest agent go in acknowledging
its fallibility. The phenomenon of doxastic modesty statements came into
prominence after Makinson (1965) published the paradox of the preface.
According to the paradox, an author of a non-fictional book is justified
to believe each assertions in one such book. However, being aware of
one’s own fallibility, the author is justified to disbelieve the conjunction
of all assertions in the book and to acknowledge so in the book preface
with an appropriate statement of doxastic modesty. It seems that doxastic
modesty requires the author to entertain justified inconsistent beliefs.
Moreover and more generally, it seems that doxastic modesty requires all

11One might, for example, think that deductive closure can bridge logic and reasoning
by means of the following principle:“If some statement is classically entailed by one’s set
of beliefs, then that statement should be added to the set of beliefs”.
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fallible agents to believe the doxastic modesty statement “At least one of
my beliefs is false”.

We analyze the process by which an agent could learn that statement.
Instead of focusing on inconsistency of beliefs, we highlight the connec-
tion between doxastic modesty statements and Moorean statements. We
argue that agents cannot in principle learn any of the straightforward ver-
sions of doxastic modesty statements. Similar results are already known
in the case of Moorean statements. This weakens arguments in support
of the claim that doxastic modesty requires agents to believe that one of
their beliefs is false. What is needed to save those arguments is to employ
some ad hoc assumptions on agents’ beliefs that give special treatment to
their beliefs in doxastic modesty statements.

Outline of the chapters

The rest of this thesis is structured as follows.

• In Chapter 1, we present technical requirements for reading the
rest of the thesis. We first present justification logics, which give
the basic language for the logic of defeasible arguments. Then we
describe the basics of standard default logic. Finally, we briefly
familiarize readers with abstract argumentation frameworks. The
order of presentation follows the order of use of these systems
throughout the thesis.

• In Chapter 2, we develop a logic of structured defeasible arguments
using the language of justification logic. In this logic, we introduce
defeasible justification assertions of the type t : F that read as
“t is a defeasible reason that justifies F”. Such formulas are then
interpreted as arguments and their acceptance semantics is given
in analogy to Dung’s abstract argumentation framework semantics.

We first define a new justification logic that relies on operational
semantics for default logic. One of the key features that is absent
in standard justification logics is the possibility to weigh different
epistemic reasons or pieces of evidence that might conflict with
one another. To amend this, we develop a semantics for “defeaters”:
conflicting reasons to doubt the original conclusion or to believe an
opposite statement. In our logic, reasons are non-monotonic and
their acceptability status can be revised in the course of reasoning.
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Then we present our logic as a system for abstract argumentation
with structured arguments. The format of conflicting reasons over-
laps with the idea of attacks between arguments to the extent that
it is possible to define all the standard notions of extensions of
argumentation frameworks.

• In Chapter 3, we establish a formal correspondence between Dung’s
original argumentation semantics and our operational semantics
for default theories. We show that a large subclass of Dung’s frame-
works that we call “warranted” frameworks is a special case of
our logic: (1) Dung’s frameworks can be obtained from justification
logic-based theories by focusing on a single aspect of attacks among
justification logic arguments and (2) Dung’s warranted frameworks
always have multiple justification logic instantiations, called “real-
izations”, in the sense of multiple corresponding default theories.

In the same chapter, we compare our logic to Reiter’s default logic
interpreted as an argumentation framework. The comparison is
done by analyzing differences in the ways in which process trees
are built for the two logics. The aim is to show that our logic solves
the problem of modeling undercut and exclusionary reasons in
default logic.

• Chapter 4 covers information changes in default justification logic
with argumentation semantics. We introduce dynamic operators
that combine belief revision and default theory tools to define both
prioritized and non-prioritized operations of contraction, expansion
and revision for justification logic-based default theories. We argue
that the combination enriches both default logics and belief revision
techniques. We model the kind of attack called “undermining” with
those operations that contract a knowledge base by an attacked
formula.

• In Chapter 5, we argue for weak psychologism — the claim that
logical rules are normative for human reasoning — by offering a
new, default logic perspective on the normativity of logic. First we
discuss Harman’s proposed counterexamples to the normativity
of classical logic. We show that Harman’s argument hinges on
the claim that there is no exceptionless normative principle that
requires human agents to follow the rules of classical logic. This is
right, but, contrary to what Harman claims, we argue that this does
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not suffice to refute weak psychologism. Instead, we argue that
Harmanian bridge principles presuppose two requirements that
a normative principle cannot meet, namely the non-defeasibility
requirement and the relevance requirement. We show that both
requirements are unnecessary. Moreover, we define a new variant
of default logic for ordinary reasoning as an alternative framework
for normative rules. Using this default logic, we present a picture
of how logic is normative for human reasoning.

• In Chapter 6, we argue that an agent cannot in principle form a
belief in the statement “At least one of my beliefs is false”, without
having to revise it immediately after. Once this statement has been
learned, it should not be believed any more. Agents encounter a
problem of the similar kind when learning Moorean statements.
To avoid this problem, agents can refer to their totality of beliefs
slightly differently and, thereby, avoid the change of the believed
statement. We argue that each of the two ad hoc solutions that we
discuss cannot be convincingly defended. Finally, we suggest that
doxastic modesty justifies suspension of the belief in the conjunction
of one’s beliefs and it also justifies believing doxastic modesty
statements that do not claim that one in fact believes falsely.



Chapter 1

Preliminaries

1.1 Introduction

This chapter introduces the basic formal ingredients used throughout
the thesis: justification logics, default logic, and abstract argumentation
frameworks. Since each of these systems has yielded a field of research
with a rich tradition, the chapter focuses on the standard aspects of the
three systems that contribute to a better understanding of the system
developed in the rest of this thesis. Since the role of the language of
justification logic is central to the development of the logic of defeasible
argumentation in Chapter 2, the most extensive part of this chapter is
given to a systematic exposition of justification logics.

1.2 Justification logic

Informally, justification logics are systems that enable mathematically rig-
orous representation of reasons or justifications. The terms “reason” and
“justification” are usually understood as reasons to believe or know, but,
in general, the language supports other non-doxastic and non-epistemic
interpretations. However, justification logic grew out of a more specific
interest in formalizing the idea from constructive mathematics that truth
can be identified with provability. Thus, the original intention was not
to deal with reasons in their broadest capacity, but only with a specific
group of reasons: formal mathematical proofs. In this thesis, we adopt
the usual interpretation of justification logics as logics that model reasons
to believe, to know, or, in general, to accept claims.

11
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Typical for justification logics is their use of the format of labelled
formulas:

term : formula,

representing pairs of reasons and claims. In the object language, they are
written as the so-called “justification assertions” t : F that read as “t is a
reason that justifies formula F”. The first justification logic was developed
as a logic of proofs in arithmetic (logic of proofs, LP) by Artemov (2001).1

On the original reading of pairs t : F, the term t encodes some Peano
arithmetic derivation for the statement F.

Soon after Artemov introduced the logic of proofs (LP) in (2001),
Fitting (2005a, 2005b) proposed a possible worlds semantics for this logic
in order to incorporate justification logics in the family of modal logics.
Syntactic objects that represent mathematical proofs in the logic of proofs
LP are then more broadly interpreted as epistemic or doxastic reasons
by Fitting (2005a, 2005b) and Artemov and Nogina (2005). A distinctive
feature of justification logic taken as epistemic logic is replacing belief
and knowledge modal operators that precede propositions (2F for “F
is known”) by proof terms or, in a generalized epistemic context, justi-
fication terms. Next to the usual possible world condition for the truth
of t : F that F is true in all accessible alternatives, Fitting’s semantics
requires that the reason t is admissible for formula F.

The language of justification logic builds on the language of proposi-
tional logic, which is augmented by formulas labelled with reason terms
(t : F) and a grammar of operations on such terms. Reason terms are
built from constants and variables, using operations on terms. Intuitively,
constants justify logical postulates and variables justify contingent facts
or inputs outside the structure. The basic operation of standard justifica-
tion logics is application. Intuitively, application produces a reason term
(u · t) for a formula G which is a syntactic “imprint” of the modus ponens
step from F → G and F to G for some labelled formulas u : (F → G) and
t : F. We say that the term u has been applied to the term t to obtain the
term (u · t). The Application axiom is present in all standard justification
logics:

u : (F → G)→ (t : F → (u · t) : G).

1The idea of explicit proof terms as a way to find the semantics for the provability
calculus S4 dates back to Gödel’s 1938 lecture published in (Gödel, 1995). For a more
encompassing overview of standard justification logics see (Artemov and Fitting, 2019)
or (Kuznets and Studer, 2019).
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The axiom displays a distinctive feature of justification terms by which
the history of reasoning steps taken in producing such terms is recorded
in their structure.

Another common operation on justification terms is sum. Intuitively,
if a reason term t justifies some formula F, then, by sum, we can add any
other reason term u so that the new reason term (t+ u) still justifies F. On
an epistemic interpretation, this operation can be informally motivated
as follows (Artemov and Fitting, 2016, Section 2.2): t and u might be
thought of as two volumes of an encyclopedia that are used as evidence
for some statement F. If one volume justifies F, then adding the other
volume to the corpus of evidence does not compromise the justification
for F. This intuition is captured by the Sum axioms:

t : F → (t + u) : F & u : F → (t + u) : F.

These axioms represent the requirement of monotonicity on reasons and
prevent that adding new information compromises already accepted
reasons. The axioms regulating the sum and application operations are
formally described in this section, following the definition of the language.
In relation to monotonicity of reasons, it is worth noting here that this
thesis seeks to meet what Artemov (2001, p. 482) considers to be “an
intriguing challenge to develop a theory of nonmonotonic justifications
which prompt belief revision”.

Additionally, standard justification logics may include unary opera-
tors ‘!’ and ‘?’ on terms that occur in axioms about agents’ introspective
abilities. The Positive Introspection axiom

t : F →!t : t : F

is a justification logic variant of the modal logic axiom 4: 2F → 22F. On
an epistemic reading of the modal logic “box”, the axiom says that “if
an agent knows F, then the agent knows that it knows F”. The operation
‘!’ does not simply iterate the reason t for F, but gives a “meta-evidence”
(Artemov, 2008, p. 494) that t is a correct reason for F. An example
motivated by the original provability reading of justification terms could
be that the output term !t is taken to be a justification of each line in a
natural deduction proof t for a proposition F. Therefore, the operation ‘!’
is known under the name Proof Checker.

Historically, the first justification logic (logic of proofs LP) consisted of
the above Application, Sum and Positive Introspection axioms, together
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with the Factivity axiom: t : F → F. This axiom is an explicit counterpart
to the modal Truth axiom: 2F → F read as “If F is known, then F”.
Together with Sum, Factivity is an “embodiment” of the requirement of
non-defeasibilty for reasons: “there can be no other truths such that, had
I believed them, would have destroyed my justification for believing F”.
The ramifications of non-defeasibility requirements on reasons will be
among the main topics of this thesis. In particular, we search for a logical
theory of reasons that do not necessarily persist as acceptable reasons
after new information has been added.

In contrast to Positive Introspection, the Negative Introspection axiom

¬t : F →?t : ¬t : F

is not accepted for a logic of arithmetic proofs. The type of operation
that ‘?’ represents “does not exist for formal mathematical proofs since ?t
should be a single proof of infinitely many propositions ¬t : F, which is
impossible” (Artemov, 2008, p. 495). Consider that, in order to be suitable
for the context of formal proofs, ‘?’ would need to take t as its only
input to justify that ¬t : F holds for infinitely many propositions F that a
proof represented by t does not prove. Throughout the rest of the thesis,
we do not consider the introspection axioms. In fact, we will build our
logic starting with a system of non-defeasible reasons that includes only
propositional axioms, Application, Sum and Factivity. However, for the
purposes of this preliminaries chapter, we describe the most well-known
justification logic: the logic of proofs LP.

The following grammar summarizes the informal discussion of the
available operations and describes a way to build the formulas from the
language of LP starting from the propositional base:

• a countable set P of propositional atoms: P1, . . . , Pn, . . .

• connectives: ¬,∧,∨,→

• parentheses: (, )

• the ‘top’ symbol denoting an arbitrary tautology: >

• reason terms (polynomials) t1, . . . , tn, . . . built from:

1. justification variables x1, . . . , xn, . . .

2. justification constants c1, . . . , cn, . . .
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using binary (‘+’ and ‘·’) and unary (‘!’) operators

• operator symbol of the type 〈term〉 : 〈formula〉

On the basis of the alphabet above, we define the set of all reason terms
Tm and the set of all formulas Fm. We first say that each term from the
set of all terms Tm has to be built according the following grammar:

1. Any constant c is a reason term and any variable x is a reason term.

2. If t is a reason term, then (t · t), (t + t) and !t are reason terms.

Using Tm, we give the following grammar of LP formulas from Tm:

1. Any propositional atom P ∈ P is a formula and > is a formula.

2. If F is a formula, then ¬F, F → F, F ∨ F and F ∧ F are formulas.

3. If t is a reason term from Tm and F is a formula, then the combina-
tion t : F is also a formula.

The selection of axioms for LP, which were all introduced above, is
given by the following list:

A0 All the instances of propositional logic tautologies from Fm

A1 t : (F → G)→ (u : F → (t · u) : G) (Application)

A2 t : F → (t + u) : F; u : F → (t + u) : F (Sum)

A3 t : F → F (Factivity)

A4 t : F →!t : t : F (Positive Introspection)

Combined with the following two rules, we described the logic LP:

R0 From F and F → G infer G (Modus ponens)

R1 If F is an axiom instance of A0-A4 and c a proof constant, then infer c : F
(Axiom necessitation)

The formula F is LP-provable (LP ` F) if F can be derived using
the axioms A0-A4 and rules R0 and R1. The following is an example
derivation of a formula in LP:
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LP ` x : (F ∧ G)→ ((c · x) : F ∧ (d · x) : G).

1 (F ∧ G)→ F, (F ∧ G)→ G (A0)
2 c : ((F ∧ G)→ F), d : ((F ∧ G)→ G) (1 R1)
3 c : ((F ∧ G)→ F)→ (x : (F ∧ G)→ (c · x) : G) (A1)
4 d : ((F ∧ G)→ G)→ (x : (F ∧ G)→ (d · x) : G) (A1)
5 x : (F ∧ G)→ (c · x) : F (2,3 R0)
6 x : (F ∧ G)→ (d · x) : G (2,4 R0)
7 (x : (F ∧ G)→ (c · x) : F)→ ((x : (F ∧ G)→ (d · x) : G)→

(x : (F ∧ G)→ ((c · x) : F ∧ (d · x) : G))) (A0)
8 (x : (F ∧ G)→ (d · x) : G)→ (x : (F ∧ G)→

((c · x) : F ∧ (d · x) : G)) (5,7 R0)
9 x : (F ∧ G)→ ((c · x) : F ∧ (d · x) : G) (7,8 R0)

The theorem above is an explicit version of the formula
2(F ∧ G)→ (2F ∧2G), which is a theorem of the modal logic
K.

Notice that our use of the constants c and d in this proof is arbitrary
in the sense that R1 does not restrict our choice of proof constants used
in line 2. In justification logics, basic logic axioms are taken to be justified
by virtue of their status within a system and their justifications are not
further analyzed. Moreover, we may also treat any such formula c : F as
an axiom in the system and postulate that some proof constant d justifies
c : F. A set of instances of all such canonical formulas in justification logic
is called a Constant Specification (CS) set. The following is the general
definition of constant specification sets, which subsumes the set produced
as the set of instances of rule R1 above:

Definition 1 (Constant Specification).

CS = {cn : cn−1 : · · · : c1 : F | F is an axiom instance of A0-A4,
cn, cn−1, . . . , c1 are proof constants and n ∈N}

Rule R1 generates a set of formulas in which any constant justifies any
instance of A0− A4. This defines only one possible constant specification
set. One could require, for example, that every axiom instance comes
with a unique constant.
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The choice of a constant specification set may be included as a pa-
rameter of logical awareness for a justification logic. This is done by
relativizing the Axiom necessitation rule to a constant specification as
follows:

R1* If F is an axiom instance of A0-A4 and cn, cn−1, . . . , c1 are proof constants
such that cn : cn−1 : · · · : c1 : F ∈ CS , then infer cn : cn−1 : · · · : c1 : F
(Iterated axiom necessitation)

For example, the simplest standard justification logic J∅ is defined by
axioms A1, A2, rules R0, R1 and an empty constant specification, which
means that J∅ does not support any form of axiom necessitation rules.

Next to the Empty constant specification (CS = ∅), other standard
choices of constant specification sets include (Artemov and Fitting, 2019,
pp. 17-18):

• Total (T CS): any axiom instance can be labelled with any sequence
of proof constants;

• Finite: CS is a finite set of formulas;

• Axiomatically Appropriate: for each axiom instance A, there is a
constant c such that c : A ∈ CS and for each formula cn : cn−1 :
· · · : c1 : A ∈ CS such that n ≥ 1, there is a constant cn+1 such that
cn+1 : cn : cn−1 : · · · : c1 : A ∈ CS ;

• Injective: each proof constant c justifies at most one formula.

Replacing rule R1 with R1* relative to a choice of CS gives the logic LPCS.
Notice that the necessitation rules in justification logics regulate only
logical awareness of axioms, unlike their modal logic counterpart “If F
is provable, then infer 2F”. In justification logics with an axiomatically
appropriate CS , theorem necessitation turns into a constructive property
of derivations for which the following theorem holds:2

(Strong) Internalization 2. Given an axiomatically appropriate CS and the
corresponding rule R1*, if a formula F is provable in a justification logic system

2However, for any logic that contains axiom A4, an axiomatically appropriate CS is
not necessary to ensure that the formula c : F is justified. With A4, the proof checker
operation ensures that !c : c : F is derivable. Therefore, the logic LP above fulfills
the requirement of internalizing each formula c : F with the constant specification set
generated with R1. This is the original approach taken by Artemov (2001).
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with CS and R1*, then t : F is also provable for some term t built from proof
constants using only ‘·’.

Proof. See (Artemov and Fitting, 2019, p. 21).

The choice of a constant specification is thus an important parameter
and not least so because it could affect complexity results, as discussed
by, e.g., Milnikel (2007).3 However, it will not be central to the devel-
opment of our system of defeasible reasons in Chapter 2. Because of
that, we simply assume axiomatically appropriate and injective constant
specifications in which each axiom instance and each formula inferred
through necessitation has its own proof constant. An intuitive class of
such constant specifications (Artemov, 2018, p. 31) are CS sets produced
by assigning Gödel numbers to axioms.

As mentioned before, on the original semantics of the first justification
logic LP, justifications are interpreted as codes of proofs of arithmetical
statements. Possible worlds semantics for justifications of generalized
statements are introduced by Fitting (2005a,b). Fitting models made it
possible to extend interpretations of syntactic objects that represent math-
ematical proofs as epistemic reasons (Fitting, 2005a,b, Artemov and
Nogina, 2005, Artemov, 2008). As mentioned above, justification logics
interpreted as doxastic or epistemic logics replace belief and knowledge
modal operators that precede propositions (2F for “F is known”) by jus-
tification terms. For the truth of the justification assertion t : F, Fitting’s
semantics requires F to be true in all accessible alternatives, as familiar
from standard epistemic logic, and that the reason t is admissible for for-
mula F in the current state. In Fitting semantics, admissibility of reasons
is a given determined by the admissibility function in the LPCS model
(Definition 3). In the semantics of default reasons presented in Chapter 2,
admissibility is not taken to be a primitive notion. To determine whether
a default reason is among admissible reasons for a formula, it is necessary
to establish that its admissibility is not overridden by a conflicting reason.

Definition 3 (LPCS model). A frame F is defined as a pair < S ,R > such
that S is a non-empty set of states and R a binary accessibility relation on
states.

3Consider also epistemic implications of this choice. If we define an empty CS , we
eliminate logical awareness for an agent, while any infinite axiomatically appropriate CS
imposes logical omniscience.
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We define a function reason assignment based on CS , ∗(·) : S × Tm→
2Fm, a function mapping each pair of states and terms to a set of formulas from
Fm. We assume that it satisfies the following conditions:

1. If F → G ∈ ∗(w, t) and F ∈ ∗(w, u), then G ∈ ∗(w, t · u)

2. ∗(w, t) ∪ ∗(w, u) ⊆ ∗(w, t + u)

3. If c : F ∈ CS , then F ∈ ∗(w, c)

4. If F ∈ (w, t), then t : F ∈ (w, !t)

A truth assignment v : P → 2S is a function assigning a set of states to each
propositional formula. We define the interpretation I as a quadruple (S ,R, v, ∗).
For an interpretation I , |= is a truth relation on the set of formulas of LPCS.

For any formula F ∈ Fm, I , w |= F iff

• For any P ∈ P , I , w |= P iff w ∈ v(P)

• I , w |= ¬F iff I , w 6|= F

• I , w |= F → G iff I , w 6|= F or I , w |= G

• I , w |= F ∨ G iff I , w |= F or I , w |= G

• I , w |= F ∧ G iff I , w |= F and I , w |= G

• I , w |= t : F iff F ∈ ∗(w, t) and for each w′ ∈ S such that wRw′, it
holds that I , w |= F

In (Fitting, 2005b), axiomatic soundness and completeness of LPCS
with respect to Fitting models are proved for axiomatically appropriate
constant specifications.

1.3 Default logic

The second formal ingredient in this thesis is Reiter’s default logic (Re-
iter, 1980). Default logic is a non-monotonic logic that extends classical
reasoning by introducing conclusions that hold normally, but not without
exceptions. Conclusions of this type are introduced by default rules such
as the following:

bird(Tweety) : flies(Tweety)
flies(Tweety)

.
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The default reads as follows: “If Tweety is a bird and if it is consistent
with the current theory to assume that Tweety flies, then conclude that
Tweety flies”. The reasoning behind this default tells us that, normally, if
we know that something is a bird and if it is consistent with what we
already believe that it flies, then we may also believe that it indeed flies.

The idea of logic built around such rules is to take some incomplete
set of facts and use default rules to extend the set of facts with defeasi-
ble conclusions as much as possible without introducing contradictory
conclusions. Default reasoning of this type is formalized with Reiter’s
default theories:

Definition 4 (Reiter’s Default Theory). A default theory ∆ is defined as a
pair (W, D), where the set W is a finite set of first-order logic formulas and D
is a countable set of default rules.

The set W contains facts or known information. The general form of
a default rule from D in Reiter’s theory is

δ =
ϕ : ψ1, . . . , ψn

χ
,

for predicate logic formulas ϕ, ψ1, . . . , ψn and χ.4 By pre(δ) we denote
the prerequisite ϕ of δ, by just(δ) we denote the set {ψ1, . . . , ψn} of the
justifications of δ and by cons(δ) we denote the consequent χ of δ.

How exactly to extend an initial set of facts with default conclusions?
To give a clear formal answer, we will need a definition of default applica-
bility. A default rule δ = ϕ:ψ1,...,ψn

χ is applicable to a deductively closed set
of first-order formulas S iff

• ϕ ∈ S and

• ¬ψi 6∈ S for all ψi ∈ {ψ1, . . . , ψn}.

Starting from the definition of applicability, there are two standard ways
to define Reiter’s theory extensions. Reiter’s (1980) original approach
uses fixed-point equations such that, if a set S is chosen as an extension
of a theory ∆, then S corresponds to the outcome of applying all S-
applicable defaults with respect to the set W. Another standard way,

4Note that there are also open defaults of the form bird(X):flies(X)
flies(X)

, where X is a free
variable. Such rules are default schemes and they are dealt with by using a ground
substitution which assigns ground terms to variables. Open defaults thus represent sets
of defaults.
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that of Antoniou (1997), relies on an operational procedure of applying
defaults to build extensions in a step-by-step manner. In this thesis,
we focus on Antoniou’s operational semantics that also serves as an
inspiration for the operational semantics of the default justification logic
from Chapter 2.

The details of operational semantics for building Reiter’s logic exten-
sions will be given shortly. Here are some desiderata for an extension set
E proposed by Antoniou (1997, pp. 27-28):

• The set of facts W is included in E (W ⊆ E);

• E is closed under classical logical consequence (Th(E) = E);

• E is closed under the application of defaults in D, that is, if E is an
extension, all applicable defaults have been applied.

In building extensions, we consider possible orders in which defaults
from D could be applied without repetitions or possible sequences: Π =
(δ1, δ2, . . .), were δ1, δ2, . . . ∈ D. The initial segment containing the first k
elements of Π is denoted with Π[k]. Any segment Π[k] is also a sequence.
In particular, Π[0] is the empty list ( ), Π[1] is the list with the first
element of Π, and for k ≥ 2, Π[k] is the list k elements of Π. With any
sequence Π we associate the following two sets:

• In(Π) = Th(W ∪ {cons(δ) | δ ∈ Π});

• Out(Π) = {¬ψ | ψ ∈ just(δ) for some δ ∈ Π}.

Intuitively In(Π) represents a knowledge base resulting from default ap-
plication and Out(Π) collects formulas that are supposed not to become
a part of it after defaults have been applied.

Whether a sequence Π = (δ1, δ2, . . . , δn) can be executed in the pro-
posed order or not depends on the applicability of each rule δk+1 from Π
to the closed set of formulas In(Π)[k] = Th(W ∪ cons(δ1, δ2, . . . , δk)). This
observation is central for Antoniou’s definition (1997, p. 32) of default
processes which he uses for defining Reiter’s extensions:

Definition 5 (Process). A sequence of default rules Π is a process of a default
theory ∆ = (W, D) iff every δk+1 ∈ Π is applicable to the set In(Π[k]), where
Π[k] = (δ1, . . . δk).
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As mentioned before, extensions of default theories should be closed
under the application of defaults. We say that a process Π is closed iff
every δ ∈ D that is applicable to In(Π) belongs to Π.

Besides closure, extension-producing processes fulfill an additional
condition called success (Antoniou, 1997, p. 32). A process Π is successful
if for each default rule ϕ:ψ1,...,ψm

χ from Π, justifications ψ1, . . . , ψn are
consistent with the consequents added to an In-set after all defaults
have been applied. In other words, none of the formulas from an Out-
set should become a part of an In-set for the same process. Intuitively,
assumptions made in the process of extending the set of facts should not
be invalidated with the addition of further conclusions.

We give an example of both a process that is closed and not successful
and a process that is successful and not closed, using propositional logic.
Let W0 = ∅ and let

D0 =

{
δ1 =

> : ¬a
b

, δ2 =
> : a

a

}
.

We define the Reiter’s default theory ∆0 = (W0, D0). Take the sequence
Π1 = (δ1). This sequence is a process, since δ1 is applicable to In(Π[0]).
Moreover, this is a successful process because the intersection of In(Π1)
and Out(Π1) is empty. However, Π1 is not closed. The reason is that the
rule δ2 is applicable to In(Π1) and it is not included in Π1.

It is easy to check that the sequence Π2 = (δ1, δ2) is also a process
and that it is closed. Notice, however, that Π2 is a failed process. After
applying the rule δ2, the intersection of In(Π2) and Out(Π2) both contain
the formula ¬a. Intuitively, cons(δ2) invalidates the assumption made
to draw the conclusion cons(δ1). Moreover, notice that the sequence
Π3 = (δ2, δ1) is not a process and that the sequence Π4 = (δ2) is both
closed and successful. The latter type of sequences is used to define
Reiter’s extensions:

Definition 6 (Reiter’s Theory Extension). A set of first-order formulas E is
an extension of a default theory ∆ = (W, D) iff there is a closed and successful
process Π of ∆ such that E = In(Π).

For the theory ∆0, our analysis implies that its only extension is the
set In(Π4). For more complex default theories, Antoniou (1997, p. 34)
introduces a convenient method of finding default theory extensions
through drawing process trees that we use in Chapter 2 and Chapter 3.
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At last, we can define the notion of validity for Reiter’s default logic.
Using the definition of extensions, there are two different notions of
entailment for a Reiter’s theory ∆:

Skeptical entailment ∆|∼s ϕ iff ϕ is in all extensions of ∆.

Credulous entailment ∆|∼c ϕ iff ϕ is in at least one extension of ∆.

Notice that the set of formulas S that consists of all credulous conse-
quences for a theory ∆ may be inconsistent.

For an illustration of default reasoning with inconsistent conclusions
in Reiter’s logic, consider the “Nixon diamond” scenario in which ap-
plying defaults leads to the existence of inconsistent extensions for a
theory. The scenario concerns the following dilemma: we assume that,
usually, Quakers are pacifists and Republicans are not, but which of the
two properties holds of Nixon who is both a Quaker and a Republican?

Formally, we start from the facts that quaker(Nixon) and
republican(Nixon), together with the following default schemes{

quaker(X) : pacifist(X)

pacifist(X)
,

republican(X) : ¬pacifist(X)

¬pacifist(X)

}
.

Using ground substitution, we obtain the Reiter’s theory ∆N = (WN , DN)
with WN = {quaker(Nixon), republican(Nixon)} and DN = {δ3, δ4} with{

δ3 =
quaker(Nixon) : pacifist(Nixon)

pacifist(Nixon)
, δ4 =

republican(Nixon) : ¬pacifist(Nixon)
¬pacifist(Nixon)

}
.

The theory ∆N has two extensions:

E1 = Th(W ∪ {pacifist(Nixon)}) and
E2 = Th(W ∪ {¬pacifist(Nixon)}).

Multiple extensions mean that neither cons(δ3) nor cons(δ4) is valid on
the definition of skeptical entailment and both cons(δ3) and cons(δ4) are
valid on the definition of credulous entailment. Notice that, if a theory
has no extensions, then any first-order formula follows according to the
skeptical entailment and no formula follows according to the credulous
entailment. As a limiting case, a theory that has an inconsistent set of
facts W always has a closed and successful process corresponding to the
sequence Π[0]. To see why, consider that the set Out(Π[0]) is empty. This
means that the set In(Π[0]) = Th(W) defines the extension of that theory.
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1.4 Abstract argumentation frameworks

The last formal ingredient in this thesis are abstract argumentation frame-
works (henceforth AF). They offer answers to the problem of the ac-
ceptability of arguments based exclusively on the information about the
attacks from one argument to another. An argumentation framework is a
pair of a set of arguments, and a binary relation representing the attack-
relationship (defeat) between arguments. More formally, AF = (Arg, Att),
where Arg is a set of arguments A1, A2, . . . and Att is a relation on
Arg× Arg such that Ai attacks Aj if and only if (Ai, Aj) ∈ Att. These
frameworks are abstract in at least two ways. First, it is immediately
observable that the structure of arguments does not enter the formal
workings of AFs. Secondly, and less obviously, the exact nature of attacks
between arguments is not specified. As a result of their abstract nature,
the mathematical structure of AFs is simply the structure of directed
graphs, where nodes represent arguments and arrows represent attacks.

The study of arguments at this level of abstraction was initiated by
Dung (1995). The generality of abstract argumentation enabled Dung
to establish connections between argumentation frameworks on one
side and logic programming, Reiter’s default logic, Pollock’s inductive
logic, game theory (n-person games) on the other side, among others.
From then on, there have been various attempts to develop frameworks
where both the structure of arguments and the exact nature of attacks is
specified, most notably in Prakken’s (2010) ASPIC+ framework.

The generality of AFs turned out to be an asset, at least according to
the amount of research originating from the simple idea of arguments
modeled as graphs. The importance of Dung’s theory of arguments
for this thesis lies in the semantics of arguments acceptance in AFs.
These semantics mediate between the language of justification logic and
the operational methods for default theories. The concepts developed
in (Dung, 1995, Section 2) are thus used as an additional level to the
operational semantics that is inherited from default theories. We now
present the basics of the AF semantics.

Starting from a framework AF = (Arg, Att), the following can be said
about collective acceptance of arguments from Arg. For the following
definitions, it holds that a set of arguments S attacks an argument A1 if
(A2, A1) ∈ Att for some A2 from S.

Definition 7 (Conflict-free sets). A set of arguments S is said to be conflict-free
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if there are no arguments A1 and A2 in S such that (A1, A2) ∈ Att.

Definition 8 (Acceptability). An argument A1 from Arg is acceptable with
respect to a set of arguments S iff, for each argument A2 from Arg it holds that,
if (A2, A1) ∈ Att, then S attacks A2.

Using the definitions of conflict-free sets and acceptability, we can
define a variety of standard semantics. Each of the semantics defined
below represent a different way to answer the problem of determining
those arguments that are considered to be the winning arguments.

Definition 9 (AF Extensions). For an abstract argumentation framework
AF = (Arg, Att), the following extensions are defined:

Admissible Extension A conflict-free set of arguments S is an admissible
extension iff each argument in S is acceptable with respect to S.

Preferred Extension If S is a maximal admissible extension with respect to
set inclusion, then S is a preferred extension.

Complete Extension An admissible extension S is a complete extension iff
each argument that is acceptable with respect to S belongs to S.

Grounded Extension A complete extension S is the grounded extension if it
is the least complete extension with respect to set inclusion.

Stable Extension A conflict-free set of formulas S is a stable extension if S
attacks each argument that is not in S.

We will use again the Nixon diamond example, this time to illustrate
the semantics of AF’s. Let A and B to be argument abstractions represent-
ing the claims “Nixon is not a pacifist because he is a Republican” and
“Nixon is a pacifist because he is a Quaker”, respectively. Additionally,
we include an argument C that resolves the conflict of A and B such that
C represents the claim “Nixon never used the right to exempt himself
from the military draft, although the right is granted to all birthright
Quakers”. Thus the winning argument becomes the argument for the
claim that Nixon is not a pacifist.

We can now define an abstract argumentation framework for the
Nixon diamond: AFN = (Arg, Att), where Arg = {A, B, C} and Att =
{(A, B), (B, A), (C, B)}. The structure of attacks from AFN can be conve-
niently represented by way of a directed graph. In Figure 1.1, we show
the graph that corresponds to the framework AFN.
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A B C

AFN

Figure 1.1: AF example

The nodes represent the arguments from Arg and the edges represent
the direction of attacks obtained form Att. The graph shows that the
argument C resolves the dilemma of Nixon diamond by deciding that
A is the winning argument. The arguments C and A are contained in
the preferred extension of AFN, but also in its grounded extension. In
the context of AF semantics, one can think of preferred and grounded
extension as representing credulous and skeptical approach, respectively.
In fact, for the framework AFN, we find the coincidence of preferred,
complete, grounded and stable extensions.

If all the types of semantics are uniformly defined, as in the case of
AFN, it is easy to determine which arguments need to be accepted. This
is one of the motivations behind specifying conditions under which we
have a unique answer to the problem of selecting a group of winning
arguments. Dung (1995, p. 331) specifies a subclass of well-founded AFs
for which we can establish a unique answer to this problem. An argu-
mentation framework is well-founded iff there are no infinite sequences
of arguments A1, A2, . . . , An, . . . such that for each i, Ai+1 attacks Ai. In
Chapter 3, we specify the well-foundedness criteria for justification logic
default theories.



Chapter 2

Default justification logic

As such, every great degree of caution in inferring, every
skeptical disposition, is a great danger to life. No living
being would be preserved had not the opposite disposition
— to affirm rather than suspend judgement, to err and
make things up rather than wait, to agree rather than
deny, to pass judgement rather than be just — been bred
to become extraordinarily strong.

—Nietzsche (1882/2001, p. 112,§ 111)

2.1 Introduction

In this chapter, we introduce default justification logic. We start from
a variant of justification logic, namely JT, that models non-defeasible
reasons. We use JT as the basic logic for default theories with default
rules containing justification assertions. Then we introduce an opera-
tional semantics for justification logic default theories. The combination
of default theories and justification logic enables us to interpret justifi-
cation assertions as defeasible arguments. Finally, we define conditions
of argument acceptance of justification assertions that we then use to
define all the standard notions of extensions from abstract argumentation
systems.

27
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2.2 Justification logic and formal theories of defea-
sible arguments

Default reasoning is a key concept in the development of computational
models of argument. Default reasons became a topic of interest for AI
researchers largely due to Pollock’s (1987) work, which brought closer
together the ideas of non-monotonic reasoning from AI and defeasible rea-
soning from philosophy. To highlight the importance of defeasibility for
the study of reasoning, we use a variant of Pollock’s (1987) “red-looking
table” vignette, previously discussed by Chisholm (1966): Suppose you
are standing in a room where you see red objects in front of you. This
can lead you to infer that a red-looking table in front of you is in fact
red. However, the reason that you have for your conclusion is defeasible.
For a typical defeat scenario, suppose you learn that the room you are
standing in is illuminated with red light. This gives you a reason to doubt
your initial reason to conclude that the table is red, though it would not
give you a reason to believe that it is not red. However, if you were to
learn, instead, that the original factory color of the table is white, then
you would also have a reason to believe the denial of the claim that the
table is red.

The example specifies two different ways in which reasons defeat
other reasons: the former is known as undercut and the latter as rebuttal, in
Pollock’s (1987) terminology. If you obtain additional information about
the light conditions, this will incur your suspension of the applicability of
your initial reason to believe that the table is red. In contrast, if you learn
that there is a separate reason to consider that the table is not red, this
will not directly compromise your initial reason itself. The differences
between undercutting and rebutting reasons are illustrated in Figure 2.1.

undercut

rebuttal
CLAIM

Figure 2.1: Two types of defeat: undercut and rebuttal

An argument relying on default reasons is itself regarded as defeasi-
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ble. The formal study of defeasible arguments is already well-developed,
most prominently in the frameworks for structured argumentation repre-
sented in the 2014 special issue of the Argument and Computation journal
(vol. 5, issue 1): ABA (Toni, 2014), ASPIC+ (Modgil and Prakken, 2014),
DeLP (Garcı́a and Simari, 2014) and deductive argumentation (Besnard
and Hunter, 2014).1 These frameworks differ in the way they formalize
argument structures and their defeasibility. Importantly, although all
these frameworks use logic as a part of their formalization, none of them
is a logic of defeasible arguments. The current chapter introduces a logic
of defeasible arguments using the language of justification logic intro-
duced by Artemov (2001). Among the many advantages of formalizing
arguments in a logical system, for now we will point out only a couple
of the more obvious ones. First, our logic of arguments is a full-fledged
normative system with definition(s) of logical consequence that satisfies
structured argumentation postulates by relying only on the definitions
of logical consequence. We will show this in Section 3.3. Secondly, our
logic is not a framework for specifying other systems and it does not
use any meta-level rules from an unspecified system. Instead, we for-
malize arguments using only object-level formulas and inference rules.
From a computational perspective, such a system is desirable as a way to
manipulate arguments at a purely symbolic level.

The idea of finding a logical system with arguments as object-level
formulas has already influenced the formal argumentation community.
One especially interesting contribution in this direction is the logic of ar-
gumentation (LA) by Krause, Ambler, Elvang-Gøransson, and Fox (1995).
These authors present a system in which inference rules manipulate
labelled formulas interpreted as pairs of arguments and formulas2

arg : formula.

Our logic advances the search for the logic of arguments and builds on
the take-away message from (Krause et al., 1995, p. 129) that we should
take arguments “to be first-class objects themselves”. By refining the way

1The acronyms ABA, ASPIC and DeLP refer to “Assumption-Based Argumentation”,
“Argumentation Service Platform with Integrated Components” and “Defeasible Logic
Programming”, respectively.

2The system has been used to develop applications that support medical diagnosis
(Elvang-Gøransson et al., 1993, Fox et al., 2001). In LA, labels arg are interpreted as terms
in the typed λ-calculus (Barendregt et al., 2013). Thanks to Artemov (2001, p. 7), we know
that justification logic advances typed combinatory logic and typed λ-calculus.



30 CHAPTER 2. DEFAULT JUSTIFICATION LOGIC

in which we handle defeat among arguments, we make it possible to
determine argument acceptance at a purely symbolic level and without
using any measures of acceptability extraneous to the logic itself. This is
one of the desiderata that the LA authors left open (Krause et al., 1995,
Section 6).

In order to formalize arguments, we embrace the strategy of using
a formal language with labelled formulas. In justification logic, such
labelled formulas represent pairs of reasons and claims. They are written
as the so-called “justification assertions” t : F that read as “t is a reason
that justifies formula F”. The first justification logic was developed as a
logic of proofs in arithmetic (logic of proofs, LP) by Artemov (2001).3 On
the original reading of pairs t : F, the term t encodes some derivation of
the statement F in Peano arithmetic. Thus, the original logic of proofs
does in fact give one particular formalization of arguments, namely a
formalization of non-defeasible arguments. Accordingly, subsequent epis-
temic interpretations of justification logics provided a formal framework
to deal with justifications and reasons, albeit non-defeasible ones. Even
so, the underlying language of justification logic offers a powerful formal
tool to model reasons as objects with operations. In this chapter, the
language of justifications is used to study defeasible reasons.

The language of justifications is expressive enough to combine desir-
able features of the four mentioned structured argumentation frameworks
in a single system. In Section 2.7, we will present how to use this logical
language to provide justification assertions with argumentation seman-
tics. Here are some outcomes that a reader can expect from our novel
default justification logic:

• We show that default justification logic fulfills Pollock’s project of
defining a single formal system with strict and defeasible rules
reified through deductive and default reasons. The four mentioned
approaches dealing with structured argumentation are useful gen-
eralizations on how to understand arguments, but the problem
we address here is how to unify their meta-analysis into a logical
theory of undercut and rebuttal.

• Our system abstracts from the content of arguments, but, unlike
ASPIC+ or ABA, represents arguments in the object language with

3The idea of explicit proof terms as a way to find the semantics for the provability
calculus S4 dates to 1938 and Gödel’s lecture published in 1995.
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default reasons. Compared to the level of abstraction in our logic,
frameworks like ASPIC+ and ABA could be justly considered as
meta-approaches to argumentation.

• Although ABA, ASPIC+ and deductive argumentation can generate
Dung’s frameworks, they cannot be said to provide a logical real-
ization of Dung’s frameworks because they do not define a specific
logical system. In default justification logic, Dung’s attack graphs,
whose nodes can be interpreted as existential statements of the
type “There is some argument”, are realized with an explicit logical
formula t : F ascribed to each node of an attack graph. Determining
acceptability of arguments through a normative system with logical
consequence promises improvements in the area of computational
argumentation.

• The logic we present here is capable of capturing all the components
of Toulmin’s six-fold argumentation scheme, with the exception
of what he calls “qualifiers”. The presence of elements like “war-
rant” and “backing” leads to a multi-layered understanding of an
argument.4 None of the mentioned structured argumentation frame-
works gives a formalization of the added components of arguments
such as warrants and backings. In contrast, our logic represents
three layers of arguments which are codified in reason terms t
justifying formulas F that are not necessarily explicitly represented
at every stage of manipulating the formula t : F in the semantics. 5

• Justification logic enables us to integrate default logic and argu-
mentation theory. Our logic remedies an important limitation of
constructing arguments as Reiter’s defaults (Verheij, 2009, p. 227):

4Toulmin’s book The Uses of Argument (Toulmin, 1958/2003) is an acclaimed anti-
formalistic argumentation monograph that separates logical methods and argumentation
theory (Verheij, 2009, p. 219). Toulmin (1958/2003, p. vii) himself stated that the aim
of his book was “to criticize the assumption, made by most Anglo-American academic
philosophers, that any significant argument can be put in formal terms”. One of the aims
of this thesis is to reunite logical methods and argumentation theory.

5With the help of these distinctions, we are able to verify apparently conflicting
claims about the nature of defeat in the literature. For example, ASPIC+ correctly
models undercut by referring to the exclusion of a rule that does not apply in a given
context. However, at the “lower” level of the argument backing, undercut eliminates an
assumption made in justifying that rule — which suggests that this type of attack might
be reduced to an assumption attack, as claimed in e.g. ABA. Such meta-disagreements
on the nature of defeasibility can be reconciled in a fine-grained account of arguments.
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Reiter’s defaults are givens and it is not possible to provide rea-
sons for why they hold. Introducing justification logic as the basic
language of default rules supplies them with a formal version of
Toulmin’s warrants and provides a way to further reason about the
acceptability of rules. In this way, default logic with warrants is
able to subsume formal argumentation semantics.6

The rest of this chapter is structured as follows. The next section
introduces the basic justification logic system for reasoning with certain
information. Then we use this formal system to introduce default jus-
tifications based on default rules with justification formulas. The “red
table” example will be used as a running example that illustrates the use
of such default rules. A preliminary survey of this system was carried
out in (Pandžić, 2018). The system enables us to interpret formulas of the
type t : F as structured arguments with mutual attacks and to define the
extension notions of Dung’s argumentation frameworks in justification
logic.

2.3 The logic of non-defeasible reasons JT

In Chapter 1, we saw how justification logic introduced the notions of
justification and reason into epistemic logic. However, standard justifi-
cation logics do not formally study ways of defeat among reasons and
they takes admissibility of reasons as a primitive notion in the definition
of semantics. Given the pervasiveness of commonsense reasoning, we
know that only a restricted group of epistemic reasons may be treated as
completely immune to undercutting and rebutting defeaters: mathemati-
cal proofs.7 But mathematical reasons form only a small part of possible
reasons to accept a statement and, being a highly-idealized group of
reasons, they have rarely been referred to as reasons. Fitting’s possible
worlds semantics for justification logics was meant to model not only
mathematical and logical truths, but also facts of the world or “inputs
from outside the structure” (Fitting, 2009, p. 111). Yet the original intent of
the first justification logic LP to deal with mathematical proofs, together

6Relations between Reiter’s default logic (Reiter, 1980) and argumentation are explored
in Dung’s seminal paper (Dung, 1995), but the idea of modelling arguments in default
logic has been initiated earlier in the AI literature e.g. by Prakken (1993).

7It is, however, possible to defeat a premise in a mathematical proof. This means that
mathematical proofs are not immune to undermining defeaters.
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with the fact that mathematics is cumulative, is reflected in its epistemic
generalizations. Accordingly, reasons that justify facts of the world were
left encapsulated within a framework for non-defeasible mathematical
proofs.8

Non-mathematical reasons and justifications are commonly held to
depend on each other in acquiring their status of “good” reasons and
justifications. Still, the questions related to non-ideal reasons have only
recently been raised in the justification logic literature.9 In the present
chapter we develop a non-monotonic justification logic with justification
terms such that (1) their defeasibility can be tracked from the term
structure and (2) other justifications can defeat them by means of an
undercut or a rebuttal. Our logic combines techniques from default logic,
justification logic and formal argumentation to represent conflicts of
reasons produced in less-than-ideal ways.

The strategy we take in defining default justification logic is to start
from a logic of non-defeasible reasons and then to extend this logic
with inference rules that produce defeasible reasons. In this respect, our
strategy is analogous to the standard default logic approach (Antoniou,
1997, Reiter, 1980) where agents reason from a background theory con-
taining certain or non-defeasible information. The next section presents
a variant of justification logic with non-defeasible reasons. In the con-
text of justification logics, this means that the logic for non-defeasible
reasoning includes the Sum and Factivity axioms, which were tagged as
non-defeasibility axioms in Chapter 1. Each of the two axiom schemes
requires that the existing reasons cannot be questioned by any incoming
information.

While we do want our underlying logic to represent “non-defeasible”
and “truth-inducing” reasons, we do not need additional constraints on
the system to introduce the system of default reasons. For the sake of

8See (Bench-Capon and Dunne, 2007, p. 620) for a discussion on the difference between
mathematical proofs and persuasive arguments.

9The first proposed formalism that includes the idea of evidence elimination specific
to a multi-agent setting is by Renne (2012). Baltag, Renne, and Smets (2012, 2014)
bring together ideas from belief revision and dynamic epistemic logic and offer an
account of good and conclusive evidence. Several approaches (Milnikel (2014), Kokkinis
et al. (2015, 2016), Ognjanović et al. (2017)) start from the idea of merging probabilistic
degrees of belief with justification logic, while Fan and Liau (2015) and Su et al. (2017)
develop a possibilistic justification logic. Fitting (2017) introduces a paraconsistent formal
system with justification assertions where contradictions can be interpreted as conflicting
evidence.
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formal clarity, we leave out standard axioms and operations that ensure
positive or negative introspection, although these can easily be added.
Accordingly, an adequate logical account of factive justifications is the
logic JT, a justification logic with the axiom schemes that are explicit
analogues of the axiom schemes for the modal logic T.10

Intuitively, a reader can think of the JT logic as modelling an ideal-
ized arguer whose arguments fully exhaust all the possible information
regarding claims and who, therefore, gives indisputable reasons for those
claims. Note that there are also weaker variants of justification logic that
do not assume factivity of reasons. These systems are not adequate for
our purposes since we want to build defeasible arguments from a base of
fact-inducing reasons — just as in standard default logic where reasoning
starts from non-defeasible information or facts (Antoniou, 1997, p. 19).
After we define the underlying logic that represents non-defeasible ar-
gumentation, we develop our novel non-monotonic approach to reasons
and provide this logic with the semantics for defeasible argumentation.

Syntax

In Chapter 1, we defined the syntax for the justification logic LP. We
use the formal ingredients given in Chapter 1 to define the logic JT in
this chapter. Recall that, given that “t” is a justification term and that
“F” is a formula, “t : F” is a justification assertion, where t is informally
interpreted as a reason or justification for F. For a countable set of vari-
ables x1, . . . , xn, . . . and a countable set of proof constants c1, . . . , cn, . . . ,
we define the set Tm that consists of exactly all justification terms, con-
structed from variables and proof constants by means of operations · and
+. The grammar of justification terms for the logic JT is restricted to the
application and sum operations, as defined by the following Backus-Naur
form:

t ::= x | c | (t · t) | (t + t)

where x is a variable and c is a proof constant. Proof constants are atomic
within the system. For a justification term t, a set of subterms Sub(t) is
defined by induction on the construction of t. Formulas of JT are defined

10Justification logic JT was first introduced by Brezhnev (2001). Justification logics
with axiom schemes equivalent to the logic we define in this section are also defined and
investigated by Kuznets (2000) and Fitting (2008).
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by the following Backus-Naur form:

F ::= > | P | (F → F) | (F ∨ F) | (F ∧ F) | ¬F | t : F

where P ∈ P and P is a countable set of atomic propositional formulas
and t ∈ Tm. The set Fm consists of exactly all formulas.

Axioms and rules of JT

We can now define the logic of non-defeasible reasons JT. The logic JT is
the weakest logic with “truth inducing” justifications containing axiom
schemes for the two basic operations · and +. We will use t and u to
denote some elements from Tm and F and G to denote some elements
from Fm. These are the axioms and rules of JT:

A0 All the instances of propositional logic tautologies from Fm

A1 t : (F → G)→ (u : F → (t · u) : G) (Application)

A2 t : F → (t + u) : F; u : F → (t + u) : F (Sum)

A3 t : F → F (Factivity)

R0 From F and F → G infer G (Modus ponens)

R1* If F is an axiom instance of A0-A3 and cn, cn−1, . . . , c1 are proof constants
such that cn : cn−1 : · · · : c1 : F ∈ CS , then infer cn : cn−1 : · · · : c1 : F
(Iterated axiom necessitation)

The Constant Specification (CS) set used in rule R1* is defined as
follows:

Definition 2.1 (Constant Specification). The Constant Specification set is
required to be Axiomatically appropriate and Injective as defined on p. 17.

CS = {cn : cn−1 : · · · : c1 : F | F is an axiom instance of A0-A3,
cn, cn−1, . . . , c1 are proof constants and n ∈N}

We consider a limited class of CS-sets where each axiom instance has
its own proof constant.11 The logic JT relativized to an axiomatically
appropriate and injective CS in R1* will be referred to by its full name
JTCS. We say that the formula F is JTCS-provable (JTCS ` F) if F can be
derived using the axioms A0-A3 and rules R0 and R1*.

11We require that CS is axiomatically appropriate to ensure that standard properties
such as Internalization (Artemov, 2001) hold and we take each constant to justify at most
one axiom instance, so CS is also required to be injective. See Section 1.2.
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Semantics

The semantics for JTCS is an adapted version of the semantics for the logic
of proofs (LP) given by Mkrtychev (1997).12 Intuitively, the semantics
extends that of propositional logic with a function that ascribes reason
terms to formulas in such a way that it respects the sum and applica-
tion axioms and some axiomatically appropriate and injective constant
specification CS .

Definition 2.2 (JTCS model). We define a function reason assignment based
on CS , ∗(·) : Tm → 2Fm, a function mapping each term to a set of formulas
from Fm. We assume that it satisfies the following conditions:

1. If F→ G ∈ ∗(t) and F ∈ ∗(u), then G ∈ ∗(t · u)

2. ∗(t) ∪ ∗(u) ⊆ ∗(t + u)

3. If c : F ∈ CS , then F ∈ ∗(c).

A truth assignment v : P → {True, False} is a function assigning truth values
to propositional formulas in P . We define the interpretation I as a pair (v, ∗).
For an interpretation I , |= is a truth relation on the set of formulas of JTCS.

For any formula F ∈ Fm, I |= F iff

• For any P ∈ P , I |= P iff v(P) = True

• I |= ¬F iff I 6|= F

• I |= F → G iff I 6|= F or I |= G

• I |= F ∨ G iff I |= F or I |= G

• I |= F ∧ G iff I |= F and I |= G

• I |= t : F iff F ∈ ∗(t).
12The condition for justifications of the type ’!t’ are not needed in the JTCS semantics.

Note that Mkrtychev’s model does not make use of different states and accessibility
relations among them. This type of model can be thought of as a single world justification
model. Since the notion of defeasibility introduced in the next section turns on the
incompleteness of available reasons, our system eliminates worries about the trivialization
of justification assertions that otherwise arise from considering justifications as modalities
in a single-world model.
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Moreover, an interpretation I is reflexive iff the truth relation for I fulfills
the following condition:

• For any term t and any formula F, if F ∈ ∗(t), then I |= F.

In the absence of the reflexivity condition, it is possible that F ∈ ∗(t),
hence I |= t : F, but also that I |= ¬F. While reasons in reflexive
models can be taken as conclusive or factive, without the reflexivity
condition reasons are interpreted as being only admissible. In possible
worlds semantics, the admissibility condition F ∈ ∗(t) for the truth of
t : F is supplemented with the condition that F holds in all accessible
alternatives (Fitting, 2005b, p. 4). The consequence relation of the logic of
factive reasons JTCS is defined in terms of reflexive interpretations:

Definition 2.3 (JTCS consequence relation). Σ |= F iff for all reflexive
interpretations I , if I |= B for all B ∈ Σ, then I |= F.

In the next section, we will use deductively closed set of JTCS formulas:

Definition 2.4 (JTCS closure). JTCS closure is given by ThJTCS(Γ) = {F|Γ |=
F}, for a set of formulas Γ ⊆ Fm and the JTCS consequence relation |= defined
above.

For any closure ThJTCS(Γ), it follows that CS ⊆ ThJTCS(Γ).
We can prove that the compactness theorem holds for the JTCS se-

mantics.13 Compactness turns out to be a useful result in defining the
operational semantics of default reason terms. We first say that a set of
formulas Γ is JTCS-satisfiable iff there is a reflexive interpretation I that
meets CS (via the third condition of Def. 2.2) for which all the members
of Γ are true. A set Γ is JTCS-finitely satisfiable if every finite subset Γ′ of
Γ is JTCS-satisfiable.

Theorem 2.5 (Compactness). A set of formulas is JTCS-satisfiable iff it is
JTCS-finitely satisfiable.

Proof. See the Appendix A.

13A compactness proof for LP satisfiability in possible world semantics is given by
Fitting (2005b). A similar proof is given for JTCS in the Appendix A to provide a
self-contained introduction to JTCS in this thesis.
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2.4 Justification logic default theories

Throughout the rest of this chapter, we develop a system based on
JTCS, in which an agent forms default justifications reasoning from
incomplete information. Justification logic JTCS is capable of representing
the construction of a new piece of evidence out of existing ones by
application (‘·’) or sum (‘+’) operation. However, to extend an incomplete
JTCS theory, we need to import reasons that are defeasible. We come up
with both a way in which such reasons are imported and a way in which
they might get defeated. These possibilities are opened up by introducing
concepts familiar from defeasible reasoning literature into justification
logic.

We start from the above-defined language of the logic JTCS and de-
velop a new variant of justification logic JTCS that enables us to formalize
the import of reasons outside the structure as well as to formalize defeaters
or reasons that question the plausibility of other reasons.

Our logical framework of defeasible reasons represents both factive
reasons produced via the axioms and rules of JTCS and plausible reasons
based on default assumptions that “usually” or “typically” hold for a
restricted context. We follow the standard way (Reiter, 1980) of formal-
izing default reasoning through default theories to extend the logic of
factive reasons with defeasible reasons. Building on the syntax of JTCS,
we introduce the definition of the default theory:

Definition 2.6 (Default Theory). A default theory T is defined as a pair
(W, D), where the set W is a finite set of JTCS formulas and D is a countable
set of default rules. Each default rule is of the following form:

δ =
t : F :: (u · t) : G

(u · t) : G
.

The informal reading of the default δ is: “If t is a reason justifying F, and
it is consistent to assume that (u · t) is a reason justifying G, then (u · t) is
a defeasible reason justifying G”. The formula t : F is called the prerequisite
and (u · t) : G is both the consistency requirement14 and the consequent of the
default rule δ. We refer to each of the respective formulas as pre(δ), req(δ) and
cons(δ). For the set of all consequents from the entire set of defaults D, we use

14In order to avoid any misunderstanding, we avoid the name justification for the
formula req(δ) since justification logic terms are commonly known as justifications.



2.4. JUSTIFICATION LOGIC DEFAULT THEORIES 39

cons(D) = {cons(δ) | δ ∈ D}. The default rule δ introduces a unique reason
term u, which means that, for a default theory T, the following holds:

1. For any formula v : H ∈ ThJTCS(W), u 6= v;

2. For any formula H ∈W, u : (F → G) is not a subformula of H and

3. For any default rule δ′ ∈ D such that δ′ = t′ :F′ ::(u′·t′):G′
(u′·t′):G′ , if u = u′, then

F = F′ and G = G′.

Note that the term u does not need to be fresh in the sense that it can-
not appear in two different defaults’ consequents.15 Default reasons may
refer to other default reasons and this possibility is crucial to represent
interactions among defaults. The unique reason term u witnesses the
defeasibility of the prima facie reason (u · t) for G. Whether a reason actu-
ally becomes defeated or not depends on other default-reason formulas
from cons(D). Other defaults might question both the plausibility of the
reasoning that u codifies and the plausibility of the proposition G. Sec-
tion 2.5 gives an example of a concrete JTCS derivation that instantiates
unique reason terms.

A formal way of looking at a default reason of this kind is that (u · t)
codifies the default step we apply on the basis of the known reason t.
A distinctive feature of such rules is generating justification terms as if
it were the case that cons(δ) was inferred by using an instance of the
application axiom: u : (F → G)→ (t : F → (u · t) : G). The difference is
that an agent cannot ascertain that an available reason justifies applying
the conditional F → G without restrictions. Still, sometimes a conclusion
must be drawn without being able to remove all of the uncertainty
as to whether the relevant conditional actually applies or not. In such
cases, an agent turns to a plausible assumption of a justified “defeasible”
conditional F → G that holds only in the absence of any information to
the contrary. While the internal structure of the default reason16 (u · t)
indicates that it is formed on the basis of the formula u : (F → G), the

15Compare Artemov’s (2018, p. 30) introduces “single-conclusion” (or “pointed”)
justifications that enable handling “justifications as objects rather than as justification
assertions”.

16In this chapter and in Chapter 3, we use “defeasible reasons” and “default reasons”
interchangeably. In Chapter 4, an additional type of defeaters is introduced, namely
undermining defeaters. Undermining defeaters do not target arguments t : F that are
introduced through default rules. Therefore, Chapter 4 extends the class of defeasible
reasons beyond default reasons.
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defeasibility of (u · t) lies in the fact that the formula u : (F → G) is not
a part of the same evidence base as (u · t) : G.

One can think of our use of the operation “·” in default rules as the
same operation that is used in the axiom A1, only being applied on an
incomplete JTCS theory. Similarly, we can follow Reiter (1980, p. 82) and
Antoniou (1997, p. 21) in thinking of a standard default rule such as
A:B

B as merely saying that an implication A ∧ ¬C ∧ ¬D · · · → B holds,
provided that we can establish that a number of exceptions C, D, . . . does
not hold. However, if the rule application context is defined sufficiently
narrowly, the rule is classically represented as an implication A → B.
Generalizing on such interpretation of defeasibility, our defaults with
justification assertions can be represented as instantiations of the axiom
A1 applied in a sufficiently narrow application context.

Analogous to standard default theories, we take the set of facts W to
be underspecified with respect to a number of facts that would otherwise
be specified for a complete JTCS interpretation. Besides simple facts, our
underlying logic contains justification assertions. To deal with justifica-
tion assertions, a complete JTCS interpretation would also further specify
whether a reason is acceptable as a justification for some formula. There-
fore, except the usual incomplete specification of known propositions,
default justification theories are also incomplete with respect to the actual
specification of the reason assignment function. For our default theory,
this means that, except the valuation v, default rules need to approximate
an actual reason-assignment function ∗(·).

Let us again consider the red-looking-table example from the Intro-
duction to see how prima facie reasons and their defeaters are imported
through default rules.

Example 2.7. Let R be the proposition “the table is red-looking” and let T be
the proposition “the table is red”. Take ta and ua to be some specific individual
justifications. The reasoning whereby one accepts the default reason (ua · ta)
might be described by the following default rule:

δa =
ta : R :: (ua · ta) : T

(ua · ta) : T
.

We can informally read the default as follows: “If ta is a reason justifying that
a table is red looking and it is consistent for you to assume that this gives you
a reason (ua · ta) justifying that the table is red, then you have a defeasible
reason (ua · ta) justifying that the table is red”. Suppose you then get to a belief
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that “the room you are standing in is illuminated with red light”, a proposition
denoted by L. For some specific justifications tb and ub, the following rule gives
you an undercutting reason for (ua · ta):

δb =
tb : L :: (ub · tb) : ¬[ua : (R→ T)]

(ub · tb) : ¬[ua : (R→ T)]
,

where the rule is read as “If tb is a reason justifying that the lighting is red and it
is consistent for you to assume that this gives you a reason (ub · tb) denying that
the reason ua justifies that if the table is red-looking, then it is red, then you have
a defeasible reason (ub · tb) denying that the reason ua justifies that if the table is
red-looking, then it is red”. The formula cons(δb) denies your reason to conclude
cons(δa), although note that it is not directly inconsistent with cons(δa). In
Section 2.6, we define what undercutting defeaters are semantically.

Suppose that instead of learning about the light conditions in the room as
in δb, you learn that the original factory color of the table is white. This would
also prompt a rebutting defeater - a separate reason to believe the contradicting
proposition ¬T. Let W denote the proposition “the table is originally white” and
let tc and uc be some specific justifications. We have the following rule:

δc =
tc : W :: (uc · tc) : ¬T

(uc · tc) : ¬T
.

The rule reads as “If tc is a reason justifying that the table is originally white and
it is consistent for you to assume that this gives you a reason (uc · tc) justifying
that the table is not red, then you have a defeasible reason (uc · tc) justifying that
the table is not red”. Note that the formula cons(δc) does not directly mention
any of the subterms of (ua · ta). The defeat among the reasons (ua · ta) and
(uc · tc) comes from the fact that they cannot together consistently extend an
incomplete JTCS theory.

The entire example can be described by the following default theory T0 =
(W0, D0), where W0 = {ta : R, tb : L, tc : W} and D0 = {δa, δb, δc}.

Each defeater above is itself defeasible and considered to be a prima facie
reason. The way in which prima facie reasons interact is further specified
through their role in the operational and argumentative semantics for
default theories. By the end of this chapter, we explain the workings of
the operational semantics and different ways to determine the sets of
acceptable reasons given a definition of a default theory.
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2.5 Operational semantics of default justifications

The logic of default justifications we develop here relies on the idea of
operational semantics for standard default logics presented by Antoniou
(1997).17 Here is an informal description of the role of operational se-
mantics steps in determining acceptable reasons. First, in the operational
part of the semantics, default reasons are taken into consideration at
face value. After the default reasons have been taken together, we check
dependencies among them in order to find out what are the non-defeated
reasons. Finally, a rational agent includes in its knowledge base only
acceptable pieces of information that are based on those reasons that
are ultimately non-defeated. An important part of the latter step is an
acceptance semantics analogous to the argument acceptance semantics of
formal argumentation frameworks.

The basis of operational semantics for a default theory T = (W, D)
is the procedure of collecting new, reason-based information from the
available defaults. A sequence of default rules Π = (δ0, δ1, . . .) is a possible
order in which a list of default rules without multiple occurrences from D
is applied (Π is possibly empty). Applicability of defaults is determined
in the following way:

Definition 2.8 (Applicability of Default Rules). For a JTCS-closed set of
formulas Γ we say that a default rule δ = t:F::(u·t):G

(u·t):G is applicable to Γ iff

• t : F ∈ Γ and

• ¬(u · t) : G /∈ Γ.18

Reasons are brought together in the set of JTCS formulas that represents
the current evidence base:

Definition 2.9. In(Π) = ThJTCS(W ∪ {cons(δ) | δ occurs in Π}), where Π
is a sequence of defaults.

17Following Antoniou (1997, p. 31), we think of operational definitions as those that
“give a procedure that can be applied to examples”. However, to determine extensions
for justification logic default theories, Section 2.7 specifies further semantic conditions on
sets of justification logic formulas, in addition to the procedural conditions discussed in
this section.

18We follow the convention of omitting parentheses around the expression (u · t) : G
and interpret the negation as binding the entire expression (u · t) : G. The convention is
also familiar from modal logics.
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The set In(Π) collects reason-based information that is yet to be deter-
mined as acceptable or unacceptable depending on the acceptability of
reasons and counter-reasons for formulas.

We need to further specify sequences of defaults that are significant
for a default theory T: default processes. For a sequence Π, the initial
segment of the sequence is denoted as Π[k], where k stands for the
number of elements contained in that segment of the sequence and where
k is a minimal number of defaults for the sequence Π. Any segment Π[k]
is also a sequence. Intuitively, the set of formulas In(Π) represents an
update of the incomplete evidence base W where the new information
is not yet taken to be granted. Using the notions defined above, we can
now get clear on what a default process is:

Definition 2.10 (Process). A sequence of default rules Π is a process of a
default theory T = (W, D) iff every k such that δk ∈ Π is applicable to the set
In(Π[k]), where Π[k] = (δ0, . . . δk−1).

The kind of process that we are focusing on here is called closed
process and we say that a process Π is closed iff every δ ∈ D that is
applicable to In(Π) is already in Π. For default theories with a finite
number of defaults, closure for any process Π is obviously guaranteed
by the applicability conditions. However, if a set of defaults is infinite,
then this is less-obvious.

Lemma 2.11 (Infinite Closed Process). For a theory T = (W, D) and in-
finitely many k’s, an infinite process Π is closed iff for every default rule δk
applicable to the set In(Π[k]), δk ∈ Π.

Proof. From the compactness of JTCS semantics we have that if a set
In(Π[k]) ∪ {req(δ)} is satisfiable for all the finite k’s, it is also satisfiable
for infinitely many k’s. Therefore the applicability conditions for a rule δ
are equivalent to the finite case.

To illustrate how the basic notions of the operational semantics work,
Figure 2.2 shows the process tree for the default theory T0 from our
running Example 2.7. The figure shows that T0 has four closed processes:
Π1 = (δa, δb), Π2 = (δb, δa), Π3 = (δb, δc) and Π4 = (δc, δb). The In-sets
In(Π1) and In(Π2) are equal and JTCS-inconsistent with In(Π3) and
In(Π4), which are also equal. Whenever two sets In(Π) and In(Π′) are
not equal, they are JTCS-inconsistent. We can already see that JTCS-
inconsistent In-sets capture the idea of rebuttal in our semantics, as
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ThJTCS ({ta : R, tb : L, tc : W})

(ua · ta) : T (ub · tb) : ¬[ua : (R→ T)]

(uc · tc) : ¬T
(ua · ta) : T

(uc · tc) : ¬T

(ub · tb) : ¬[ua : (R→ T)]
(ub · tb) : ¬[ua : (R→ T)]

δb

δcδa

δa δc

δb δb

Figure 2.2: The process tree of T0 from Example 2.7.

introduced informally in Example 2.7. For example, JTCS-inconsistent
In-sets In(Π1) and In(Π4) reflect the opposition between the reasons
(ua · ta) and (uc · tc). At the level of process trees, however, we are not yet
able to explain the attack on (ua · ta) by the undercutting reason (ua · ta).
To do so, we need to move further from the semantics of collecting new
information.

We have already discussed the key components of our operational
semantics that bear some similarity to standard default theories. Now
we develop our new argument semantics that builds on the expressivity
of the justification logic language. We show that the default variant of
the application operation is essential to the way in which we represent
arguments and their mutual attacks in justification logic.

2.6 Argumentative schemes and argumentative at-
tacks in justification logic

In a complete specification of I , acceptability of reasons for a formula
is determined ex officio by assigning formulas to reasons through the
function ∗(·). In contrast, in reasoning from an incomplete evidence base
W, a closure ThJTCS(W) is typically underspecified as to whether a reason
t is acceptable for a formula F. In “guessing” what a true interpretation
is, every default rule introduces a reason term whose structure codifies
an application operation step from an unknown justified conditional. For
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example, in rule δ above, we rely on the justified conditional u : (F → G).
Even though this justified conditional is not a part of the rule δ itself,
it is the underlying assumption on the basis of which we are able to
extend an incomplete evidence base. The propositions of this kind are
in one sense taken as rules allowing for default steps, but they are
also specific justification logic formulas. They will be referred to as
“warrants”, because their twofold role in our system corresponds to
Toulmin’s concept of argument warrants.19 Justification logic defaults
give a formal meaning to Toulmin’s philosophical idea that warrants are
formulated as statements, even though they function as rules of inference
within arguments. Each underlying formula of this kind can be made
explicit by means of a function warrant assignment: #(·) : D → Fm. The
function maps each default rule to a specific justified conditional as
follows:

#(δ) = u : (F → G),

where δ ∈ D and

δ =
t : F :: (u · t) : G

(u · t) : G
,

for some reason term t, a unique reason term u and some formulas F
and G.

A set of all such underlying warrants of default rules is called Warrant
Specification (WS) set.

Definition 2.12 (Warrant specification). For a default theory T = (W, D),
justified defeasible conditionals are given by the Warrant Specification set:

WST = #(D) = {#(δ) | δ ∈ D}.

We will use warrant specification sets that are relativized to default
processes:

WSΠ = {#(δ) | δ ∈ Π}.

In reasoning from incomplete information, defeasible justification asser-
tions fromWST are the only available resource to approximate a reason

19Toulmin explains (1958/2003, p. 91) inference-licensing warrants as follows: “...taking
these data as a starting point, the step to the original claim or conclusion is an appropriate
and legitimate one. At this point, therefore, what are needed are general, hypothetical
statements, which can act as bridges, and authorise the sort of step to which our particular
argument commits us.”
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assignment function that actually holds. Moreover, the use of underlying
assumptions fromWST is responsible for the non-monotonic character
of default reasons. Thus our default rules are in contrast with the stan-
dard application operation represented by the axiom A1. The extended
meaning of the application operation via default rules will be referred
to as default application. Importantly, default application extends the
standard idea of “proof terms” in justification logic so as to include
reason terms that codify inference steps from assumptions to warrant
formulas as conclusions dependent on those assumptions. We briefly
explain this idea after we specify how warrants and default application
are decisive for the semantics of attacks between arguments.

The extension of the application operation to its defeasible variant
opens new possibilities for a semantics of justifications. In particular, it
enables reasoning that is not regimented by the standard axioms A1 and
A2 of basic justification logic (Artemov, 2008, p. 482). For instance, if a
set of JTCS formulas contains both a prima facie reason t and its defeater
u, then the set containing a conflict of justifications does not support
concatenation of reasons by which t : F → (t + u) : F holds for any
two terms t and u. In other words, the possibility of a conflict between
reasons requires an adaptation that eliminates the monotonicity property
of justifications assumed in the sum axioms (A2).

In explaining the basics of the operational semantics, we qualified
the semantics of rebutting attacks as being straightforward. Rebuttal is
already captured in the mechanism of multiple extensions known from
standard default theories. What requires additional explanation is the
semantics of undercutting defeaters. Notice that each formula #(δ) has
the format of a justified material conditional. This formula is not a part
of a default inference δ itself, but the default application described by δ
depends on a conjecture that the conditional holds and the justification
assertion cons(δ) encodes this conjecture in the internal structure of the
resulting reason term. This brings to attention the following possibility:
an evidence base may at the same time contain justified formulas of the
type t : F, (u · t) : G and v : ¬[u : (F → G)], without the evidence base
being JTCS-inconsistent.

Although the application axiom A1 does not say that t : F and
(u · t) : G together entail the formula u : (F → G), there is, intuitively,
something wrong with the reason (u · t) justifying the formula G, taken
together with t justifying F and v justifying ¬u : (F → G). This new
type of opposition among reasons explains why we need to refer to
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warrant formulas. The co-occurrence of the formulas t : F, (u · t) : G and
v : ¬[u : (F → G)] together is not significant in standard justification
logic where reasoning is exclusively regulated by the standard axioms
for idealized reasons, such as the axioms of the basic JTCS logic. It only
becomes significant with default application.20 We will now use the
presented “reverse engineering” of axiom A1 to model undercut.21

We have already discussed why the semantics of undercut cannot be
reduced to the existence of multiple inconsistent extensions. Nevertheless,
JTCS inconsistency is important for undercutting attacks.22 Notice that
adding arbitrary warrants from WST to an evidence base In(Π) could
lead to an inconsistent set of JTCS formulas. In Example 2.7, if we start
from any evidence base of T0 and add the warrant ua : (R → T) of
δa to it, the union becomes JTCS-inconsistent with both the warrant
ub : (L → ¬[ua : (R → T)]) of δb and the warrant uc : (W → ¬T) of
δc. This means that the three warrants are jointly incompatible in the
context of default reasoning defined by T0. An agent needs to find out
which warrants and, thereby, which reasons prevail in a conflicting set of
warrants. This procedure relies on the following definition that captures
the above discussed intuition behind undercut:

Definition 2.13 (Undercut). A reason u undercuts reason t being a
reason for a formula F in a set of JTCS formulas Γ ⊆ In(Π[k]) iff∨

(v)∈Sub(t) u : ¬[v : (G → H)] ∈ ThJTCS(Γ) and there is a process Π′ of T
such that v : (G → H) ∈ WSΠ′ .

The definition says that the reason u undercuts the reason t, if there is a
subterm v of t such that u denies the justified conditional v : (G → H)
as a warrant that supports one of the default steps made in building the

20Notice that a (JTCS-closed) evidence base that contains the formulas t : F and
(u · t) : G, also contains the formula ((c · t) · (u · t)) : (F → G), assuming that the constant
c justifies the axiom F → (G → (F → G)). This is so regardless of whether u : (F → G)
is also in the evidence base or not.

21One way to model exclusionary reasons and undercutters in default logic is to use
non-normal defaults. However, with the use of non-normal defaults, many desirable
features of default logics are lost, and this holds already for semi-normal defaults
(Antoniou, 1997, Chapter 6). Besides that, the use of justification logic warrants provides
an elegant way to subsume argumentation semantics in default logic. For a more extensive
discussion on the benefits of warrants over non-normal defaults see the next chapter
based on the work from (Pandžić, 2019).

22Later, in Lemma 2.7, we characterize the relation between rebuttal and undercut
formally.
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argument t : F. Intuitively, if we think of each warrant of a default rule
introduces a default argument, we can say that u attacks t on one its
sub-arguments.

We will also specify the way in which sets of JTCS formulas undercut
some default reason. This definition will be used in defining different
variants of default theory extensions. Sets of justification logic formulas
are said to undercut reasons according to the following definition:

Definition 2.14. A set of JTCS formulas Γ ⊆ In(Π[k]) undercuts reason t
being a reason for a formula F iff

∨
(v)∈Sub(t) ¬[v : (G → H)] ∈ ThJTCS(Γ) and

there is a process Π′ of T such that v : (G → H) ∈ WSΠ′ .

One can think of Γ as a set of reasons against which the reason t is
tested as a reason that justifies the formula F. This is further elaborated
in the semantics of acceptability of reasons. By introducing default rea-
sons through default application and considering rebuttal and undercut
among such reasons, it is possible to take an argumentation perspective
to justification logic formulas. For example, Figure 2.3 provides an intu-
itive Toulminian interpretation of the default reasoning steps discussed
in Example 2.7, where each step can be associated with a corresponding
step in the Toulminian argument scheme.23

Note that the formula (uc · tc) : ¬T is captioned as a rebuttal of the
formula (ua · ta) : T, but (ua · ta) : T also rebuts (uc · tc) : ¬T. Their rebut-
tal relation is symmetric because the two conclusions T and ¬T of the
default reasons (ua · ta) and (uc · tc) are contradictory, which means that
applying either of the default rules δa and δc blocks the application of the
other default rule.24 Moreover, in Toulmin’s scheme of argumentation,
backing is understood as a certification or evidence for the use of a war-
rant to introduce some conclusion. In justification logic, backing naturally
translates into a JTCS derivation (with undischarged assumptions) of a

23A reader should take the following two provisos into account here. Firstly, Toulmin
does not use the term “undercutter”. Instead, Toulmin uses rebuttal as an ambiguous
concept that, among other kinds of defeat, covers for circumstances in which the general
authority of the warrant would have to be set aside (Verheij, 2009, p. 235). Secondly,
our scheme does not include “qualifiers” (Toulmin, 1958/2003, p. 94) that indicate the
strength of the step from grounds to claim.

24In Example 2.7, rebuttal results from the straightforward JTCS-inconsistency of the
two formulas (uc · tc) : ¬T and (ua · ta) : T. However, it is generally possible that two
default rules block each other’s applicability for some, but not all default processes. This
is a result of a more intricate structure of joint inconsistencies among sets of default
reasons.
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GROUNDS
ta : R

WARRANT
ua : (R→ T)

CLAIM
(ua · ta) : T

UNDERCUT
(ub · tb) : ¬[ua : (R→ T)]

REBUTTAL
(uc · tc) : ¬T

BACKING
JTCS derivation ua

Figure 2.3: Toulminian layout of the arguments in Example 2.7

default conditional, and the steps of that derivation are codified in the
reason term ua that justifies the conditional R → T. Consider a simple
backing for δa from Example 2.7:

1 x : (¬T → ¬R) (Assumption)
2 (¬T → ¬R)→ (R→ T) (A0)
3 c : [(¬T → ¬R)→ (R→ T)] (R1)
4 (c · x) : (R→ T) (1,3 A1)

By taking that ua = (c · x), one can recover the underlying structure of
reasoning for the warrant ua : (R→ T), which corresponds to the idea
of backing. Informally, the backing (c · x) describes reasoning when one
assumes that if the table was not actually red, then it would not look
red. This is a simple backing example, but, in general, such reasoning
structures can become more complex. For example, assumptions made in
deriving a warrant formula may include literals that are not subformulas
of the warrant itself, as Example 2.25 later illustrates. In general, repre-
sentative cases of warrants cannot be derived from a knowledge base W,
without using (undischarged) assumptions. This is also the case in our
Example 2.7, where the warrant formula ua : (R→ T) is not contained
in the knowledge base closure ThJTCS(W). Clearly, proof terms are thus
interpreted more broadly than in standard justification logics.

A reader may notice here that the self-referential mechanism in which
the language of justification logic treats its own reasoning steps within
the language gives a three-layered understanding of arguments. The first
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layer is an argument seen as a pair of reason terms and formulas, e.g.
the formula (ua · ta) : T, resulting from the default δa = ta :R::(ua·ta):T

(ua·ta):T
. In

argumentative terms, this layer includes the formula ta : R that represents
Toulminian grounds or data. Since the term (ua · ta) formally realizes
the default application step of δa, the formula (ua · ta) : T will always be
explicitly featured in the semantic treatment of the acceptability of the
reasoning steps codified by the term (ua · ta). Argumentation semantics
for such formulas will be presented in the next section. The second
layer gives a wider understanding of the argument. It includes the rule
δa together with its warrant formula ua : (R→ T). This layer explains
the reasoning step from the grounds ta : R to the claim T. It provides
an answer to Toulmin’s question (1958/2003, p. 90) “How did you get
there?”, that is, how to justify that some claim follows from the available
data or grounds. Finally, the third layer of the argument for T additionally
includes the backing or the unfolded formal structure of the reasoning
steps represented by ua that are given in support of the use of the warrant
ua : (R→ T). Analogously to Toulmin’s argument scheme (1958/2003,
p. 92), the warrant makes explicit the connection between the grounds
and the claim, while the backing explains why the warrant counts as a
justified one. Argument warrant can themselves become a part of the
reasoning process, especially upon questioning their authority. This is
illustrated by the default rule δb in the running example.

2.7 Argument acceptance in justification logic

By introducing default reasons in justification logic it becomes possible
not only to use argumentation terminology in talking about formulas of
the type t : F but also to give standard abstract argumentation theory
conditions of argument acceptance of such formulas. The idea of conflict-
ing default reasons overlaps with abstract argumentation frameworks
that treat conflicts between arguments. This section shows that all the
formal conditions of argument acceptance as defined in Dung’s frame-
work (1995) can be defined for default justifications introduced here. In
Section 3.2, this is used to prove that the logic of default justifications
generalizes Dung’s frameworks.

The semantics of reason acceptance starts from characterizing conflict-
free sets of JTCS formulas. Notice that by introducing reason terms
through default application, conflicts are not only defined in terms of
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JTCS inconsistency, but also in terms of undercut from Definition 2.13.
The following definition specifies conditions for conflict-free sets with
respect to undercut:

Definition 2.15 (Conflict-free Sets). A set of JTCS-closed formulas Γ is
conflict-free iff Γ does not undercut a formula t : F such that t : F ∈ Γ.

Note that, if a set of formulas In(Π) for any process Π is conflict-free
according to Def. 2.15, then it is also free from rebuttal for a consistent
set of formulas W. To see why, first consider that rebuttal occurs between
formulas that are contained in jointly JTCS-inconsistent evidence bases.
Since we know that the conditions under which a default can be ap-
plied to an evidence base In(Π) preserve consistency of each segment
In(Π[k]) of In(Π), we also know that In(Π) is rebuttal-free. Consistency
preservation of extended evidence bases is established in the following
theorem:

Theorem 2.16. For a theory T = (W, D) and a process Π of T, if the set of
formulas W is JTCS-consistent, then any conflict-free set of formulas In(Π) is
also JTCS consistent.

Proof. The property of JTCS consistency for a set of formulas In(Π)
follows from the applicability conditions for any default rule δ ∈ Π of
the form t:F::(u·t):G

(u·t):G and the fact that W is JTCS consistent.

The theorem ensures that, for any non-empty process Π, a set of conflict-
free formulas In(Π) that an agent could eventually accept is free from
any possible conflict.

As stated before, the set W contains certain information and this
means that any information from W is always acceptable regardless
of what has been collected later on. Therefore, any set of formulas Γ
that extends the initial information contains W. To decide whether a
consequent of a default δ is acceptable, an agent looks at those sets of
reasons that can be defended against all the available counter-reasons.
For any set of JTCS formulas Γ, we define the notion of acceptability of a
justified formula t : F:

Definition 2.17 (Acceptability). For a default theory T = (W, D), a formula
t : F ∈ cons(Π) is acceptable w.r.t. a set of JTCS formulas Γ ⊂ In(Π[k]) iff for
each undercutting reason u for t being a reason for F such that u : G ∈ In(Π[k]),
Γ undercuts u being a reason for G.
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In the definition, we use the process segment Π[k], because we want to
determine acceptability for each stage of building a process Π. Intuitively,
an agent looks at finding a defensible set of arguments in the space of
all possible arguments defined by all certain information taken together
with the consequents of applicable defaults. Accordingly, for a default
theory T = (W, D), an agent considers potential extension sets of JTCS
formulas Γ that meet the following conditions:

1. W ⊆ Γ and

2. Γ ⊆W ∪ {cons(Π) | Π is some process of T}.

Informally, an agent has yet to test any potential extension against all
the other available reasons before it can be considered as an admissible
extension of the evidence base.

Definition 2.18 (JTCS-Admissible Extension). A potential extension set of
JTCS formulas Γ ⊂ In(Π) is a JTCS-admissible extension of a default theory
T = (W, D) iff ThJTCS(Γ) is conflict-free, each formula t : F ∈ Γ is acceptable
w.r.t. Γ and Π is closed.

After considering all the available reasons, an agent accepts only those de-
feasible statements that can be defended against all the available reasons
against these statements.25

The two latter definitions introduce the idea of “external stability” of
knowledge bases (Dung, 1995, p. 323) into default logic by taking into
account that only those reasons that are able to defend themselves against
the reasons that question their plausibility eventually become accepted. In
addition to that, our operational semantics prompts an implicit revision
procedure. Any new default rule that is applicable to the set of formulas
In(Π[k]) potentially makes changes to what an agent considered to be
acceptable relying on the set of formulas In(Π[k− 1]). Before we show
this on the formalized example from the beginning of this section, we
introduce the idea of default extension for a default theory T. Extension

25We do not require JTCS-admissible extension sets to be closed under JTCS conse-
quence. This is required for JTCS variants of preferred, complete, grounded and stable
extensions that give a definitive answer to the problem of which arguments are entailed
according to a the criteria defined by the semantics that those extensions represent.
Preferred, complete, grounded and stable semantics are required to give comprehensive
answers about those arguments that are entailed for a default theory and, therefore, the
corresponding extensions need to be JTCS-closed.
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is the fundamental concept in defining logical consequence in standard
default theories. We think of preferred extensions as maximal plausible
world views based on the acceptability of reasons:

Definition 2.19 (JTCS-Preferred Extension). For a default theory T =
(W, D), a closure ThJTCS(Γ) of a JTCS-admissible extension Γ is a JTCS-
preferred extension of T iff for any other JTCS-admissible extension Γ′, Γ 6⊂ Γ′.

In other words, JTCS-preferred extensions are maximal JTCS-admissible
extensions with respect to set inclusion. The existence of JTCS-preferred
extensions is universally defined for default theories. To ensure that this
result also holds for the case of an infinite number of default rules and
infinite closed processes, we make use of Zorn’s lemma and restate it as
follows:

Lemma 2.20 (Zorn, 1935). For every partially ordered set A, if every chain of
(totally ordered subset of) B has an upper bound, then A has a maximal element.

Theorem 2.21 (Existence of JTCS-Preferred Extension). Every default theory
T = (W, D) has at least one JTCS-preferred extension.

Proof. If W is inconsistent, then for any default δ, negation of the consis-
tency requirement req(δ) is contained in ThJTCS(W) and the only closed
process Π is the empty sequence. Therefore, the only potential and
JTCS-admissible extension is W itself and T has a unique JTCS-preferred
extension ThJTCS(W) containing all the formulas of JTCS.

Assume that W is consistent. In general, if there is a finite number
of default rules in D, any closed process Π of T is also finite. JTCS-
admissible extensions obtained from closed processes form a complete
partial order with respect to ⊆. Since there are only finitely many JTCS-
admissible sets, any JTCS-admissible set Γ has a maximum Γ′ within
a totally ordered subset of a set of all JTCS-admissible sets. Therefore,
Γ ⊆ Γ′ and ThJTCS(Γ′) is a JTCS-preferred extension of T.

For the case where D is infinite and closed processes Π1, Π2, . . . are
infinite, there is again a complete partial order formed from a set of all
JTCS-admissible sets. The argument for finite processes does not account
for the case where Γ′, the union of JTCS-admissible sets Γ1, Γ2, . . . , could
be contained in some Γ′′ for an ever increasing sequence Γ1, Γ2, . . . . We
first state that Γ′, the union of an ever increasing sequence of JTCS-
admissible sets Γ1, Γ2, . . . , is also a JTCS-admissible set. To ensure this,
we turn to its subsets. That is, if Γ′ was not admissible, then some of
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its subsets Γn for n ≥ 1 would not be conflict-free or would contain a
formula that is not acceptable, but this contradicts the assumption that Γn
is JTCS-admissible. Now, for the set of all JTCS-admissible sets ordered
by ⊆, any chain (totally ordered subset) has an upper bound, that is,
the union of its members Γ′ =

⋃∞
n=1 Γn. According to Lemma 2.20, there

exists a maximal element and, therefore a JTCS-preferred extension of T.

The semantics of defeasible reasons enables us to define additional
types of extensions that are not necessarily based on the admissibility
of reasons. One of them is the stable extension familiar from formal
argumentation theory (Dung, 1995):

Definition 2.22 (JTCS-Stable Extension). For a default theory T = (W, D),
a conflict-free closure ThJTCS(Γ) of a potential extension Γ is a JTCS-stable
extension of T iff for any process Π of T, Γ undercuts all the formulas t : F ∈
cons(Π) outside ThJTCS(Γ).

The intuition behind the definition is that every reason left outside the
accepted set of reasons is attacked. To understand the process semantics
workings of the stable extension definition, we can parse this definition
into two components. First, it is clear that a stable extension ThJTCS(Γ)
undercuts each default reason t for every cons(δ) = t : F such that t : F
is not contained in Γ, but δ occurs in a closed process Π of T for which
it holds that Γ is a subset of the evidence base In(Π). Intuitively, from
those reasons that are applicable within a closed default process, only the
reasons that are undercut by ThJTCS(Γ) are left outside. But notice that,
secondly, for each default reason u and a formula cons(δ′) = u : G such
that Γ and u : G do not co-occur in any potential extension of T, but u : G
is included in some potential extension of T, it holds that u also has to be
undercut. This means that if δ′ cannot be applied to the default process
Π and δ′ occurs in some other closed process Π′, then Γ undercuts u.
To see why, take for example the justification assertions t : F = cons(δ)
and v : ¬F = cons(δ′′). For any potential extension Γ ⊂ In(Π) such
that δ ∈ Γ and δ′′ is not applicable to Π due to the inconsistency of the
formula req(δ′′), ThJTCS(Γ) contains an undercutter for the reason v. In
fact, if t : F ∈ Γ, then ThJTCS(Γ) entails a formula ¬r : (J → ¬F) for any
formula J ∈ In(Π) and any reason r. Therefore, it also contains some
reason term s that undercuts the warrant of the default rule cons(δ′′). This
means that inconsistent justification assertions responsible for rebuttal
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indirectly undercut rebutted reasons. This undercut is further inherited
by all the potential default reasons that are inferred from inconsistent
default reasons, even if these are not involved in any rebuttal induced by
JTCS inconsistency. The following lemma generalizes this observation on
the dependence between rebuttal and undercut:

Lemma 2.23. For a default theory T = (W, D) and its closed processes Π and
Π′, if some rule δ = t:F::(u·t):G

(u·t):G from Π′ is inapplicable to In(Π) and t : F ∈
In(Π), then there is a potential extension Γ ⊂ In(Π) that undercuts (u · t)
being a reason for G.

Proof. By Theorem 2.5, we know that there is some segment In(Π[k]) that
contains the formula t : F and, by assumption, that δ is inapplicable to
In(Π[k]). Therefore, In(Π[k]) contains the formula ¬(u · t) : G. According
to axiom A1 and propositional reasoning, if the JTCS closure In(Π[k])
contains t : F and ¬(u · t) : G, then it also contains the formula ¬[u : (F →
G)]. By the definition of an In-set (Def. 2.9) and the way in which potential
extensions are built for T, there is some potential extension Γ ⊂ In(Π[k])
such that ThJTCS(Γ) contains ¬[u : (F → G)]. Since #(δ) = u : (F → G)

and u : (F → G) ∈ WSΠ′ , Γ undercuts (u · t) being a reason for G by
Definition 2.14.

If a potential extension Γ of T undercuts all the formulas left outside,
then Γ also has to maximize admissibility with respect to set inclusion.
This straightforwardly leads to the following lemma:

Lemma 2.24. Every JTCS-stable extension of a default theory T = (W, D) is
also a JTCS-preferred extension of T.

We can check that in the red-looking-table example, JTCS-stable and
JTCS-preferred extension coincide. Formally, theory T0 has a unique JTCS-
stable and JTCS-preferred extension ThJTCS(W0 ∪ {cons(δb), cons(δc)}).
Moreover, note that the process Π1 = (δa, δb) includes revising the result-
ing set of acceptable reasons, since the reason (ub · tb) undercuts (ua · ta)
being a reason for formula T.

However, JTCS-stable extensions are not universally defined for any
default theory T. To show this, we will formalize Pollock’s “pink elephant”
example (1995, pp. 119-120, 2009, pp. 181-182). This example is an instance
of defeasible reasoning with a self-defeating argument. The concept of
self-defeat is notorious in argumentation theory. Firstly, suppose that
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Robert says that the elephant beside him looks pink. Normally, we would
take Robert’s testimony to support the conclusion that the elephant is
pink. However, Robert suffers from what is known as “pink-elephant
phobia”. People in this condition “become strangely disoriented so that
their statements about their surroundings cease to be reliable” (Pollock,
2009, p. 181). Therefore, Pollock concludes that it seems that “if it were
true that the elephant beside Robert is pink, we could not rely upon his
report to conclude that it is”.

Example 2.25. Let P be the proposition “The elephant looks pink”, let E be the
proposition “The elephant is pink”, and let H be the proposition “Robert suffers
from pink-elephant phobia”. The pink elephant example is then described by the
default theory T1 = (W1, D1), where W1 = {k : H, l : P} and D1 consists of
the default rules26

δ1 =
l : P :: (m · l) : E

(m · l) : E
and

δ2 =
(m · l) : E :: (n · (m · l)) : ¬[m : (P→ E)]

(n · (m · l)) : ¬[m : (P→ E)]
.

While the structure of the backing for δ1 resembles that of δa from Example 2.7,
the backing for the default rule δ2 has a more intricate structure:

1 x : [m : (P→ E)→ ¬(E ∧ H)] (Assumption)
2 k : H (Assumption)

26Notice that in the original formulation of his pink elephant example, Pollock intro-
duces (1995, p. 120) an intermediate inference between the rules δ1 and δ2. Namely, he
thinks that there is an inference from Robert’s saying (reason term l) that the elephant
looks pink to him, to the conclusion that it does look pink. We follow a version of the
example that does not take the intermediate step as a separate inference, taken from
(Koons, 2017, § 4.1). There are two reasons for this decision. Firstly, Pollock’s red table
example that we formalized in Example 2.7 has the same structure of inference that starts
from seeing a red-looking table to conclude that the table is red. There is no mention of
the table looking red independently of an agent’s report that it does. It is not clear why
to think that Robert’s unreliability in the presence of pink elephants would question the
fact that the elephant does look pink, even if Robert himself realizes that he suffers from
the phobia. It is also not clear what would it mean for an object to look pink, regardless
of being perceived as pink by some agent. Secondly, a report of another agent to whom
the elephant does not look pink would be treated differently in justification logic. Such
report would undermine Robert’s own report and the subject matter of undermining
attacks is dealt with in Chapter 4, together with the topic of how to model testimonies.
In any case, an intermediate default rule could formally be added without affecting the
significance of the example for the discussion.
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3 [m : (P→ E)→ ¬(E ∧ H)]→
[(H → (E→ ¬[m : (P→ E)])] (A0)

4 c : ([m : (P→ E)→ ¬(E ∧ H)]→
[(H → (E→ ¬[m : (P→ E)])]) (R1)

5 (c · x) : [(H → (E→ ¬[m : (P→ E)])] (1,4 A1)
6 ((c · x) · k) : (E→ ¬[m : (P→ E)]) (2,5 A1)

Let n = ((c · x) · k). The above inference steps in JTCS formalize the backing for
the warrant n : (E→ ¬[m : (P→ E)]) of δ2. Notice that, in the formalization
of its backing, the warrant of δ2 is supported by appeal to the presupposed
information about the phobia that Robert suffers from, that is, to the justification
assertion k : H.

The theory T1 has a JTCS-preferred extension ThJTCS(W1). However,
it has no JTCS-stable extension, because the available reasons cannot
form a conflict-free set that attacks all the reasons outside that set. This
result conforms to similar results about preferred and stable semantics in
abstract argumentation frameworks (Dung, 1995, p. 328). By the end of
the section, we define the theory T3 that shows the same type of a self-
defeating argument alongside other arguments. In our default theories,
self-defeating arguments do not influence other independent arguments,
except in the above-illustrated sense of affecting the existence of stable
semantics.

In addition, we can easily define other significant notions of exten-
sions in formal argumentation. In particular, we can define variants of
Dung’s (1995, p. 329) complete and grounded extension:

Definition 2.26 (JTCS-Complete Extension). For a default theory T =
(W, D), a closure ThJTCS(Γ) of a JTCS-admissible extension Γ is a JTCS-
complete extension of T iff for each closed process Π of T such that there is a
JTCS-admissible extension Γ′ in In(Π) and Γ ⊂ Γ′, if a formula t : F ∈ cons(D)
is acceptable w.r.t. Γ in In(Π), then t : F belongs to Γ.

Definition 2.27 (JTCS-Grounded Extension). For a default theory T =
(W, D), a JTCS-complete extension ThJTCS(Γ) is the unique JTCS-grounded
extension if Γ is the smallest potential extension with respect to set inclusion
such that ThJTCS(Γ) is a JTCS-complete extension of T.27

27Note here that the we know that there is the smallest potential extension which is
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Unsurprisingly, the results for different types of extensions defined by
Dung (1995) are valid for our default theory extensions.

Lemma 2.28. Every JTCS-preferred extension of a default theory T = (W, D)
is also a JTCS-complete extension of T.

Proof. Assume that ThJTCS(Γ) is a JTCS-preferred extension of T for some
potential extension Γ. Assume towards contradiction that for some closed
process Π such that Γ ⊂ In(Π) and Γ is JTCS-admissible there exists
a formula cons(δ), where δ ∈ Π, acceptable with respect to Γ, but not
included in Γ. According to Def. 2.18, there is a JTCS-admissible extension
Γ′ for which it holds that Γ ⊂ Γ′. But this contradicts the assumption
that ThJTCS(Γ) is a JTCS-preferred extension. Therefore, for any closed
process Π′ for which Γ is JTCS-admissible and for any formula cons(δ′)
such that δ′ ∈ Π′, if cons(δ′) is acceptable with respect to Γ, then cons(δ′)
is included in Γ.

It does not hold, however, that every JTCS-complete extension is also
JTCS-preferred. The following theory T2 is a counterexample. Let the
theory be defined as T2 = (W2, D2), where W2 = {p : K, q : L} and D2
consists of the default rules

δ3 =
p : K :: (r · p) : M

(r · p) : M
and

δ4 =
q : L :: (s · q) : ¬M

(s · q) : ¬M
.

One of the JTCS-complete extensions of T2 is ThJTCS(W2), as a result of the
fact that none of the available default reasons is acceptable with respect
to the potential extension W2. However, ThJTCS(W2) is not one of JTCS-
preferred extensions for T2. The theory has two JTCS-preferred extensions
such that one of them contains cons(δ3), while the other contains cons(δ4).

Considering some proposition as justified might be seen as a func-
tion of interacting reasons. Each of the presented JTCS extensions is a
method to compute extensions with justified formulas. Moreover, each

JTCS-complete since we can represent JTCS-admissible extensions as forming a complete
partial order w.r.t. set inclusion. Ordered extensions lend themselves to a fixed-point
reformulation of all admissibility-based extensions and a possibility of guaranteeing
the existence of the smallest potential extension by the application of the Knaster-Tarski
theorem (Tarski, 1955).
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of the JTCS extension definitions can be used as a way to define a cor-
responding characterization of logical consequence. Given a particular
JTCS extension of a theory T, the formulas contained in that extension are
valid formulas for T under that specific JTCS semantics. There are some
analogies with the traditional notions of non-monotonic consequence
relations. For example, JTCS-grounded extensions correspond to cautious
consequence relations describing what a skeptical reasoner would accept
for some default theory. In a similar way, JTCS-preferred semantics de-
scribes a credulous inference relation. The consequence relation defined
by JTCS-stable extension is an interesting case in this context. Although
for many default theories JTCS-stable and JTCS-preferred semantics coin-
cides, there are some intuitive grounds to consider JTCS-stable extensions
as skeptical in nature. This specifically relates to the demand that the
existence of JTCS-stable extensions depends on whether a set of JTCS
formulas is able to defeat all other reasons outside that set or not. Such
excessive demands on the validity of formulas do not comply to our
ordinary intuitions about credulous consequence relations.

To illustrate the differences among the above defined semantics, we
will elaborate on an example of a single default theory whose JTCS-
grounded, JTCS-complete, JTCS-preferred and JTCS-stable extensions do
not coincide, although each of them exists. We define the default theory
T3 = (W3, D3) with W3 = {t1 : F, t2 : H, t3 : I} and D3 = {δ5, δ6, δ7, δ8},
where δ5, δ6, δ7 and δ8 are defined as follows:

δ5 =
t1 : F :: (u1 · t1) : G

(u1 · t1) : G
,

δ6 =
(u1 · t1) : G :: (u2 · (u1 · t1)) : ¬[u1 : (F → G)]

(u2 · (u1 · t1)) : ¬[u1 : (F → G)]
,

δ7 =
t2 : H :: (u3 · t2) : (J ∧ ¬[u2 : (G → ¬[u1 : (F → G)])])

(u3 · t2) : (J ∧ ¬[u2 : (G → ¬[u1 : (F → G)])])
and

δ8 =
t3 : I :: (u4 · t3) : ¬J

(u4 · t3) : ¬J
.

Any evidence base In(Π) of T3 containing the formula cons(δ7) will also
contain the formula (c1 · (u3 · t2)) : ¬[u2 : (G → ¬[u1 : (F → G)])], which
represents the reasoning behind an argument that questions the warrant
of the self-defeating argument given in δ2 by undercutting (u2 · (u1 · t1)).
The undercutter (c1 · (u3 · t2)) can be derived from cons(δ7) with some
propositional reasoning combined with the use of axiom A1 and rule R1*.
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Moreover, default δ5 provides an argument that rebuts the reason (u4 · t3)
for ¬J, for any extension that contains cons(δ7). This argument is codified
within the term (c2 · (u3 · t2)) justifying the formula J, again assuming
some propositional reasoning, axiom A1 and rule R1*. Accordingly, the
rules δ7 and δ8 cannot occur together in any default process of T3.

In total, the theory T3 has six closed processes, as shown in the process
tree of T3 displayed in Figure 2.7. Building a process tree for our default
theories proceeds in the following way: each node of the process tree is
labeled with an In-set after a default rule (connecting edges) has been
applied. Note that, for each node of the process tree in Figure 2.7 and
a closed process Π of T3, if a node corresponds to some segment Π[k]
of Π we indicate only the formula that has been added to In(Π[k]) as a
result of applying an available default rule to In(Π([k− 1]). The process
tree helps us to check the status of JTCS extensions for T3. The theory
has two preferred extensions, namely ThJTCS(W3 ∪ {cons(δ5), cons(δ7)})
and ThJTCS(W3 ∪ {cons(δ8)}. Of the two JTCS-preferred extensions, only
ThJTCS(W3 ∪ {cons(δ5), cons(δ7)}) is also JTCS-stable. A skeptical reasoner
will only accept ThJTCS(W3), the unique JTCS-grounded extension of T3.
Finally, all the three mentioned JTCS closures are JTCS-complete for T3.

It is possible to specify conditions under which different JTCS ex-
tension notions above coincide. Sufficient conditions need to eliminate
the possibility of attack cycles. We first define the cycle of asymmetrical
attacks:

Definition 2.29 (Undercut Cycle). A cycle of undercuts is an infinite periodic
sequence of JTCS formulas t1 : F1, . . . , tn : Fn, t1 : F1, . . . , tn : Fn, t1 : F1, . . . ,
for some number of formulas n ≥ 1, such that each reason ti undercuts tk being
a reason for the formula Fk according to Def. 2.13 and ti : Fi is the predecessor
of the formula tk : Fk in the sequence.

Rebuttals among formulas ultimately derive from the property of JTCS
inconsistency. They are thus symmetric and can be traced through the
process semantics and existence of different evidence bases In(Π′) and
In(Π′′) for some closed processes Π and Π′. Therefore, we do not need
to define rebuttal separately, but only provide a condition that excludes
attacks induced by JTCS inconsistency.

We are ready now to give the conditions for the coincidence of JTCS
extensions in well-founded default theories. A default theory T = (W, D)
is called well-founded if for all closed processes Π and Π′ of T it holds
that:
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1. In(Π) = In(Π′) and

2. There are no sets of JTCS formulas Γ ∈ In(Π) forming a cycle of
undercuts.

The following theorem shows that JTCS extensions of well-founded
default theories coincide.28

Theorem 2.30. Every well-founded default theory T = (W, D) has a unique
JTCS-complete extension ThJTCS(Γ) which is JTCS-grounded, JTCS-preferred
and JTCS-stable.

Proof. Firstly, if a JTCS-grounded extension is also a JTCS-stable extension
of a default theory T = (W, D), then it is also JTCS-preferred and the
unique JTCS-complete extension of T. Therefore, it is sufficient to focus
on the proof that each JTCS-grounded extension is JTCS-stable for a
well-founded theory.

Assume that a well-founded theory T has a JTCS-grounded extension
ThJTCS(Γ) that is not JTCS-stable. The set Γ ⊂ In(Π) is the smallest
potential extension such that ThJTCS(Γ) is a JTCS-complete extension of
T. Moreover, there is at least one formula t : F ∈ cons(δ) from the set of
consequents cons(D) such that t : F /∈ ThJTCS(Γ), but, since ThJTCS(Γ) is
not JTCS-stable, ThJTCS(Γ) does not undercut t being a reason for F. Now
we have to show that unless ThJTCS(Γ) undercuts t being a reason for F,
at least one of the following statements has to hold about T:

(1) t : F is acceptable w.r.t. Γ in In(Π), but Γ is a subset of In(Π′) for
some other closed process Π′ and t : F is not acceptable w.r.t. Γ in In(Π′).
But this means that the sets In(Π) and In(Π′), which, in turn, means that
T is not well-founded according to condition (1) on well-founded default
theories;

(2) t : F is not acceptable w.r.t. Γ in In(Π) and there is some formula
v : G ∈ In(Π) such that v undercuts t being a reason for F, but ThJTCS(Γ)
does not undercut v being a reason for G. However, v : G is not contained
in Γ, since we assumed that Γ is not JTCS-stable and that Γ does not
undercut t being a reason for F. But this means that there exists an infinite
periodic sequence of JTCS formulas t1 : F1, . . . , tn : Fn, t1 : F1, . . . , tn :
Fn, t1 : F1, . . . forming an undercut cycle according to Def. 2.29. This
means that T is not well-founded according to condition (2).

28Compare (Dung, 1995, p. 331) for well-foundedness of abstract argumentation frame-
works. Here we adapt the proof idea for the coincidence of extensions of well-founded
abstract argumentation frameworks that can be found there.
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Therefore, since T is well-founded, it has a unique JTCS-complete
extension ThJTCS(Γ) which is JTCS-grounded, JTCS-preferred and JTCS-
stable.

2.8 Conclusions

In this chapter we defined default justification logic and interpreted
justification logic formulas as arguments. we generalized justifications
to represent defeasible reasons, whose acceptability depends on other
available reasons. To this end, we generalized the application operation
in such a way that default rules may introduce reason terms that are not
proofs, but only provide support for contingent conditional statements to
a certain extent. Formally such reason terms represent derivations with
non-empty sets of assumptions.

The properties of our system are still to be thoroughly investigated.
In the context of non-monotonic reasoning, our logic introduces some
technical possibilities already for normal default theories. Among them
are revision of extensions and interaction of different defaults without
relying on their preference orderings, as commonly done in default
logic (Delgrande and Schaub, 2000). An extensive account of default
reasons that makes use of preference orderings on defaults is developed
by Horty (2012). Horty’s logic is based on a propositional language
and develops from a different formal account of reasons, where reasons
are not explicitly featured as object level terms. Horty uses the idea of
preferences to represent undercutters or exclusionary reasons.

Our work provides a complementary addition to the study of less-
than-ideal reasons in justification logic. Among related approaches, the
logic of conditional probabilities developed by Ognjanović, Savić, and
Studer (2017) introduces a way to model non-monotonic reasoning with
justification assertions. Their proposal is based on defining operators for
approximate probabilities of a justified formula given some condition
formula. Using conditional probabilities, the logic models certain aspects
of defeasible inferences with justification terms. Yet the system can neither
encode the defeasibility of justification terms in their internal structure
nor model defeat among reasons, to mention only some differences from
our initial desiderata.

Baltag, Renne, and Smets (2012) define a justification logic in which
an agent may hold a justified belief that can be compromised in the face
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of newly received information. The logic builds on the ideas from belief
revision and dynamic epistemic logic to model examples where epistemic
actions cause changes to an agent’s evidence. Concerning the possibility
of modelling defeaters, the logic offers two dynamic operations that
change the availability of evidence in a model, namely “updates” and
“upgrades” (Baltag et al., 2012, p. 183). Evidence obtained by updates
counts as “hard” or infallible, while upgrades bring about “soft” or
fallible evidence. With the use of these actions, epistemic models can
represent justified beliefs being defeated, for example, by means of an
epistemic action of update with hard evidence. In this way, however, the
mechanism by which reasons may conflict with one another is simply
being “outsourced” to an extra-logical notion of fallibility and, therefore,
the logic does not directly address the ways of defeat that we formalize
in this chapter.

Further developments are possible starting from the basic form of
default rules with justified formulas. We indicate some of the possibilities
to extend the basic logic. On the technical side of the logic, we used
only the expressiveness of normal default rules and we still need to
investigate how it could be extended with non-normal default rules. Since
all processes are successful for normal default theories, it is interesting to
see whether the logic has some further desirable properties such as, for
example, goal-driven query evaluation.

It is also possible to use the first-order variant of justification logic
(Fitting, 2014), instead of the propositional justification logic used here.
This is an intriguing direction because of the possibilities it opens. To
mention one of them, a first-order warrant of a default rule would enable
expressing default schemes with variables as placeholders for objects.
Such rules would fully capture the informal idea of Toulminian warrants,
which are meant to be schematic generalizations. Defining default rules
on such rich language would be one step closer to a full logical account
of structured arguments.

Finally, the logic of default justifications has a potential to link the
logical analysis of justifications with the philosophical study of defea-
sibility and knowledge. Ever since the concept of justification entered
into epistemic logics, there has been a tendency to model mainstream
epistemology examples, proposed by e.g. Russell (1912), Gettier (1963)
and Dretske (2005), with the use of justification logic (Artemov, 2008,
2018). With the introduction of default justifications, however, we gain
flexibility for a more full-blooded integration of the formal theory of jus-
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tification with the study of knowledge in philosophy, since paradigmatic
examples include both incomplete specification of reasons and defeated
reasons. Potential benefits of a non-monotonic system of justifications in
this context were anticipated by Artemov (2008, p. 482), who proposes
that “to develop a theory of non-monotonic justifications which prompt
belief revision” stands as an “intriguing challenge”.
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Chapter 3

Relations of default
justification logic to formal
argumentation and Reiter’s
default logic

3.1 Introduction

In this chapter, we relate default justification logic to formal argumenta-
tion and Reiter’s default logic. We first show that, by abstracting from
the structure of arguments and focusing only on the direction of attacks,
we can obtain Dung’s frameworks from the default justification logic
and, vice versa, our logic provides realization procedures for Dung’s
frameworks that assign justification assertions to Dung’s arguments. We
then discuss how our logic complies with the rationality postulates for
structured argumentation frameworks proposed by Amgoud (2014). We
conclude the chapter by discussing the benefits of modelling default
reasons with our logic over standard default logic.

3.2 Realizing Dung’s frameworks in justification
logic

In Chapter 1, we briefly described Dung’s abstract argumentation frame-
works (AF) that deal with the problem of the acceptability of arguments

67
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based on their mutual conflicts. An argumentation framework is defined
as a pair of a set of arguments, and a binary relation representing the
attack-relationship (defeat) between arguments. These frameworks were
characterized as abstract because they neither represent the structure of
arguments nor do they specify the exact nature of attacks between them.
In Chapter 2 we presented a default justification logic approach that both
represents the structure of arguments and spells out their mutual attacks
in terms of undercut and rebuttal.

In this section we examine connections between abstract argumen-
tation frameworks and our default justification logic. Our semantics of
justification formulas t : F can be naturally related to the concepts of
argumentation semantics. Any justification formula can be plausibly re-
garded as an argument where t codifies premises and F is a conclusion of
an argument.1 However, the expressiveness of the language JTCS enables
us to construct the complex argument structures that result from logical
operations on formulas. As expected, abstract argumentation frameworks
are not able to capture all the subtleties of more complex default reasons.
Interestingly, it turns out that there are also AF structures that cannot be
translated into default theories.

We first focus on the possibility of mapping from default theories
to AFs. To establish the connection between default reasons semantics
and AF semantics, we need to restrict our attention to a subclass of
our default theories. Since our logic is more expressive with respect to
attack relations, we focus on non-complex default theories where attack
relations are defined only by looking at the union of logical consequences
of each consequent of a default rule. In this way, each default rule is taken
separately as a self-contained argument. To achieve this, we first specify
what it means for two default rules to block each other’s applicability. For
a process Π of T = (W, D), the rules δ and δ′ from D block each other
in Π iff for some segment Π[k] such that both δ and δ′ are applicable to
In(Π[k]), if either of the two defaults has been applied, the other default
becomes inapplicable to In(Π[k + 1]). A default theory T = (W, D) is
non-complex if it fulfills the following two conditions:

1. If two defaults δ and δ′ from D block each other in a process Π of
T, then for each process Π′ with a segment Π′[k] such that either
δ or δ′ has been applied to In(Π′[k]) it holds that the default that

1We can say this also about the formula c : F, where c is a proof constant, but in this
case the attack relation will be empty.
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has not been applied to In(Π′[k]) is inapplicable to In(Π′[k + n])
for any segment Π′[k + n] of Π′;

2. For a process Π of T, a reason t such that t : F ∈ In(Π) and any
undercutter u for t such that u : ¬[v : (G → H)] ∈ In(Π) for some
v ∈ Sub(t), there exists a reason w ∈ Sub(u) such that w : ¬[v :
(G → H)] ∈ ThJTCS(cons(δ)) for a default rule δ ∈ Π.

In other words, we require for any defeat that occurs in a theory T that
it be derivable only from a consequent of a default rule, because joint
attacks cannot be represented in Dung’s (1995) framework.

Using default justifications, one can look into the details of the struc-
ture of the arguments, including grounds, warrants, backings and differ-
ent ways of attack, while Dung’s framework treats arguments abstracting
from their contents. This means that any translation from default theories
with justification terms to Dung’s framework has to “forget” information
about the structure of the arguments. Having restricted our target theories
to non-complex theories, we can now describe a mapping “=⇒” called
forgetful projection. Forgetful projection converts each formula cons(δ)
such that δ occurs in some process of a given default theory into a corre-
sponding argument of an AF and it converts each attack among default
reasons into a corresponding attack relation between arguments in an AF.
A mapping =⇒ from a non-complex default theory T = (W, D) to an
abstract argumentation framework AF = (Arg, Att), where Arg is a set of
arguments A1, A2, . . . and Att is a a binary attack relation, is defined as
follows:

• δn ∈ Π for a process Π =⇒ An ∈ Arg

• δm ∈ Π′ & δn ∈ Π′′ for some processes Π′ & Π′′ such that δm & δn
do not occur together in any process Π =⇒ (Am, An) ∈ Att
& (An, Am) ∈ Att

• t : ¬[u : (F → G)] ∈ ThJTCS(cons(δm)), v : H = cons(δn) such
that u ∈ Sub(v) & u : (F → G) ∈ WSΠ and δm ∈ Π & δn ∈ Π
=⇒ (Am, An) ∈ Att

Recall the theory T0 from the Example 2.7, Chapter 2. The theory T0 has
its forgetful projection AF0 that preserves the direction of the attacks
from the original example. Consider that each of the rules δa, δb and δc
is applicable to at least one process. This means that we can map all
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three defaults to the arguments Aa, Ab and Ac in Arg0. Given that δa
and δc cannot be applied to the same process of T0 and given the fact
that they are applicable to some processes, both (Aa, Ac) ∈ Att0 and
(Ac, Aa) are in Att0. Finally, notice that the rules δb and δa can be applied
together in a default process and that the reason (ub · tb) undercuts
(ua · ta) via justifying the denial of the warrant ua : (R → T) of δa.
Forgetful projection maps this relation between cons(δb) and cons(δa) into
an additional attack (Ab, Aa) in Att0.

Since forgetful projection does preserve the structure of conflicts
among groups of arguments, it is possible to compare JTCS extensions of
default theories with extensions of the obtained AFs. It is not difficult to
check that the following extension-correspondence statement holds:

Proposition 3.1. For a formula t : F = cons(δn) such that δn ∈ D for
a non-complex default theory T = (W, D) and its JTCS-complete, JTCS-
grounded, JTCS-preferred or JTCS-stable extension ThJTCS(Γ), it holds that
t : F ∈ ThJTCS(Γ) iff an argument An is contained in the corresponding com-
plete, grounded, preferred or stable extension sets for a forgetful projection
AF = (Arg, Att) of T.

Proof. The proof is by induction on the acceptance conditions for a for-
mula t : F = cons(δ) given by the definitions of JTCS-complete, JTCS-
grounded, JTCS-preferred and JTCS-stable extension definitions for de-
fault theories.

The following is an argument for the JTCS-preferred extension case.
Take as the induction base default theory T = (W, D) such that T has a
non-empty process Π = (δ) and t : F = cons(δ). The theory has a JTCS-
preferred extension ThJTCS(Γ), where Γ = W ∪ {cons(δ)}. The forgetful
projection of T is defined as AF = (Arg, Att), where Arg = {A} and Att
is empty. The only preferred extension of AF is A.

For the inductive step, assume that if t : F = cons(δk) is in a JTCS-
preferred extension of a default theory Tn = (Wn, Dn) such that t : F
occurs in a closed process Π = (δ1, . . . , δm) of T, then it is also in a
preferred extension of its forgetful projection Afn = (Argn, Attn). By the
induction hypothesis and the definition of JTCS-preferred extensions,
it holds that t : F ∈ Γ such that Γ is a JTCS-admissible extension and
for no other JTCS-admissible extension Γ′ it holds that Γ ⊂ Γ′. By the
definition of a JTCS-admissible set, it holds that Γ is conflict-free and
each formula in Γ is acceptable w.r.t. Γ in Π. For a non-complex default
theory and the formula t : F, this means that for any undercutting
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reason u : G ∈ ThJTCS(W ∪ {cons(δj)}) for t being a reason for F in Π, Γ
undercuts u being a reason for G. The forgetful projection maps all the
formulas cons(Π′) for any process Π′ into arguments A1, . . . , An of the
framework Afn and for the undercutter u : G ascribes an attack relation
(Aj, Ak), and analogously for any other possible undercutter. Moreover,
any conflict-free set is also JTCS-consistent and for each formula v : H =
cons(δp) such that v : H ∈ Γ′ for a JTCS-admissible extension Γ′ of T and
v : H /∈ cons(Π), it holds that v : H and t : F do not occur together in
any process Π′ because T is non-complex. According to the forgetful
projection, (Ak, Ap) and (Ap, Ak) are both in Attn. It is easy to check that,
by the definition of Dung’s preferred extension, the forgetful projection
maps Γ into a preferred extension S of Afn such that Ak is in S.

Intuitively, forgetful projections of justification logic arguments outline a
single perspective on argumentation, namely that of opposition among
arguments. Note that there are extensions of Dung’s framework that for-
malize joint attacks from sets of arguments such as (Nielsen and Parsons,
2006). In this chapter, we on relating standard Dung’s argumentation
frameworks to our default justification logic. However, we assume that
Proposition 3.1 can be generalized to any default theory with justifica-
tion formulas for a richer abstract argumentation framework with joint
attacks.

One may also ask whether the other direction of translating from
argumentation frameworks to default theories always works. Since the
content of arguments is not specified in Dung’s framework, it is only
possible to retrieve incomplete information about justification logic coun-
terparts of Dung’s frameworks. For any argument in Dung’s framework,
there are many justification logic realizations. Starting from a directed
graph obtained from a framework AF = (Arg, Att), each node Ai is paired
with a corresponding formula ti : Fi, where each ti : Fi is a consequent
of some rule δi such that δi occurs in at least one process of a theory
T = (W, D) that realizes AF. Moreover, each node Ai is paired with a
warrant ui : (Gi → Fi).

The above defined procedure treats every single arrow in Dung’s
graph as a specification of JTCS entailments from justification assertions
paired with the nodes of a graph. Accordingly, we determine the structure
of attacks among the obtained formulas. More specifically, a pointed
arrow without an inverted arrow specifies that a default consequent
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formula, which realizes a direct predecessor for the arrow, entails an
undercut formula for the consequent formula via entailing the negation
of a warrant that realizes the successor node. An arrow with an inverted
arrow specifies inconsistency for consequent formulas paired with the
connected nodes, that is, a rebuttal between the two formulas.2 Using this
procedure, we would get information on which formulas should a default
consequent formula entail with respect to other default consequents,
provided the definition of attack relations among arguments in Arg.
However, the procedure fails as the following example shows. Take a
simple framework Af ∗ = (Arg, Att) with A as its only argument and
(A, A) ∈ Att. It turns out that it is not possible to realize A as a single
consequent of a default rule.

In fact, there are other cycles of attacks that cannot be realized in de-
fault justification logic using the proposed method to pair each argument
in an AF with a consequent of a default rule from a theory T that realizes
that AF. This problem can be generalized to a class of unwarranted argu-
mentation frameworks featuring such attack cycles. An argumentation
framework AF = (Arg, Att) is said to be unwarranted iff:

1. There is an infinite sequence A1, A2, . . . , An, . . . s. t. for each i, Ai+1
attacks Ai;

2. For any two distinct arguments A = Ak and B = Ak+1 s. t. Ak and
Ak+1 are adjacent members of the A1, A2, . . . , An, . . . sequence, it
does not hold that (A, B) ∈ Att and (B, A) ∈ Att;

3. There exists no argument C outside the sequence s. t.:

a) for some A from the sequence A1, A2, . . . , An, . . . it holds that
(A, C) ∈ Att;

b) C is not a member of an infinite sequence B1, B2, . . . , Bn, . . . s.
t. for each i, Bi+1 attacks Bi;

c) for no two distinct arguments D and E from Arg it holds that
(D, C) ∈ Att and (E, C) ∈ Att.

We refer to all argumentation frameworks that are not unwarranted as
warranted argumentation frameworks. The conditions above eliminate re-
alizations of a small subclass of graphs with “floating” cycles, but they do

2A JTCS formula can also entail both a rebutting and an undercutting reason for some
default reason.
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not eliminate the possibility to realize cycles of attacks in general. In fact,
most cycles of attacks happen in warranted argumentation frameworks.

In the abstract argumentation (Baroni and Giacomin, 2003) and defea-
sible reasoning (Pollock, 2001) literature, only the semantics of odd-length
cycles of attacks (or of defeats) is notorious for undesirable properties
that odd-length cycles entail for different types of extensions. In our
default reason theory, both odd- and even-length “floating-attack” cycles
have no direct counterparts. This will be explained below in detail.

A

B C

A

Af ∗∗
Af ∗

Figure 3.1: Unwarranted argumentation framework examples

Informally, we can say that such unwarranted frameworks violate the
following postulate for structured argumentation frameworks:

• Prior to any undercutting attack there must be at least one reasoned
claim.

Here by “reasoned claim” we understand a claim that is introduced
with the use of a warrant of a default rule that is different from the
warrant(s) whereby a cycle of undercutting attacks is introduced. From
the perspective of our default theory, the frameworks Af ∗ and Af ∗∗

represented in Figure 3.1 are impossible. If precisely assessed, their status
of argumentation frameworks can be attributed to the possibility in Dung’s
model to abstract from argument structure.

Once additional argument features are considered, and in particular
arguments’ warrants, the structures from Figure 3.1 can be proved to be
impossible. The following theorem shows that, in our default theories,
floating-attack cycles without at least one outgoing edge to an argument
outside the cycle are not possible.

Theorem 3.2. For a sequence In(Π)[k] of a default theory T = (W, D) and a
set of formulas {t1 : F1, . . . , tn : Fn} ∈ In(Π)[k], a cycle of undercuts among
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the reasons t1, . . . , tn is possible only if (1) there is a reason ti for a formula
Fi, where 1 ≤ i ≤ n, such that one of its subterms p ∈ Sub(ti) for a warrant
p : (B → C) ∈ WSΠ[k] is not undercut by any of the reasons from the
cycle t1, . . . tn and (2) there is a warrant r : (D → E) ∈ WSΠ[k], such that
r ∈ Sub(ti) and r is undercut by some reason from the cycle t1, . . . tn, but none
of the other warrants fromWSΠ[k] is a subformula of E.

Proof. Assume that there is a cycle of undercuts in a set of formulas
In(Π)[k] among reasons t1, . . . , tn, such that each ti, where 2 ≤ i ≤ n,
is undercut by ti−1 as a reason for Fi and that t1 is undercut by tn as a
reason for F1. By Definition 2.13, for each reason ti and each formula
ti : Fi from a set of formulas {t2 : F1, . . . , tn : Fn} ∈ In(Π)[k], there
is a subterm s ∈ Sub(ti) such that ti−1 : ¬[s : (G → H)] and for the
formula t1 : F1 ∈ In(Π)[k] and a subterm u ∈ Sub(t1), it holds that
tn : ¬[u : (I → J)]. Then assume that each reason term from the set
{v | v ∈ ⋃n

j=1 Sub(tj) and v : (K → L) ∈ WSΠ[k]}, is undercut in the
cycle of undercuts t1, . . . tn. This means that each warrant v : (K → L) for
v ∈ Sub(tk) and 2 ≤ k ≤ n would have to be a proper subformula of a
formula tk−1 : Fk−1 from the cycle such that tk−1 : ¬[v : (K → L)] and,
thereby, tk−1 undercuts tk being a reason for formula Fk. Additionally,
the warrant w : (M→ N) for w ∈ Sub(t1) would have to be a proper
subformula of the formula tn : Fn such that tn : ¬[w : (M → N)] and,
thereby, tn undercuts t1 being a reason for formula F1. But this is not
possible since no formula is a proper subformula of itself. Therefore, at
least one reason tk from the cycle of undercuts t1, . . . , tn has to attack a
warrant r : (O → P) ∈ WSΠ[k], where r ∈ Sub(tk) and 1 ≤ k ≤ n, such
that none of the other warrants fromWSΠ[k] is a subformula of P.

The theorem ensures that cycles of asymmetrical attacks among ar-
guments are possible only if there is an outlying argument and this
argument is attacked by an argument in the cycle. Although our justi-
fication logic cannot realize the subclass of unwarranted frameworks,
this result does not exclude circular argumentation from it in general.
However, the result does show that there are constraints on interpreting
directed graphs as argumentation frameworks and these constraints are
due to the inclusion of additional argument features into our system.

In the literature about abstract argumentation frameworks, there are
attempts to provide frameworks Af ∗ and Af ∗∗ with intuitive interpreta-
tions. For example, van Eemeren et al. (2014, p. 630) give the following
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sports situation as an informal interpretation of Af ∗∗. Imagine that Ajax
has recently won matches against Feyenoord. We have a reason to think
that Ajax is the best Dutch football club (argument A). But assume that it
is also the case that Feyenoord has won recent matches against PSV and
that PSV has won recent matches against Ajax. Then we have a reason to
think that Feyenoord is the best Dutch club (argument B) and that PSV is
the best Dutch club (argument C). The available arguments leave us with
no answer to the question which football club is the best.

By fleshing out the content of these arguments in our default theory,
it becomes clear that there is more to this example than the cycle of three
attacks is able to show. There are two kinds of arguments involved in
resolving the conflict among the claims to the status of the best club. First,
the fact that Ajax has won recent matches against Feyenoord, provides
a reason to claim that Ajax is the best club. Secondly, the same fact
provides grounds to question the claim that Feyenoord is the best club.
The first argument can be an attacker only as a rebuttal, while the second
argument is an undercutter. Analogously, arguments can be provided
with reference to Feyenoord and PSV, as we will formalize below.

Example 3.3. Let T1 = (W1, D1), be the default theory describ-
ing the conflict of football clubs. The set of facts is defined by
W1 = {t1 : A1, t2 : F1, t3 : P1, t4 : [¬(A2 ∧ F2) ∧ ¬(A2 ∧ P2) ∧ ¬(F2 ∧ P2)]}.
Let A1, F1 and P1 be the propositions “Ajax/Feyenoord/PSV has won recent
matches against Feyenoord/PSV/Ajax” and A2, F2 and P2 are the propositions

“Ajax/Feyenoord/PSV is the best Dutch football club”. Notice that the set of facts
contains a formula which corresponds to the background knowledge that only
one club can be the best club. Finally, D1 = {δ1, δ2, δ2, δ4, δ5, δ6} is the set of
defaults, where

δ1 =
t1 : A1 :: (u1 · t1) : A2

(u1 · t1) : A2
, δ2 =

t2 : F1 :: (u2 · t2) : F2

(u2 · t2) : F2
,

δ3 =
t3 : P1 :: (u3 · t3) : P2

(u3 · t3) : P2
, δ4 =

t1 : A1 :: (u4 · t1) : ¬[u2 : (F1 → F2)]

(u4 · t1) : ¬[u2 : (F1 → F2)]
,

δ5 =
t2 : F1 :: (u5 · t2) : ¬[u3 : (P1 → P2)]

(u5 · t2) : ¬[u3 : (P1 → P2)]
and

δ6 =
t3 : P1 :: (u6 · t3) : ¬[u1 : (A1 → A2)]

(u6 · t3) : ¬[u1 : (A1 → A2)]
.

It is easy to check that theory T4 has a unique JTCS-stable and JTCS-preferred
extension ThJTCS(W1 ∪ {cons(δ4), cons(δ5), cons(δ6)}). Therefore, the conflict
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between Dutch football clubs results in accepting that the available reasons do
not sanction any of the three Dutch football clubs to claim the title of the best
club.

Theory T4 shows that Af ∗∗ at best gives an incomplete representation
of the conflict of Dutch football clubs. A more faithful abstract argu-
mentation framework should include additional arguments and attack
relations as Figure 3.2 shows. The only accepted arguments are the ad-

AA′

B

B′

C

C′

Figure 3.2: Abstract attack structure of Example 3.3

ditional arguments A′, B′ and C′ that are not featured in A f ∗∗. These
three arguments ensure that none of the unjustified claims to the title of
the best Dutch football club goes through. Note how the arguments that
are eventually accepted as winning are those indicating the inability of
reasons and warrants to justify claims – this layer of argumentation has
been so far elusive to a strict logical formalization.

By excluding all the unwarranted Dung’s frameworks as defined
above, it is possible to formalize the Realization procedure (“−→−→−→”) of
warranted Dung’s frameworks in justification logic. For a warranted
abstract argumentation framework AF = (Arg, Att), there is a default
theory T = (W, D) such that:

• A ∈ Arg −→−→−→ t : F = cons(δ) and u : (G → F) ∈ WSΠ such
that δ ∈ Π for a process Π of T

• (Am, An) ∈ Att & (An, Am) ∈ Att −→−→−→ t : P ∈
ThJTCS(cons(δm)) and u : ¬P ∈ ThJTCS(cons(δn)) such that P is a
fresh propositional variable and, for some processes Π′ and Π′′ of
T, δm ∈ Π′ and δn ∈ Π′′

• (Am, An) ∈ Att & (An, Am) /∈ Att −→−→−→ ¬[u : (G → F)] ∈
ThJTCS(cons(δm)) and u : (G → F) ∈ WSΠ for a term u ∈ Sub(t)
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such that t : F = cons(δn) and, for a process Π of T, δm ∈ Π and
δn ∈ Π

The following proposition characterizes realizations of warranted AF’s:

Proposition 3.4. An argument An is contained in a complete, grounded, pre-
ferred or stable extension of a warranted Dung’s framework AF = (Arg, Att) iff
a formula t : F = cons(δn) such that δn ∈ D for a default theory T = (W, D) is
contained in the corresponding JTCS-complete, JTCS-grounded, JTCS-preferred
or JTCS-stable extension ThJTCS(Γ) for a realization T of AF.

Proof. The proof is by induction on the acceptance conditions for an
argument A given by the definitions of complete, grounded, preferred
and stable extension definitions for Dung’s abstract argumentation frame-
works restricted to the subclass of warranted frameworks.

The proof of the inductive step relies on the fact that the realization
procedure −→−→−→ preserves the direction of attacks specified by Dung’s
attack relation. The direction of argument attacks in our operational
semantics is defined exactly as semantics in abstract argumentation,
where realized extensions can be instantiated with the corresponding
consistent models from JTCS, modulo specifying the logical structure of
attacks and closing the realized extensions under the JTCS consequence
relation.

The realization procedure is straightforward for AF’s that amount to
directed acyclic graphs as well for (most) AF’s whose cycles include two-
node-cycle components, which translate into rebuttal between formulas.
For example, for the existence of a directed path, the realization assigns an
undercutter formula u : ¬[t : (F → G)] as an argument that realizes the
starting node such that any warrant of a subsequent node is a subformula
of G. With the presence of other types of cycles, the realization forces the
existence of sub-arguments for at least one argument t : F corresponding
to a node from a realized cycle. This follows from Theorem 3.2.

In Dung’s framework arguments are only implicit and one can consider
each argument A as a statement of the following type “There is an
argument A”. When realized in justification logic, each of this existential
statements can be instantiated with an explicit argument structure t : F.

One may wonder what is the significance of (un)warranted abstract
argumentation frameworks for formal argumentation in general. We will
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conclude this section by pointing out what could the realization results
from justification logic contribute to our understanding of arguments.
The most important insight given by the justification logic realization
of AFs is that once we include reason terms into our formal language,
we bring forward the requirements on the logical language that are
only implicit in representing arguments as graph nodes. One of these
requirements is that the reasoning structure that we call “backing” in this
paper has to be built according to the axioms and rules of the underlying
calculus of reason terms. According to it, it is impossible to build a
“proof term” or a reason term that would support and undercut one
and the same conclusion, which is the result obtained in Theorem 3.2.
However, an isolated AF cycle requires a possibility to have a default
reason term, without other default reasons as its subterms, that supports
and undercuts a conclusion introduced in a single consequent formula of
a default rule.

Such loops and cycles that correspond to attack relations in AFs can-
not easily be exemplified in natural language either. Even self-defeating
argument that require more than a single default inference are difficult
to exemplify, as Pollock’s pink elephant example witnesses. Starting with
the work of Caminada (2005), it has been argued that attack loops could
be exemplified with the statement “I am unreliable” or, using the third-
person perspective, “An agent says that the agent is unreliable”. In the
same vein, Caminada (Summer 2008) argues that the above discussed
three-node cycle of attacks can be exemplified by a scenario featuring
agents who question one another’s reliability in the following way.3 Sup-
pose that there are three agents, namely Bert, Ernie and Elmo. If Bert
says that Ernie is unreliable, then everything that Ernie says cannot be
relied on. If Ernie says that Elmo is unreliable, then everything that Elmo
says cannot be relied on. Finally, If Elmo says that Bert is unreliable,
then everything that Bert says cannot be relied on. This creates a cycle of
attacks among Bert, Ernie and Elmo.

It is in such borderline examples of arguments that we can value
the precision of the justification logic language. Natural language allows
the type of self-referentiality featured in the sentence “I am unreliable”.
With the use of the justification logic language, we can see that such
examples belong to a special group of statements that require the logical
machinery of propositional quantification or that of quantification into

3Similar examples are discussed by Pollock (2009) and Prakken and Horty (2012).
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sentential position (Uzquiano, 2020, § 3.5). In an extended language
with propositonal quantifiers, we could represent the statement “I am
unreliable” with the following formula

t : ∀p(¬t : p),

where p is a propositional variable. The Bert-Ernie-Elmo attack cycle
would be just an extended version of the loop example. Take

t1 : ∀p(¬t2 : p), t2 : ∀q(¬t3 : q) and t3 : ∀r(¬t1 : r)

to realize the attack structure of the conflicting testimonies of unreliability
among the three agents, where p, q and r are propositional variables.

There are two findings related to the above examples that deserve
our attention in the context of modelling arguments. Firstly, if the above
examples are to be taken as arguments on a par with arguments that
do not require such strong logical machinery, they should not be con-
sidered as a part of the default reasoning paradigm of argumentation.
Such examples of argumentative attack belong to the plausible reasoning
paradigm. In the default reasoning paradigm, which is the paradigm
we investigate in Chapters 2 and 3, argumentative attacks result from
attacking defeasible inferences, as illustrated by rebutting and under-
cutting attacks form Example 2.7. In the plausible reasoning paradigm,
argumentative attacks result from adding new information that questions
old information and, thereby, it might question old conclusions. Notice
that undercutting and rebutting attacks do not question the reliability of
old information. For example, concluding that the table is white, rather
than red, cannot question the fact that the table looks red under the red
lighting. On the other hand, if you question the old information that the
table is red looking, then you compromise both old information and any
default conclusions that may follow from old information. This type of
attack is called “undermining” and it is defined as an attack on premises
of an argument (van Eemeren et al., 2014, p. 626). In the Bert-Ernie-Elmo
attack cycle, the three sources of information are undermined in such
a way that the testimonies of the three agents question one another in
the proposed order. This differs from the attacks induced by default
inferences, where some default step is being questioned, rather than the
credibility of information sources.

Secondly, default justification logic shows that argumentation frame-
works that include such arguments on a par with other defeasible argu-
ments do not consider the paradoxical nature of the mentioned example.
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In an important sense, ASPIC+ is still too abstract to capture the in-
tensional paradox created by adding propositional quantification in the
justification logic representation of attack cycles.4 Notice that the reason
term t in the statement t : ∀p(¬t : p) justifies that it cannot justify any
proposition. To assess if such reason terms could ever be acceptable,
we would first need to resolve what it is that t justifies. Following, for
example, Prior’s explanation (1961) of the intensional version of the Liar
paradox, there have to be at least two statements justified by the operator
t. The issues that t : ∀p(¬t : p) raises are fundamental to our understand-
ing of arguments, but they cannot be further developed here. For now,
we are able to conclude that AFs, as well as structured argumentation
frameworks, are not capable of capturing the paradoxical nature and
the exact logical structure of the examples discussed above. Structured
argumentation frameworks may be more expressive in the sense that they
allow such arguments with their definitions of arguments. However, their
expressivity rests on the fact that they do not specify a logical system
expressive enough neither to logically represent reasons nor to logically
represent arguments. Once we have a precise language with reason terms,
we are able to talk about the issues of whether to include paradoxical
propositions of the type t : ∀p(¬t : p) on a par with other arguments or
not. More importantly, we are in a position to discuss what is required to
logically represent notorious cycles of attacks in formal argumentation.

3.3 Rationality postulates for structured argumenta-
tion

Chapter 2 shows that default rules with justification formulas are expres-
sive enough to model elements of arguments that are traditionally seen
as extra-logical, such as warrants and backings. The results from this
chapter, Section 3.2, establish the logic of default justifications as a system
that explicitly features the structure of arguments and uses Dung’s meth-
ods for argument evaluation. The JTCS variants of admissible, complete,
grounded, preferred and stable extensions preserve reasonable outputs of
the corresponding Dung’s extensions. An additional question that may be
asked is whether our logic also behaves reasonably with respect to “ratio-

4See (Priest, 1991) for a discussion about intensional paradoxes. Intensional paradoxes
belong to a “class of paradoxes of self-reference whose members involve intensional
notions such as knowing that, saying that, etc.” (Priest, 1991, p. 193).
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nality postulates” that are set for structured argumentation frameworks
in the literature (Amgoud, 2014, Caminada and Amgoud, 2007).

According to Amgoud (2014), the exact formulation of rationality
postulates for structured argumentation frameworks depends on the
family of a logical language that they use: rule-based or classical. In
frameworks with rule-based languages, a distinction is made between
strict rules (rules without exceptions) and defeasible rules (rules that may
have exceptions). Arguments are built according to the available strict
and defeasible rules. Examples of such systems are ASPIC+ (Prakken,
2010) and DeLP (Garcı́a and Simari, 2004). In frameworks with classical
languages, arguments are built from a knowledge base using an un-
derlying monotonic logic. Examples of frameworks that use classical
languages are (Besnard and Hunter, 2001) and (Besnard and Hunter,
2005). The framework described in (Besnard and Hunter, 2001) is based
on a propositional language, while that of (Besnard and Hunter, 2005) is
based on a first-order language.

Following Amgoud (2014), we will consider five postulates, originally
formulated for argumentation frameworks built on classical languages.
In general, classical logic-based argumentation frameworks start from
the idea that there is some knowledge base with classical logic formulas.
We define arguments from that (possibly inconsistent) knowledge base as
pairs of sets of formulas and conclusion formulas such that a conclusion
formula is classically entailed by a set of formulas. We will here present
the five postulates without committing to Amgoud’s definition of an
argument. We do so deliberately, because the definition of an argument
for classical-logic based frameworks cannot be applied to our logic. The
reasons will be given shortly after we present the postulates. We give
their “framework-neutral” formulation, leaving the exact definitions of
framework extensions, arguments, sub-arguments, strict rules, premises
and conclusions unspecified:

Closure The set of conclusions for each extension is closed under strict
rules.

Sub-arguments If an argument is contained in an extension, then all the
sub-arguments of the argument are contained in the extension.

Consistency The set of conclusions for each extension is consistent.

Exhaustiveness If each premise and the conclusions of an argument are
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conclusions of an extension, then the argument is contained in the
extension.

Free precedence If an argument is not involved in any conflict, then the
argument contained in each extension.

Although we mentioned that the five postulates provide criteria to evalu-
ate classical logic-based argumentation frameworks, they are also relevant
for rule-based argumentation frameworks. In fact, their rule-based frame-
work variants can be found in Amgoud and Besnard (2013).

Delimiting the notion of argument in default justification logic

To discuss whether rationality postulates hold for a system, it is required
to have a precise definition of an argument. Note that default justifica-
tion logic offers both a narrower and more broader understandings of
an argument, which may include implicit components. The narrower
understanding simply takes every formula of the type t : F to be a struc-
tured argument such that t represents premises of an argument and F
represents its conclusion. However, as Figure 2.3 shows, t codifies a more
complex structure that involves implicit features of an argument, such as
an argument’s warrant and its backing. This offers a broader perspective
whereby an argument can be rather seen as an argument schema, which
is inclusive of its implicit elements. For the discussion on rationality pos-
tulates Closure, Consistency and Free-precedence, it suffices to focus on
arguments’ explicit features in the sense of the narrower understanding.
To discuss Sub-arguments and Exhaustiveness, we will use additional
elements from the broader understanding of arguments.

Although the idea of a classical logic-based system is closer to our
default logic, the postulates given by Amgoud (2014) are not directly
applicable to our logic. While the logic of default justifications uses JTCS
consequence to build arguments, it also allows for defeasible rules by
means of extending the application operation · for default rules. It is not
the case that all arguments are built from a knowledge base using only
the monotonic consequence for the underlying language, as required in
(Amgoud, 2014, p. 2030). Default reasons are built using warrants of the
type u : (F → G) and warrants are functioning as defeasible rules, but
they are not initially known and they do not need to become a part of
the knowledge base, although they potentially could. Finally, and most
importantly, arguments in the narrower sense are featured in the JTCS
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language itself, which means that a pair (premises, conclusion) is also an
object-level formula, unlike, for example, in (Besnard and Hunter, 2001).

On the other hand, rule-based languages introduce the differentiation
between strict and defeasible rules, but these rules are not a part of the
base language. In contrast with, for example, (Prakken, 2010), arguments
in justification logic are built via the operations in the JTCS language,
where the strict rules are simply the rules of the logic JTCS and defeasible
rules are in the object language due to the fact that both warrants are
a part of the JTCS and the operation · is a part of the language. This
makes any argument logically dependent on other strict and defeasible
conclusions within the system. For example, since warrants are formulas
of the JTCS language, a consequent of a default rule may refer to the
underlying warrant of another default rule in the way of an undercut
attack.

Our logic takes the middle way between rule-based systems and
classical logic-based systems by combining the distinction between strict
rules and defeasible rules with logical dependency of arguments via
JTCS consequence. This middle way is epitomized by the two roles that
warrants have in the system: they function as both implicit rules as well
as statements.5 Warrants in the role of rules enable default conclusions
and warrants in the role of logical statements enable other formulas to
refer to warrants within the logical system. However, this also means
that our logic cannot be aligned with only one of the two families of
logic-based argumentation systems identified in Amgoud (2014).

Postulates for default justification logic

Even without directly applying the postulates for classical logic-based
argumentation, we can check whether the desiderata on which Amgoud
(2014) builds the rationality postulates hold for our logic. We first exam-
ine three postulates from Amgoud (2014, pp. 2032-2035) that are easily
adaptable for our logic. For any JTCS-complete, JTCS-grounded, JTCS-
preferred or JTCS-stable extension Γ of a default theory T = (W, D), the
following postulates are required to hold:

JTCS closure The set of conclusions for each JTCS extension Γ is closed
under strict rules;

5Note that this corresponds to Toulmin’s ambiguous use of the term “warrant”. For
example, Toulmin (1958/2003, p. 91) refers to warrants as both rules and statements in a
single paragraph.
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JTCS consistency The set of conclusions for each JTCS extension Γ is
JTCS-consistent;

JTCS free precedence If some argument t : F is not involved in any
conflict, then t : F ∈ Γ for each JTCS extension Γ.

In our logic, strict rules are simply the rules of JTCS logic. By Defini-
tions 2.19, 2.22, 2.26, 2.27, extensions are closed under JTCS consequence
and, therefore, closed under strict rules.

The satisfaction of the consistency postulate is guaranteed for each
default theory T = (W, D) with a consistent set of facts W. For such
default theories, it can be easily shown that JTCS consistency of each
extension is preserved by the conditions of application for each default
rule. This follows from Theorem 2.16 and the fact that each JTCS extension
is conflict-free. Exceptions to the consistency postulate are theories with
an inconsistent set of facts W. This reflects the way in which our logic
deals with inconsistent information. Firstly, an agent starts with known
facts represented by justified formulas that do not conflict with one
another. Conflicts arise only after an agent needs to extend an incomplete
knowledge base by default assumptions. Resolving such meaningful
conflicts always leads to JTCS-consistent extensions.

The free precedence postulate requires that the system infers all the
arguments and, in general, formulas that do not conflict with any other
argument. As stated above, we take arguments in the narrower sense of
formulas t : F and these arguments may be based either on strict or on
defeasible rules. This postulate follows trivially for all JTCS extensions,
except for JTCS-admissible extensions that do not maximize inclusion of
arguments by their definition. Notice that for other JTCS extensions, no
formula t : F = cons(δ) is excluded from a JTCS extension Γ, unless δ is
inapplicable to the respective process containing Γ or one of the subterms
of t is undercut by Γ. The inclusion of all free formulas and arguments
built on conflict-free grounds is then ensured by the closure under JTCS
consequence.

For the two additional postulates from (Amgoud, 2014), the notion
of a sub-arguments of an argument needs to be defined. We will start
again from the narrower understanding of an argument in the sense of
any formula t : F. The concept of a sub-argument for default application
will be taken to mean the following:

• If a formula (u · t) : G is obtained by means of application (axiom
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A1) or default application from the formulas t : F and u : (F → G),
then t : F and u : (F → G) are sub-arguments of (u · t) : G;

• If a formula (t + u) : F is obtained by means of sum (axiom A2)
from either the formula t : F or the formula u : F, then at least one
of the formulas t : F and u : F is a sub-argument of (t + u) : F.

If an argument t : F is a sub-argument of (u · t) : G and a sub-argument
of (t + u) : F, then any sub-argument of t : F is also a sub-argument
of (u · t) : G and (t + u) : F. Notice that if an argument t : F is a sub-
argument of (t + u) : F, it is not necessary that there is some formula
u : G which is also a sub-argument of (t + u) : F. It is possible that
some justification term u does not justify any formula G. For a trivial
example, take some justification constant c and any formula F, (c · c) is
not a justification for F in JTCS logic because the application operation
that gives (c · c) is not meaningful for an injective constant specification
CS .

The following two postulates require rational acceptance of an argu-
ment with respect to its substructure:

JTCS sub-arguments If an argument t : F is in a JTCS extension Γ, then
any sub-argument of t : F is also in Γ;

JTCS exhaustiveness If each sub-argument and the formula F for some
argument t : F are conclusion of JTCS extension Γ, then t : F is in Γ.

In contrast to the Exhaustiveness postulate on page 81, notice that the
JTCS variant of exhaustiveness does not mention premises of an argu-
ment as conclusions of JTCS extensions. On the narrower understanding
of the arguments as justification assertions, the premises of an argu-
ment are reason terms, but not well-formed formulas. The postulate is
reinterpreted to track conclusion formulas that are sub-arguments for
an argument, because reason terms codify reasoning steps from those
formulas such as, for example, the warrants of arguments. The JTCS
exhaustiveness postulate obviously holds for all JTCS extensions closed
under JTCS consequence by axioms A1 and A2. Thus, informally, if the
steps of an argument are contained in an extension, then the argument
itself is.

The sub-arguments postulate can be seen as a dual version of exhaus-
tiveness, in the sense that it requires that all the steps of an accepted



86 CHAPTER 3. DJL, FORMAL ARGUMENTATION AND DL

argument should also be accepted (Amgoud, 2014, p. 2029). This postu-
late is not directly satisfied by our logic. Take, for example, an argument
(u · t) : G obtained by default application. According to default applica-
tion, one of the sub-arguments of (u · t) : G is some formula u : (F → G)
which is neither a part of a knowledge base W for a default theory T nor
is it required for that formula to become a part of an extended knowledge
base, which results from applying the available defaults.

Does that mean that arguments introduced by default rules are based
on unjustified reasoning steps? We can show that this is not the case.
Although the sub-arguments postulate is not directly satisfied, the basic
idea behind the postulate is: “an argument cannot be accepted if at least
one of its sub-parts are bad” (Amgoud, 2014, p. 2033). This desideratum
holds because, even if the sub-argument u : (F → G) of an argument
(u · t) : G does not become a part of a knowledge base, the system
ensures that the warrant u : (F → G) has not been compromised by other
available arguments in the knowledge base. For any argument (u · t) : G
and its warrant u : (F → G), if (u · t) : G is in a JTCS extension, then that
extension contains the formula ((c · t) · (u · t)) : (F → G), assuming that
the constant c justifies the axiom F → (G → (F → G)) and that the sub-
argument t : F of (u · t) : G is also contained in the extension. Therefore,
it is possible to ascertain that none of the steps in building the argument
(u · t) : G has turned out to be bad, if the argument (u · t) : G is actually
accepted in a JTCS extension.

3.4 Undercutting in justification logic and Reiter’s
logic

In this section, we compare default theories based on justification logic
to standard default theories based on first-order logic that were first
defined by Reiter (1980). Our primary goal is not to address the question
of the possibility to establish correspondence results between the two.
Instead, we focus on their conceptual differences in modeling default
reasoning. We start by showing how to represent exclusionary reasons
and undercutting defeat in process trees for justification logic-based
default theories. Then we show how to translate undercut into Reiter’s
default logic by interpreting its default processes as arguments. We argue
that our logic conforms better to the idea of making a default inference
without having to anticipate numerous exceptions to the inference.
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Reiter’s default logic (Reiter, 1980, Antoniou, 1997) is one of the
most notable logics for non-monotonic reasoning with rules that enable
“jumping” to conclusions. However, the question of what precisely is
a default reason is left ambiguous in Reiter’s logic. This problem is
identified by Horty in the following passage about the reification of
reasons (Horty, 2007, p. 6):

Suppose, as in our example, that the agent’s background the-
ory contains the default B→ F, an instance for Tweety of the
general default that birds fly, together with B, the proposition
that Tweety is a bird, so that the default is triggered. In this
case, it seems plain that the agent has a reason to conclude
that Tweety flies. But how, exactly, should this reason be rei-
fied? Should it be identified with the default B→ F itself, or
with the proposition B?

Horty’s conclusion is that this question “like many questions concerning
reification, is somewhat artificial” and that “when it comes to reification,
the reason relation could be projected in either direction, toward defaults
or propositions, and the choice is largely arbitrary”.

The goal of this section is to show that the question of reification
is important and that giving an answer to it opens up new paths in
formalizing defeasible reasoning. In particular, our focus is on showing
benefits of formalizing default reasons with the language of justification
logic, which is expressive enough to encode the structure of default
inferences within its reason terms. To compare the two logics via the
problem of reification, we illustrate the advantages of the expressiveness
that our logic has in comparison to Reiter’s default logic by means of an
example with undercut.

Consider an agent reasoning about whether a KLM Boeing 737 aircraft
has cleared the take-off protocol or not, given that a source of information
says that “the crosswind component at the default runway is at the speed
of 35 knots” (C). Knowing that, at this speed of the crosswind component,
the Boeing 737 type of aircraft is usually not allowed to proceed with the
take-off, the agent concludes that “the KLM Boeing 737 flight has been
delayed” (K), according to the following default rule:

δ1 =
r : C :: (s · r) : K

(s · r) : K
.

The default can be read as follows: “If r is a reason justifying that the
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crosswind component at the default runway is at 35 knots and it is
consistent to assume that (s · r) is a reason justifying that the KLM
Boeing 737 flight has been delayed, then (s · r) is a defeasible reason
justifying that the KLM Boeing 737 flight has been delayed”.

If the agent receives additional information that it is not the case that
“the SAS Boeing 737 aircraft has been delayed” (S), then the agent has
a reason to assume that “the aircraft can be allocated to an alternative
runway” (R).

δ2 =
t : ¬S :: (u · t) : R

(u · t) : R
.

On a runway of a different orientation, the initial readings of the cross-
wind may even turn into a favorable headwind component. The infor-
mation that there is an alternative runway undercuts the initial piece of
reasoning codified by s, according to the following default rule:

δ3 =
(u · t) : R :: (v · (u · t)) : ¬[s : (C → K)]

(v · (u · t)) : ¬[s : (C → K)]
.

The consequent reads as follows: “(v · (u · t)) is a defeasible reason
denying that the reason s justifies that if the crosswind component for
the default runway is at the speed of 35 knots, then the KLM Boeing 737
flight has been delayed”. Additionally, the agent has a reason to conclude
that the KLM flight has not been delayed, grounded on the reasoning
about an alternative runway:

δ4 =
(u · t) : R :: (w · (u · t)) : ¬K

(w · (u · t)) : ¬K
.

Were it the case that the course of the agent’s reasoning follows the
proposed order, the agent would have to revise the conclusion supported
by the reason (s · r). For a default theory T1 = (W, D) with W = {r : C, t :
¬S} and D = {δ1, δ2, δ3, δ4}, the process (δ1, δ2, δ3) corresponds to such
course of reasoning with a revised JTCS-admissible extension. Figure 3.3
shows all the possible processes of T.

Is there a way to model undercut in Reiter’s default logic, without
extending the logic with, say, default priorities, as done by Horty (2012)
and Brewka (1994)? To answer this, we need to view default logic from
the perspective of formal argumentation. The relation between formal
argumentation and Reiter’s default logic is known. Dung (1995) shows
that Reiter’s default logic extensions can be defined in terms of stable
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ThJTCS ({r : C, t : ¬S})

(s · r) : K

(u · t) : R

(v · (u · t)) : ¬[s : (C → K)]

(u · t) : R

(s · r) : K (v · (u · t)) : ¬[s : (C → K)]

(w · (u · t)) : ¬K
(s · r) : K

(w · (u · t)) : ¬K

(v · (u · t)) : ¬[s : (C → K)]
(v · (u · t)) : ¬[s : (C → K)]

δ1 δ2

δ2

δ3

δ3

δ4δ1

δ1 δ4

δ3 δ3

Figure 3.3: Each node of the process tree of T is labeled with an In-set
after a default rule (edges) has been applied. Visually, we display only
the formulas that are added to In-sets as a result of applying the available
defaults.

extensions of abstract argumentation frameworks and this chapter shows
that a large subclass of abstract argumentation frameworks is a special
case of our logic. But besides finding formal correspondences between
their extensions, it is interesting to look at the conceptual relation of Re-
iter’s logic to our justification logic. This relation is not straightforward,
because the two logics are based on different underlying languages. This
difference does not cause divergence in the way the two logics model
rebuttal. Rebuttal is based on the workings of multiple incompatible ex-
tensions: two formulas extending some knowledge base rebut each other
if they cannot both be included in a same default extension. However, the
comparison of the ways in which the two logics deal with the concept of
undercut reveals some immediate benefits of reifying default reasons in
justification logic.

We recall here some basic definitions of Reiter’s default logic from
Chapter 1. First, the general form of a default rule in Reiter’s logic is

ϕ : ψ1, . . . , ψm

χ
,
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for some predicate logic formulas ϕ, ψ1, . . . , ψm and χ. The operational se-
mantics for default logic is similar to ours, but besides closure, Antoniou
(1997) introduces an additional condition on the extension-producing
processes of Reiter’s default theories, namely success. This concept turns
out to be fundamental for us to model exclusionary reasons. Recall that
a process is successful if each of the justifications ψ1, . . . , ψm is consis-
tent with the consequents added to an In-set after all the other appli-
cable defaults have been applied. To capture this formally, we use the
set Out(Π) = {¬ψ | ψ ∈ just(δ) for some δ ∈ Π}, for some justification
just(δ) of a rule δ in a process Π of a default theory ∆ = (W, D). None
of the formulas from an Out-set should become a part of an In-set for
the same process. The notions of closure and success give a formal char-
acterization of extensions: given a set of first-order formulas E = In(Π),
E is an extension in Reiter’s logic if and only if Π is both closed and
successful.

In our logic, it is possible to consider consequents of defaults as argu-
ments based on their underlying warrants. This enables us to represent
conflicts simply by opposing reasons. In Reiter’s logic, reasons are not
reified and their conflicts cannot be reflected in the logical language. It
is, however, possible to take the perspective of formal argumentation on
Reiter’s logic. To take such perspective, we follow Prakken (2018, p. 52)
in defining arguments in terms of finite processes of Reiter’s theory and
their mutual attacks through conflicts of In-sets with Out-sets. We start
from defining attacks in terms of finite processes of a theory ∆ = (W, D):

• Π attacks Π′ if ϕ ∈ In(Π) for some ϕ ∈ Out(Π′),

where Π and Π′ are some finite processes of ∆. We can develop further
on this definition to specify different kinds of attack:

• If all the default rules from Π and Π′ could possibly form a finite
process Π′′ of ∆ (in any possible order of the sequence), then the
attack between Π and Π′ is undercut. Otherwise, it is a rebuttal
between Π and Π′.

The idea behind the refinement of the attack definition is that in Reiter’s
logic, non-normal default rules can be seen as a way to introduce “exclu-
sionary reasons” (Horty, 2012) and undercut in Reiter’s theory. Consider
the following two Reiter’s default rules:

δ′ =
35Knots(crosswind) : ¬alternative(runway)

delayed(KLM)
,
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saying that “if the crosswind component at the default runway is at 35
knots, and it is consistent to assume that the aircraft cannot be allocated to
an alternative runway, then the KLM Boeing 737 flight has been delayed”
and

δ′′ =
35Knots(crosswind) ∧ ¬delayed(SAS) : alternative(runway)

alternative(runway)
,

saying that “if the crosswind component at the default runway is at 35
knots and the SAS Boeing 737 flight has not been delayed, and it is con-
sistent to assume that the flight can be allocated to an alternative runway,
then the flight can be allocated to an alternative runway”. Moreover, the
following default is available to the agent:

δ′′′ =
alternative(runway) : ¬delayed(KLM)

¬delayed(KLM)
.

Take ∆ = (W, D) to be a Reiter’s default theory with W =
{35Knots(crosswind),¬delayed(SAS)} and D = {δ′, δ′′, δ′′′}. The process
tree for the Reiter’s theory ∆ is found in Figure 3.4. The idea of undercut
can be illustrated by the way in which Π′ = (δ′′) attacks Π = (δ′) via
affirming the circumstance in which the conclusion of Π would not be
reasonable any more, but it does not affirm the negation of that conclu-
sion. This corresponds to the idea of undercut. Notice that, in contrast to
δ1 above, Reiter’s rule δ′ needs to include the negation of the exclusionary
circumstance alternative(runway) in conveying the idea of undercut.

Notice that the mechanism whereby Π′ attacks Π is also responsi-
ble for the problem of process “destruction” (Antoniou, 1997, p. 63).
An example of process destruction occurs in the unsuccessful process
Π′′ = (δ′, δ′′), where, after δ′′ has been applied, Π′′ becomes closed and
unsuccessful. As it can be seen from the process tree of T, justification
logic-based default theories are able to model interaction among default
rules and undercut without having to resort to the use of process destruc-
tion. This is mainly due to the fact that the rule δ3, which is “missing” in
the Reiter’s logic rendition of the example, brings forth the undercut of
the default reason from δ1 as a part of the example description.

Several remarks are at hand by comparing the structures of the
process trees of T and ∆. Although the theories model the same phe-
nomenon, Reiter’s logic noticeably simplifies the example. While some
ways of simplifying are desirable, there are several reasons to prefer
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Th({c,¬s}) ∅

Th({c,¬s, k}) {r} Th({c,¬s, r}) {¬r}

Th({c,¬s, k, r}) {r,¬r} Th({c,¬s, r,¬k}) {¬r, k}

δ′ δ′′

δ′′

failed

δ′′′

closed & successful

Figure 3.4: The process tree of Reiter’s default theory ∆. Undercut is
modelled by the failed process branch.

the representation of undercut in justification logic. One of them is that
failed processes disable reinstatement of reasons that could, in principle,
be reinstated by undercutting their undercutters. In our example above,
even if the SAS flight has not been delayed, it might be the case that the
current demand for the runway reassignment exceeds the operational
capacities of the alternative runway. This, in turn, provides a reason to
reinstate the initial reason in support of the claim that the KLM flight is
delayed. Justification logic is able to represent such reason reinstatement
and processes that are, in principle, infinitely extendable.

As can be seen from the definitions of JTCS extensions, only JTCS-
admissible extensions can be identified by looking at a single branch
of the process tree of T. To determine the status of other JTCS exten-
sions, all reasons need to be taken into account.6 In contrast, Reiter’s
default processes are self-contained with respect to the extensions status.
Therefore, JTCS extensions have more in common with the notion of
Reiter’s logic consequence relation (credulous and skeptical). For instance,
JTCS-grounded extensions correspond to the skeptical notion of validity,
which amounts to the intersection of all Reiter extensions. It is only in
taking the argumentation perspective on Reiter processes that we need
to look at the dependencies of different process tree branches.

Conceptually, the most important advantage of representing defeasi-
ble reasoning in justification logic is that neither for reaching a defeasi-

6This could be further amended by considering “anytime reasoning” methods as, for
example, those proposed by Cadoli and Schaerf (1994) for Reiter’s logic.
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ble conclusion nor for undercutting that reason, agents do not need to
anticipate exclusionary reasons. In an important sense, anticipating ex-
clusionary reasons with ¬alternative(runway) in the Reiter rule δ′ above
goes against the idea of default reasoning. Namely, in the sense that
the number of these conditions may be infinite. The need to anticipate
exclusionary reasons brings us back to the initial problem: we want to
find out how to avoid anticipating numerous exceptions before an agent
is able to reach a conclusion. It is an advantage of our theory to be able
to model exceptions to rules via undercut, but without the drawback of
guessing all the conditions of undercut within a default theory.

Finally, notice that by using Reiter’s non-normal defaults, we are
not only able to define undercut, but also to define theories such as
∆∗ = (W∗, D∗), where W∗ = ∅ and D∗ = {δ′′′′ = >:¬A

A }. The rule >:¬A
A

invalidates its own applicability. Using the above defined translation to
argument frameworks, it is possible to build a single-argument attack cy-
cle in terms of the argument Π = (δ′′′′). This kind of attack is well-known
from Dung’s (1995) abstract argumentation frameworks. In this chapter,
we prove that defining single-argument attack cycles is not possible once
the warrants of arguments have been included as underlying rules for
each default. This shows that although δ′′′′ sanctions “jumping” to the
conclusion A, this does not mean that the type of inference it instantiates
counts a reasoned default step.

3.5 Conclusions

In this chapter, we explored relations that default justification logic has
to formal argumentation frameworks and standard default logic. While
we provided correspondence results between our logic and Dung’s AFs,
we did not show correspondence results on how the logic relates to
structured argumentation frameworks or Reiter’s default logic. Instead
of focusing on formal relations to structured argumentation frameworks,
we instead showed that our logic meets all of the standard postulates
for structured argumentation. To show relations to Reiters’s default
logic, we chose to focus on their conceptual differences regarding the
problem of reification. It is, however, reasonable to assume that there are
correspondence-like results since the relation to Dung’s argumentation
frameworks has been established in this chapter and the relation between
Reiter’s default logic and Dung’s argumentation frameworks are known
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from (Dung, 1995, Section 4.1).
The results from this chapter show that the logic of default justifica-

tion has a similar connection to abstract argumentation frameworks as
standard justification logic systems have to their modal logic counterparts.
Artemov (2001) provided a proof of the Realization Theorem that connects
the logic of arithmetic proofs LP with the modal logic S4. The result has
been followed up by similar theorems for many other modal logics with
known “explicit” justification counterparts.7 In our paper we show that
our logic can be considered as an explicit justification logic counterpart
to a substantial subclass of abstract argumentation frameworks called
warranted frameworks.

Several interesting paths could be followed in further connecting the
logic of default justifications with formal argumentation frameworks.
Among frameworks with abstract arguments, the AFRA framework (Ba-
roni et al., 2011) with recursive attacks offers a possibility of representing
attacks to attacks. This conceptual advance is useful in connecting default
reasons to abstract arguments. More obviously, our logic is closely related
to the frameworks with structured arguments, which is why connections
with systems such as ASPIC+ (Prakken, 2010), DeLP (Garcı́a and Simari,
2004), SG (Hecham et al., 2018) and the logic-based argumentation frame-
work by (Besnard and Hunter, 2001) are interesting to explore. Since
each of these frameworks elaborates on the notion of defeat, a thorough
comparison to our logic would shed light on their formal connections.
Caminada and Gabbay (2009) and Grossi (2010) give a different logic-
based perspective on argumentation frameworks. Both papers start from
the idea of studying attack graphs and formalizing notions of extensions
from abstract argumentation theory using modal logic, with the former
approach being proof-theoretical and the latter model-theoretical. A fur-
ther interesting research venue in the field of argumentation theory is
Verheij’s (2003) logical interpretation of prima facie justified assumptions.
The DefLog system which is developed there is closely related to ours
in motivation, but it develops from a perspective of a sentence-based
theory of defeasible reasoning instead of a rule-based or argument-based
approach.

Some existing extensions of default theories that can deal with the
problem of exclusionary reasons come close to our intention of reifying
default reasons. Most notably, approaches that are based on reasoning

7See (Fitting, 2016) for a good overview of realization theorems.
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about default rule priorities such as (Brewka, 1994) and (Horty, 2007,
2012) include a variant of reasoning about other reasons, namely, by
reasoning about the relative weights of defaults. Strictly speaking, reason-
ing about default priorities reifies default rules, not default reasons, by
extending the underlying language of default logic with default names
and a predicate symbol that represents priorities among defaults. In such
default theories, agents may arrive to conclusions about which ordering
of defaults is a preferred one and to, thereby, consider higher priority as
a source of defeat. Priority weighing in the style of Brewka (1994) can
be represented in process trees, as done in (Antoniou, 1997, pp. 97-98).
It can be noticed that one of the difficulties with such reasoning is that
before applying a default, an agent needs to consider all other applica-
ble defaults. As in Reiter’s logic, processes are possibly failed, where
failure is now due to making application choices that are inconsistent
with a valid ordering among defaults. Horty (2012, p. 124) defines “ex-
clusionary default theories” where he explicitly includes undercutters,
but his undercut is logically only a predicate saying that a rule has been
excluded.

A more elaborate study of the different ways to defeat reasons is
carried out in argumentation theory, from the classical account of under-
cut and rebuttal in (Pollock, 1987) to some later formal argumentation
frameworks such as, e.g., (Prakken, 2010), (Besnard and Hunter, 2001)
and (Verheij, 2016). These frameworks are not based on default logic nor
do they base their formalism on a language with formulas that feature
reason terms. Hence, as for our current discussion on the problem of
reification, such systems do not provide explicit answers. Among justi-
fication logic systems, some of them Baltag et al. (2014), Renne (2012)
combine belief revision and dynamic epistemic logic techniques to model
defeat, which is closest in its kind to undermining. However, none of
them is able to model undercut or to encode defeasibility in the structure
of reason terms.

Finally, our answer to the problem of reification is that both a prereq-
uisite of a default rule and the rule itself are involved in reifying default
reasons. This is reflected in the way in which default application codifies
default steps from warrants and prerequisites of defaults to their con-
sequents. An immediate advantage of reification is that, by referring to
such reason-producing steps within the object language, we can provide
a fine-grained logical account of defeat.
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Chapter 4

Argumentation dynamics:
Undermining in default
justification logic

4.1 Introduction

This chapter uses belief revision methods to study information changes
in default justification logic with argumentation semantics. The default
justification logic introduced in Chapter 2 models non-monotonic behav-
ior that results from extending incomplete information, but it does not
deal with the consequences of information changes. We want to make our
system to be adaptive to such changes. To add this new component, we
introduce dynamic operators that combine tools from belief revision and
default logic to define both prioritized and non-prioritized operations of
contraction, expansion and revision for justification logic-based default
theories. This combination enriches both default logics and belief revision
techniques. We argue that the argumentative attack called “undermin-
ing” amounts to those operations that contract a knowledge base by an
attacked formula.

4.2 Dynamics in formal argumentation

In this part of the thesis, we investigate the dynamics of default theories
with justification logic formulas. The basic format of our default theo-
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ries has been presented in Chapter 2, where we interpret justification
formulas of the form t : F as arguments that can defeat other formulas
by means of undercut or rebuttal. Technically, the workings of undercut
and rebuttal rely on defining default theories with default rules based
on justification logic formulas. In such rules, justification terms codify
defeasible inferences in their structure. In this chapter, we will make a
further step and add reasoning about changes to default theories.

The existing work about dynamics in formal argumentation (Booth
et al., 2013, Coste-Marquis et al., 2014, Doutre et al., 2014, Diller et al.,
2015, de Saint-Cyr et al., 2016) almost entirely focuses on abstract argu-
mentation frameworks in the style of Dung (1995). The literature on the
dynamics of structured argumentation is limited to the DeLP framework
(Alfano et al., 2018), where the dynamics is understood as adding or
removing strict and defeasible rules, and ASPIC+ (Modgil and Prakken,
2012), where the dynamic component is meant to resolve symmetric
attacks by updating preferences. The current chapter, based on (Pandžić,
2020), advances this line of research by specifying a variety of dynamic op-
erators for modeling changes of argument systems based on justification
logic.

We will show that introducing dynamic operators for justification
logic default theories enables us to model an additional kind of defeat:
undermining. According to van Eemeren et al. (2014), an argument is
undermined if its premises or assumptions are attacked. Defeating an
argument by attacking its premise or its assumption is not new to struc-
tured argumentation. In assumption-based argumentation (ABA) (Dung
et al., 2009), all attacks are reduced to this type and in ASPIC+ (Prakken,
2010), ordinary premises of an argument are susceptible to undermin-
ing. However, these systems do not provide an insight into the logical
workings of undermining, because they specify neither a concrete logical
language nor inference rules.1

In our default theories, undermining can be given a precise logi-
cal interpretation. While undercut and rebuttal rely on the uncertainty
of default arguments, undermining changes the context from which
agents make further inferences. For a specific default theory, this con-

1In fact, ABA does not distinguish between different kinds of attacks and models
each attack as an attack on premises and thus reduces all attacks to the type of attack
that we call here undermining. In ASPIC+, undermining is taken as a primitive notion of
attack, which is different from rebuttal or undercut only by virtue of targeting “ordinary”
premises of an argument.
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undermining

undercut

rebuttal
CLAIM

Figure 4.1: Three types of defeat between arguments

text is determined by the set of starting premises, W. Our idea is that,
since undermining targets the given premises, it should be modeled as
a result of non-inferential information inputs that require contracting
the set of premises of a default theory. This means that we will define
undermining by “climbing up” the definitions of more fundamental op-
erations of default theory changes. To elicit the reasoning process behind
undermining, we specify four different logical operations that model
undermining: prioritized and non-prioritized contraction and prioritized
and non-prioritized revision. Figure 4.1 illustrates the differences between
undercutting, rebutting and undermining attacks.

The chapter is organized as follows. The logic introduced in Chap-
ter 2 already models non-monotonicity with the use of undercut and
rebuttal. We use this logic to exemplify Toulmin’s (1958/2003) argumen-
tation model in our default theories. The example is used to illustrate
conceptual differences in the workings of undercutting, rebutting and
undermining. After specifying the elements of arguments in default justi-
fication logic, we describe how we plan to connect dynamic operations
for such default theories with undermining defeaters. Section 4.4 is the
main technical contribution of this chapter, where we define dynamic
operations for default theories with justification formulas. The operations
we introduce combine Hansson’s (1999a) base revision operations with a
specific kind of standard Reiter default rules. Our approach to defining
the dynamic operators for default theory revision has most in common
with Antoniou’s (2002) approach, which deals with the dynamics of
Reiter’s default theories. We show by the end of the chapter that un-
dermining attacks on premises correspond to those dynamic operations
that involve either contraction or a variant of non-prioritized contraction
defined in Section 4.4.
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4.3 Formalizing Toulmin’s example

The above presented account of default reasons suffices to represent
reasoning from an incomplete knowledge base, but it does not represent
reasoning with information changes that alter the premises from which an
agent starts to reason. Still, the basic account can already model one type
of non-monotonic behavior induced by the definition of undercut. We
will refer to this way of revising as “inferential” revision. The workings
of undercut can be illustrated with Toulmin’s famous example (Toulmin,
1958/2003, p. 92) of arguing for the claim that Harry is a British subject.
This claim “can be defended by appeal to the information that he was
born in Bermuda, for this datum lends support to our conclusion on
account of the warrants implicit in the British Nationality Acts...”. The
example is translated into a justification logic default as follows. Given
the fact that Harry was born in Bermuda (B), an agent can conclude that
Harry is a British subject (S):

δ1 =
r : B :: (s · r) : S

(s · r) : S
.

The default can be read as follows: “If r is a reason justifying that Harry
was born in Bermuda and it is consistent to assume that (s · r) is a reason
justifying that Harry is a British subject, then (s · r) is a defeasible reason
justifying that Harry is a British subject”.

However, if the agent were in possession of the additional information
saying that both Harry’s parents are aliens (P), the “general authority
of the warrant” s : (B → S) for the claim S would have to be set aside.
This is modeled with the following rule that introduces an undercutting
reason:

δ2 =
t : P :: (u · t) : ¬[s : (B→ S)]

(u · t) : ¬[s : (B→ S)]
.

The consequent can be read as follows: “(u · t) is a defeasible reason
denying that the reason s justifies that if Harry was born in Bermuda,
then Harry is a British subject”. This is a classical argumentation theory
example of a defeater that leads to the suspension of the conclusion
supported by the reason (s · r). For a default theory T1 = (W, D) with
W = {r : B, t : P} and D = {δ1, δ2}, the process (δ1, δ2) corresponds
to such course of reasoning with revised JTCS extensions. Notice that
the warrant underlying δ2 can also be questioned in a further course of
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reasoning. For example, one could find out that one of Harry’s parents
was settled in Bermuda at the time when he was born, thus reinstating
the authority of the warrant used in δ1. Formally, this would mean that
there is an available default rule that gives you a reason denying that the
warrant of δ2 is true.

Notice that in the logic above, the argument (s · r) : S is susceptible to
attack due to the fallibility of inference δ1 that is characteristic for default
reasoning. For the argument (s · r) : S to be undermined, we consider
a wider Toulminian interpretation of the argument that includes the
formula r : B as the data for the argument. Since r : B is in the set W,
the only possibility to attack r : B is to remove it from W and to thereby
undermine (s · r) : S. This kind of attack on arguments is studied under
the paradigm of plausible reasoning.2 In this paradigm, arguments are
taken to be susceptible to attack due to the uncertainty of their premises.
The aim of the current work is to unify the two paradigms in a single
logical system.

4.4 Dynamic operations for default theories: Intro-
ducing undermining attack

As mentioned above, undermining can be interpreted as an attack on
the formulas that are considered to be facts. In our view, undermining is
essentially non-inferential because introducing conflicting information
that undermines facts cannot be done with the use of warrants.3 For a
default theory, these facts are represented by justification logic formulas
from the set of premises W and, in constructing a default argument, such
formulas can be prerequisites of default rules. A plausible interpretation
of undermining defeaters would be that they propose alternative states
of facts which ground further reasoning steps. To be able to incorporate
factual changes, we need methods from belief revision. Our selection of
the belief-revision operations follows the way in which default theories
are defined — since the set of premises W is typically finite, it is natural

2See (Prakken, 2017, pp. 59-61) for more details on this distinction.
3The non-inferential view of information change is also relevant for human interaction.

As Hlobil (2018) argues, we can believe by accepting testimonies, but we cannot make
inferences by merely accepting testimony. Two testimonies that contradict each other are
to be, ceteris paribus, equally treated and the acceptance of new information is not the
same process as inferentially extending the existing (incomplete) information.
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to use operators for sets that do not require closure. Therefore, our choice
is to make use of base revision operators (Hansson, 1999a) instead of the
AGM operators (Alchourrón et al., 1985).

To model changes to default theories, we will use the capacity of
default logic to represent two levels of information certainty. The top-level
of information certainty is represented by formulas that are included in
all extensions. Typical examples of such formulas are those contained in a
set of premises W. The lower-level of information certainty is represented
by formulas whose status is contingent on whether they become defeated
by other available information. Such formulas are typically consequents
of default rules. Our goal is to use the two levels and to define dynamic
operators that can bring about the changes that fix whether a formula
is included in or excluded from all extensions, but also to define non-
prioritizing operations that leave the status of a formula undecided.

To be able to model the dynamics at the two levels of information
certainty, we extend the above defined default theories with unwarranted
defaults,4 which correspond to Reiter’s supernormal defaults, but (possi-
bly) containing justification assertions:

δ =
> :: F

F
.

Standard default rules with justification assertions encode inferential
steps supported by warrants. In contrast to inferential steps, supernormal
defaults will be used to represent non-inferential, information-changing
actions in which an agent accepts that a formula can be included in (at
least) one extension. We will extend sets of defaults with supernormal
defaults whenever we represent introducing uncertain information to
a theory T or relegate information from W to the status of uncertain
information.

Why would we want to make changes only to the lower-level of infor-
mation certainty or alter a default theory at the level of some, instead of
all extensions? Sometimes, an agent has doubts with respect to whether
it is safe to include some information or not and, analogously, whether
it is safe to remove some information or not. In the standard base revi-
sion approach to modeling information change, incoming information
is always prioritized over existing information, which is ensured by the
success postulate. Consider again the example of the agent reasoning

4By referring to defaults as “unwarranted”, we mean only that such default rules
introduce their consequents without using warrants as defined in Chapter 2.
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about Harry’s eligibility for British nationality. It is possible that, accord-
ing to the census record, Harry was born in Bermuda and, according
to the military record, he was born outside Bermuda. The fact that the
agent first collected the census record data and then collected the military
record data cannot justify the prioritization of the newly acquired infor-
mation. If the agent does not know which information source is reliable,
the order of data input is irrelevant. In these cases, default logic can avoid
the “naive” priority ascription by the use of multiple extensions. The rest
of this section gives a solution to the problem of non-prioritized change
of default theories, along with the more standard prioritized change. In a
case of non-prioritized change, the corresponding dynamic operator uses
supernormal defaults with an aim to alter the lower-level of informa-
tion certainty of a default theory. On our interpretation of undermining
attacks, whether undermining fully or partially realizes its defeating
potential depends on whether the new information is prioritized or not.

4.4.1 Default theory expansion

We consider three kinds of change: expansion, contraction and revision.
The first kind of change corresponds to learning new information. For
example, adding a formula F to a set of premises W can be based on the
information provided by some information channel. The formal operation
that naively adds new information without checking the joint consistency
of the resulting set of beliefs is called “expansion”:

Definition 4.1 (Expansion). For a default theory T = (W, D) and a formula
F, T+

F = (W+
F , D) is the expansion of the default theory T, where W+

F is the
base expansion of the set W such that W+

F = W ∪ {F}.

If the added information results in an inconsistent set W+
F , any definable

JTCS extension will be inconsistent. Notice that default theory expansion
can already cause non-monotonic behaviour on the level of default theory
extensions. For example, if the added formula is a prerequisite for a
default rule with an undercutter for some other default consequent, the
new information can result in removing elements from JTCS extensions
of T.

An agent can approach accepting incoming information more cau-
tiously. If the agent accepts new information as a plausible premise, but
hesitates to consider it a fact, the change is made to the set of default
rules:
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Definition 4.2 (Conservative Expansion). For a default theory T = (W, D)
and a formula F, T×F = (W, D ∪ {δF}) is the conservative expansion of the
default theory T with F, where δF = >::F

F .

Notice that the operation × opens up a possibility that the formula F is
included in all extensions, but it can also be excluded from all extensions.
For example, if ¬F is contained in ThJTCS(W), then δF is not applicable.
The introduced operators have the following properties:

Proposition 4.3. For a default theory T = (W, D) with unwarranted default
rules and a JTCS formula F, it holds that

a) If F is not a contradiction, then F is contained in each JTCS extension of
the theory T+

F .

b) If F is not a contradiction and if ¬F is not contained in any JTCS extension
of T, then F is contained in each JTCS extension of the theory T×F .

c) If W is not inconsistent and if ¬F is contained in ThJTCS(W), then F is
not contained in any JTCS extension of the theory T×F .

Proving Proposition 4.3 is straightforward.

4.4.2 Default theory contraction

How does an agent discard some information that is no longer considered
to be reliable? We will again differentiate between two strategies of
discarding information or, more technically, of contracting default theories:
one aims to remove information when an agent is confident that the
information is unreliable and another aims to relegate the status of
information reliability to a lower level. In our default theories, this will
mean that the first operation removes a formula from all extensions while
the second operation leaves the possibility that extensions still contain
the formula. One problem we face in removing a formula from all theory
extensions is that the base contraction of a set of premises W is necessary,
but not sufficient to secure that the formula will not be reintroduced by
the application of a default rule. To illustrate the need for such operation,
consider that changes in information may cause that a certain source of
justification t is denied its reliability as a reason for some formula F.

To deal with this problem, we propose to put restrictions on the
application of default rules. The aim of restrictions on application is
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to prevent an unwanted JTCS formula to become a part of any default
theory extension. For a JTCS formula R, the application of a default
rule δ = F::G

G to a JTCS-closed set of formulas Γ is restricted by R if δ is
applicable to Γ iff:

• F ∈ Γ and

• ¬G /∈ RΓ,

where RΓ = ThJTCS(Γ ∪ {R}). We say that δ is restrictedly-applicable to Γ
according to the restriction R. The role of the restriction R is to prevent
the formula ¬R to extend the JTCS theory Γ by blocking the applicability
of each default whose consequent formula would introduce ¬R to the
extended theory, if the consequent is added to Γ.

Using the restricted variant of default applicability, we will define
restricted variants of default theories and their processes. Default theories
in which we restrict the application of defaults by a JTCS formula R can
be defined for those sets of premises W that do not entail ¬R:

Definition 4.4 (Application-Restricted Default Theory). For a JTCS for-
mula R, an application-restricted default theory [R]T is defined as a pair (W, D),
where the set W is a finite set of JTCS formulas such that ¬R /∈ ThJTCS(W) and
D is a countable set of default rules such that the application of each δ ∈ D is
restricted by R.

Application-restricted default theories differ from default theories defined
in Section 2.4 only in the view of restrictions that might eliminate some
possible ways to build default processes that would otherwise be possible
without restrictions.

To define processes for an application-restricted theory [R]T, recall
that the In-set from Definition 2.9 is a closed set of JTCS formulas that
represents current evidence base.

Definition 4.5 (Application-Restricted Process). A sequence of default rules
Π is a process of an application-restricted default theory [R]T = (W, D) iff every
k such that δk ∈ Π is restrictedly-applicable to the set In(Π[k]) according to
the restriction R, where Π[k] = (δ0, . . . δk−1).

When the application of δ is restricted restricted by R, we need to check
whether the negation of req(δ) is contained in the following set of JTCS
formulas:
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Definition 4.6. RIn(Π) = ThJTCS(In(Π) ∪ {R}).

For a theory [R]T, an application-restricted process Π is said to be closed
iff every δ ∈ D that is restrictedly-applicable to In(Π) according to the
restriction R is already in Π.

Notice that the definitions of warrant, undercut, acceptability, as
well as potential, JTCS-admissible, JTCS-preferred, JTCS-stable, JTCS-
complete andJTCS-grounded extensions from Section 2.5 all depend on
the definitions of In-sets and default processes. Therefore, the definitions
of these concepts have equivalent formulations for application-restricted
default theory pairs (W, D). In fact, application-restricted default theories
are a generalization of default theories from Definition 2.4. Each default
theory T = (W, D) can be defined as an application-restricted default
theory [>]T = (W, D), where the restriction formula is a tautology. For
the theory [>]T, the sets In(Π) and >In(Π) coincide.

For any application-restricted default theory, the expansion operation
([F]T)

+
G and the conservative expansion operation ([F]T)

×
G are both defined

analogously to the corresponding default theory operations. Notice the
following exception: expanding an application restricted theory [F]T
with the formula ¬F, that is, ([F]T)

+
¬F. According to Definition 4.4, an

application-restricted theory can only be defined for a set of premises W
that does not entail the negation of a restriction formula, so the theory
([F]T)

+
¬F is not defined. In general, the following holds in such cases of

expansion:

• For an application-restricted theory [F]T and a JTCS formula F,
if ¬F ∈ ThJTCS(W ∪ {G}), then the expansion of an application-
constrained theory [F]T with a formula G is defined as the the
default theory T+

G .

Therefore, the expansion of [F]T with ¬F is the default theory with
unwarranted rules T+

¬F. After expanding [F]T with ¬F, W+
¬F contains the

formula ¬F, which means that the resulting theory cannot be application-
restricted by the formula F.

We can now define a contraction operation that aims at removing a
formula at the level of a whole default theory. The operation corresponds
to the action of removing information when an agent is confident that the
information is not reliable. To achieve this in a default theory, a formula
has to be removed from the set of premises by a base contraction and
its reintroduction should be prevented. In the definition of contraction,
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remainder sets will be used: for any set of JTCS formulas Γ and a formula
F, the remainder set Γ⊥F is defined as the set of maximal subsets of Γ
that do not entail F.

Definition 4.7 (Contraction). For a default theory T = (W, D) and a formula
F, the application-restricted theory [¬F]T

−
F = (W−F , D ∪ D−!F) is the contraction

of the default theory T by F, where

1. W−F is the (full) meet contraction of the set W such that W−F =
⋂
(W⊥F)

and

2. D−!F = {δG | δG = >::G
G for every G ∈W \ (⋂(W⊥F) ∪ {F})}.

Notice that an application-restricted default theory [¬F]T
−
F is definable

for any theory T since, due to condition 1, the formula F cannot be an
element of the set ThJTCS(W−F ).

The combination of the restriction ¬F and the set of default rules
D−!F provides a balanced solution for avoiding extremely cautious and
extremely incautious behavior. Since the set of formulas W⊥F usually
contains many elements, theory contraction operations need to include
a procedure of selecting the formulas that can be kept after contracting
by F, excluding F itself. It is difficult to define such procedures in a
principled and intuitively plausible way. In default theory contraction,
we do not need to force selection by a function. Instead, the choice of
formulas selected upon contraction depends on the type of extension that
is being computed. For example, a JTCS preferred extension corresponds
to the idea of maxichoice contraction, while JTCS extension corresponds
to the idea of full meet contraction (Hansson, 1999a, pp. 12-13).

Using again the two-leveled perspective on changing default theo-
ries, we can define a more conservative way of giving up a belief. In
conservative contraction, agents are reluctant to entirely give up on some
information, but the information is no longer considered to be a fact. To
relegate the status of a formula in such a way within a default theory, the
formula is removed from the set of premises W and then reintroduced
through application of a supernormal default rule.

Definition 4.8 (Conservative Contraction). For a default theory T = (W, D)
and a formula F, T÷F = (W−F , D ∪ D!F) is the conservative contraction of the
default theory T by F, where

1. W−F is the (full) meet contraction of the set W such that W−F =
⋂
(W⊥F)

and
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2. D!F = {δG | δG = >::G
G for every G ∈W \⋂(W⊥F)}.

Analogously to T÷F , we define the conservative contraction [¬F]T
÷
F that

realizes the same set of JTCS extensions as the theory [¬F]T
−
F .

Conservative contraction is an open-ended operation in the sense
that it does not preclude the possibility of reintroducing a formula F in
an extension through a default rule application. Furthermore, it leaves
open the possibility that F occurs in all extensions of the resulting default
theory.5 Antoniou (2002, p. 1149) takes a different approach in defining a
more conservative contraction operation for Reiter’s default theories. His
idea is to secure that there is at least one extension added that does not
contain the formula removed from the set of premises. In our view, it is
unnecessary to have such an operation. If some formula is not regarded to
be a fact, but it is still plausible that the formula is true, accepting it as the
only available information might be the only reasonable action. Instead
of “forcing” an extension without the formula, conservative contraction
enables the possibility of an extension without the formula. If there is no
support for the contrary statement whatsoever, an agent might still need
to hold on to the only available information. The following statement
follows from Definition 4.7:

Proposition 4.9. For a default theory T = (W, D) with unwarranted default
rules and a non-tautological JTCS formula F, it holds that F is not contained in
any JTCS extension of the theory [¬F]T

−
F .

Proof. From the condition 1 of the definition, we know that the full meet
contraction of W removes the formula F from the set of premises of
[¬F]T

−
F . Moreover, from condition 2 and the fact that the application of

each default rule from D−!F in [¬F]T
−
F is restricted by ¬F, we know that F

cannot be reintroduced into an evidence base In(Π) by applying defaults
from a process Π for any process Π of [¬F]T

−
F . Therefore, F cannot be

contained in any JTCS extension of [¬F]T
−
F .

4.4.3 Default theory revision

The task of adding new information to the set of premises by the expan-
sion operation (Definition 4.1) can lead to an inconsistent set of premises.

5Analogously, conservative expansion might not guarantee that there will be any
extension containing a formula F, after a default theory has been conservatively expanded
with F.
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A more realistic dynamic operator for adding information needs to spec-
ify a process by which an agent adds information inconsistent with W
without being committed to an inconsistent set of premises. One possible
way is to only add information via the conservative expansion operation
(Definition 4.2), but this comes with an obvious flaw: an agent is not
able to confidently replace an old, unreliable piece of information with
a new, reliable one. This is one of the motivations to define a default
theory revision operator that not only adds a formula, but also removes
inconsistent formulas at one of the two levels of the default theory.

A revision operation can be defined from a combination of the ex-
pansion and contraction operations.6 In our approach, we will follow the
traditional arrangement of the operations as proposed by Hansson (1999a,
p. 203), namely, removing formulas will precede adding a formula. Those
revision operations in which contraction is followed by expansion are
called “internal revision” operators. The choice of a revision operation
used for a particular revision example depends on both whether old
information is to be removed confidently or conservatively and whether
new information is to be added confidently or conservatively. We define
the following four internal revision operators for each combination of
the operations.

Definition 4.10 (Revision Operators). For a default theory T = (W, D) and
a formula F, (internal) revision operators for T are defined as follows:

1. T∓F = ([F]T
−
¬F)

+
F

2. TAF = ([F]T
−
¬F)
×
F

3. TuF = (T÷¬F)
+
F

4. T>
F = (T÷¬F)

×
F

The variety of possible revision operators raises the question about what
kinds of revision strategies they represent.

We can show that the four operations amount to two strategies. Again,
as in the cases of expansion and contraction, one strategy is meant to

6If we were to exhaust all possible combinations, eight revision operators could be
defined. Note that the revision operation symbols used here reflect the composition of
the introduced revision operations that are defined in terms of contraction and expansion
variants. The symbols are not intended to be in continuity with the standard usage of
revision operation symbols.
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revise confidently and the other strategy to revise more conservatively.
The key to show this is to prove that the operations ∓, A and u give
equivalent extensions in revising a default theory with some formula F.
This is the result stated in the a) clause of Proposition 4.11:

Proposition 4.11. For a default theory T = (W, D) with unwarranted default
rules and a JTCS formula F, it holds that

a) If F is not a contradiction, then for all JTCS extensions Γ of the theories
T∓F , TAF and TuF , it holds that F ∈ Γ.

b) If F is not a contradiction, then there is a JTCS extension Γ of the theory
T>

F such that F ∈ Γ.

c) If F is not a contradiction, then there is a JTCS extension Γ of the theory
T>

F such that ¬F /∈ Γ.

Proof. To prove that a) holds, consider the three revision operators ∓,
A and u and the resulting theories T∓F , TAF and TuF . For the case of the
default theory T∓F , it follows from Proposition 4.9 that ¬F is not contained
in any JTCS extension of [F]T

−
¬F. By Proposition 4.3 a), F is contained in

each JTCS extension of ([F]T
−
¬F)

+
F .

For the case of the default theory TAF , it follows from Proposition 4.9
that ¬F is not contained in any JTCS extension of [F]T

−
¬F. Moreover, the

set FIn(Π) contains the formula F and it is not JTCS inconsistent, which
means that the default rule >::F

F is restrictedly-applicable to any JTCS
extension of the conservative expansion ([F]T

−
¬F)
×
F of the theory [F]T

−
¬F.

Therefore, F is contained in each JTCS extension of ([F]T
−
¬F)
×
F .

For the case of the default theory TuF , consider that the base contrac-
tion of W ensures that ¬F cannot be contained in the set of premises W−¬F
of the default theory T÷¬F, but ¬F can still be reintroduced by applying
the defaults from D!¬F. However, after expanding the theory T÷¬F by F,
the inclusion of the formula ¬F into any JTCS extension of the theory
TuF is blocked and, by Proposition 4.3 a), F is in contained each JTCS

extension of TuF .
To prove that b) holds, consider that the base contraction of W ensures

that ¬F cannot be contained in the set of premises W−¬F for the conser-
vative contraction T÷¬F. This means that, for the conservative expansion
(T÷¬F)

×
F , it holds that the default rule >::F

F is applicable to ThJTCS(W) and,
therefore, contained in at least one JTCS extension of T>

F .
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To prove c), consider that after the base contraction of W by ¬F, JTCS
extensions of T÷¬F are JTCS consistent. Since we also know that after the
conservative expansion (T÷¬F)

×
F , b) holds, then c) holds.

To show the equivalence of the operators ∓, A and u, we first say
that for any σ-extension, where

σ ∈ {JTCS-admissible, JTCS-complete, JTCS-grounded, JTCS-preferred, JTCS-stable},

σ(T) is the set of all σ-extensions for a theory T. Then we prove that
for any default theory T, the default theories T∓F , TAF and TuF realize the
same set of extensions under any JTCS extension-based semantics for
default theories. The following result is obtainable from Proposition 4.11
a) together with the fact that none of the three operators ∓, A and u
change the status of formulas that do not take part in F-implying sets:

Theorem 4.12. For any default theory T = (W, D), a JTCS formula F and
the (internal) revision operators ∓, A and u, it holds that σ(T∓F ) = σ(TAF ) =

σ(TuF ).

Intuitively, the three operations represent a type of revision in which an
agent confidently includes new and possibly inconsistent information
into all JTCS extensions. Another option specified by the operator > is
to accept the new information in some extensions while maintaining the
old information in other extensions. The revision operators comply to the
two-leveled view of default semantics: the first three revision operators
of Definition 4.10 fix the status of a revision at the level of a default
theory as a whole, while the last revision operator targets at modifying
only some extensions. Any of the three operations T∓F , TAF and TuF will
be referred to as the Revision of T with F and the operation T>

F will be
referred to as the Conservative Revision of T with F.

4.4.4 The notion of undermining

Finally, we are now able to say in what way the dynamic operations
connect to the notion of undermining defeat. It was mentioned in the
Introduction that by undermining we understand the attack whereby
argument premises are being questioned. This intuition can now be
cashed out by using those dynamic operators for default theories that
involve contracting a default theory.
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Definition 4.13 (Undermining). For a default theory T = (W, D) and a
JTCS formula F such that F ∈ W and F = pre(δ) for some δ ∈ D, F is
undermined iff W is contracted by F by applying any of the following operations
to T:

1. [¬F]T
−
F (Contraction)

2. T÷F (Conservative Contraction)

3. T∓G , TAG or TuG for JTCS inconsistent formulas F and G (Revision)

4. T>
G for JTCS inconsistent formulas F and G (Conservative Revision).

Notice that there is no requirement on the structure of F. However, each
meaningful undermining targets justification assertions because W cannot
be successfully contracted by a tautology and justification assertions are
the only other type of formula occurring as a default prerequisite. Not
every attack on the premises results in confidently revising the set W. It
is possible that undermining leaves an agent undecided as to whether
newly acquired information or older information should be prioritized.

Starting from the theory T1 defined in Section 4.3, we can give a for-
malized undermining example to show the difference between inferential
and non-inferential ways of information acquisition. Recall that the agent
started to reason from the information that Harry was born in Bermuda.
This piece of information is represented in the set of premises W with
the formula r : B, where r can now be taken to reflect the source of in-
formation as, e.g., data from census records. However, if the information
based on military records says that Harry was born outside Bermuda,
and having no means to resolve this conflict of information, the theory T1
needs to be conservatively revised. The theory T>

1v:¬B
is the revision of T1

with the formula v : ¬B, where v reflects the new source of information
for the claim that Harry was not born in Bermuda.

To see this revision in more detail, recall that the theory T1 = (W, D)
consists of the set of premises W = {r : B, t : P} and the set of defaults
D = {δ1, δ2} with

δ1 =
r : B :: (s · r) : S

(s · r) : S
and δ2 =

t : P :: (u · t) : ¬[s : (B→ S)]
(u · t) : ¬[s : (B→ S)]

.

The first dynamic operation in revising with v : ¬B is contracting the
theory by ¬v : ¬B. The resulting theory T÷1¬v:¬B

= (W−¬v:¬B, D ∪ D!¬v:¬B)
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consists of the set of premises W−¬v:¬B = {t : P} and the set of defaults D
extended with the default δr:B = >::r:B

r:B .
Finally, the agent conservatively expands the theory T÷1¬v:¬B

with the
information that Harry was not born in Bermuda. The new default
theory is defined as T>

1v:¬B
= (T÷1¬v:¬B

)×v:¬B. The change of the theory after
conservative expansion with v : ¬B amounts to adding the new default
rule δv:¬B = >::v:¬B

v:¬B , which means that the new set of defaults is D ∪
D!¬v:¬B ∪ {δv:¬B}. The revised theory T>

1v:¬B
changes the default processes

in which the agent reasons about Harry’s nationality and, eventually,
changes the structure of acceptable reasons by changing the way in which
JTCS extensions are computed.

4.5 Conclusions

As mentioned in the introduction to this chapter, our approach to struc-
tured argumentation dynamics builds on similar ideas as Antoniou’s
(2002) approach to the dynamics of standard default theories. Anto-
niou’s approach significantly differs from ours in the way he treats those
changes that add or remove a formula at the level of some, but not neces-
sarily all extensions. Unlike our conservative expansion and conservative
contraction, none of Antoniou’s operations leaves the inclusion status
of a formula undecided. For instance, to secure that a formula is not
contained in at least one extension, Antoniou (2002, p. 1149) adds a new
extension where introducing the formula is blocked by adding either a
new atom or its negation to any default, dependent on whether they are
allowed to be in a same extension or not.

In this chapter, we defined local change operations that do not, in
general, give a recipe on how to further change their output default
theories. But to represent actual dynamic contexts of argumentation, we
need to make our operators global, rather than local, and enable iterated
revision. Note that, for example, the second output theory ([F]T

−
¬F)
×
F of

Definition 4.10 is an application-restricted default theory. If we want to
allow for iterated contraction and generalize the contraction operation
to application-restricted theories such as ([F]T

−
¬F)
×
F , we need to deal with

multiple restrictions to the output theory, and possibly mutually incon-
sistent restrictions. This could be done if we allow that an application-
restricted theory [F]T can be further restricted by a formula G in such a
way that, for any default δ, we need to check if req(δ) is consistent with
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both FIn(Π) and GIn(Π), thus defining the application-restricted default
theory [G,F]T.

Some approaches to default reasoning such as (van Linder et al.,
1997) and (Meyer and van der Hoek, 1990) represent the idea of defaults
in dynamic epistemic logic. The main focus of van Linder et al. (1997)
is to embed supernormal defaults in a multi-agent modal logic with
knowledge, belief and update modalities. The authors show that Reiter’s
extensions can be represented as a result of consecutive jump actions
to default conclusions, but they do not focus on how such extensions
are revised due to information changes. Meyer and van der Hoek (1990)
introduce a preference modality to distinguish between known and
(provisionally) preferred information. A non-monotonic belief revision
component consists in changing preferences as a result of obtaining
knowledge.

Baltag et al. (2012, 2014) and Renne (2012) define extensions of justifi-
cation logic in which agents may acquire new information that defeats
the reasons they accepted. The logics combine belief revision and dy-
namic epistemic logic techniques to model a kind of defeat that seems
to correspond to undermining. However, each of the logics assumes
prioritizing new information and none of these logics is able to model
undercut and rebuttal. Even so, approaches based on dynamic epistemic
logic are attractive because they open up a possibility of developing a
multi-agent justification logic with defeaters.

We indicated in the introduction to this chapter that the work in the
area of the dynamics of argumentation frameworks without argument
structures is already well-developed. Among the approaches, it is worth
mentioning those that follow the belief revision methods applied to
Dung’s argumentation frameworks, such as that of Booth et al. (2013)
and Diller et al. (2015). Booth et al. (2013) start from a labelling approach
to Dung’s argumentation frameworks and constraints on a framework’s
output. Their focus is on finding the best way to recover a rational output
given a framework and a constraint on its output. For this, they use
ordering of conflict-free labellings in a way that the most rational conflict-
free labelling is chosen when none of complete labellings respects the
constraint. In the work by Diller et al. (2015), we find two kinds of revision
operators. One of them revises an abstract argumentation framework
by taking a propositional formula as a means to represent the new
information, while the other operation revises an input framework by
information in the form of another framework. Both operations give a
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single output framework respecting a particular type of rankings on
extensions.

Finally, our work contributes to the study of non-prioritized belief
revision operations, that is, such operations for which the new informa-
tion has no special priority due to its novelty (Hansson, 1997, 1999b).
The way in which our operators are defined meaningfully combines re-
sources from both belief revision and default logic. The relation between
belief revision and non-monotonic reasoning has long been a matter of
discussion (Gärdenfors, 1990, Makinson and Gärdenfors, 1991) among
AI researchers. Although it was not our aim to discuss the relation be-
tween modeling reasoning with incomplete information in default theories
and modeling reasoning with changing information in belief revision, we
showed that our justification logic creates a useful junction for the two
approaches.

As a result of connecting the two reasoning paradigms, the logic
presented here, we can model both plausible and default reasoning.
According to Prakken (2017, p. 2198), argumentation models of plausible
reasoning locate all fallibility of an argument in its premises, while
argumentation models of default reasoning locate all fallibility in its
defeasible inferences. To the best of our knowledge, the system presented
here is the first logic to combine the two types of argumentation models
by capturing all the standard notions of defeat in AI: rebuttal, undercut
and undermining.
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Chapter 5

A default logic framework for
normative rules in human
reasoning

5.1 Introduction

In this chapter, we deal with commonsense reasoners in the context
of the philosophical debate on the normative role of logic in human
reasoning. We argue for weak psychologism — the claim that logical
rules are normative for human reasoning. We particularly stress the
importance of making right choices when deciding on a logical format
for norms in human reasoning. The problem we find in the traditional
criticism of weak psychologism is that it starts from the idea that there are
exceptionless normative principles that require human agents to follow
the rules of classical logic — the so called “bridge principles” between
logic and human reasoning. We want to show that the facts of ordinary
reasoning, such as uncertainty of information and filtering out irrelevant
information, vouch for relaxing the assumptions on normative rules in
ordinary reasoning.

To this end, we offer a new, default logic perspective on the normativ-
ity of logic. First we discuss Harman’s (1986) proposed counterexamples
to the normativity of classical logic. Harman argues that classical logic
has neither a normative role nor an explanatory role in human reasoning
— a position known as “anti-psychologism”. Harman’s argument hinges
on one crucial claim, that there is no adequate bridge principle between

117
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logic and human reasoning. This is right, but, contrary to what Harman
claims, we argue that this does not suffice to refute weak psychologism.
Instead, we argue that Harmanian bridge principles presuppose two
requirements that a normative principle cannot meet, namely the non-
defeasibility requirement and the relevance requirement. We show that
both requirements are unnecessary. Moreover, we define a new variant
of default logic for ordinary reasoning as an alternative framework for
normative rules. Using this default logic, we model the kind of reasoning
that Harmanian bridge principles describe. Finally, we present a picture
of how logic is normative for human reasoning.

5.2 Motivation

Is logic normative for human reasoning? Gottlob Frege set the stage for
the twentieth-century debate on the normativity of logic in his Grundge-
setze der Arithmetik (1893). He stated (1893/1964, p. 12) that the laws of
logic “prescribe universally the way in which one ought to think if one
is to think at all”. Frege’s position on the relation between formal logic
and human reasoning is a common one and here it will be called “weak
psychologism”.1 According to weak psychologism, logic describes what
follows from what and thereby provides normative criteria for human
reasoning. The other notable and more extreme historical position on the
role of logic is the view that logic provides an explanation of the psy-
chological facts of reasoning. This position will be referred to as “strong
psychologism”. This explanatory role of logic was famously rejected by
Frege (1893/1964, p. 12), who claims that laws of logic “do not make
explicit the nature of human thinking and change as it changes”. Al-
though this claim was widely considered as a rejection of psychologism
in general, Frege did maintain that formal logic is normative for human
reasoning.

The difference between weak and strong psychologism can be pre-
sented by way of an example taken from Levesque (1986). Let it be given
that:

Jack is looking at Ann but Ann is looking at George. Jack is married
but George is not.

1We will follow Haack’s (1978, p. 238) classification of types of psychologism. Al-
though the terms “weak” and “strong” suggest otherwise, weak and strong psychologism
differ in kind rather than in degree.
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The question is whether the following claim is true or not according to
the available information:

A married person is looking at an unmarried one.

Toplak and Stanovich (2002) argue that the logical structure of the ex-
ample, that is, the disjunctive syllogism, hardly affects the way in which
persons form their beliefs when presented with the example above.2 Their
survey confirms Frege’s thesis about strong psychologism — the logical
form of disjunctive syllogism does not explain the actual reasoning that
underlies belief formation in human subjects. In contrast, the disjunctive
syllogism prescribes how to correctly form our beliefs after being asked to
decide on the question above.

In evaluating whether subjects formed their beliefs correctly, we
have to find out whether the actual reasoning that underlies their belief
formation conforms to what the formal logical structure prescribes. This
is a simple way of saying that the disjunctive syllogism is normative
for the reasoning of the participants. The example points to the role
that classical logic has in adding, retaining or giving up some of our
beliefs: logic serves as a “measuring rod” for correct reasoning, as weak
psychologism suggests.

So far, we might be convinced that weak psychologism is an uncontro-
versial position. However, this view is widely contested in the philosophy
of logic in what is known as the “bridge principle” debate. In this chapter,
our aims are: (1) to present some key objections to the normativity of logic
initiated by Gilbert Harman in the 1980s; (2) to argue that the format of
Harmanian bridge principles comes with unnecessary requirements that
shape our understanding of the role of logic in ordinary reasoning; (3)
to define a new default logic as an alternative framework for normative
rules in reasoning; and finally, (4) to use this default logic to show that
Harman’s counterexamples to weak psychologism are not successful.

2According to (Toplak and Stanovich, 2002), only a small number of participants (16
out of 125 or 13% of them) gave a correct answer to the “disjunctive syllogism insight”
problem. The answers authors offered were a) Yes, b) No, and c) Cannot be determined.
The last answer was chosen by 107 participants or 86% of the total number, while the
correct answer is “Yes”. Notice that the claim is true if Ann is married and also if Ann is
not married.
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5.3 Outlining the “bridge principle” debate

In this section we present some of the most prominent counterarguments
to weak psychologism. We emphasize the role of the format of normative
rules in these counterarguments and motivate an alternative system for
normative rules in human reasoning.

5.3.1 Harman’s criticism of the relevance of logic for reasoning

Starting in the 1980s, Gilbert Harman has argued that logic is not “spe-
cially relevant” (1986, p. 20) for human reasoning. In a series of papers,
he holds that logical theory is neither a normative nor a descriptive
theory of human reasoning — a position conveniently labelled as “anti-
psychologism”.3 Harman’s argument hinges on the claim that there is no
exceptionless principle that captures the relevant role of logic for reason-
ing. His misgivings triggered a debate on “bridge principles”, principles
that connect formal logic with human reasoning. John MacFarlane (2004)
first used the term “bridge principle” as a metaphor for the disputed con-
nection between formal logic and human reasoning.4 Ever since Harman
raised the challenge, the possibility and the exact formulation of bridge
principles have been recognized as a genuine problem in the philosophy
of logic.5

What is a Harmanian bridge principle supposed to look like? Bridge
principles bring together facts about logical entailment and normative
aspects of ordinary reasoning. MacFarlane (2004, p. 6) proposes a general
form for a bridge principle:

If P1 . . . Pn � Q, then (normative claim about believing P1 . . . Pn and Q).

Harman’s anti-psychologism results from a failure to find a bridge prin-
ciple that admits of no exceptions. In fact, the cornerstone of the bridge

3In his more recent work, Harman (2002, p. 171) restates his anti-psychologist position:
“Principles of implication are not normative (outside of deontic logic) and do not have a
psychological subject matter (outside of the logic of belief)”. Likewise in (Harman, 2009,
p. 333) where he claims that deductive logic “is not a particular psychological subject
and is not a particularly normative subject”.

4In 1966, Hempel (1966) discussed bridge principles from a philosophy of science
standpoint where a bridge principle connects theoretical concepts with empirical phe-
nomena. A similar term “bridge-law” appears in (Nagel, 1961).

5Recent contributions to the debate include (Dutilh Novaes, 2015), (Fitelson, 2008),
(Field, 2009), (Steinberger, 2016), (Steinberger, 2019a) and (Streumer, 2007). Not all of
them refer to the resulting formulations by “bridge principle”.
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principle debate is Harman’s conclusion (1986, p. 11) that every principle
he considers only holds other things being equal. Elsewhere (1986, p. 5),
Harman suggests that even if there was a principle of reasoning corre-
sponding to a logical principle, it would have to be a “different principle”
because “the logical principle holds without exception, whereas there
would be exceptions to the corresponding principle of belief revision”.6

As an obvious candidate principle, modus ponens states that if P and
P→ Q are true, then necessarily Q is also true. We might try to formu-
late a normatively exceptionless bridge principle that exemplifies modus
ponens. Could the following principle bridge logic and human reasoning
in the desired way?

Given that P, P → Q � Q, if you believe that P and P → Q you ought
to believe Q.

Harman and most of the authors involved in the debate on his “skeptical
challenge”7 answer in the negative.

In his Change in View (1986), Harman supports his anti-psychologist
claims by offering counterexamples to bridge-principle candidates. He
(1986, p. Ch. 2) reasons by cases to show that bridge principles are
impossible while at the same time maintaining that such principles are
necessary to relate logic to ordinary reasoning. First, Harman (1986,
p. 11) presents two bridge principle candidates, namely the “Logical
Implication Principle” (LIM) and the “Logical Inconsistency Principle”
(LIN):

The fact that one’s view logically implies X can be a reason to accept X.
(LIM)

Logical inconsistency is to be avoided. (LIN)

Harman argues that both principles are defeasible and that they therefore
do not meet the requirement that proper bridge principles must meet. He
offers the following counterexample to the LIM (Harman, 1986, pp. 11-
12):

Remember Mary who came to believe three inconsistent
things: If she looks in the closet she will see a box of Cheerios,

6Harman is using the term “belief revision” as interchangeable with the terms “ordi-
nary reasoning”, “human reasoning” and “change in view”. He is not referring here to
the logic of belief revision (Alchourrón et al., 1985).

7The phrase is taken from Steinberger (2019a).
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she is looking in the closet, but she does not see a box of
Cheerios. Mary should not at this point infer that she does
see a box of Cheerios from her first two beliefs.

It shows that although Mary’s set of beliefs entails that “she will see a box
of Cheerios”, she is bound to revise her initial set of beliefs by giving up
her belief about the entailment, rather than adding the entailed one. Thus,
logical principles hold without exceptions, but they do not have their
exceptionless counterparts in principles of reasoning. Harman concludes
that logical principles are not about the regulation of beliefs and that
there are no principles of ordinary belief revision that correspond to
logical principles like modus ponens (Harman, 1984, p. 107; Harman, 1986,
p. 5).

To do justice to logical entailment, Harman (1986, p. 12) also considers
a modified version of LIM, the “Logical Closure Principle” (LCP). Unlike
LIM, LCP prescribes that one’s beliefs should be closed under logical
entailment:

If there is a proposition logically implied by one’s set of beliefs which one
does not already believe, in that case one should either add the implied
proposition to one’s beliefs or give up one of the implying beliefs. (LCP)

According to Harman, LCP is not the required principle either. Since
our current set of beliefs entails an infinite set of other propositions, it
is unreasonable and “worse than pointless” to add entailed trivialities
(Harman, 1986, p. 12). Thus in reasoning we are faced with a demand to
avoid cluttering our mind with trivialities. It seems that LCP contradicts
this practical demand on how we should go about revising our beliefs.

On what grounds does Harman reject LIN, his second natural bridge
principle candidate? Here, Harman invokes the possibility of having
to deal with conflicting information. Contrary to what LIN advises,
we might find ourselves in situations where we are required to retain
inconsistent beliefs. Harman (1986, p. 15) argues that “sometimes one
discovers one’s views are inconsistent and does not know how to revise
them in order to avoid inconsistency without great cost. In that case
the best response may be to keep the inconsistency and try to avoid
inferences that exploit it.” Harman’s argument seem to leave no place
for the normativity of classical logic or any other “explosive” logic while
discussing the possibility of holding inconsistent beliefs.8

8In addition, Harman (1986, p. Ch. 2) considers the “Liar paradox” and a version of
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The objections above are Harman’s stepping stones to anti-
psychologism, although they do not exhaust his arguments against the
normativity of logic. Besides defending an anti-psychologist position,
Harman’s skeptical challenge laid the groundwork for the further debate
over bridge principle candidates.9 Some authors claim that it is possible
to come up with a satisfying Harmanian bridge principle, while others
deny its possibility. However, most of them accept Harman’s criticism
of the role that logic has in reasoning. It is especially worth noting that
even the authors who argue that logic is somehow normative for human
reasoning accept the format of Harmanian bridge principles as well as
Harman’s key assumptions on what the requirements are that a correct
bridge principle needs to fulfill.10

MacFarlane (2004) was the first author to bring to attention the form
of Harmanian bridge principles. He proposed a systematic overview of
possibilities on how to interpret the normative requirement by way of
bridge principles. MacFarlane (2004, p. 7) takes into account the following
three key parameters to differentiate between bridge principle candidates:
type of the deontic operator (“ought to”, “may” and “have a reason to”
impose different normative constraints), polarity (normative requirement
to believe or not to disbelieve), and the scope of the deontic operator
(embedded in the consequent, embedded in both antecedent and conse-
quent and ranging over the entire conditional).11 We argue in 5.5 that
“ought to” is the only deontic operator relevant to weak psychologism.
However, it is not possible to come up with a bridge principle based on it.
In what follows, we first show that the problem of bridge principles rests
upon two unnecessary requirements on normative principles contained
in (Harman, 1984) and (Harman, 1986).

the “Preface paradox” (discussed in Chapter 6 of this thesis) as objections to LIN. In
Subsection 5.5.3, we discuss whether paradoxes and “rational inconsistencies” provide
arguments against LIN.

9According to Steinberger (2017), Harman’s challenge has been particularly influential
and Steinberger dedicates an entire section to it in his Stanford Encyclopedia of Philosophy
entry on the normativity of logic.

10Among them are, e.g., (Steinberger, 2019a), (Dutilh Novaes, 2015), (Field, 2009) and
(MacFarlane, 2004).

11Dutilh Novaes (2015) includes a dialogical, multi-agent perspective on bridge prin-
ciples and Field (2009) proposes a probabilistic type of constraint for bridge principles
relying on the degree of beliefs. Steinberger (2019a) offers a bridge principle that features
“have a reason to” operator, which we discuss in Section 5.5.
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5.3.2 Defeasibility of normative rules and the “frame problem”
of Harmanian bridge principles

Harman’s skeptical challenge ultimately rests on two unnecessary re-
quirements, as we will argue henceforth. Harman’s first requirement is that
if logical rules are normative for human reasoning, they are to impose
non-defeasible norms only. Because logical rules are non-defeasible, Har-
man assumes that bridge principles are to be non-defeasible as well and
rejects his bridge principle candidates by showing that they are defeasible.
He (1984, p. 108) argues that while logical principles hold universally,
without exceptions:

the corresponding principles of belief revision would be at
best prima facie principles, which do not always hold. It is not
always true that, if one believes p and believes if p then q, one
may infer q. The proposition q may be absurd or otherwise
unacceptable in the light of one’s other beliefs, so that one
should give up either one’s belief in p or one’s belief in if p
then q rather than believe q.

In his arguments against principles LIN and LIM, Harman (1986, p. 11)
explicitly mentions their defeasibility: “Neither principle is exceptionless
as it stands. Each holds, as it were, other things being equal. Each is
defeasible”. Later on, he rejects (1986, p. 16) both of them because “we
take logic to require precise principles with precise boundaries, not
principles that hold merely normally or other things being equal”.

We disagree with the non-defeasibility requirement. In ordinary rea-
soning, humans acquire beliefs in various ways that do not guarantee
their truth. This, in turn, causes the kinds of situations where an entailed
proposition “may be absurd or otherwise unacceptable in the light of
one’s other beliefs”. Typically, one could face a normative conflict by
following modus ponens in reasoning from a set of inconsistent beliefs. But
the fact that one has to reason from defeasible and, sometimes, inconsis-
tent information does not bear on the question of whether modus ponens
is normative for human reasoning or not.12 The best we can hope for

12In Chapter 4, we discuss two ways of defeasibility. First, information that is repre-
sented by premises is plausible, but it can be defeated by new information. Secondly,
default inferences can be defeated in the course of reasoning. In Section 5.4, both types
of defeasibility play role in shaping a system in which we represent Harman’s coun-
terexamples. By assuming that premises are defeasible, nothing has been said about
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in this kind of normative conflict is to either assign a higher priority to
one of the norms or, when resolving the conflict is not possible, continue
reasoning. In the first scenario, a lower-priority norm gets defeated in
the course of reasoning and the undefeated norm results in an obliga-
tion for a reasoning task at hand. As for the second scenario, we are
still normatively bounded by logical rules, despite being in a normative
conflict.13

Despite its importance, Harman does not offer an argument that sup-
ports the non-defeasibility requirement on normative principles. However,
normative rules typically are defeasible. Consider the following example
of conflicting norms in ethics taken from Horty (2003). You ought to meet
your friend, given that you have promised to do so. You also ought to
save a drowning child, given the obligation to save lives. We can imagine
the circumstances where the two norms apply, but it is impossible to
fulfill both of them. An intuitive response in such a case is to conclude
that you only need to perform the second action. Such examples show
that normativity and defeasibility do not exclude each other. Following
Harman, we take logical rules to be defeasible norms in reasoning, but
we do not accept that defeasibility refutes their normative status. What
Harman’s arguments unsurprisingly show is that given a set of norms
triggered for some human reasoning task, it is possible that some of them
could get defeated.

Harman’s second requirement is that if logical rules are prescriptive for
human reasoning, we must be able to specify a priori which entailments
are normative given a set of initial beliefs. The “relevance requirement”,
as we will call it, is only made implicitly by Harman and his followers
in their suggestions of “ought-based” and prescriptive bridge principles.
Recall that LCP suggested that “one’s beliefs should be closed under logi-
cal implication” (Harman, 1986, p. 12). Although obviously mistaken, the
principle comes closest to the paradigmatic case of normativity we dis-
cussed in the “Married-unmarried” puzzle: it prescribes how to form our
beliefs in ordinary reasoning. What is the mistake behind the normative

the normativity question. With that assumption, however, we are able to circumvent
the quandary of the so called “(non)attitudinal” Harmanian bridge principles and what
Steinberger (2017) calls the “bootstrapping objection”.

13Authors from different fields acknowledge that normative rules are often defeasible
rules. For a deontic logic account of defeasible rules see (Horty, 1994), (Horty, 2003) and
(Horty, 2012); for a study of exceptions to rules in ethics see (Miller, 1956); for AI and
law literature see (Boonin, 1966), (Prakken and Sartor, 2004) and (Verheij, 1996).
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demand imposed by LCP?
The answer is that LCP fails, not because logic is not normative for

human reasoning, but because it is impossible to a priori separate the
entailed propositions into what is normatively required and what is best
considered a triviality. This can be shown on MacFarlane’s format of
prescriptive bridge principles. Consider this simplified version of LCP:

If P1 . . . Pn � Q, then if you believe that P1 . . . Pn you ought to believe Q.

The propositions P1 . . . Pn and Q may be any arbitrary propositions sat-
isfying the entailment relation P1 . . . Pn � Q and Q is a placeholder for
infinitely many propositions entailed by the propositions P1 . . . Pn that
you believe. But you reason about a specific proposition Q and it is im-
possible to know which instance is relevant for your reasoning task by
only looking into the entailment relation and your initial beliefs, as the
principle recommends. Given surrounding context for a reasoning task,
e.g., an appropriate set of background beliefs, any belief is potentially
relevant to any other. This is the property of cognitive systems that Fodor
(1983, p. 105) calls “isotropy”. The normative commitments that LCP
recommends disregard an infinite number of things that a reasoning task
might potentially be about. Therefore, by imposing the bridge principle
format, Harman unjustly assumes that on the basis of entailment alone,
and given a set of initially believed propositions, a principle should
answer which information counts as relevant.

It is impossible to live up to this demand. This is one of the lessons
learned from the “frame problem” of artificial intelligence.14 In particular,
bridge principles are undermined by the “relevance problem”. According
to it, since any piece of information is potentially relevant to any other
piece of information, it is impossible to determine a priori what infor-
mation bears on an actual reasoning task. Therefore, we can easily side

14See (McCarthy and Hayes, 1969). The original frame problem is the problem of
describing the effects of an action without having to attend to an infinite number of the
non-effects. The upshot of the problem is that for a monotonic first-order representation of
actions, there are no obviously trivial non-effects. Thus, logic-based artificial intelligence
had to find a way to mimic anthropomorphic intelligence of taking actions as affecting
only a limited number of properties while avoiding to consider an “explosion” of
propositions about what is not affected by the action at hand. See (Chow, 2013) for a
discussion on different implications of the original frame problem. Generalizations and
epistemic guises of the frame problem were first considered by Fodor (1983) and Dennett
(1984).
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with those authors who claim that a principle like LCP is by no means
the right bridge principle candidate. However, the failure of LCP is a
failure of solving the relevance problem. This has nothing to do with the
question of whether logical rules are normative for human reasoning.

Up to now, as far as we know, the frame problem has not been
recognized as the problem of the format of bridge principles.15 The fact
that the authors take the “Clutter avoidance” issue to be one of the major
objections to the normativity of prescriptive rules confirms this claim. As
Harman (1984, p. 108) puts it:

Many trivial things are implied by one’s view which it would
be worse than pointless to add to what one believes. For
example, if one believes P, one’s view trivially implies “either
P or Q,” “either P or P,” “P and either P or R,” and so on.
There is no point in cluttering one’s mind with all these
propositions.

While believing trivialities is unreasonable, it is wrong to think that we
are required to do so because logic is normative for human reasoning.
The cluttering issue results from a stronger claim than the claim of weak
psychologism, namely, that if logical rules are prescriptively normative,
then there would necessarily be a unique bridge principle that holds for
any possible reasoning task.

Harman’s anti-psychologism and the bridge principle debate are
premised on the requirements of non-defeasibility and relevance. In or-
der to give a fair chance to the weak psychologism thesis, we need to
separate the thesis itself from the ramifications of conceding the two
requirements. This is our task throughout the rest of the chapter. We
propose to deal with Harman’s objections from the perspective of a
formal system. The purpose of introducing such a system is threefold.
First, Harman’s counterexamples suffer from ambiguities that can be
disambiguated with the help of a formal system. Secondly, the system
enables us to differentiate between normative rules and resulting obli-
gations. This is important because not every triggered rule necessarily

15Pollock (1987, p. 505-506) briefly discusses the need to appeal to reasoning interests in
the context of Harmanian principles. The problem of considering only those implications
that are “in question” is recognized by Field (2009, p. 259) and the problem of “reasons
to consider” implications by Steinberger (2019a, p. 315), but they do not question the
format of bridge principles as normative rules.
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results in an obligation.16 Thirdly, the system enables us to directly put
our criticism of the two requirements above into effect. We want to assess
the weak psychologism thesis once we set aside the non-defeasibility
requirement and the relevance requirement.

Instead of the Harmanian framework, we offer a formal system that
enables us to take a case-by-case perspective on obligations that result
from those normative rules that apply to a particular case. The first
step is introducing Slow Default Logic (SDL) for ordinary reasoning to
reconstruct logical principles as defeasible normative rules. The logic
we develop is a generalization of standard default logic. After defining
the system, we use it to stake out the weak psychologism position amid
Harmanian bridge principle candidates.

5.4 Slow default logic for ordinary reasoning

Let us now focus on a new logical system that enables us to model the
kind of reasoning that Harmanian bridge principles aim to describe. The
system reflects our criticism of the two requirements of bridge principles.
First, we model logical norms in reasoning as being defeasible rules only.
Secondly, the choice of rules is made a part of a system designer’s input.
Having defined the system accordingly, we investigate whether logical
principles still exert normative force in the cases that Harman considers
counterexamples to weak psychologism.

We first need to offer an appropriate logical language of default
rules. The logic developed here is a generalization of Reiter’s (1980)
standard default logic. Contrary to Reiter’s approach, we do not rely
on logical closure and logical consistency in defining our logic. This
decision enables us to represent ordinary reasoning rules in a logical
system. Before defining our logic, we first look at some common features
of default logics. We will use a standard way to represent defaults (Reiter,
1980):

bird(Tweety) : flies(Tweety)
flies(Tweety)

.

We read the default as “If Tweety is a bird and if it is consistent to assume

16It seems as if the distinction between a norm and an obligation is not appreciated
in Harman’s skeptical challenge. While a reasoning task might trigger many coexisting
norms, not each of them necessarily gives rise to an obligation. Makinson (1999) and
Makinson and van der Torre (2000) introduce this important distinction in deontic logic.
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that Tweety flies, then we conclude that Tweety flies”. The reasoning
behind this default tells us that, usually, if we know that something is a
bird and it is consistent with what we already know that it flies, then we
defeasibly infer that it indeed flies. The conclusion that Tweety flies is
a plausible extension of what we already knew about it. However, if in
the course of reasoning we also learn that Tweety is in fact a penguin,
then, given the background knowledge that penguins do not fly, we
cannot infer anymore that it flies. The new piece of information on
Tweety undermines the applicability of a default that we initially allowed,
because it is not consistent with our knowledge anymore to assume
that Tweety flies. We will focus on defeasible reasoning in more detail
and adapt it for the purposes of representing the type of reasoning we
considered in Harman’s objections to the bridge principle candidates.

5.4.1 Syntax of slow default logic

The general form of a default δ is:

ϕ1, . . . , ϕn : ψ1, . . . , ψm

χ

where ϕ, ψ and χ are propositional logic formulas. Usually, formulas
ϕ1, . . . , ϕn are called the prerequisites, formulas ψ1, . . . , ψm are called
the justifications, and formula χ is called the consequent. The sets of
a default δ’s prerequisites and justifications and the consequent are
also referred to with pre(δ), just(δ), cons(δ), respectively. Accordingly,
pre(δ) = {ϕ1, . . . , ϕn}, just(δ) = {ψ1, . . . , ψm}, and cons(δ) = {χ}. Inter-
preted as a norm in human reasoning, we read the whole default as “If
ϕ1, . . . , ϕn are believed, and for every ψ1, . . . , ψm it holds that they are not
disbelieved, then conclude χ”.

Particularly, we are able to express classical entailment with the
default rules. For example, we can take the simple case of conjunction as
the default rule

ϕ, ψ : ϕ ∧ ψ

ϕ ∧ ψ

where ϕ and ψ are some specific propositional formulas. Both standard
defaults and “classical” defaults are given as rule instantiations only,
not as rule schemes. This decision reflects our intention to interpret all
classical logical rules as defeasible normative rules, not simply to express
classical logical rules by means of default rules. Although classical logical
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rules are valid inference schemes, the reasoning norms they give rise to
are only defeasible and need to be considered as being closer to material
rules of inference. For example, the reasoning norm ϕ,ψ:ϕ∧ψ

ϕ∧ψ does not
necessarily hold after replacing ϕ or ψ by some propositional formula
χ. The logical properties of reasoning norms are not to be confused
with the properties of classical logical rules. In particular, representing
classical entailment with defaults makes it possible to interpret logical
rules as defeasible norms in human reasoning that hold all other things
being equal: “If ϕ and ψ are believed, and ϕ ∧ ψ is not disbelieved, then
conclude ϕ ∧ ψ”.

Note that here as well as in the general form we mention only believed
and disbelieved facts as prerequisites of a default δ and not known facts.
The reason to interpret them doxastically rather than epistemically is
that we do not want to assume that the initial beliefs are veridical. In
other words, we are only here implementing the assumption that in
ordinary reasoning we reason from defeasible information. One of the
direct advantages of dealing with beliefs, rather than with knowledge or
facts, is to be able to represent inconsistent beliefs. It is possible to reason
with inconsistent beliefs because SDL does not rely on logical closure
and logical consistency. With this, however, we are already anticipating
the semantics of our default logic.

5.4.2 Operational semantics of slow default logic

The semantics of standard default logic is centered around the notion of
theory extensions.17 As suggested by Reiter (1980), the intuition behind
extensions is that an “extension specifies one coherent view of an incom-
pletely specified world”, while “many such coherent views are possible,
one for each extension of the default theory”. Default reasoning is re-
markable for representing conclusions that are best assumed to follow
from the existing information, but this relation is stronger than logical
entailment. We also represent classical logical rules as default reasoning
rules to capture the defeasibility of normative rules in human reasoning.
Technically, including such defaults will lead to several changes of a
default theory. As a result, the intuitive idea behind the definition of
extensions will be changed from a specification of one coherent view of

17For a fixed-point definition of an extension see (Reiter, 1980, pp. 88-94) and for a
method to compute extensions see (Antoniou, 1997, pp. 27-37).
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an incompletely specified world to a specification of an actual view of an
incompletely and uncertainly specified world. Let us now first define our
basic default theory and see how to build its extensions.

We will start from a simple default theory ∆ = (B, D) where B is a
finite set of propositional formulas and D is an enumerable set of default
rules. The set of beliefs B corresponds to the set of initial facts in standard
default theories, but with some important differences between the two.
Crucially, we do not assume that the set of beliefs B is consistent.18 Before
getting to the definition of default theory extensions, we will define some
standard technical notions following Antoniou (1997, pp. 31-32). First we
take Π to be a sequence of the defaults δ1, δ2, . . . ∈ D without repetitions.
Intuitively, Π is a possible order of applying the list of defaults from
D. The initial segment of Π is denoted as Π[k] where k stands for the
number of elements contained in the segment. In particular, k = 0 is the
empty sequence. Every segment Π[k] is itself also a sequence. With any
sequence of defaults Π we associate two sets In(Π) and Out(Π):

• In(Π) = B ∪ {cons(δ) | δ ∈ Π};

• Out(Π) = {¬ψ | ψ ∈ just(δ) for some δ ∈ Π} ∪ {ξ | ψ ∈
just(δ) for some δ ∈ Π and ψ is of the form ¬ξ}.

We say that a default δ is applicable to the set of formulas In(Π[k]) iff:

ϕ ∈ In(Π[k]) for all ϕ ∈ pre(δ) and ¬ψ 6∈ In(Π[k]) for all
ψ ∈ just(δ) and ξ /∈ In(Π[k]) for all ψ ∈ just(δ) of the form ¬ξ.

The set of formulas Out(Π) is assumed not to become a part of the belief
set B throughout the application of all defaults from Π. On this point,
our theory does not depart from standard default theories. However, the
new definition of the set In(Π) will make a difference to the definition of
a default theory extension.

The usual idea behind the set In(Π) is to apply the available defaults
and keep on classical reasoning on the basis of default conclusions as
long as possible. That is why the set In(Π) is normally closed under clas-
sical entailment. Here, we adopt a different idea of reasoning as long as

18Unlike so called “axioms” or “facts” (see in (Antoniou, 1997, p. 19)) of W in the
usual definition of default theories (W, D), beliefs can be inconsistent. We do not want
to assume that having a set of beliefs necessarily means having a consistent set of beliefs,
because this is often not the case with the non-ideal reasoning that we are modeling here.
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required by the application of available defaults. In this way, we are able
to look at the normativity of rules for each modeled case of reasoning,
which was our central desideratum for the system. Moreover, we avoid
reduplicating the effects of classical reasoning in a slow default logic
theory ∆. Depending on a definition of D, any formula ϕ ∈ Th(In(Π[k]))
could be a formula cons(δk) for some default rule δk with classical en-
tailment that has not been applied yet to In(Π[k]). However, whether
a specific classical logic rule is to be represented by defaults in D fully
depends on the relevance considerations. As mentioned earlier, while
classical logic inference rules are schematic, they give rise to norms that
have properties of material inferences. For example, classical norms are
context-dependent as a result of relevance considerations. Therefore, if a
default theory already represented classical entailment as norms within
default rules from D, then we would need to justify further why we as-
sume that deductive closure prompts an infinite sequence (or sequences)
of classically entailed formulas to be added to In(Π). The two processes
would be working at cross-purposes, resulting in a different treatment of
classical consequence throughout the same default theory.

To see how this decision affects the logical consequences of a default
theory, we first define the notion of a process of ∆. A process is a stepwise
procedure in which we apply default rules while respecting the beliefs
that have been collected thus far. For some sequence of defaults Π, we
say that Π is a process if and only if δk is applicable to In(Π[k]) for every
k such that δk is in Π. There are two main properties of default processes
we are interested in:

• A process Π is closed iff every δ ∈ D applicable to In(Π) is included
in Π;

• A process Π is successful iff In(Π) ∩Out(Π) = ∅, otherwise it is a
failed process.

Finally, we are now able to define the extension of a theory ∆.

Definition 5.1 (SDL Extension). A set of formulas E is an extension of the
default theory ∆ = (B, D) iff there is a closed and successful process Π of ∆
such that E = In(Π).

The new definition of an extension of ∆ is dependent upon the modi-
fication of a set In(Π). In particular, it does not meet the condition of
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(Antoniou, 1997, p. 41) that Th(E) = E or that an extension has to be
deductively closed.

To illustrate such default theory, take the following simple example
where default rules with classical entailment combine with standard
defaults:
∆0 = (B0, D0), with B0 = {bird(Tweety), bird(Tweety) → ¬fish(Tweety)}
and D = {δa, δb} with

δa =
bird(Tweety) : flies(Tweety)

flies(Tweety)
and

δb =
bird(Tweety), bird(Tweety)→ ¬fish(Tweety) : ¬fish(Tweety)

¬fish(Tweety)
.

The theory ∆0 has two successful and closed processes, Π1 = (δa, δb) and
Π2 = (δb, δa), and a single extension

E = {bird(Tweety), bird(Tweety)→ ¬fish(Tweety), flies(Tweety),¬fish(Tweety)}.

What type of reasoning does ∆0 represent? Consequent cons(δa) is an
instance of a plausible conclusion that is typical of situations where
we must draw a conclusion despite restricted access to the relevant
information. On the other hand, cons(δb) is a default representation of
modus ponens. In particular, what warrants adding cons(δb) to B0 are
the relevant beliefs from the set pre(δb). The conclusion cons(δb) is thus
warranted provided that the set of required beliefs pre(δb) has not been
given up throughout the course of reasoning, thereby changing the
default theory for which δb is an applicable rule. We define the notion of
validity for the default theory in the following way:

Definition 5.2 (SDL validity). Let ∆ = (B, D) be a default theory and ϕ a
propositional formula. Then ∆|∼s ϕ iff ϕ is in all extensions of ∆.

With Definition 5.2, we define what is called “skeptical consequence”
(Antoniou, 1997, 172): something is believed under the condition that it is
supported by each line of reasoning available. We will later give examples
where the importance of this definition will become more obvious.

5.5 Bridge principles in slow default logic

Slow default logic is a system that is neutral toward weak psychologism.
By “neutral” we mean that logical norms are neither favoured, say, by
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relying on logical closure, nor limited by the two requirements that limit
Harmanian bridge principles. Since classical reasoning is not assumed
outside the rules with classical entailment, the system is neutral in the
first sense. The second sense of “neutral” is realized through removing
both the non-defeasibility and the relevance requirement on normative
rules. In this section we present advantages of this neutral stance. We
start our analysis of bridge principles by showing that, although non-
defeasible, LIM is not a normative principle.

5.5.1 A non-defeasible principle LIM

We first show in some details why Harman’s “Mary example” does
not involve a violation of modus ponens and why LIM is in fact a non-
defeasible bridge principle. Recall Harman’s first objection against the
principle LIM. According to him, Mary came to believe that if she opens
the closet, she will see a box of Cheerios. She did open the closet, but
there was no box of Cheerios to be found there. We are now able
to reconstruct Harman’s description of LIM within a default theory.
Take ∆1 = (B1, D1) to be a default theory with B1 = {open(Closet) →
see(Cheerios), open(Closet),¬see(Cheerios)} and a single default rule

δ1 =
open(Closet)→ see(Cheerios), open(Closet) : see(Cheerios)

see(Cheerios)
.

As is obvious, the default rule δ1 cannot be applied: just(δ1) =
see(Cheerios) and ¬see(Cheerios) ∈ In(( )) where “( )” stands for the
empty sequence of defaults. Therefore, ∆1 has only one extension, namely
E = B1. Apparently, the default theory ∆1 supports Harman’s conclusion
that modus ponens does not exert any normative force on this particular
fragment of Mary’s reasoning. Despite her seeming commitment to fol-
low modus ponens imposed by the rule δ1, cons(δ1) is not an element of
E. The normative role of that logical principle has been compromised by
the counterexample ∆1.

It seems that there is still more to Harman’s example than this simple
theory shows. The first thing that has to be challenged is that this example
consists of a single default theory. For Harman (1986, p. 5), Mary’s
example gives sufficient support for the claim that if it were the case that
Mary followed modus ponens expressed with the rule δ1, then she would
be obliged to accept two inconsistent beliefs:
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Mary believes that if she looks in the cupboard, she will see a
box of Cheerios. She comes to believe that she is looking in
the cupboard and that she does not see a box of Cheerios. At
this point, Mary’s beliefs are jointly inconsistent and therefore
imply any proposition whatsoever.

Harman’s conclusion that Mary’s beliefs are inconsistent does not follow
because his counterexample is ambiguous. In fact, Harman’s counterex-
ample can only be modeled with two default theories, ∆2 and ∆3 (see
below), neither of which equals ∆1 and in neither of which δ1 is applica-
ble.

To be able to apply the default δ1 from ∆1, there are two necessary
prerequisites, namely open(Closet)→ see(Cheerios) and open(Closet). Har-
man’s example, however, does not specify a theory with the two beliefs
occurring together within a set of beliefs. What it does specify, leaves us
with two possibilities of how Mary could have acquired beliefs about the
box of Cheerios, neither of which involves modus ponens. The first possi-
bility is just defeasible reasoning from an incomplete set of information
before Mary took any action. The second is a change of a default theory
resulting from Mary’s actions. Harman makes the change of a theory
implicit through the example’s temporal dimension. Initially, Mary falsely
believed in an implication. Subsequent to her looking at the cupboard,
she held beliefs in the antecedent and the negation of the consequent of
that conditional and, thereafter, ceased to believe the conditional itself.
Thus, Harman’s conclusion hinges on his false assumption that Mary
was actually holding two relevant beliefs together throughout the course
of change of the default theories. Accordingly, Harman disregards the
effects of information-defeasibility: an incoming piece of information
causes Mary to give up some of her previously held beliefs.

We now provide a detailed formal layout of the relevant possibilities.
The first observed theory is ∆2 = (B2, D2) with B2 = {open(Closet) →
see(Cheerios)}. The set of beliefs B2 does not include the formulas
open(Closet) and ¬see(Cheerios) until Mary performs the actions that
make them true. For the obvious reasons, the default rule δ1 is not appli-
cable to the described theory, that is, to the set In(( )). Still, Mary could
have formed a belief about Cheerios being in the closet before she was
able to check. Thus we still need to explain where that belief comes from
since, contrary to Harman, we claim that Mary could not rely on modus
ponens to obtain the belief that there are Cheerios in the closet.
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Relying on her initial belief state, Mary got engaged in defeasible
reasoning about Cheerios. Her reasonable expectation to see Cheerios in
the closet is represented as the following default rule:

δ2 =
open(Closet)→ see(Cheerios) : willsee(Cheerios)

willsee(Cheerios)
.

The rule δ2 extends Mary’s initial belief state B2 in a way that is typical of
practical reasoning tasks. In short, Mary’s false belief in the conditional
open(Closet) → see(Cheerios) grounded her reasonable expectation that
she would see the box. However, without actually seeing the box, Mary
couldn’t have formed a belief that she does see the box: the two proposi-
tions, see(Cheerios) and willsee(Cheerios), give rise to different belief states.
The default theory ∆2 with the rule δ2 contained in D2 represents the
change in her doxastic state prior to opening the closet. The theory now
has a successful and closed process in Π = (δ2) and the corresponding
extension E = B2 ∪ cons(δ2). The theory ∆2, however, does not repre-
sent an instance of the modus ponens reasoning that Harman’s criticism
targets.19

Now consider the set of beliefs B3 that captures Mary’s belief state
after she actually opens the closet. Then, Mary’s background beliefs
have changed because of her observation. To model the change in
her view, we need a revised set of background beliefs B3 without
the conditional open(Closet) → see(Cheerios). Take ∆3 = (B3, D3) with
B3 = {open(Closet),¬see(Cheerios)} and consider again adding the con-
troversial rule δ1 to the set D3. We immediately see that the default
theory ∆3 would not result in any process because δ1 is inapplicable
to In(( )). The application of that rule has been blocked by the belief
in ¬see(Cheerios). Accordingly, ∆3 does not comply to the scenario of
the counterexample to modus ponens described by the default theory ∆1.
Therefore, the alleged violation of modus ponens results from disregarding
the change in Mary’s background beliefs and conflating two different
default theories ∆2 and ∆3 into a single one, namely ∆1.

19Standard deafult rules in our theory may be plausibly held as a projection of
practical interests in reasoning. According to Harman (1986, p. 2), in reasoned revision
“one should make minimal changes in one’s view that increase its coherence as much as
possible while promising suitable satisfaction of one’s ends”. A suitable satisfaction of
one’s ends sometimes might be impossible without non-deductive defeasible reasoning
towards the needed conclusion. The very fact that we are often directed towards forms of
reasoning that differ from deductive reasoning is just another argument against strong
psychologism.
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What was eventually shown by rejecting Harman’s counterexample
to LIM? Recall that LIM modestly claims that logical entailment can be a
reason to accept an entailed proposition. Even if Harman was right about
his counterexample to the applicability of modus ponens, this would not
prove the principle LIM to be false. As Knorpp (1997, p. 87) aptly argues,
to show that LIM is false, Harman would need to show that when one’s
view logically entails X, then this cannot be a reason to accept X. But this
is not the claim that he argues for. In fact, Harman accepts logical rules as
prima facie rules in reasoning and, thereby, the claim that our beliefs can
be founded on logical entailment. Does that mean that Harman himself
suggests LIM as a valid, non-defeasible principle?

5.5.2 The relevance problem of LCP

The principle LIM meets Harman’s non-defeasibility requirement, but this
comes at the cost of not being connected to the weak psychologism thesis
at all. To see why, recall from the Introduction that weak psychologism is a
view according to which there is a prescriptive side to logical norms. As a
consequence of violating a prescriptive norm, an agent is rightly deemed
as rationally culpable and we simply say that the agent is committing a
reasoning mistake. Now, consider again LIM and the claim that logical
entailment can be a reason to accept a proposition. The principle LIM
does not impose any obligation on an agent’s doxastic perspective and,
therefore, whatever the outcome of a reasoning process, an agent cannot
be mistaken even in systematically dodging to follow logical norms. The
LIM principle claims only that logical rules can legitimately ground our
beliefs. This is not controversial, but only because it is not normative
either.

The problem with the defeasible operators of the type “can be a reason”,
“have reasons to” or “has (defeasible) reason for” is that they do not
directly bear on the standards of rightdoing and wrongdoing. Bridge
principles based on any such operator do not prescribe “what one ought
to do” neither they provide “a standard for the evaluation of one’s
conduct as good or bad”, both of which are defining features of normative
laws (MacFarlane, 2002, 35). Having a reason to perform an action is
compatible with it not being the case that you ought to perform that action
and even with the case where you are not allowed to. One cannot use the
mentioned operators as deontic ones without a further qualification that
a reason is in fact a non-defeated or a perfect one, thereby imposing a
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normative requirement.20 Most importantly for the normativity debate,
by devising a principle with this kind of operator, we meet Harman’s
challenge merely by avoiding the central problem of the debate, which
is whether logical rules commit human agents to follow logical rules in
their belief formation or not.21

A non-defeasible principle with a defeasible operator such as “can
be a reason”, even if true, is irrelevant for the weak psychologism thesis.
Weak psychologism requires prescriptive normative principles. Accord-
ingly, a bridge principle which articulates the normative role of logic in
human reasoning needs to feature an operator that qualifies as typically
deontic. Note here that this eliminates some existing bridge principles,
e.g. Steinberger’s (2019a) and MacFarlane’s (2004), based on the opera-
tor “have a (defeasible) reason to” for which Steinberger (2019b) argues
that they are defeasible norms. According to our analysis, these princi-
ples are neither defeasible nor do they express norms related to weak
psychologism.22

This directs us toward a stronger, prescriptive, normative requirement
proposed in LCP. Unlike LIM, however, any prescriptive principle with
a deontic operator that is strong enough to express the weak psychol-
ogism thesis will only be a defeasible rule. As we argue in Section 5.3,
information-defeasibility causes normative principles of the type you
ought to add X to your set of beliefs to be defeasible requirements. Above
that, LCP is simply wrong because it fails to meet the relevance require-
ment. With the help of slow default logic, we now show in detail how
LCP fails to meet the relevance requirement.

20This corresponds to the standard vocabulary of deontic logics where permission,
restriction and prescription are considered (Åqvist, 1984, von Wright, 1951). Note that
we are not denying here the importance of pro tanto reasons, that is, those reasons that
support only to a certain extent, for normativity. Reasons may even form a major part
of normative considerations, but the bridge principle formula is a way to set up the
normative standard (if any) which constrains human reasoning, not only to acknowledge
that logical entailment can be taken into account.

21This is our way of interpreting why the “Strictness test” Steinberger (2017) goes
against “have a reason to” bridge principles.

22Steinberger (2019b) argues for the difference between three normative roles that logic
has in human reasoning. Unlike “objective” evaluations, directives and appraisals take into
account an agent’s perspective and its ability to live up to logical standards. His take on
what a bridge principle is supposed to look like articulates a different role for logic from
the traditional prescriptive role, which is central to weak psychologism. In particular, he
is interested in directives or “first-personal norms that offer advice of a sort a person can
take” (Steinberger, 2019a).
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Harman (1986, p. 12) suggested LCP as a modified version of the
LIM principle that avoids its shortcomings. A closer analysis reveals
how LIM and LCP advise two utterly different positions on what is
the role of logic in human reasoning. Recall that according to LCP, if a
proposition is entailed by our beliefs, we should add the proposition or
revise the entailing beliefs when faced with their falsity. Let us translate
this demand into an adequate default theory. We define a theory ∆4 =
(B4, D4), where B4 is a finite set of beliefs and D4 = {δm, δn, . . .} has
countably many defaults. Since in SDL the In-set is not deductively
closed, D4 contains all the possible rules with whatever is entailed by the
deductive closure of B4. The theory ∆4 specifies infinitely many closed
and successful processes and, provided that B4 is consistent, a single
extension containing the deductive closure of a set B4. How to interpret
the normative requirements specified by the theory ∆4?

The theory ∆4 is an example of extreme normative requirements. From
the perspective of weak psychologism, ∆4 describes the reasoning one has
to carry out if asked to find out whatever is true according to one’s beliefs.
It is then, according to the “reasoning task” ∆4, normatively required that
whatever is entailed by that agent’s belief set also needs to be included
in that set and if the agent discovers that B needs to be revised, then the
agent would face equally demanding logical commitments arising from a
different default theory. It is highly improbable that any agent ever faces
such unreasonable requirements. Together with Harman, we reject the
plausibility of LCP, but with a different conclusion drawn from it.

For Harman, the rejection of LCP paves the way to advance his anti-
psychologism regarding logic. In contrast, we deny that ∆4 articulates
weak psychologism. Assume, for the sake of argument, that ∆4 correctly
articulates the weak psychologism thesis. As a consequence, if we started
from the belief set B4, then the same subset of rules would be normative
for us, regardless of what the actual reasoning task is that the theory
describes. But this is impossible. The example of the theory ∆4 shows that
LCP requirements overlap only with the “pathological” reasoning task
where one is asked to find out whatever is entailed by what he believes to
be true. There are no reasons, however, to think that ∆4 uniquely specifies
normative requirements for any other possible reasoning task as LCP
implies.23

23As argued in Section 5.3.2, to claim that relevant entailments are relative to a given
reasoning task is not bringing in the same issue as Harman’s (1986, p. 12) advice to avoid
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Any prescriptive Harmanian bridge principle candidate would prove
itself to be inadequate for the sensitive task of specifying only the relevant
entailments of a set of beliefs. That being so, each SDL theory resulting
from a prescriptive bridge principle is equally naive as ∆4. This is the way
in which the relevance problem hinders the format of bridge principles.
In order to avoid the relevance problem, weak psychologism deserves to
be judged without Harmanian principles. In our system the question of
relevance is relegated to the level of the designers’s input of a set D. This
decision enables us to look at a variety of different reasoning tasks, each
with their own normative rules.

5.5.3 Harman’s objection to the principle LIN

Recall the principle LIN discussed in Section 5.3. This principle says
that in ordinary reasoning, one is to avoid logical inconsistency. Harman
warns us that the normative status of this principle is threatened because
the principle cannot be applied to cases of reasoning with defeasible
premises. Imagine you find out that your beliefs are inconsistent and you
have no available updates to resolve the inconsistency. Harman advises us
that in “that case the best response may be to keep the inconsistency and
try to avoid inferences that exploit it”. But we still might be interested in
how we reason from inconsistent premises and why to think that logical
norms stop being normative in doing so. We follow Harman’s line of
argument to see which default theory formalizes a typical case of dealing
with inconsistency.

Let us take a default theory ∆5 = (B5, D5) with B5 = {p, q, p→ r, q→
¬r} and D5 = {δ3, δ4}. The defaults δ3 and δ4 are defined as follows:

δ3 =
p→ r, p : r

r
and δ4 =

q→ ¬r, q : ¬r
¬r

.

∆5 has two processes, Π1 = (δ3) and Π2 = (δ4). It is easy to check
why neither Π3 = (δ3, δ4) nor Π4 = (δ4, δ3) are processes of ∆5: once δ3
has been applied, the conclusion r is added in In(δ3), then δ4 cannot be
applied because r directly contradicts the justification ¬r. The theory ∆5
has two extensions. The first extension is E1 = {p, q, p → r, q → ¬r, r}

cluttering our mind with trivialities. The cluttering avoidance issue is a practical advice
that becomes redundant on a correct interpretation of the weak psychologism position.
Any specific default rule representing a logical norm for reasoning is included in D only
if it is related to the reasoning task at hand.
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and the second extension is E2 = {p, q, p → r, q → ¬r,¬r}. The two
extensions show that we can still go on reasoning even upon collecting
the contradicting information r and ¬r from the applied defaults δ3 and
δ4. Yet this example does not support Harman’s conclusion that at this
point logical rules cease to be normative. On the contrary, reasoning with
inconsistent beliefs still needs to be done in accordance with logical rules.

Facing irresolvable inconsistencies inevitably results from applying
logical rules to defeasible premises. Eventually most of the conflicts
between inconsistent sources get resolved by an update that gives prece-
dence to one of them. Thus by removing a culprit, say p from the set
B5 of ∆5, δ3 becomes defeated. As we argued in Section 5.3, defeasibility
of premises does not bear on the question of whether logical rules are
normative or not. For Harman, however, a conflict of logical norms and
defeated logical norms are both incompatible with the normativity thesis.
This is a result of his non-defeasibility requirement.

In assuming non-defeasibility, Harman overlooks that logical rules re-
tain their normative status regardless of how (un)certain or (in)consistent
information may be. What Harman (1984, p. 108) suggests is that on
discovering irresolvable inconsistency, “one should (at least sometimes)
simply acquiesce in the contradiction while trying to keep it fairly iso-
lated”. Again, his argument is imprecise: it is not clear what exactly
does “acquiescing in the contradiction” mean. We suggest that the act
of acquiescing in the contradiction still makes it possible to continue
reasoning on the basis of contradictory information but without holding
contradictory beliefs. Harman’s suggestion leaves the possibility of a
different interpretation of “acquiescing in the contradiction”: to hold
contradictory beliefs and not to reason further with the contradiction.
This is why we need to give more precise examples to see what role logic
has in dealing with inconsistency and contradiction.

The theory ∆5 exemplifies only a specific aspect of the normativity
thesis, namely the restrictive role of logic in reasoning. According to it,
we are not supposed to hold contradictory beliefs. Formally, this aspect
was captured by the inability to apply default rules that would result in
extensions containing contradictions. The restriction to avoid believing
in contradictions is the reason why Π3 and Π4 are not processes of ∆5.
However, this does not entail that we are not able to reason further with
contradicting information, as shown by the two extensions of ∆5. We
concede Harman’s point that we are sometimes bound to reason with
inconsistency, and even contradictions that need to be kept isolated. But
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in keeping the contradiction isolated, we are again bound to follow logical
principles.24 The restrictive role of logic would therefore be more aptly
expressed in the following way: “Avoid directly contradicting beliefs”,
instead of “Avoid inconsistency”. There are, however, further reasons to
be cautious in formulating an exceptionless restrictive bridge principle
since even avoiding contradicting beliefs could turn out to be a defeasible
imperative as well.

5.5.4 Rational inconsistencies

Recently, the normativity debate has been strongly influenced by the
possibility of rationally holding inconsistent beliefs. Authors who take
Harman’s skeptical challenge as a starting point, including MacFarlane
(2004) and Steinberger (2017), consider the possibility of true contradic-
tions and the view called “dialetheism”. It is hard to say what are the
merits of dialetheism for the normativity debate. It was mainly motivated
by the paradoxes of self-reference involving some abstract concepts, such
as the notion of set or the notion of semantic definition of truth (Priest
and Berto, 2017). These concepts at best belong to the peripheral cases
of human reasoning and stretch the scope of what we are interested in
here. For one thing, there is a striking difference between the cases of
reasoning when one is to reason about an upcoming breakfast and the
type of reasoning that we find in, say, “Russell’s paradox”. It would be
surprising, to say the least, if Mary acted on the grounds of entertain-
ing both a belief that she sees Cheerios and a belief that she does not
see Cheerios. In any case, it is not clear that the semantical and logical
paradoxes present us with reasons for believing contradictory everyday
statements.

A similar line of reasoning extends to a group of arguments that
attracted the attention of philosophers in the normativity debate. We will
call them “arguments from rational inconsistencies” since they start from
a premise that holding inconsistent or even contradictory beliefs is not
only tolerable, but also normatively required in certain circumstances.
These arguments are based on a discovery of a paradox, as it is the
case with the arguments for dialetheism above. Our intention here is not
to argue that their main premise is wrong. On the contrary, given the
complexity of all the possible tasks subsumed under “human reasoning”,

24Note that any fear of the “Principle of explosion” effects on normative rules becomes
unfounded since SDL rules avoid problems of the relevance requirement.
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it should be expected there are such circumstances in which one cannot
avoid self-referentiality, arbitrariness or, otherwise, any sort of vagueness
that is built in a proposition. The problem, however, is to argue that
the possibility of creating a context in which one rationally accepts
inconsistencies overthrows the normative role of logical rules.

A good number of these arguments rely on a version of the “Preface
paradox” (Makinson, 1965).25 A brief version of the paradox is given by
Harman (1986, p. 16):

For example, there is the sort of inconsistency that arises
when one believes that not all one’s beliefs could be true. One
might well be justified in continuing to believe that and each
of one’s other beliefs as well.

Together with the objection we mentioned in Section 5.3, Harman takes
this example to show that the principle LIN should be abandoned. For
Steinberger (2019a, p. 16), the preface paradox is one of the cardinal
objections to the normative role of logic, “which spells so much trouble
for qualitative bridge principles”. These arguments are examples of the
ignoratio elenchi fallacy. In what follows, we explain the origins of the
fallacy in more detail.

The discovery of an extreme example where the rule is not applicable
does not support the conclusion that LIN is not normative. What it
does support is that there are normal cases of application and non-
normal cases where a normative rule might be overridden. In the preface
paradox case, one is faced with an extreme situation where LIN conflicts
with an obligation to adopt a belief about the totality of one’s beliefs.26

What follows from this case is that the complexity of belief systems
is such that it allows for the quandaries of the preface scenario and
that human reasoning lacks the expected uniformity. However, nothing
more than this follows. To think that the preface paradox or dialetheias
overthrow the normative role of LIN is a part of what Foley (1992,
p. 120) calls “the unfounded worry that if consistencies are allowed
anywhere they will have to follow everywhere”. This applies to all the
mentioned arguments from rational inconsistencies. Therefore, Harman’s
and Steinberger’s skepticism is unfounded and their conclusions do
not follow from any specific extreme example of a human reasoning

25Chapter 6 discusses the preface paradox in the context of a more general problem of
how rational, but fallible, agents should state their doxastic modesty.

26Evnine (1999), however, argues against the rationality of the preface sentence.
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task. However, the examples show that LIN cannot be considered as a
non-defeasible restriction for any possible instance of a human reasoning
task.

Such conclusion about rational inconsistencies is anticipated in the
argument from Section 5.3 where we advocated a system of normative
rules based on default logic. Again, an analogy with deontic rules illus-
trates the point we make about the case of rational inconsistencies. Take a
paradigmatic moral restriction that says “Thou shalt not kill!” and a sce-
nario where one is faced with a fierce murderer in the midst of a killing
spree. Without any doubts, many would be compelled to advise that one
should violate the imperative of not killing. In contrast, it is irrational to
question the normative role of the restriction not to kill in normal cases
only on account of the killing spree scenario. Instead, we should accept
that there are such peripheral cases where the rule application is not
clearly prescribed or may be otherwise judged as inadequate. If anything,
this is the lesson about human reasoning that we learn from the preface
scenario and similar cases.

5.6 A positive account of weak psychologism

In this section, we support the claim that classical logic is normative for
human reasoning. Instead of altering the weak psychologism claim so
that classical entailment provides only probabilistic constrains on degrees
of belief (Field, 2009, p. 258) or first-personal norms that offer advice of
a sort a person can take (Steinberger, 2019a, p. 318), we present a view
that logic is normative in the traditional prescriptive sense of providing
norms that one ought to follow.

5.6.1 Alternative notions of logical entailment

Up to now, we have argued against Harman’s skeptical challenge to
the normative role of logic in human reasoning. Although presenting
Harman’s counterexamples in SDL theories mitigates the skeptical attack
on logic’s role, the SDL system is in principle neutral about what prin-
ciples can be plugged into it. To model Harman’s counterexamples to
the normativity of classical logic, SDL represents both classical reasoning
and defeasible reasoning in the format of default rules. However, the
critique of Harman’s arguments does not on itself give a positive account
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for the claim that classical logic is normative for human reasoning.
The decision on which notion of entailment should be plugged into

the normative principles we represent in SDL theories seems to be a
necessary reflection of the most convincing arguments in favor of some
particular notion of logical entailment. In particular, the claim that some
specific logical principles are normative should be tied up with the claim
that there is a specific notion of entailment that corresponds best to
regularities in the world. This issue belongs to the debate on logical
pluralism where the traditional role of classical entailment has been
reevaluated against many non-classical notions of entailment. The main
criticism that proponents of classical logic face is that there are other
notions of reasoning, captured by different notions of entailment, such
that they outperform classical reasoning for some aspects of reality that
classical entailment misrepresents.

Answering the criticism raised by logical pluralists would require
a thorough discussion of the alternative notions of logical entailment
that goes beyond the purpose of the present chapter. The purpose of
this chapter is to show that Harman’s skeptical challenge fails in the
basic way of proposing the inadequate format of non-defeasible bridge
principles between logic and reasoning. That being so, we propose two
arguments that relate the choice of classical entailment for SDL rules
with the notion of correct entailment. However, this holds only for the
specific context of the normativity debate we are discussing here.

First, in the normativity debate we are concerned with the practice
of human reasoning which is constrained by normalcy. As we saw on
the example of rational inconsistencies, not every aspect of human rea-
soning has to be clearly regimented by classical entailment to claim that
classical logic is normative for human reasoning. This question is again
closely related to the defeasible nature of norms and their application.
While most reasoning tasks as the married-unmarried puzzle follow the
standard of correctness posited by classical entailment, there are cases
where the standard is not clearly prescribed. However, the crucial point
here is that it is impossible to make sense out of the idea that most
reasoning cases do not comply with a standard and that clear-cut cases
cannot be assessed against any standard. Here we follow the tradition of
differentiating between normal and abnormal cases of rule application
that stems from Wittgenstein (1953/1958) and Geach (1956).27 According

27This line of reasoning has been recently adopted by Milne (2009, p. 295): “Public rule-
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to it, if one is not able to correctly claim that only 13% of participants
gave the correct answer to the married-unmarried puzzle, the practice
of reasoning would become meaningless and would collapse. Therefore,
by the normalcy of rule application in human reasoning, arguments for
non-classical notions of entailment are not central to the normativity de-
bate, given the centrality of classical entailment for assessment of human
reasoning.

Another argument comes from surveying the motivation for adopting
a different notion of entailment. Our claim is that once we set apart
the two requirements for normative rules that impede the format of
bridge principles, we remove most of the motivation for adopting an
alternative logic. For example, since the relevance requirement does not
affect SDL theories, the initial problems that motivate the adoption of
paraconsistent logics are alleviated. The most straightforward example
is that of motivating relevance logics. The problem because of which
relevance assumptions are introduced are directly eliminated with the
treatment of rules in SDL. Furthermore, since the property of explosion
does not occur in a system where the relevance problem is taken into
account, most of the motivation for many-valued logics has already been
successfully dealt with.28 Aside from paraconsistent logics, some logics
that are grouped with non-classical logics already built on a motivation
to represent obligation to believe a statement (modal logic) or to model
justification or provability of a statement and, thereby, obligation to
believe a statement (intuitionistic logic). These examples of non-classical
logics are therefore better not considered alongside classical entailment.

The arguments offered above are by no means conclusive of what is
the correct notion of entailment in general, if there is such logic at all.
To answer that question we would also have to consider the arguments
for empirical adequacy of classical logic, to mention only one traditional
problem connected to it. For now, we leave these questions aside.

or convention-governed practices do not need rules to cover every possibility, nor even
conventions on the setting of precedents. And semantic paradox does not stalk the land
laying waste our every discourse”. In §141 and §142, Wittgenstein (1953/1958) focuses
on normalcy criteria for a rule-governed character of language: “And if things were quite
different from what they actually are — (. . . ) if rule became exception and exception
rule; or if both became phenomena of roughly equal frequency – this would make our
normal language-games lose their point”.

28Steinberger (2016) discusses whether there are bridge principles that could be “nor-
mative” arguments for paraconsistent logics.
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5.6.2 Weak psychologism without bridge principles

An opponent of weak psychologism might still be unsatisfied by our
choice of the SDL theories up to now. After all, we claimed at the begin-
ning that there is a prescriptive role that logic has in belief formation. Yet,
the only example of prescriptivity we gave is the theory ∆4, which is a
highly non-representative reasoning task. Fortunately, there is an abun-
dance of reasoning tasks that can be modeled in SDL to clearly present
the prescriptive role of logic in human reasoning. To round off the chapter,
our decision falls on the married-unmarried example from Section 5.2
since it exemplifies both the prescriptive and restrictive normative role of
logic in a single reasoning task.

Take the theory ∆6 = (B6, D6) with B6 = {M(j),¬M(g), L(j, a),
L(a, g)} and D6 = {δ5, δ6, δ7, δ8}. The constants a, g and j stand for Ann,
George and Jack respectively, M is a unary predicate standing for the
property being married and L stands for the binary relation looking at. The
default rules are defined as follows:

δ5 =
empty : M(a)

M(a)
, δ6 =

empty : ¬M(a)
¬M(a)

,

δ7 =
M(j),¬M(a), L(j, a) : (M(j) ∧ ¬M(a) ∧ L(j, a)) ∨ (M(a) ∧ ¬M(g) ∧ L(a, g))

(M(j) ∧ ¬M(a) ∧ L(j, a)) ∨ (M(a) ∧ ¬M(g) ∧ L(a, g))

and

δ8 =
M(a),¬M(g), L(a, g) : (M(j) ∧ ¬M(a) ∧ L(j, a)) ∨ (M(a) ∧ ¬M(g) ∧ L(a, g))

(M(j) ∧ ¬M(a) ∧ L(j, a)) ∨ (M(a) ∧ ¬M(g) ∧ L(a, g))
.

Here is an informal description of reasoning steps described by ∆6. We
start with an incomplete set of information as to whether Anne is married
or not. However, to find out whether there is a married person looking at
an unmarried one, we are determined to reason with the propositions
describing Anne’s current status. From the theory ∆6 we learn that,
according to D6, we are not able to decide whether M(a) or ¬M(a) holds
according to B6. Instead of that, we are only able to do an ordinary
default step δ5 or δ6, still leaving B6 underdetermined as to whether the
relevant proposition holds according to B6. Despite that, we are now able
to reason further on two branches of default processes.

More formally, ∆6 has two closed and successful processes, namely
Π1 = (δ5, δ8) and Π2 = (δ6, δ7). First, we consider the only two applicable
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defaults to In(( )): δ5 and δ6. After we apply one of them, say the default
δ5, δ6 becomes inapplicable to In(δ5) since just(δ6) = ¬M(a) and M(a) ∈
In(δ5). Now the only applicable default that is left to be applied to In(δ5)
is δ8. Similar reasoning applies to the default process Π2. Now we know
that we have exactly two extensions of ∆6:

E1 = B ∪ {M(a), (M(j) ∧ ¬M(a) ∧ L(j, a)) ∨ (M(a) ∧ ¬M(g) ∧ L(a, g))}

E2 = B ∪ {¬M(a), (M(j) ∧ ¬M(a) ∧ L(j, a)) ∨ (M(a) ∧ ¬M(g) ∧ L(a, g))}
According to Definition 3.2, the only formula that needs to be added
is the disjunction (M(j) ∧ ¬M(a) ∧ L(j, a)) ∨ (M(a) ∧ ¬M(g) ∧ L(a, g)),
corresponding to the correct solution of the informal example description
from Section 5.2, namely that a married person is looking at an unmarried
one. While we still remain skeptical about which of M(a) or ¬M(a) holds,
we take the following conclusion as a valid one:

∆6|∼s (M(j) ∧ ¬M(a) ∧ L(j, a)) ∨ (M(a) ∧ ¬M(g) ∧ L(a, g))

With the theory ∆6 we show that logical rules do not only restrict, but
also prescribe reasoning steps. Were we to solve the Married-unmarried
puzzle, we would be advised to reason from contradictory assumptions.
All the while our reasoning needs to follow logical rules in finding out
the right answer. Moreover, we are now able to see why the set D6 does
not contain an infinite number of rules and what the benefits are of
denying the relevance requirement. In particular, why not to include a
default rule such as

δ9 =
¬M(g) : ¬M(g) ∨ L(g, a)
¬M(g) ∨ L(g, a)

to the set of rules D6? The rule δ9 would extend our beliefs by a valid
conclusion to a proposition containing the disjunct L(g, a) we read as
“George is looking at Ann”. The answer is that the theory ∆6 represents the
reasoning task that one needs to perform to solve the Married-unmarried
puzzle. The puzzle is not asking about who is George looking at and
we are not required to add this conclusion to our set of beliefs. This
entailment surely can be a reason to add the cons(δ9) as the principle LIM
suggests. But the rule δ9 is best considered a part of a different default
theory where reasoning is in fact about cons(δ9). Similar argument applies
to an infinite number of other defaults that could be generated by logical
entailment closure over B6.
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5.7 Conclusions

Our goal in this chapter is to defend weak psychologism as saying that
classical logical principles are prescriptive and, thereby, normative for
human reasoning. Harman’s skeptical challenge to the normativity of
logic set the standard of Harmanian bridge principles for the further
debate. On a closer look, we uncover two requirements that make bridge
principles impossible, namely the non-defeasibility requirement and the
relevance requirement. We develop slow default logic, which is capable
of representing every rule, including classical entailment rules, within
the form of a default rule. In this way we amend the negative effects of
the non-defeasibility requirement on normative principles. To deal with
the relevance problem, the choice of rules that an agent has to follow is
made a part of a system designer’s specification of a set D.

In Section 5.5, we present models that challenge Harmanian bridge
principles LIM, LCP and LIN. We show that the shortcomings of these
principles do not challenge the weak psychologism thesis. Among the
suggested principles, LCP is the closest articulation of how logical princi-
ples could be prescriptive for belief formation. However, this principle
is undercut by the assumption that one needs to solve the relevance
problem to answer the normativity question. Our conclusion is that a
single overarching Harmanian bridge principle is impossible and, above
that, irrelevant to weak psychologism.

Once we avoid ramifications of the Harmanian bridge principle for-
mat, we are able to vindicate Frege’s claim that classical logic is prescrip-
tive for human reasoning. According to our analysis, the best approxi-
mation of the normativity thesis based on a simplistic principle is the
following one:

For some specific propositional formulas P1, . . . , Pn and Q, if P1, . . . , Pn �
Q and Q is relevant to an actual reasoning task, then if one believes that
P1, . . . , Pn in this context, one should, other things being equal, add Q to
one’s set of beliefs.

But in formulating this approximation, we do much less than if we sys-
tematically look for the normative role of logic in actual human cognition
tasks. Only in taking a case-by-case perspective can we gain insight into
how logical rules have the obligatory character that is elusive to any
Harmanian bridge principle. The major advantage of such perspective is
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that instead of a gap between logic and reasoning, we see a woven web
of defeasible connections between the two.



Chapter 6

On modest reasoners who
believe that they believe
falsely

One can mistrust one’s own senses, but not one’s own belief.
If there were a verb meaning ‘to believe falsely’, it would not
have any significant first person present indicative.

—Wittgenstein (1953/1958, p. 190,§ X)

6.1 Introduction

In this chapter, we focus on an important feature of agents who engage
in commonsense reasoning, namely, their fallibility. More specifically,
we start from the premise that rational agents who are aware of their
own mistakes and mistakes of their fallible peers have good reasons
to be doxastically modest. One of the most interesting questions that
a modest, fallible agent is faced with is “What beliefs about my own
(fallible) beliefs should I hold, given doxastic modesty?”. Some agents
may interpret doxastic modesty as a requirement to believe that they
hold some false beliefs. In this chapter, we argue that an agent cannot in
principle form a belief in the statement “At least one of my beliefs is false”.
Once an agent has learned this statement, the agent is not committed to
the same belief any more. Agents encounter a problem of the same kind

151
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when learning Moorean statements. We explain this analogy in detail
and argue that learning the statement “At least one of my beliefs is false”
is not successful, that is, once it has been learned, it should not believed
any more. The same diagnosis of the problem is accepted for Mooorean
statements. We examine two additional versions of doxastic modesty
statements that could avoid the problem of unsuccessful learning. In
these two versions, agents can refer to their totality of beliefs slightly
differently and, thereby, still be committed to believe that they hold false
beliefs. We argue that each of the two ad hoc solutions to the unsuccessful
learning problem that we discuss is controversial. We instead suggest
that doxastic modesty justifies suspension of the belief in the conjunction
of one’s beliefs as well as believing more modest statements that do not
commit one to believe falsely. Finally, we propose that the connections
between the general doxastic modesty statements and Makinson’s (1965)
“Paradox of the Preface” are not as straightforward as it has been usually
assumed in the debate.

6.2 Doxastic modesty statements

As a rational human being, you are aware of your own past beliefs that
turned out to be false. Moreover, you know that other rational humans
also change their beliefs as a result of discovering that they have believed
falsely. Therefore, you have good reasons to be modest about your present
beliefs, because these could turn out to be false as well. But how exactly to
take your fallibility into account in order to state that you are doxastically
modest? One of the possible ways is to uncontroversially state that “Some
of my beliefs may turn out to be false”. You might also be convinced that
doxastic modesty requires you to go further in your Doxastic Modesty
Statement (DMS) and claim that:

(1) “At least one of my beliefs is false”.

The DMS (1) is inconsistent with your other beliefs, which makes the
belief in (1) controversial. It is usually held that, after you learn (1), you
are justified in holding jointly incompatible beliefs: doxastic modesty
justifies your belief in (1), while it does not disqualify your reasons to
believe each of your other beliefs.1

1By “learning” we mean nothing more than acquiring beliefs and we do not assume
that learning is factive. As an obvious example, an agent can learn a false statement and,
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Contrary to the accepted view, we will argue that after learning (1),
your beliefs are not jointly inconsistent because what you believe is not
the proposition (1).2 What we show instead is that (1) contradicts the
following reasonable expectation on learning a proposition:

• After learning a proposition P, P is believed.

This is the so called “Success axiom” that is known from belief revision
(Alchourrón et al., 1985).

Then we will show that it is possible to circumvent the problem
of learning (1) by referring to the totality of your beliefs in a slightly
different manner. Namely, you could state in DMS that DMS is itself
fallible as one of your beliefs or you could simply state that it is the other
beliefs that are fallible. These considerations open up two additional
DMS candidates, which claim that at least one of your beliefs is false:

(2) “At least one of my beliefs other than this one is false” or

(3) “At least one of my beliefs including this one is false”.

We will argue that these two solutions to the problem of learning (1)
result in different problems that undermine the rationality of believing
(2) and (3). The statement (2) introduces an ad hoc distinction among your
beliefs which cannot be adequately accounted for. On the other hand,
believing the statement (3) commits you to believe the denial of (3) as
well.

It is usual in the literature on doxastic modesty to assume that the
following conjunction principle is the strongest argument against the
above statements:3

• If you believe that A and you believe that B, you should believe
that A ∧ B.

The main purpose of this chapter is to show that believing any one of the
statements (1)-(3) comes with problems that are specific to the statements

thereby, acquire a false belief. Therefore, learning does not entail knowledge.
2For the sake of argument, we assume that your beliefs were not jointly inconsistent

already before learning (1).
3Most authors argue against this principle. Among them are Kyburg (1970), Foley

(1979, p. 249), Williams (1987, p. 121) and Christensen (2004, p. 36). Kyburg (1970)
introduced the term “conjunctivitis” as a pejorative term for the principle. Evnine (1999)
is one of the defenders of the disputed principle.
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themselves, independently of whether we accept that our beliefs are
closed under conjunction or not. We do not, however, argue that one
should conceitedly believe that all of one’s beliefs are true, but only that
one cannot believe (1) and that one should abstain from believing (2)-(3)
as well. The focus in the literature on the conjunction principle is, in our
view, misleading and the rationality of believing the statements above
can be questioned on different grounds.

The chapter has the following structure. First, we introduce the nota-
tion used throughout the chapter. Then we investigate the three possibili-
ties to formulate DMS and explain what are the problems of believing
them. After showing that one cannot in principle believe (1), we turn to
the suggestions that avoid the problems of (1). The statement (2) avoids
the problem at the price of not being adequately supported by evidence
that grounds the requirement to be doxastically modest. While the state-
ment (3) is commonly discarded for its connection with the semantic
paradoxes, we analyze the problem of believing (3) in terms of para-
doxical commitments of a belief set that contains (3). In Section 6.4, we
argue that doxastic modesty has to be seen as a result of a certain kind
of higher-order evidence that is best understood as a requirement to
suspend a belief in the conjunction of one’s beliefs. Then, in Section 6.5,
we connect general doxastic modesty statements with prefatorial book
statements, first proposed by Makinson (1965). Prefatorial statements are
doxastic modesty statements particular to book prefaces. We argue that
the rationality of prefatorial statements might not be entirely assessable
in the light of the DMS problems. This is mainly because book statements
and preface statements may come with assumptions that do not hold for
ordinary beliefs. Finally, we follow Evnine (2001) to suggest an alternative
DMS formulation that does not commit you to hold false beliefs.

6.3 Three problems of doxastic modesty statements

To disambiguate the propositional content of the statements (1), (2) and
(3), we use elementary set notation. Say that you hold some number n of
beliefs. Your current set of explicit beliefs Bel is then defined as follows:

{P1, P2, . . . , Pn} = Bel,

where for any k such that 1 ≤ k ≤ n, Pk is one of the propositions
you explicitly believe. Whatever version of DMS is discussed below, we
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assume that you reason from the belief set Bel.
An immediate question about the belief set is whether we should

talk about deductively closed sets and, therefore, infinite sets, instead of
talking about finite sets of explicit beliefs. We propose that it is reasonable
to focus on explicit beliefs in the context of the doxastic modesty debate.
Taking credit or blame for your right and mistaken beliefs relates only
to your explicitly held beliefs and these form a finite set. Consider that
although there are infinitely many mathematical truths that are entailed
by your current beliefs, some of them take a lot of effort until you
can reach an explicit belief in them. It makes no sense to take credit
for truthfully believing any of these propositions just because they are
entailed by your beliefs. On the other hand, mistaken beliefs could be
detected on the grounds of showing that they entail a contradiction, but
the blame is attached to your explicit beliefs that need to be changed, not
to the entailed contradiction.4 We can say that in judging that a belief is
mistaken we adhere to the variant of the legal principle Nullum crimen
sine actu, where the required act is interpreted as explicitly holding the
belief.

6.3.1 Case 1: Unsuccessful learning

We first argue that adding a belief in the DMS (1) (see p. 152) prompts
its own revision. By adding (1) to your set of beliefs, the totality of your
beliefs changes. Since (1) claims fallibility of your beliefs with reference
to the totality of your beliefs, learning (1) results in believing that (1)
is fallible as well. That is, instead of believing that at least one of your
beliefs is false, you believe that:

(1′) “At least one of my beliefs is false or all my beliefs are true”.

Learning the statement (1) is thus self-undermining: the statement rules
out the possibility of all your beliefs being true, but (1) is itself one of
those beliefs.

To see why learning (1) fails, one needs to consider the change of the
scope of your beliefs. Your initial state of beliefs is Bel, as defined above.

4Williams (1981, p. 601) makes a similar point: “It would be ludicrous to credit
someone with beliefs of things of which he had never heard or of which he had no
understanding”. Notice that, in the logic of belief revision, the term “belief set” is taken to
imply that a set is deductively closed, while “belief bases” are not necessarily deductively
closed.
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The DMS candidate (1) corresponds to the proposition:

Pn+1 = ∼P1 ∨∼P2 ∨ · · · ∨ ∼Pn.

If Pn+1 is added to Bel, your new set of beliefs is now described by

{P1, P2, . . . , Pn, Pn+1} = Bel1.

To capture the revision of (1) with (1′) precisely, we look at the change
of the scope of your beliefs after adding Pn+1. This change causes the
revision of the belief in (1), since (1) quantifies over your entire set of
beliefs. Before learning (1), the proposition Pn+1 refers to your entire
set of beliefs. However, after Pn+1 itself is added to your set of beliefs,
the proposition corresponding to DMS has to be revised accordingly.
What you now believe is that Pn+1, as one of your beliefs, is also among
the propositions of which you claim that at least one is false. Instead of
believing Pn+1, learning (1) results in believing

Pn+2 = ∼P1 ∨∼P2 ∨ · · · ∨ ∼Pn ∨∼(∼P1 ∨∼P2 ∨ · · · ∨ ∼Pn),

a tautology which corresponds to (1′). Therefore, you eventually learn
nothing more than that the DMS statement (1) is itself fallible, as any
other belief. This argument shows that the DMS statement (1) in principle
cannot be learned.

Notice that our notation loses some important information about
the quantification over beliefs both in (1) and (1′). Not only does the
proposition Pn+2 state that the beliefs P1, P2, . . . , Pn could be true, but also
generally that it is possible that all beliefs are true and, therefore, that
it is possibly false that there exists at least one false belief among your
beliefs. Otherwise, one could think that now after Pn+2 is added, a new
DMS is needed to state its fallibility as well. That would mean that the
DMS should be revised ad infinitum. This is not the case because, upon
recognizing that “At least one of my beliefs is false” is itself fallible, you
recognize that it is possible that all your beliefs are true. This means that,
once you learn (1′), you are not any more believing that at least one of
your beliefs is false. In stating (1′), you are not stating that something
holds about some of your beliefs as the statement (1) does, but that it
might hold of some or of none of your beliefs.

One could still doubt if the learned proposition is the same as the
believed one. Is it possible that the only actual change is adding a new
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domain member over which (1) quantifies? We can settle the doubts
about the difference between the learned and the believed proposition
by showing that their basic semantic properties differ. First, assume that
your beliefs were consistent before learning (1). The statement (1) is
inconsistent with your beliefs, since were it the case that all your other
beliefs are true, (1) would be false. But if (1) becomes one of your beliefs,
then it refers to itself and makes it the case that what you now believe
is that if all your other beliefs are true then at least this one is false,
where “this one” stands for “At least one of my beliefs is false”. The
resulting belief is infallible, regardless of whether some other beliefs
are false or none of them is. But that means that your beliefs are not
inconsistent. Believing a statement which is always true cannot cause
inconsistency among your beliefs, no matter what other beliefs you might
hold. Therefore, since a set of propositions is either consistent or not and
since none of the other believed propositions changed, the proposition
you believe cannot be the same as (1).

While it was noticed in the literature (Sorensen, 1988, pp. 23-24) that
the proposition (1) is possibly false, but that the believed proposition is
never false, the two propositions were not considered to be different. But
if the proposition (1) and the believed proposition were the same propo-
sition, the belief in (1) would also be contingent, rather than infallible as
(1′). It is known, however, that this is not the case.

According to the argument above, we can state two general results
that outline our argument against believing (1). First, it follows from the
semantic properties of the learned and the believed proposition that the
DMS (1) is a counterexample to this generalization:

• If a proposition P is inconsistent with one’s beliefs, after learning
P, one’s beliefs will be consistent only if some other beliefs are
removed.

In the case of learning (1), none of the other beliefs change, but your
beliefs are consistent. This leaves (1) as the only possible belief that has
been revised. Therefore, the second result is that learning (1) contradicts
the success axiom: you do not believe (1), after it has been learned.

The reason why learning (1) fails is that the learning action induces
changes to the state of higher-order facts. These changes may affect
higher-order beliefs so as to cause the learning action itself to trigger the
requirement to revise the statement after learning the statement takes



158 CHAPTER 6. ON MODEST REASONERS

place. Notorious counterexamples to the success axiom are Moorean
statements. We find it absurd that one believes the Moorean statement
“It is raining, but I don’t believe it”, although the statement may be
true before one learns that it is. In fact, once an agent has learned the
statement, it becomes false and the agent is committed to believe its
negation, since after learning that it rains one has to believe it rains —
contrary to the statement. Thus, the change to the state of higher-order
facts makes it absurd for a rational agent to believe the statement after it
has been learned.5

Moorean statements are, however, more straightforward counterex-
amples to the success axiom than the sentence (1) is. The statement “At
least one of my beliefs is false” is not self-refuting in the sense that it
is not believed any more and that its negation becomes believed, but its
being learned fails only in the sense that it is not believed any more after
it has been learned. The statement (1) is not self-refuting because, unlike
learning Moorean statements, learning (1) does not result from an infor-
mation update with hard facts. In learning the Moorean statement above,
one knows that it is raining and this fact is “hard-coded” throughout the
description of the example. In the scenario of learning (1), the only kind
of factual change is the change of higher-order facts caused by the action
of learning (1). The status of the other (higher-order or hard) facts that
the propositions P1, P2, . . . , Pn refer to remains unknown and unchanged
throughout the example. Still, the action of learning (1) changes the scope
of one’s beliefs in such a way to make it true that (1) is not believed
any more and that (1′) is believed instead. The way we show that (1)
contradicts the success axiom cannot be direct as in the case of Moorean

5Note that we do not inquire here into whether believing the statement (1) and
Moorean statements is psychologically possible or not. Instead, our goal is to argue
a rational agent should not believe the statement (1) because, given its truth-value
conditions, such belief would be paradoxical. However, this does not influence the
psychological fact that many agents do not realize the paradoxical nature of (1). It is
even psychologically plausible for an agent to entertain a belief in a Moorean statement.
De Almeida (2001, p. 56) gives example of a person who forms a belief in the statement
“My father loves me, but I do not believe so” after the person has been told so by a
reliable psychoanalyst.

It is shown by Rieger (2015) that avoiding beliefs in Moorean statements in doxastic
logic requires the “negative infallibility” principle, which says that if you believe you
don’t believe something, you really don’t believe it. However, it is unclear if this principle
is also sufficient for the absence of the belief in the statement (1). The statement (1)
cannot be easily formalized in doxastic logic and the question of minimal rationality
requirements for avoiding (1) cannot be answered here.
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statements, but we can trace the change from the learned to the believed
proposition by focusing on their semantic properties.6

Learning the statement (1) does not result in rationally holding in-
consistent beliefs and it does not preclude “the possibility of all one’s
beliefs being true” (Sorensen, 1988, p. 23), as usually held. The DMS (1)
provides a complex counterexample to the success axiom. The analysis of
learning (1) reflects the difficulty of the attempt to turn yourself against
your own beliefs. The unsuccessful learning of (1) is, in a broad sense,
a corollary of Wittgenstein’s claim (see the quote on p. 151) that a verb
meaning “to believe falsely” would not have any significant first-person
present indicative. Wittgenstein first noticed the problems of believing
falsely in connection to Moorean statements and the absurdity of their
first-person versions. Through the connection of Moorean statements and
the statement (1) via the success axiom, we can now extend Wittgenstein’s
argument to hold for the statement (1). It is absurd for you to state that it
is raining, but you don’t believe it, if stating this implies that you believe
that it is raining. By the same principle, it is absurd for you to state that
at least one of your beliefs is false if this implies that you believe that.7

We can further develop the parallel with Moorean problems to show
a possible way out of the problems of learning the DMS candidate (1).
Notice that in both Moorean statements and the statement (1), the first-
person perspective is essential for the inability to learn the statements.
It is absurd for you to believe that “It is raining, but I don’t believe it”
and, by our extension of the argument, it is absurd for you to believe
that “At least one of my beliefs is false”. By contrast, it is not absurd for

6For a more in-depth technical analysis of Moorean statements in dynamic doxastic
logic, see (Baltag and Smets, 2016). For a formal study of unsuccessful updates in dynamic
epistemic logic, see (Holliday and Icard III, 2010, van Ditmarsch and Kooi, 2006). From a
belief-dynamics perspective, it is not exceptional that once you have learned something,
your learning action itself changes the state of the world that your belief happens to be
about. Consider the statement: “All my beliefs ultimately derive from experience”. Once
you have learned that this is the case, this statement becomes one of your beliefs and
you will believe that this belief also ultimately derives from experience. Furthermore, the
tenability of your claim will depend, among other beliefs, on this particular belief that
you hold.

7Connections between the statement (1) and Moorean statements are often discussed
in the literature (see (Evnine, 2001, p. 160) or see (Sorensen, 2018, Section 1) for modesty
statements related to book prefaces), but they have never been fully explained to show the
impossibility of learning (1), which resounds with similar results for Moorean statements.
Our use of the success axiom enables us to be explicit about the similarities between the
statement (1) and Moorean statements.
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someone else to say about you that “It is raining, but you don’t believe it”
or that “At least one of your beliefs is false”. But notice that if someone
announces the latter statement to you, the scope of your beliefs to which
the statement refers could, under some assumptions, be taken as limited
to your beliefs up to the present point. For example, if someone knows
that there is at least one specific belief that you now hold, which is false,
then the reference to your beliefs does not include any future beliefs you
may hold. Therefore, you can successfully learn from such announcement
that “At least one of my beliefs other than this one is false”, which is
equivalent to the DMS (2) (see p. 153).

Why not, then, to simply state that “At least one my beliefs other
than this one is false” in order to state that you are doxastically modest?
Learning the statement (2) seems to avoid the problems of believing
falsely. In the next section we investigate whether doxastic modesty
justifies you in believing that (2).8

6.3.2 Case 2: Underdetermined beliefs

Adding the proviso to exempt DMS from its own scope results in believ-
ing that “At least one of my beliefs other than this one is false”. Since
(2) explicitly refers to the fallibility of your other beliefs, the subsequent
change of the scope of your beliefs is irrelevant for the belief in (2). The
important difference to the statement (1) is that, after learning (2), your
beliefs are also inconsistent. This strategy is promising for a proponent of
the claim that doxastic modesty obliges you to believe that you hold some
false beliefs. If you have good grounds to believe that “At least one of
my beliefs is false”, then it seems safe to exempt the belief in DMS from
fallible beliefs. The number of your other explicit beliefs, your own past
false beliefs and false beliefs of others provide you with sound reasons
to suspect that there will be false beliefs among your other beliefs.

Despite its intuitive appeal, the strategy of exempting DMS from its
own scope comes at a cost of irrationally believing (2). Our argument
against believing (2) builds on Evnine’s (1999, p. 205) remark that the
statement (2) “makes invidious distinctions among our beliefs and gives
a special status to some that it does not give to others, namely, exemption

8The statement (2) is endorsed by many philosophers to be a proof that a rational and
reasonably modest person should always be inconsistent. Some of the proponents of the
DMS (2) are Harman (1973), Foley (1979) and, more recently, Christensen (2004). Harman
(1973, p. 119) attributed this version to Nozick, but without mentioning the source.
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from possible error” and, later on (1999, p. 224), that “it is a case of
special pleading”. The ad hoc nature of “special pleading” in (2) is in our
view best explained as a case of a belief underdetermined by the available
evidence.

For a simple example of underdetermined beliefs, suppose that you
claim that “Most crows are black, but Snowflake isn’t” and that you have
evidence to support this claim. What would your evidence necessarily
include? First it would necessarily include a support in favour of the claim
that most crows are black — typically, some sort of inductive support.
But the latter part of the claim needs to be independently supported
by additional evidence — typically, a convincing piece of evidence that
makes it clear that Snowflake is a crow that is not black. Most importantly,
this evidence is not the same as the evidence that some crows, in general,
are white. Your evidence underdetermines the belief in your claim, which
invites for additional evidence.

A more striking example would include high stakes. Imagine, for
example, that you have compelling evidence to assert that “There is a
murderer among us” (say that you are a part of a group of people present
at a boat at the time when a murder took place). Your evidence should
undoubtedly be taken as a valid support for the claim that “The murderer
is among us”. But if you say instead that “The murderer is one of us, but
it couldn’t be me”, then the implicit assumption is that, if ever needed,
you have additional evidence in support of the exemption of yourself
from the range of suspects. Indeed, a court would need more than just
evidence for the claim that the murderer is among us to establish the
veracity of the claim that it is someone else than yourself. While DMS (2)
does not imply practical high-stakes of this type, the role of the statement
(2) in the alleged paradox of inconsistent beliefs requires us to at least
adhere to unambiguous rationality standards for assessing when is a
statement supported by the available evidence.

We can now fully develop the analogy between such examples and
the belief in the statement (2) by focusing on the evidence to believe
(2). The reason for you to form a belief that you hold a false belief is
your doxastic modesty. The requirement of doxastic modesty itself is
grounded in your past experience. Namely, your own past mistakes and
mistakes of others constitute a sound inductive evidence base for you to
believe that, given a sufficiently large number of beliefs, there are some
false beliefs among your beliefs. But the statement (2) does not only
existentially quantify over your beliefs. In asserting (2), you additionally
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propose a difference between your beliefs. Namely, that your belief in
DMS should be exempted from the scope of fallible beliefs. We argue
here that the exemption of DMS from its own scope cannot be supported
by the available evidence, even if the exemption is needed to avoid the
problems of believing falsely. Moreover, we can show that taking the
exemption in (2) to be justified leads to absurd consequences for your
doxastic state.

The problem we find in believing that “At least one of my beliefs
other than this one, is false” is that the available inductive evidence un-
derdetermines what belief(s) you should believe to be false as a response
to your evidence. Your belief in (2) cannot be supported by the evidence
you possess any more than a belief in the proposition “One of my beliefs
other than Pk is false”, for any other proposition Pk that you believe. If
all that you know is that you have previously believed falsely and that
you have witnessed others believing falsely, you do not know enough to
eliminate the possibility of the belief in DMS being false and your other
beliefs being true. In other words, your evidence could at best support
existential generalization that there is a false belief, but not that Pk is not
false, for any Pk from Bel.

Occasionally, proponents of the DMS (2) admit the problem of un-
derdetermination by conflating the statement (2) with the tautological
statement (1′), which is not equivalent to any of the DMS (1)-(3). Con-
sider, for example, Harman’s (1973, p. 119) version: “It has occasionally
been suggested that a rational man believes that he has at least some
(other) false beliefs. If so, it follows logically that at least one thing he
believes is false (if nothing else, then his belief that he has other false
beliefs); a rational man will know that.”. While the latter sentence with
the parenthetic proviso just rephrases (1′), which claims that either all
your beliefs are true or some beliefs are false, the first sentence excludes
itself from the range of fallible beliefs.9 This suggests that, according to
Harman, a rational person knows that the belief in (2) is also fallible,
but the person can, nevertheless, choose to believe that it is one of the
other beliefs that is false. But if you do not know which belief is false,

9Foley, one of the proponents of the version (2), argues (1979, p. 252) that “although
we have evidence sufficient to justify each of these beliefs, we also have equally good
evidence for believing that at least one of these other beliefs is false”. But the same
paragraph also reads that “it seems likely that at least one of” the beliefs is false, “even if
we have no idea which one it is”. The latter claim shows that the belief in the DMS (2) is
underdetermined.
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the claim that it is the other beliefs that are false is only an ad hoc hypoth-
esis that serves your purposes of avoiding the unsuccessful learning of
(1). Harman’s argument for the rationality of believing (2) is, therefore,
self-undermining.

At this point, a proponent of the DMS (2) could defend the belief in (2)
by arguing that the only additional support needed to support (2), above
our fallibility, is the fact that “the number of present beliefs in question
here is very, very large” (Foley, 1979, p. 252). Even at a probability of 0.99
for each explicit belief, the probability of a thousand of beliefs being true
is insignificant. It seems likely that there are some false beliefs among
those other beliefs.

Although the intuition about the number of beliefs is appealing,
proponents of the DMS (2) cannot justify the belief in (2) by resorting
to the large number of beliefs. If the number of your beliefs justifies
the statement (2), then it also justifies n additional statements of the
type “One of my beliefs other than Pk is false”, for any Pk from Bel.
Since the number of beliefs is supposedly very large, you have a strong
probabilistic justification to believe each of n + 1 statements. This means
that the same evidence that needs to justify you in believing that you
hold at least some (other) false beliefs, justifies you to believe that each
of n other beliefs you hold is infallible.

Hereby you run into several additional problems concerning the
evidential support for the belief in (2). First, it is questionable if you
should ever accept an evidence base as reliable if it justifies inconsistent
beliefs. All the more reason not to accept the number of beliefs as evidence
for (2) is that you cannot resolve the inconsistency by favoring some
proposition Pk over any other equally supported proposition. Secondly, if
you are faced with n+ 1 propositions that are justified in the same way as
(2) and you know that they are jointly inconsistent, as a rational person,
you would want your beliefs to be consistent. A clear solution is that,
since the number of beliefs underdetermines n + 1 propositions of the
type “One of my beliefs other than Pk is false”, you should consider the
fact that each of your other n beliefs is supported by some independent
evidence. A rational response is to continue holding those beliefs and
disregard (2).
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6.3.3 Case 3: Truth-commitment glut

This leaves us with one more option to state that at least some of your
beliefs, taken in their totality, are false. It is possible to anticipate the
problems of learning (1) so as to include the DMS into its own scope.
This amounts to the doxastic modesty statement (3): “At least one of my
beliefs including this one is false”. The statement (3) can be learned and
it does not claim its own infallibility as (2) does.10 Assuming again that
you hold n beliefs, the DMS (3) corresponds to the following statement:

P∗n+1 = ∼P1 ∨∼P2 ∨ · · · ∨ ∼Pn ∨∼P∗n+1.

In this formulation of DMS, including a DMS into its own scope precludes
the change of the scope of your beliefs, which is responsible for the failure
of learning (1). Your belief set after learning P∗n+1 is defined as:

{P1, P2, . . . , Pn, P∗n+1} = Bel2.

The “bootstrapping” proposal in (3) to include DMS into its own scope
is notorious in the literature for its problem of self-referentiality. As a
result, many authors associate the statement (3) with semantic paradoxes
of the liar-type, e.g. Evnine (2001, p. 160) and New (1978, p. 344). In our
argument, we do not use the connection to semantic paradoxes, but we
do identify a doxastic paradox that results from a belief in (3).

The doxastic paradox of believing P∗n+1 comes from your truth com-
mitments. By the definition of belief, you cannot believe some proposition
Pk without claiming its truthfulness. Beliefs satisfy the following condi-
tion:

Bel ⊆ CommitTrue,

for a set of the propositions CommitTrue that you claim to be true. Notice
that propositions from the set CommitTrue need not actually be true. We
do not know their actual truth value, but only the provision that you

10A version of this DMS is discussed in relation to book prefaces: “At least one of the
claims in this book including this one is false”. That version was named “sophistical”
by New (1978, p. 341) and it was first formulated by Prior (1971, pp. 84-87). New (1978,
p. 344) spells out the high demands involved in formulating such doxastic modesty
statements: “It takes a certain amount of perverse ingenuity to generate the sophistical
paradox, an amount which —– fortunately —– most authors lack”. He claims that this
statement is one of the variants of the Liar paradox.
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claim that they are true.11 Therefore, the set of beliefs Bel2 incurs the
following set of commitments:

{P1, P2, . . . , Pn, P∗n+1} ⊆ CommitTrue.

But the problem is that you are also committed to the falsity of P∗n+1:

{P∗n+1} ⊆ CommitFalse.

This is so because if you are committed to the truth of P1, P2,
. . . , Pn and P∗n+1, then, by the definition of P∗n+1 and assuming that all
of the propositions P1, P2, . . . , Pn and P∗n+1 are true, P∗n+1 is also false. As-
suming that neither the truth nor the falsity commitment above can be
disregarded, in believing P∗n+1, you are committed to disbelieve it. We
will refer to such commitments as truth-commitment gluts.12

It follows from the truth-commitment glut that your belief set has to
include ∼P∗n+1 as well:

{P1, P2, . . . , Pn, P∗n+1,∼P∗n+1} = Bel3.

The set Bel3 shows the doxastic paradox of believing the DMS (3). The
paradox is unavoidable since the obligation to believe a proposition
contradicting (3) follows from the definition of (3) and the fact that (3)
is believed. Since the set Bel3 contains an outright contradiction, it is
difficult to defend its rationality without a strong assumption of true
contradictions or “dialetheias”. While claiming that some statement is
dialetheia does not on itself make an argument against believing it, it
does make an argument against believing that the statement is true
without believing its negation to be true as well. To make the latter
option plausible, a proponent of (3) needs to provide an argument that
justifies disregarding the truth-commitment glut and explain why to opt
for the commitment to truth only. It is, however, unlikely that there is
any such argument available, because the truth-commitment glut of (3)

11That is to say, beliefs are not necessarily factive. In the logic of beliefs KD45, this
means that we do not accept the formula Bp → p to be an axiom, where B is a belief
operator and p a believed proposition.

12In some many-valued logics, a sentence can be both true and false, in which case
it exemplifies a truth-value glut. For example, the sentence “This sentence is false” can
be evaluated as both true and false. See (Priest, 2008, pp. 127-133) for more details on
semantic truth-value gluts.
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ensues from the same principle as semantic truth-value gluts. These are,
by their definition, unresolvable by resorting to a single value.

While the statements (2) and (3) can be successfully learned, they are
not entirely devoid, each in its own way, of the problems we ascribe to
the inability to believe of yourself that you believe falsely. Our conclusion
is that each of the two problems eventually make the attempts to avoid
the learning issue of (1) unacceptable for a rational modest reasoner.

6.4 Doxastic modesty and higher-order evidence

The problems we discussed in relation to the DMS candidates (1)-(3)
do not eliminate the very requirement to be doxastically modest. We
left open the question of how you are supposed to reasonably fulfil
this requirement. In this section we propose that, besides avoiding the
candidates above, there are further general restrictions on how to state
doxastic modesty. Most importantly, evidence that consists in your past
mistakes and mistakes of other people, which motivates your doxastic
modesty, can only justify suspension of your belief in the conjunction of
all of your beliefs and does not justify believing its denial.

The requirement of doxastic modesty is grounded in evidence of your
fallibility, that is, your past mistakes and your awareness of mistakes that
other reasoners commit. When facing such evidence, you need to decide
which beliefs it supports and which beliefs it eliminates. In making
this decision, it is helpful to look at the kind of evidence that your
fallibility provides to you. This evidence does not point out a specific
false proposition you happen to believe. It is also clear that it does not
bear directly on the facts being believed. On the contrary, the evidence
of fallibility is supposed to justify your belief that you hold some false
beliefs, though regardless of what you actually believe. Such evidence,
therefore, cannot be considered as first-order evidence.

The evidence of fallibility can only be what epistemologists call
“higher-order” evidence: evidence about the quality of evidence or ev-
idence about one’s ability to adequately respond to certain first-order
evidence. Typically, higher-order evidence results in a change of beliefs
“because it indicates that my former beliefs were rationally sub-par”
(Christensen, 2010, p. 185) and, thereby, generates a kind of self-doubt.
Let us focus on such higher-order evidence against some state of beliefs.
For example, learning that you were administered with a hallucinogen



6.4. DOXASTIC MODESTY AND HIGHER-ORDER EVIDENCE 167

last evening calls your beliefs about the events that took place thereafter
into question. Such higher-order evidence does not refer directly to the
facts. It rather works as an undercutting reason to one’s initial reason to
form some belief — it attacks the connection between the evidence and
the conclusion, rather than attacking the conclusion itself. After learning
about your hallucinogen-driven belief formation, you are justified in
retracting your beliefs about last evening because your initial reasons
to believe are defeated. However, if you were to see some footage of
the actual course of events that makes it obvious to you that many of
your beliefs about last evening are in fact mistaken, you would not only
be provided with a reason not to believe your initial beliefs, but also
to believe their denial. The latter kind of reasons are called rebutting
reasons.13

Epistemologists agree that higher-order evidence indicating that a
belief is formed in a sub-par way primarily functions as an undercutting
reason for the belief. When facing such evidence “I must in some sense,
and to at least some extent, put aside or bracket my original reasons
for my answer. In a sense, I am barred from giving a certain part of
my evidence its due” (Christensen, 2010, p. 195). Now consider again
doxastic modesty and evidence of your fallibility.

If you believe that each of the propositions P1, P2, . . . , Pn is true, de-
ductive closure gives you at least a prima facie reason to believe the
conjunction of these propositions. However, the fact that you have made
mistakes before becomes relevant for the beliefs about whether your
totality of beliefs is true. How does such evidence defeat your reason
to believe the conjunction of your beliefs? Evidence of your fallibility
can only undercut the reason to believe the conjunction of your beliefs.
Higher-order evidence of fallibility does not differ from other kinds of
higher-order evidence that we usually take to be a reason to doubt one’s
capacities to form correct beliefs, such as the hallucinogen example above.
The fact that you are fallible is irrelevant to the truth of propositions
P1, P2, . . . , Pn. As an undercutting defeater, it does justify you to suspend
the belief in the conjunction of your beliefs.14

13For a more extensive discussion on this distinction, see Chapter 2.
14Possession of higher-order evidence is usually taken not to provide one with a

rebutting defeater. Arguably, a counterexample to this qualification could be peer dis-
agreement cases where someone who is of comparable doxastic dispositions faces the
same evidence, but comes to a contradicting conclusion to the one you obtained. These
cases are, however, far from what we discuss in doxastic modesty statements. Lasonen-
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Admittedly, there is something counter-intuitive about not being
able to believe statements that appear at least probabilistically well-
justified, as the DMS candidates appear to be justified. The probability
of multiple statements being true together is always lower or equal than
the probability of the least probable statement among them. Proponents
of believing either of the DMS (1)-(3) could object that in avoiding to
take a position on (1)-(3), you seem to indirectly go against the so called
“Principal principle” that recommends you to conform your credences
to your estimation of objective probabilities (Lewis, 1980).15 To this, we
can only answer that believing against the conjunction principle and the
possibility of the first-person believing falsely statements (1)-(3) both come
across as being at least as counter-intuitive. This seems to be an outcome
of taking any kind of doxastic attitude toward the totality of your beliefs
— perhaps many intuitions about your ordinary beliefs do not apply in
this case. This should not be surprising because the statements (1)-(3)
combine higher-order beliefs, which are notoriously delicate with respect
to the success of learning outcomes, with the reference to the totality of
beliefs, which already indicates a possibility of a (doxastic) paradox.

The difficulty to take an objective view of our own totality of beliefs
is well-captured by Evnine (2001, p. 171):

The higher-order activity of taking a view of our beliefs is
thus, at least in part, of the same nature as its first-order
subject matter. If we adopt certain objective beliefs about our
own beliefs, those higher-order beliefs will be as much subject
to that special commitment we owe to our own beliefs as
are the first-order beliefs of which we are trying to obtain an
objective view. While we may be able to fragment our beliefs
and use some to obtain an objective view of others, we cannot
obtain a comprehensive objective view of our beliefs in toto.

Evnine’s analysis of the doxastic modesty is close to ours, especially in
his appreciation of the importance of the first-person perspective (2001,
p. 165):

For there are significant ways in which the fact that some
beliefs are our current beliefs precludes us from taking certain

Aarnio (2014, p. 317, footnote 9) hints at a different possibility: “Perhaps, for instance,
higher-order defeaters often or even always have some rebutting force: evidence that I
came to believe p as a result of a flawed process may be weak evidence that p is false.”

15Of course, we are here primarily talking about full beliefs, not credences.
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attitudes to them that would be quite unproblematic in the
case that they were someone else’s beliefs. It is, of course, not
the content of our beliefs that makes them special to us, but
merely the fact that they are ours.

With some important differences from Evnine’s account, the main con-
tribution of our account can be found in the detailed elaboration of the
first-person perspective problems of the DMS candidates (1)-(3).16

6.5 The preface paradox and doxastic modesty

According to Makinson’s (1965) “Paradox of the Preface”, doxastic mod-
esty obliges book authors to believe that there is at least one false state-
ment in their book. Imagine that you have written a book in a field of
your expertise. While you do believe each of the claims from the book
taken on itself, you also have reliable inductive evidence to believe that
the book is likely to contain at least one undetected error. Evidence of
your fallibility indicates that your book most likely contains at least one
error. Therefore it is rational for you to state in the book preface that
there are errors in your book. But then, Makinson argues, you cannot
avoid holding inconsistent beliefs since you hold a number of individual
beliefs from the body of the book, together with the prefatorial belief in
the negation of the conjunction of those beliefs taken together.

Most commentators agree that Makinson’s prefatorial statement is a
special case of doxastic modesty statements.17 This is plausible to assume
because such prefatorial acknowledgements result from the nature of
beliefs, that is, “from belief in fallibility of one’s beliefs, of which the

16While some of Evnine’s general conclusions are in the same spirit as ours, especially
his emphasis on the first-person perspective, Evnine’s arguments differ in some important
respects. First, Evnine (2001, p. 158) does not distinguish between the statement (1) and
(3) and he does not identify the problem of unsuccessful learning. Secondly, he thinks
(1999, pp. 202-204) that the conjunction of one’s beliefs is not identical to all of one’s
beliefs and he argues that believing the conjunction of one’s beliefs is justified. Thirdly,
in his arguments against the DMS (2) and (3) Evnine (2001, p. 159) uses “the idea of a
creature with only one belief” and the idea of “an ideally rational belief set” to argue
that they “cannot be part of an ideally rational set”. He does not argue that they are
“irrational simpliciter”, although his starting premises of commitments that one has to
one’s own beliefs point out in this direction. These are only some of the most important
differences.

17Among the authors who discuss the version of the paradox with the prefatorial state-
ment is Pollock (1986). Unlike our logical analysis, Pollock’s analysis uses probabilities.
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prefatorial form is merely a particular example” (New, 1978, p. 342).18

In our view, however, there are good reasons to avoid the original book
version in the discussion about doxastic modesty.

One of them is that only those statements from the body of a book are
naturally seen as the main contribution of that book to the field in which
it has been published in. Its preface and acknowledgements belong to a
customary part of a book-writing process and they are usually written
in a more relaxed fashion. For example, they are neither reviewed nor
do they necessarily contribute to the field in which the book has been
written. It is not clear whether the body of the book and its preface are
comparable in the sense that they both represent doxastic attitudes of a
comparable status. In any case, they are naturally intended to serve for
different purposes and this is reflected in their mutual independence both
in writing and, subsequently, in reading books. Such natural distinctions
between preface statements and the body of the book statements obscure
the fact that it is the statements qua believed statements that cause the
alleged paradox.

The unclarity as to what exactly is the doxastic attitude toward book
prefaces justifies us to suspect willingness of their authors to revise their
prefatorial statement in the light of considerations about general dox-
astic modesty statements. The risk involved, for example, in neglecting
the fact that exempting the prefatorial statement from its own scope is
underdetermined by evidence is insignificant for the prospects of the
entire book. It is hard to imagine that anyone would demand from a
book author to account for recklessly excluding the prefatorial statement
from the scope of the fallible statements. Therefore, it is difficult to apply
the same rationality standards on beliefs about doxastic modesty and
prefatorial statements.

Further ambiguities arise from the status of the statements in the
body of the book, regardless of the preface statement. Are the statements
from the body of the book all believed in the same sense? According to
Leitgeb (2014, p. 15), “by uttering or publishing a great many declarative
sentences in assertoric mode, one does not actually assert that their
conjunction is true — one rather asserts that the vast majority of these
sentences are true”. Ryan (1991, p. 300) shares similar views and argues
that hard work and intellectual responsibility usually do not give one

18One of the exceptions is Christensen (2004, p. 37), who thinks that the totality of
beliefs version “makes less transparent the relations between the first- and second-order
beliefs”.



6.6. CONCLUSIONS 171

sufficiently good reason to believe every single statement in the book.
If Leitgeb and Ryan are right about this, there are workarounds to the
book preface problems that do not hold for the general doxastic modesty
statements (1)-(3). The discussion about doxastic modesty should not be
obfuscated by problems (or solutions) of the preface paradox related only
to book prefaces. Instead, the discussion should focus on the nature of
beliefs, which is the alleged source of the preface paradox and the reason
why the paradox is taken to be an argument that supports the rationality
of inconsistent beliefs.

6.6 Conclusions

Given that the problems of believing falsely undermine believing the
candidate doxastic modesty statement (1), and given that the ways out of
the problem are not satisfactory, our conclusion is that doxastic modesty
statements should not oblige you to believe in the falsity of your beliefs.
However, we do not imply by this that one should believe the negation of,
say, the statement (1). This is sometimes represented as the only available
alternative. But believing the negation of (1) is known to be problematic
as well. If you believe that none of your beliefs is false, you are being
doxastically conceited.19

You can, therefore, subscribe to Kyburg’s (1970, p. 59) analysis of
conjunctivitis and state that: “of everything that I believe, it is correct to
say that I believe it to be true; but it is not correct to say that I believe
everything I believe to be true”. But, according to the problems discussed,
you should not take a step further by believing that something you
believe is false. This leaves you with a simple recommendation with
respect to the doxastic modesty statement problem: to abstain from
believing the DMS candidates (1)-(3) and their denials as well. There
are many uncontroversial doxastic modesty statements that could be
believed instead. One of them is submitted by Evnine (2001, p. 173)

19Smullyan (1986, p. 344) shows that doxastic conceitedness, i.e. believing in one’s
belief accuracy (inerrancy or factivity of beliefs), leads to inaccuracy, even for ideal
reasoners. That is, assuming that reasoners have a complete knowledge of propositional
logic and have beliefs that are closed under modus ponens, there will be a proposition that
disproves their accuracy. On the other hand, modest reasoners in doxastic logic do not
believe that something they believe is accurate unless they believe it (Smullyan, 1986,
p. 351). This captures the commitment to the truth of beliefs, but it also ensures that
reasoners do not unconditionally believe into their accuracy.
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as “the right way for a rational creature to satisfy” the requirement of
doxastic modesty: “Some of my beliefs may be false”. After all, a modest
reasoner would recognize that doxastic modesty should not be claimed
so boldly and would use the appropriately modest modality “may”.



Conclusion

Results

In the introduction to this thesis, we submitted that argumentation theory
needs to rejoin formal logic as a part of a more encompassing idea of
building bridges between ordinary reasoning and logic. We pointed
out that the dominant philosophical thought of the twentieth century
saw logic as insufficiently rich to give a proper account of the complex
phenomenon of argumentation. Despite their close historical connections,
logic and argumentation theory have grown apart.

In Chapters 2, 3, and 4, we set out to define a new logical system that
is capable of meeting the challenge of being a proper logic of arguments.
Instead of discarding philosophical criticism of formal approaches, we
drew inspiration from philosophical findings on the complexity of argu-
ments and the logical limits of determining their tenability. The resulting
system is a unique logical answer to modeling arguments with internal
structure: default justification logic. We will mention several features
that make our default justification logic stand out from the existing
formal systems for argumentation.

We show that our novel combination of justification logic and default
logic produces a logical theory of default reasons. As mentioned in
the Introduction, one of the expectations for a logical theory of default
reasons is to be able to model the now-standard Pollock-type conflicts
among reasons, namely undercut and rebuttal. To define a logic with
conflicting reasons, we build on the strengths of justification logic and
default logic.

The strength of justification logic in this context lies in the expressivity
of justification assertions of the type t : F. Such formulas give us an
immediate object-level representation of premise-conclusion pairs. With
the use of default rules, we also gain a method to represent situations in
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which adding new information compromises the existing default reasons.
One succinct characterization of the idea behind our logic is the

following: while Reiter’s defaults generalize modus ponens inferences for
those cases where conditional claims hold only ceteris paribus, our defaults
generalize modus ponens inferences evidenced by formal operations on
reasons for those cases where reasons for conditional claims hold only
ceteris paribus. Justification assertions produced with the new type of
rules will help in establishing justification logic as a mathematical theory
of reasons in general, not only as a theory of ideal reasons such as
mathematical proofs. This should be read in the sense that the logic
we defined might also support deontic (prima facie reasons), linguistic
(grammatical evidentials), causal and possibly other interpretations of
reasons.

There are several ways in which default justification logic can be seen
as a junction of research areas. We already described how this holds for
default reasoning and justification logic. Moreover, our logic integrates
the study of arguments within AI with formal logic. The goal of defining
a logical system that represents structures of arguments has been set by
the AI community since the 1980s. Default justification logic lives up
to this long-anticipated goal and perhaps unsurprisingly so, given the
connections between the principles of defeasible reasons and argumenta-
tion theory. The connections between Dung’s argumentation frameworks
on one side and non-monotonic logics, logic programming and modal
logic on the other side have already been investigated before. This thesis
relates Dung’s abstract argumentation frameworks and justification logic
for the first time.

In certain ways, justification logic and abstract argumentation frame-
works had to become ingredients for a general theory of reasoning with
reasons. Consider that abstract argumentation frameworks study oppo-
sitions of arguments out of the logical context. Standard justification
logic studies pairs of reasons and conclusions, but without a way to
represent oppositions among reasons. This is where the two approaches
immediately appear as complementary theories. In this thesis, we provide
formal correspondence between default justification logic and abstract
argumentation frameworks to make the intuitive connections between
the two systems concrete. Correspondence results follow from the fact
that each standard abstract argumentation semantics can be defined in
default justification logic. Since justification logic naturally represents
arguments as formulas, the connection to argumentation frameworks is
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not limited to simply expressing one system by means of another system.
Instead, we show that Dung’s attack graphs capture only a single aspect
of our logic, namely, the direction of undercutting and rebutting attacks.
One the other hand, Dung’s graphs can be realized into multiple default
theories with justification formulas in such a way that we can find actual
justification assertions that are counterparts to Dung’s atomic arguments.

In addition, we also went beyond our initial expectations. For example,
default justification logic turned out to be a logical system capable of
modeling complex components of the Toulmin model of arguments, such
as warrants and backings. The Toulmin model is typically taken to be
an informal model of reasoning. This is one of the reasons why we
claim that default justification logic fulfils the goal of bringing general
argumentation theory back within the scope of formal logic. In our view,
default justification logic has a potential of becoming a foundational
system for the rich interdisciplinary study of models for reasoning and
argumentation.

Besides the mentioned formal connections between abstract argu-
mentation, default logic and justification logic, we also explored several
ways to enrich our logic with belief revision operations. This was done in
Chapter 4. There, we took a step beyond the default reasoning paradigm
and we investigated the inclusion of plausible reasoning patterns. In
plausible reasoning, an agent needs to deal with uncertainty of premises
and inconsistent premises. In contrast, the basic default justification logic
assumed certainty of premises and uncertainty of inferences. The purpose
of considering plausible reasoning was to provide a unified logical system
for all three standard types of argumentative attack, namely undercutting,
rebutting and undermining. Again, justification assertions turned out to
be an appropriate logical format for representing undermining attacks. In
the plausible-reasoning extension of our logic, an assertion t : F from a set
of premises W is interpreted in such a way that t represents a source that
supports the formula F. On our account, undermining is then interpreted
as a removal of the unreliable source of information t. What we needed is
to define operations that are able to alter even the set of premises W. To
this end, we used techniques from belief revision to model information
dynamics of justification logic default theories.

The relation between default reasoning and belief revision is interest-
ing and has been discussed in the literature.20 Our system with justifica-

20Gärdenfors (1990) sees them as the two sides of the same coin. His views are based
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tion assertions provides a fresh outlook on this relation. We were able to
flesh out the intuition that default reasoning deals with inconsistencies
that arise from extending the starting premises, while belief revision
deals with inconsistencies that result from receiving information incom-
patible with the starting premises. When this assumption is applied to
justification assertions, it becomes clear that belief revision has more to
do with the plausible reasoning paradigm than with default reasoning
paradigm. Once again, justification logic acted as an intermediary system,
this time by throwing light on the relation between default and plausible
reasoning that was translated into relations between default logic and
belief-revision techniques. With their fine-grained representation of rea-
sons, justification assertions gave us a better perspective on the ways in
which incoming information causes different types of non-monotonic
behavior in belief revision and default logic. Using those insights, we
succeeded in defining a logical theory of all three standard types of
argumentative attack in AI, namely rebuttal, undercut and undermining.

In Chapters 5 and 6, we kept on dealing with the issues related
to ordinary reasoning, but with an emphasis on the role of classical
logic in it. Chapters 2, 3 and 4 argued that ordinary reasoning should
be, first and foremost, studied through such phenomena as defeasible
inferences, belief revision and reasoning errors. Given such state of facts,
do we still have a place for classical logic and valid inference patterns in
ordinary reasoning? Our answer is “Yes”. We did not argue that deductive
reasoning could provide an appropriate account of how humans reason.
But the fact that most of our reasoning tasks do not fall under the category
of deductive inference does not imply that the rules of classical deductive
logic are not normative, once they in fact become applicable as norms. To
show this, we define a logical system for defeasible norms that makes
clear the role that classical logic has in regimenting reasoning tasks
that are markedly riddled with errors and limitations of commonsense
reasoning.

The role of classical logic rules in human reasoning may be overshad-
owed by our need to deal with inconsistent or incomplete information,
and all this with limited cognitive resources. However, this says much
more about the conditions in which ordinary reasoning proceeds and

on the possibilities to translate belief revision postulates into different non-monotonic
inference variants. Makinson and Gärdenfors (1991) also follow the direction of trans-
lating between belief-revision postulates and conditions on non-monotonic inference
conditions.
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the capacities of reasoners, than it does about the question whether a
logical norm is prescriptive, once it becomes relevant to a reasoning task.
It seems that the critiques of the normative status of logic have taken the
imperfections of ordinary reasoning as an indication that classical logic is
too limited to be of any actual relevance. In Chapter 5, we defended the
normative status of classical logic in the face of such criticism. However,
Chapter 5 is at the same time an appreciation of non-monotonic tech-
niques and their efficiency in describing commonsense reasoning. In this
sense, Chapter 5 underscores the basic assumption of the thesis that there
are both normative logical systems and descriptive logical systems for
ordinary reasoning. By making the right design choices, we can develop
such systems that combine the limitations of ordinary reasoning with the
rigour of formal logics.

Chapter 6 investigates one renowned counterexample to the classical
logic restriction against holding inconsistent beliefs: doxastic modesty
statements.21 It has been claimed that a modest and fallible agent is
destined to have inconsistent beliefs, because the agent has to believe that
at least one of the beliefs that the agent holds is false. We argued that this
is not as easy as presented. Learning the statement “At least one of my
beliefs is false” has all the needed ingredients for causing a paradox, such
as self-referentiality and change of higher-order beliefs, but it does not
cause inconsistency of beliefs as argued. We concluded Chapter 6 with
a more positive outlook on classical norms that recommend retaining
the consistency of beliefs. Critiques of classical logical norms are right
to draw our attention to circumstances in which inconsistency of beliefs
is irresolvable and, thus, best retained in the interest of the economy of
belief formation. The problem is that such situations cannot result from
the nature of beliefs themselves, as it has been claimed in the debate on
doxastic modesty statements.

Future research

It still remains to be seen how our logical theory of defeasible arguments
could add to the study of computational aspects of argumentation. The

21Doxastic modesty statements are most often connected to the “Paradox of the preface”
by Makinson (1965). In the preface paradox scenario, modest book authors to be justified
in believing that at least one of the statements from the book is false. Since they also
believe each statement taken on itself, they seem to entertain justified inconsistent beliefs.
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history of AI has been closely tied to the development of knowledge-
based systems that mimic commonsense reasoning and defeasible argu-
mentation is an important aspect of commonsense reasoning. Default
justification logic offers some foundational solutions to the problems of
understanding defeasible argumentation, but the solutions are yet to be
tested in practice. One possible research avenue could be carried out with
the help of cognitive psychologists to find out if there could be plausi-
ble computational models of human-like argumentation based on our
logic. Another collaboration could be possible with linguists to find out
whether default justification could explain phenomena like grammatical
evidentials that indicate sources of evidence for statements in natural
languages. Moreover, a systematic study of the properties of default
justification logic and the study of its relation to the existing structured
argumentation frameworks are still needed. On the implementation side,
one of the most helpful insights could be provided by a study of the
computational complexity of default justification logic. In general, de-
fault reasoning does not fare well in this aspect as compared to classical
propositional logic.

An interesting feature of default justification logic is that it can model
recovery from reasoning errors and exclusion and reinstatement of default
hypotheses (here called “warrants”). Detecting the winning hypothesis
bears some conceptual similarity to the use of data in machine learning
to learn a function that best maps inputs to outputs. One far-fetched goal
would be to explore whether there are ways to use the logic to extract
rules and increase transparency of machine learning models. Some work
has already been done in combining classification models and concept
learning with abstract argumentation (Amgoud and Serrurier, 2008).
Another worthwhile idea is to explore possibilities to combine the logic
with arguments with formal learning theory. Epistemic logic and learning
theory have already been connected by, for example, Gierasimczuk (2009),
who explores bridging dynamic epistemic logic and learning theory.

We will also mention some possible technical developments of default
justification logic that we did not consider in this thesis. First, there is a
first-order variant of justification logic that could be a promising extension
of the underlying logic of propositional justification assertions, from
which we started defining its default variant. This first-order justification
logic is closer to Reiter’s original default logic, which has first-order logic
as its underlying logic. With the added quantification over individual
terms, default rules might also be expressed as schemes. Secondly, it will
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be interesting to look at a multi-agent variant of default justification logic.
This is especially interesting with respect to its applications to argument
analysis, since argumentation is typically considered to be a multi-agent
practice. One challenge in this direction is to find out how to make sense
of an argumentative discourse in which participants do not disclose the
structure of reasons in such a way that they make it possible to obtain
warrant or backing of an argument.

In Chapter 5, we put emphasis on the defeasibility of normative rules
for human reasoning and the unsolvability of the problem of relevance.22

Both of these issues, in their own way, gave rise to Harman’s skeptical
challenge regarding the normative role of logic. There are good reasons
to think that the problem of normativity and the problem of logical
omniscience in epistemic logic are closely related. We assume that the
relevance problem in particular could shed light on why is it notori-
ously difficult in epistemic logic to tell relevant from irrelevant logical
consequences of an agent’s knowledge.

Chapter 6 was an attempt to show how even learning from oneself
does not need to always be successful, as doxastic modesty statements
exemplify. We would like to know what is the class of statements that
such doxastic modesty statements belong to. For this question to be
answered, we need to be able to formalize such paradoxical expressions
as the doxastic modesty statements that were considered here.

22In a nutshell, the problem of relevance consists in the impossibility to tell a priori
what information could potentially become relevant to any other piece of information
for any actual reasoning task.
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Summary

This thesis inquires into logical and philosophical underpinnings for
ordinary reasoning and argumentation. In Chapters 2, 3, and 4 we develop
default justification logic that models structured argumentation and we
contextualize this logic within the study of formal argumentation and
defeasible reasoning. In Chapter 5, we defend the normative role of logic
for human reasoning by using slow default logic. Finally, in Chapter 6, we
analyze some problems with learning doxastic modesty statements that
have been proposed as a way in which modest reasoners acknowledge
their fallibility.

We define default justification logic that models defeasible argumen-
tation. In default justification logic, we represent undercut and rebuttal
as the two basic types of conflicts among defeasible reasons. We show
that each standard abstract argumentation semantics, namely grounded,
complete, preferred and stable, can be defined in this logic. We argue that
having a logical system with an object level representation of structured
arguments has some advantages over using structured argumentation
frameworks. In particular, our justification logic does not need to use
any meta-level rules or build on a language of another logic to represent
arguments. Instead, object level formulas of the type t : F called “justi-
fication assertions”, and inference rules of default justification logic are
the only requirements to represent arguments. In this sense, it provides
a unique logical solution to the question of modelling defeasible argu-
ments, which has been widely discussed both in AI and in philosophy.
One of the main results we show is the relation of our logic to Dung’s
abstract argumentation frameworks. In particular, we show that our logic
provides “realizations” of Dung’s frameworks, that is, replaces Dung’s
abstract and implicit arguments with structured and explicit justification
assertions. It is also possible to, conversely, obtain Dung’s frameworks
from justification logic default theories.

181



182 SUMMARY

This logic is further extended with dynamic operators that model
changes to the basic justification logic default theories. We present the
expansion, contraction and revision operations, each in both prioritized
and non-prioritized version, which differ as to whether they always give
priority to the incoming information over the existing information. We
argue that the kind of attack called “undermining” in argumentation
theory amounts to those operations that contract a set of premises for
some default theory. When a set of premises is contracted by a formula,
this formula is considered attacked. Since for a default theory T = (W, D),
the set of facts W represents premises for default reasoning, removing a
formula from W is naturally interpreted as an undermining attack.

By defining rebuttal, undercut and undermining, we succeed in giving
a logical theory of all three standard types of argumentative attack in
AI. Furthermore, the logic of default justifications, together with the
default theory revision operations, provides a junction for the default and
plausible reasoning paradigms in AI. In the basic default justification logic
we deal with the classical default reasoning examples where exclusionary
reasons play an important role. Here, the importance of the justification
logic formalization of what Toulmin calls warrants improves the-state-of-
the-art solutions to modeling exclusionary reasons. With the addition of
undermining, we also enable handling inconsistent information inputs
and elimination of unreliable sources of justification, thus rounding off
our justification logic approach to argumentation.

We also used systems for non-monotonic reasoning to show that
Harman’s objections to the normative role of classical logic in human
reasoning are not successful. We especially argue against the idea of
exceptionless prescriptive rules and against the idea of a single “bridge
principle” that succinctly articulates the normative role of logic. In our
slow default logic, we take normative rules as being defeasible rules
only and we respect the fact that, given a set of initial beliefs, it is, in
principle, impossible to know what is a reasoning task about. The latter
fact is one of the facets of the frame problem known as “the relevance
problem”. We detect this problem as one of the underlying issues in
defining prescriptive bridge principle candidates.

Finally, we look into the problem of doxastic modesty statements that
result from an agent’s awareness of its own fallibility. According to some
philosophers, a doxastically modest agent needs to recognize its fallibility
and believe that it holds at least one false belief. Therefore, doxastically
modest agents seem to be justified in holding inconsistent beliefs. We
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argue that believing the direct expression of doxastic modesty with the
statement “At least one of my beliefs is false” does not in fact lead to
inconsistency.

Authors who argue that doxastically modest reasoners do have to be
inconsistent noticed that they should reformulate the mentioned doxastic
modesty statement to exempt the statement itself from the scope of
believed statements, thus settling on the statement “At least one of my
beliefs other than this one is false”. We argue against this ad hoc solution
on the ground that the statement unjustifiably gives special status to the
doxastic modesty statement itself.
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Samenvatting

Dit proefschrift onderzoekt de logische en filosofische onderbouwingen
van alledaagse redeneer- en argumentatiepatronen. In de hoofdstukken
2, 3 en 4 ontwikkelen we een default justification logic (een defaultlog-
ica van rechtvaardigingen) die gestructureerde argumentatie modelleert,
en plaatsen wij deze logica binnen de studie naar formele argumen-
tatie en herroepbare redeneringen. In hoofdstuk 5 verdedigen we de
normatieve rol van logica voor menselijk redeneren met behulp van
zogeheten langzame defaultlogica. Ten slotte analyseren we in hoofd-
stuk 6 enkele problemen die voorkomen bij het leren van doxastisch
bescheiden beweringen, beweringen die de zelfverklaarde feilbaarheid
van redeneerders uitdrukken.

We definiëren default justification logic als een logica die herroep-
bare redeneringen modelleert. In de default justification logic presenteren
wij undercutting (ondergraven) en rebuttal (weerleggen) als de twee ba-
sistypes van conflict in herroepbare redeneringen. We tonen aan dat
elke standaard abstracte argumentatiesemantiek, namelijk de gegronde,
de volledige, de stabiele en de preferred (waaraan de voorkeur wordt
gegeven) semantiek, gedefinieerd kan worden binnen deze logica. We
beargumenteren dat het hebben van een logisch systeem dat kan repre-
senteren structurele argumenten op object-niveau bepaalde voordelen
heeft boven het gebruik van gestructureerde argumentatieraamwerken.
In het bijzonder maakt onze justification logic geen gebruik van regels op
meta-niveau en is deze niet gestoeld op een ander soort logica om argu-
menten te representeren. In plaats daarvan zijn de enige benodigdheden
voor het representeren van argumenten formules op object-niveau van
het type t:F, genaamd “rechtvaardigingsbeweringen”, en afleidingsregels
van de default justification logic. In deze zin biedt de default justification
logic dus een unieke logische oplossing voor het vraagstuk omtrent het
modelleren van herroepbare argumenten, een onderwerp waarover breed
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gediscussieerd wordt binnen zowel de kunstmatige intelligentie als de
filosofie. Een van de belangrijkste resultaten is dat we de relatie aantonen
tussen onze logica en Dungs abstracte argumentatieraamwerken. We
laten zien dat onze logica “realisaties” biedt van Dungs raamwerken;
dat wil zeggen, onze logica vervangt Dungs abstracte en impliciete argu-
menten door expliciete rechtvaardigingsbeweringen. Het is echter ook
mogelijk om Dungs raamwerken te verkrijgen uit default-theorieën van
de justification logic.

Deze logica wordt verder uitgebreid met dynamische operatoren
die wijzigingen in de default-theorieën van de default justification logic
uitdrukken. We presenteren de uitbreiding-, samentrekking- en herzien-
ingsoperaties, zowel in geprioriteerde als non-geprioriteerde versies,
die verschillen in of ze altijd prioriteit geven aan de binnenkomende
informatie ten opzichte van de al bestaande informatie. We beargu-
menteren dat het soort aanval genaamd “undermining” (ondermijnen)
in de argumentatietheorie neerkomt op operaties die een verzameling
feiten samentrekt voor sommige defaulttheorieën. Wanneer een formule
een verzameling feiten samentrekt, beschouwen we deze formule als
“aangevallen”. Aangezien voor een default-theorie T = (W, D) geldt dat
de verzameling feiten W de premissen voor een default-redenering rep-
resenteert, wordt het verwijderen van een formule uit W geı̈nterpreteerd
als een undermining (ondermijnende) aanval.

Door het definiëren van rebuttal, undercut en undermining zijn we
erin geslaagd om een logische theorie te verschaffen voor alle drie de
standaardtypen van argumentatieve aanvallen binnen de kunstmatige
intelligentie. Daarnaast bieden de logica van default-rechtvaardiging,
samen met de herzieningsoperaties op defaulttheorieën, een knooppunt
tussen de default- en plausibele redeneerparadigma’s binnen de kunst-
matige intelligentie. In de default justification logic van hoofdstuk 2 hebben
we te maken met de klassieke default redeervoorbeelden waarin uit-
sluitingsredenen een belangrijke rol spelen. In dit geval is het belang
van het formaliseren binnen de justification logic van wat Toulmin “war-
rants” (rechtvaardigingen) noemt, dat het de state-of-the-art oplossingen
voor het modelleren van uitsluitende redeneringen verbetert. Met de
toevoeging van ondermijning maken we de omgang mogelijk met incon-
sistente informatieaanlevering en eliminatie van onbetrouwbare bronnen
van rechtvaardiging, waarmee we onze aanpak van argumentatie met
justification logic afronden.

We gebruiken ook systemen voor niet-monotoon redeneren om aan
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te tonen dat Harmans argumenten tegen de normatieve rol van klassieke
logica voor het menselijk redeneren niet succesvol zijn. We argumenteren
vooral tegen het idee van uitzonderingsloze prescriptieve regels en tegen
het idee van een enkel “bridge principle” (brugprincipe) dat de normatieve
rol van de logica beknopt uitdrukt. In onze langzame defaultlogica
beschouwen we normatieve regels enkel als herroepbare regels en we
respecteren het feit dat het, uitgaande van een verzameling aanvankelijke
overtuigingen, in principe onmogelijk is om te weten waar een rede-
neertaak precies over gaat. Dit laatste feit is een van de facetten van het
frame-probleem dat bekend staat als “het relevantieprobleem”, en we
ontdekten dit probleem als een van de onderliggende problemen bij het
definiëren van kandidaten voor een prescriptief bridge principle.

Ten slotte kijken we naar het probleem van doxastische bescheiden-
heidsbeweringen die het gevolg zijn van het erkennen door een actor van
zijn eigen feilbaarheid. Volgens sommige filosofen moet een doxastisch
bescheiden agent zijn feilbaarheid erkennen en geloven dat hij ten min-
ste één onware overtuiging heeft. Daarom lijken doxastisch bescheiden
actoren gerechtvaardigd om inconsistente overtuigingen te hebben. We
stellen dat het overtuigd zijn van de directe uitspraak van doxastische
bescheidenheid met de bewering “Ten minste één van mijn overtuigingen
is onwaar” in feite niet leidt tot inconsistentie.

Auteurs die argumenteren dat doxastisch bescheiden redeneerders
inconsistent moeten zijn, merken op dat ze de genoemde doxastische
bescheidenheidsbewering moeten herformuleren om de bewering zelf
van de reikwijdte van de geloofde beweringen vrij te stellen, en dus
genoegen nemen met de bewering: “Ten minste één van mijn andere
overtuigingen dan deze is onwaar”. We argumenteren tegen deze ad-hoc-
oplossing omdat deze ongerechtvaardigd een speciale status geeft aan
de doxastische bescheidenheidsbewering zelf.
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Appendix A

Proof of Theorem 2.5. The claim from left to right is obvious. For the other
direction, take CS to be some specific axiomatically appropriate and
injective constant specification. We first show that if a set Γ is JTCS-finitely
satisfiable, then for all formulas F ∈ Fm, it holds that Γ∪ {F} or Γ∪ {¬F}
is JTCS-finitely satisfiable. Suppose that Γ is JTCS-finitely satisfiable and
that Γ ∪ {F} and Γ ∪ {¬F} are both not JTCS-finitely satisfiable. Then
there would be finite subsets Γ′ and Γ′′ of Γ such that Γ′ ∪ {F} and
Γ′′ ∪ {¬F} are not JTCS satisfiable. Since for no interpretation I it holds
that I |= {F,¬F}, Γ′ ∪ {F,¬F} is never JTCS satisfiable. Note that for any
possible interpretation I one of the formulas F or ¬F holds. This means
that I |= Γ′ ⊆ A′ for a class of interpretations A′ such that for each
I ′ ∈ A′, it holds that I ′ |= ¬F. In a similar way we get that I |= Γ′′ ⊆ A′′
for a class A′′ consisting of the interpretations I ′′ such that I ′′ |= F.
Therefore, we have that I |= Γ′ ∩ I |= Γ′′ = ∅ and, thus, Γ′ ∪ Γ′′ is not
JTCS-satisfiable. But Γ′ ∪ Γ′′ is a finite subset of Γ and this contradicts the
assumption that Γ is JTCS-finitely satisfiable.

The next step is proving a JTCS variant of the Lindenbaum lemma.
Using the above-proven statement that for any JTCS-finitely satisfiable
set of formulas Γ and any formula F, Γ∪ {F} or Γ∪ {¬F} is JTCS-finitely
satisfiable together with the fact that Γ ∪ {F,¬F} is never JTCS-finitely
satisfiable, we can construct maximally JTCS-finitely satisfiable sets. Let
F1, F2, F3, . . . be an enumeration of F ∈ Fm. For a JTCS-finitely satisfiable
set Γ and for all i ∈N define an increasing sequence of sets of formulas
as follows:

Γ0 = Γ

Γi+1 = Γi ∪ {Fi} if Γi ∪ {F1} is JTCS-finitely satisfiable, otherwise
Γi+1 = Γi ∪ {¬Fi}
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Γ′ =
⋃∞

i=0 Γi

We can prove that Γ′ is JTCS-finitely satisfiable by induction. The base
case Γ0 = Γ holds by assumption. Then we claim that for all i ∈ N, Γi
is JTCS-finitely satisfiable. For some n ∈ N, take Γn to be JTCS-finitely
satisfiable. Then either Γ ∪ {Fn} or Γ ∪ {¬Fn} is JTCS-finitely satisfiable
and, therefore, Γn+1 is also JTCS-finitely satisfiable.

From the construction of the increasing sequence, we have that for
any finite set Γk ⊆ Γ′ there is a JTCS-finitely satisfiable finite set Γk+1 ⊆ Γ′

such that Γk ⊆ Γk+1 and, therefore, Γk is JTCS-satisfiable. Since any finite
subset of Γ′ is JTCS satisfiable, Γ′ is JTCS-finitely satisfiable. The set Γ′

is maximal according to the enumeration of the set of formulas Fm and
contains exactly one of Fi or ¬Fi for all i ∈N.

Now we define a valuation v such that v(P) = True iff P ∈ Γ′ and
the reason assignment ∗(t) = {F | t : F ∈ Γ′}. We only need to check the
conditions on the reason assignment function. First, we show that ∗(·)
satisfies the application condition. Since the formula t : (F → G)→ (u :
F → (t · u) : G) is JTCS valid, it is contained in Γ′. If F → G ∈ ∗(t) and
F ∈ ∗(u), then {t : (F → G), u : F} ∈ Γ′. Since Γ is closed under Modus
ponens, we have that (t · u) : G ∈ Γ′ and, therefore, G ∈ ∗(t · u). Similarly,
since the formulas t : F → (t + u) : F and u : F → (t + u) : F are both in
Γ′ we can easily check that the sum condition holds for ∗(·).

Finally, we have defined an interpretation I = (∗, v) that meets CS
and we need to prove that truth in this interpretation is equivalent to
inclusion in Γ′:

I |= F iff F ∈ Γ′

The proof is by induction on the structure of F. For the base case, suppose
F is an atomic formula P: I |= P iff v(P) = True iff P ∈ Γ′.

For the inductive step, suppose that if the result holds for F and G,
then it also holds for ¬F, F ∧ G, F ∨ G, F → G and t : F. For the negation
case: I |= ¬F iff I 6|= F. By the inductive hypothesis, I 6|= F iff F 6∈ Γ′. By
the maximality of Γ′, we have that F 6∈ Γ′ iff ¬F ∈ Γ′.

For the conjunction case: I |= F ∧ G iff I |= F and I |= G. By the
inductive hypothesis, I |= F and I |= G iff F ∈ Γ′ and G ∈ Γ′ iff
F ∧ G ∈ Γ′. Since other connectives are definable in terms of ¬ and ∧, we
skip the remaining cases.

Finally for the justified formula case: I |= t : F iff F ∈ ∗(t). By the
definition of ∗(·), it holds that F ∈ ∗(t) iff t : F ∈ Γ′.
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Therefore, for any JTCS-finitely satisfiable set Γ there is an interpreta-
tion I based on a maximal JTCS-finitely satisfiable extension Γ′ of Γ such
that I |= Γ.
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Damir, Dado, Višeslav and Vatroslav. Special thanks goes to my always
positive in-laws, cheerful family Vukasović: Vesna, Zoran, Sonja, Kruno,
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