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Chapter 1

Introduction

Argumentation is a human manner of making a decision, individually
or collectively, even if the available information is incomplete or is in-
consistent. Argumentation has recently received increased attention in
artificial intelligence (AI for short), specifically, in the sub-field of artificial
(computational) argumentation. AI supports the field of argumentation,
with its formal and computational systems, for extracting arguments from
a given knowledge representation to evaluating arguments and making a
conclusion.

This work mainly concerns abstract dialectical frameworks, a system-
atic and flexible argumentation formalism. The formalism is explained
in Section 2.5. In this section we deal with the motivations of studying
argumentation theory and formal argumentation. That is, in Section 1.1 we
are mainly concerned to responding to the query: ‘Why is argumentation
theory a significant and valuable topic to study?’ Thus, first we clarify
the importance of argumentation theory. To this end, in Section 1.1.1,
we explain briefly the relevance of argumentation theory in our daily life.
Then, in Section 1.1.2 we present a short history of argumentation, from
Aristotle’s time to the present. In addition, we shortly explain the historical
trends of informal and formal argumentation.

Following the seminal work by Pollock, who has introduced the notion
of defeasible logic, formal argumentation has received increasing attention
in artificial intelligence. In Section 1.2 we present formal argumentation,
generally. Then, to show that a discussion can be modeled via formal
argumentation frameworks we present an example in Section 1.2.1. Then,
in Section 1.2.2 we discuss the importance of one of the most prominent
approaches in formal argumentation, namely abstract argumentation frame-



works (AFs for short) introduced by Dung. Dung’s formalism focuses on
attack among arguments, and investigates the evaluation of the accept-
ability of conflicting arguments. In the remainder of Section 1.2.2 we
explain how the discussion example given in Section 1.2.1 can be modeled
and evaluated via AFs. Despite the popularity of AFs for representing
argumentation contexts and evaluating of the status of arguments therein,
these frameworks are limited to model direct attack between arguments.
Thus, various attempts have been done by researchers to generalize AFs
to cover additional relevant relationships among arguments. In this work
we are concerned with abstract dialectical frameworks (ADF's for short) as
an expressive generalization of AFs. The importance and capabilities of
ADFs have been presented in Section 1.2.3.

The remainder of the introduction is organised as follows. In Section 1.3,
we present the main contributions of this thesis comprehensively, while
also summarising the content of each chapter. In section 1.4, we present
the list of our publications and we indicate which chapter contains the
corresponding contribution.

1.1 Argumentation Theory

A motivating question for this section is; ‘Why is argumentation theory a
significant and valuable topic to study?’ To clarify the role of argumentation
in Section 1.1.1 we explain that argumentation plays a crucial role in our
life. Then, in Section 1.1.2 we briefly present the historical importance
of argumentation from Aristotle time to the present, and we discuss the
future of argumentation in artificial intelligence. In Section 1.1.3 we
investigate differences between classical logic and argumentation, to clarify
the importance and role of argumentation in automated reasoning.

1.1.1 Argumentation is Everywhere

Arguing is so natural for all of us that we do it all the time either with
ourselves or with other people. Argumentation is an essential part of our
daily life both in our individual and social activities. Argumentation can
be in the form of monologue, in our mind, by evaluating arguments and
counterarguments, or it can be in the form of dialogue by entering a discus-
sion or a debate in which arguments are exchanged between agents (van
Eemeren et al., 2014). We argue with ourselves for and against a subject
when we want to make a decision. Agents may engage in the exchange
of arguments for a variety of purposes with several dialogue types having



been identified in the literature, such as inquiry, negotiation, information
seeking, deliberation, and persuasion (Walton and Krabbe, 1995). For
instance, we do argumentation when we discuss with our supervisors about
a project, convince a job committee that we are the perfect person to
hire, talk to our parents about where to go for holiday, or try to persuade
colleagues why the topic of our study is an important, interesting and
crucial subject to study.

In a complex task usually humans can handle incomplete and inconsis-
tent information via argumentation for reasoning and making a decision.
Human logical reasoning can be thought of as a process of argumentative
discourse which consists of one or more parties supporting their ideas or
opinions. Argumentative discourse offers agents a method to examine the
discussed ideas and possibly make a choice among them. A good discussion
may lead to a justifiable decision. At the moment of decision making, we
are usually not certain of what is the consequence of our decisions, but
we may know the set of possible consequences that our decision can lead
to. That is, we usually make decisions based on argumentation under
uncertainty. A rational decision maker prefers to make a decision with the
least regret or the most satisfaction. This can be achieved via argumenta-
tion. A decision that can be justified by the participants in a discussion,
might be taken after a process of argumentation and reasoning together. A
decision may be improved by argumentative discussion among participants
rather than making a decision via monologue. A right decision, may lead
to a cure for a disease, to an investment in a project by a business person,
to a judgment in a crime case, and to a fair debate.

However, at the moment of decision making we are faced with incom-
plete and uncertain information, that is, with new knowledge we may
change our decision. This shows the non-monotonic nature of human
reasoning, whereas reasoning in classical logic is monotonic, i.e., retraction
of conclusions after adding premises is not possible.

Early non-monotonic logics were proposed in the Artificial Intelligence
journal (Bobrow, 1980). One of the strengths of the argumentation ap-
proach is that it turns out to be powerful enough to model a wide range
of formalisms for non-monotonic reasoning. A significant paper address-
ing logic, non-monotonic reasoning and logic programming is proposed by
Dung (1995). Another key example that connects non-monotonic reasoning
and argumentation is (Pollock, 1987). Furthermore, (Garcia and Simari,
2004) contains the notions of logic programming, argumentation and
non-monotonic reasoning, namely, defeasible logic programming (DeLP).



Formal argumentation can present the non-monotonic notion of logical
consequence in the form of argument construction, argument relations and
argument evaluation with the aim of resolving conflicts among arguments.

In the field of formal argumentation theory different argumentation
frameworks have been proposed for modeling and evaluating arguments.
Models of argumentation reflect how arguments relate to one another, and
semantics of models of argumentation reflect how to use argumentation
for making a decision under inconsistent, controversial and incomplete
information (Bench-Capon and Dunne, 2007).

The interest in carrying out investigations connecting artificial intelli-
gence and formal argumentation has been motivated by several reasons.
In the following we present a list of the main reasons presented in this
section.

1. Argumentation is everywhere.

2. Furthermore, argumentation has a crucial role in all aspects of life to
make a good decision like in: legal reasoning, philosophy, psychology
and politics.

3. Argumentation has vital connections to other fields of Al, in particu-
lar, knowledge representation, non-monotonic reasoning and game
theory.

4. In the field of argumentation we are often faced with complex argu-
mentation, i.e., argumentation with a big number of arguments and
relations among arguments.

5. To address realistic decision problems, systematic reasoning methods
for making a good decision are mandatory.

6. The existence of a wide variety of argumentation styles in real life
leads to a variety of formal models of argumentation and semantics
for evaluating arguments (Baroni et al., 2018b; van Eemeren et al.,
2014).

How can Al be used in argumentation? If we consider the list of
items that are presented as motivations for researchers in the AI domain
to consider argumentation, it would be good to think about the relation
between Al and argumentation and investigate how Al can be used in
argumentation. Al supports different aspects of human reasoning. First,
argument mining techniques can be used to extract arguments (Cabrio and
Villata, 2018; Budzynska et al., 2014; Lippi and Torroni, 2016; Lawrence
and Reed, 2020). Then, the structure of the arguments are used to explore



the relation among arguments (Prakken, 2010; Pollock, 1987). In the next
step, based on the relations among arguments, sets of jointly acceptable
arguments can be identified in an automated way. Then, a conclusion can
be drawn via this set of arguments. Argumentation pervades artificial
intelligence as a simulation of human reasoning. These encourages the
development of computational models of argumentation with the aim of
automated reasoning.

1.1.2 History of Argumentation Theory

Argumentation is deeply rooted in human history, and the academic study
of argumentation goes back to the ancient Greece in theoretical philosophy.
Reasoning via argumentation has been a specific topic in philosophy since
the time of Aristotle. The extensive work on argumentation from Aristotle
to today’s computational argumentation in artificial intelligence shows how
far research in argumentation has come (van Eemeren and Verheij, 2017;
van Eemeren et al., 2014).

According to Leibniz, “the only way to rectify our reasonings is to
make them as tangible as those of the Mathematicians, so that we can find
our error at a glance, and when there are disputes among persons, we can
simply say: Let us calculate [calculemus], without further ado, to see who
is right” (Leibniz, 1685). Put differently, developing automated methods
capturing the human ability of reasoning is an old, ambitious, and ongoing
research goal.

Big dreams bring extraordinary results. According to Leibniz’s point of
view, human reasoning follows determinate axioms of logic, and conclusions
are based on how the mind operates, implicitly following algorithmic
procedures. In modern terms, one would rephrase his dream as the aim
to design a formal system and a decision procedure for making a decision
without any doubt. One could say that Leibniz was thinking about a
machine that can do the following tasks: 1. arguing as a human, and
2. reasoning automatically and finding a correct conclusion, in the presence
of conflicts among arguments. As he said he was looking for a method to
investigate who is right in a dispute, thus, one may conclude that reasoning
in debates and discussions has always been a central topic of automated
reasoning in the legal domain. The study of argumentation and its role
in human reasoning lies in the intersection of philosophy, logic and legal
reasoning (Rissland et al., 2003).

However, realizing Leibniz’s dream has proven to be a formidable task.
Thanks to pioneering work in logic and the theory of computation, and



especially to the fundamental works of Kurt Godel and Alan Turing, we
now understand better what computers cannot do. Due to the complex
and varied structure of argumentation, the attempt to develop a universal
automated system to model and evaluate argumentation has as yet failed.
The developments in computer science and artificial intelligence opened
up the door to some of the most fascinating developments and ideas of
the past centuries in automated reasoning. Currently researchers of the
domain of formal argumentation are not as optimistic as Leibniz looking
for a universal formal model of decision procedure. Instead, they are eager
to present different formalisms for argumentation, each of which is tuned
to the modeling of an aspect of the non-monotonic characterisation of
argumentation. Over the last two decades, argumentation has become a
fertile research area in artificial intelligence (Al for short) (Bench-Capon
and Dunne, 2007). Formalisms of argumentation are used to model and
evaluate argumentation, and Al tools are used for testing.

The landscape of studying argumentation in philosophy, Al, linguistics
and elsewhere is wide. In the following we briefly present the historical
trend of formal and informal argumentation in the late 20th century (see
(Prakken, 2017; van Eemeren et al., 2014) for an overview).

Among the researchers in informal argumentation, we concentrate on
Toulmin and his influential book ‘The Uses of Argument’ (Toulmin, 2003)
in which he presented the limitations of using classical logic for modeling
human reasoning. He believed that deductive logic is not sufficient for the
understanding of human reasoning and argumentation. According to Toul-
min, deductive reasoning cannot cover all aspects of human argumentation,
for instance, because of counterarguments, i.e., inconsistent information in
argumentation.

Toulmin’s work can be assumed as an early example of informal logic
and argumentation research. He proposed his model of arguing based on
discussion in the court room. Applications of his schemes are presented
in Introduction to Reasoning (1979) (Toulmin et al., 1984). Toulmin’s
works can be considered as first steps towards the collecting of schemes of
argumentation by Walton (2008). However, the work of Toulmin (2003)
and the relevant works on argumentation schemes was rarely related to
computational arguments until around 2000 (Reed and Norman, 2004;
Verheij, 2009; Modgil and Caminada, 2009). The classification of argu-
ments based on argument schemes by Walton has been investigated in
computational argumentation (Verheij, 2003a; Bex et al., 2013).

Early systems for argumentation-based inference preceded the heyday



non-monotonic logic in the 1980s and 1990s. For instance, Lorenzen and
Lorenz developed formal dialogue systems for argumentation by using a
game formulation of disputes among agents in argumentation (Lorenzen
and Lorenz, 1978). Such early work on dialogue logic reformulates existing
monotonic notions of logical consequence. Non-monotonic logic had become
fashionable around 1980. It is a power of non-monotonic logic that it helps
finding a conclusion in reasoning with inconsistent and incomplete informa-
tion. Thus, the idea arose in the field of argumentation that non-monotonic
inference rules can be used to model argumentation. Current research in
fields of non-monotonic logic, belief revision and computational argument
shows that many features of non-mathematical reasoning can be formalised.
The first International Conference on Formal and Applied Practical Rea-
soning (FAPR) in 1996, addresses the interdisciplinary area of practical
reasoning in artificial intelligence. Moreover, various interdisciplinary col-
laborations, specifically, between formal and informal argumentation, have
been reported in (Reed and Norman, 2004). Currently, the International
Conference on Computational Models of Argument (COMMA) has been
a regular forum for the exchange of the results computational argumen-
tation, since 2006. Furthermore, an open access interdisciplinary journal
of Argument & Computation (A&C for short) has provided a dedicated
venue for papers in the field of computational argumentation.

Among the many works that present systems for formal argumentation,
we now focus on the work of Pollock who can be thought of as a father of
argumentation and AI. Pollock introduced the notable notion of defeasible
reasoning in his work (Pollock, 1987). While Toulmin criticized that
deductive inference rules did not fit well with the nature of argumentation
and reasoning, Pollock proposed the philosophical notion of defeasible
reasoning that better fits with the character of human argumentation
and reasoning. By proposing the notion of defeasible reasoning Pollock
rejected the point of view that all arguments in formal argumentation have
to be deductively valid. In his research, Pollock assumes that reasoning
outside of mathematics involves defeasible steps (Pollock, 1995, p. 41).
Many ideas that are presented by Pollock are still important aspects of
formal argumentation. For instance, Pollock considered the strength of
arguments in his work and the notion of argument acceptability. He also
distinguished kinds of defeat, in particular undercutting and rebutting
defeat. He connected to Al by developing OSCAR, a software project which
is an implementation of Pollock’s idea on defeasible reasoning (Pollock,
1987).



Then in 1995 Dung presented his influential formalism of abstract
argumentation frameworks in which argumentation is formalized based on
arguments and attacks between them (Dung, 1995). A generalization of
Dung’s formalism is the basis of our work. In Section 1.2.2, we briefly
explain why Dung’s argumentation framework is a significant framework
in Al and argumentation theory, and in Section 2.3, we discuss the formal
definitions of Dung’s framework in detail.

Recently formal and computational argumentation methods have been
applied in a number of applications like in law (Prakken and Sartor,
2015), medicine (Hunter and Williams, 2012; Fox and Das, 2000), health
promotion (Grasso et al., 2000), debating (Slonim et al., 2021), and dispute
mediation (Janier et al., 2016) (see (Atkinson et al., 2017) for a survey).
Moreover, several combinations of argumentation and machine learning
have been studied (Cocarascu and Toni, 2016; Ayoobi et al., 2019). The
developments of techniques of Al in argumentation theory have led to
the design of machines in real-world situations. For instance, recently the
autonomous debating system Project Debater has been developed that can
perform a debate with a human expert debater (Slonim et al., 2021). This
achievement was so notable and unique that it has been published in the
top ranked science journal Nature on March 18, 2021.

Currently, having automated argumentation systems that can help
people to make better choices is the goal of a field of human-machine
interaction in Al. For instance, an automated persuasion system is a
system for persuading agents to do (or not to do) an action via a persuasion
dialogue (Potyka et al., 2019; Hunter, 2015, 2018; Hadoux and Hunter,
2018, 2019; Chalaguine and Hunter, 2020). Computational persuasion
systems can for instance have the aim to convince people to change a
habit. Having argumentation systems with the capability of formulating
and evaluating complex human argumentation that leads to high-level
human-machine interactions is a goal of argumentation theory and Al

1.1.3 Distinction Between Logic and Argumentation

Automated reasoning is concerned with applying reasoning in the form
of logic. On the other hand, formal argumentation is concerned with
automated argumentation to evaluate arguments. As mentioned in Sec-
tion 1.1.1, researchers of artificial intelligence-related areas are promoted
in studying of formal argumentation. For instance, Dung’s landmark paper
in formal argumentation has been cited more that 4000 times, based on
google scholar. In this section we clarify the distinction between logic and
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formal argumentation in automated reasoning.

The development of formal logic played a significant role in automated
reasoning (Davis et al., 1983; Davis, 2000), that led to artificial intelligence.
Several computational models of argumentation have been proposed for
automated reasoning. A prominent example of a software model for
argumentative reasoning is the OSCAR system (Pollock, 1987), developed
in 1987. A natural question arises: “How does argumentation in AT differ
from logic?” A key difference between classical logic and argumentation
is the monotonic nature of classical logic and the non-monotonic nature
of argumentation/human reasoning. We often make a decision under
inconsistent and incomplete information, where deduction of classical logic
is not a very useful reasoning model, as Toulmin argued in (Toulmin, 2003)
and we presented it in Section 1.1.2.

What is the meaning of an inconsistent piece of information?
Our argumentation contains arguments and counterarguments, thus a
piece of information for a reasoning may be inconsistent. However, a set
of sentences has a model in classical logic if it is a consistent set. In other
words, when a set of sentences is inconsistent, then anything is deductively
implied in classical logic. Although the mathematical proof of an argument
may not be possible, we would like to know whether an argument is
reasonable or persuasive via argumentation. The idea of argumentation is
that whether or not an agent believes an argument depends on whether
or not this argument can be defended against the counterarguments. In
human reasoning and argumentation, in order to draw a conclusion in an
inconsistent piece of information we focus on a consistent subset of a given
information.

What is the meaning of incomplete information? In our daily
life information in any reasoning task is incomplete, since always there
exists a new piece of information that can be added. That is, argumentation
involves incomplete information. We argue and make a decision under
incomplete information and an argumentation may not be convincing
anymore in the light of new information. However, in classical logic when
information is incomplete, then nothing is derivable deductively.

All in all, since our reasoning involves uncertain and inconsistent
information, new information may cause a change in the conclusions drawn.
This reflects the fact that argumentation is a non-monotonic process. In
contrast, in classical logic one proves statements. If the proof exists, then a
queried statement is not refutable. That is, if the correctness of a statement
is proven, it remains correct, even in presence of new information. Thus,
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classical logic is a monotonic form of reasoning.

Furthermore, a formal logical proof is a proof in which every logical
inference has been checked back to the fundamental axioms of logic, while
the main aim of argumentation is reasoning based on arguments, either
in single-agent systems or multi-agent systems. Argumentation can be
used in reasoning for persuasion, deliberation, dispute, and discussion with
or without formal proof. In general, argumentation and argumentative
dialectic reasoning is closer to human reasoning than strict classical logic
and deductive inference rules of logic. Thus, human reasoning can be
automated through argumentation in which non-monotonic inference can be
modelled as the competition between arguments. Indeed in argumentation
one has to argue why some conclusions can/should be considered and others
not. However, recently in (Besnard et al., 2020) the connections between
a formalism of argumentation which is called abstract argumentation
frameworks and logic have been considered. This paper is a survey for
investigating where logic has been used to capture different aspects of
abstract argumentation frameworks.

1.2 Formal Argumentation

There exist various formalisms for the modeling of argumentation, evaluat-
ing of arguments, and drawing of conclusions. First in Section 1.2.1, we
present an example of discussion and we show how this discussion can be
represented formally. In Section 1.2.2, we informally introduce abstract
argumentation frameworks (AF's for short), presented in Dung’s influential
paper (Dung, 1995). Then, in Section 1.2.3 we discuss abstract dialectical
frameworks (ADF's for short), an expressive generalization of AFs, first
introduced in (Brewka and Woltran, 2010), and further refined in (Brewka
et al., 2013, 2017a, 2018a).

1.2.1 A Discussion Example

We start this section with a simple discussion example to present the
intuition behind formal argumentation,

Example 1.1 Ali and Maryam came to the Netherlands to do their PhD
i the beginning of March. They are looking for a proper health insurance
with a good coverage and a good price. After a research about the terms
and conditions of different insurances they are going to share their points
of view with each other.
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Ali says, “I think Menzis is the best insurance for us to buy, since it has
a good coverage and it is the cheapest insurance among other insurances
with the same coverage per month.”

Maryam answers: “But I do not agree with you, because coverage of Univé
1s the same as Menzis, but it is cheaper per month.” It seems Maryam’s
statement defeats Ali’s statement.

Ali continues the discussion by presenting a new piece of information that
Maryam did not pay attention to. Ali says, “Do you know that based on
Univé’s terms, one has to buy the insurance from the first of February. But
we arrived here the first of March!” Thus, if we choose Univé we have to
pay one month extra. That is, we would have to pay more in a year by
buying Univé.

By this new piece of information Ali defeats Maryam’s statement and also
supports his first statement. There is a saying “The one who laughs last,
laughs best.” The discussion between Ali and Maryam is in Figure 1.1.

&

e a1: Menzis is the best insurance

o e my: Univé is cheaper
e ay: You have to pay Univé from per month with the same
1st Feb. You arrived 1st March. coverage!

Right?!

Figure 1.1: Discussion between two agents for buying an insurance

The discussion between Ali and Maryam can be illustrated formally by
a directed graph, as in Figure 1.2. In the associated graph each mnode
indicates an argument and each verter shows attack between arguments.
In Figure 1.2 a directed arrow from my to a1 represents that there is a
conflict between these two arguments and argument m1 attacks argument
a1. The graph in Figure 1.2 is a formal way of presenting the discussion
between Ali and Maryam, presented in Figure 1.1.

Figure 1.2: The graph illustration of the discussion of Example 1.1
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The formal model of abstract argumentation can be used to study argu-
mentative reasoning. This formal model abstracts away from the content
of argument, and focuses on the attack relation among arguments. The
formal model of the discussion Example 1.1 presents that there is an attack
from a9 to mq, and there is an attack from m; to a;. While each argument
can be considered as believable/acceptable as an isolated argument, it is
not reasonable/rational to accept or believe all arguments together. For
instance, in Example 1.1, it is not rational to choose all arguments together,
ie., {a1,my,az}.

It is common in each argumentation that the acceptance of some of
the arguments is incompatible with the acceptance of other arguments. A
goal of each debate/discussion is to find which positions are acceptable via
argumentation. The idea of argumentative reasoning is that an argument
or a statement is believable/acceptable if it can be defended successfully
against its counterarguments. In any argumentation, we are eager to iden-
tify the set of jointly acceptable arguments. In other words, a key question
in formal argumentation is “How can we choose believable/acceptable
arguments in a given formalism?” The formal model of the discussion of
Example 1.1 implies that argument as is acceptable, since it is not attacked
by any arguments. Furthermore, argument mj is not acceptable since
it is attacked by as and there is no defence for m;. Although argument
ay is attacked by argument m;, the set {a1, a2} is acceptable, since a; is
defended by as.

Roughly speaking, in a formal argumentation process we can distinguish
the following steps: 1. We consider a given knowledge base. 2. From the
knowledge base we construct the abstract representation of arguments and
model the relation among arguments. 3. After modeling an argumentation
in an abstract way, we evaluate the arguments.

Based on (Atkinson et al., 2017) argumentation consists of five layers:
structural, relational, dialogical, assessment, and rhetorical, although the
distinction among these layers may not be strict in some contexts. Each
layer is concerned with answering a query, as follows.

e The structure layer deals with the question ‘How are arguments
constructed?’ There are a number of ways to produce arguments
from a given knowledge base. One can consider an argument as a pair
(¢, @) where ¢ is a minimal set of consistent formulas that logically
entails «, with respect to a given logical system. There are other
approaches to extract arguments in a knowledge base, for instance,
assumption-based argumentation (ABA for short) (Toni, 2012, 2014),
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ASPIC+ (Modgil and Prakken, 2014), and defeasible logic program-
ming (DeLP) (Garcia and Simari, 2004; Verheij, 2003b). The field of
argument mining, which studies the extraction of arguments from
natural language, has recently received increased attention (Cabrio
and Villata, 2018; Lippi and Torroni, 2015). The structure of argu-
ments is beyond the topic of this work, and not further discussed.The
interested reader on argument mining techniques and applications
can see (Budzynska et al., 2014; Lippi and Torroni, 2016).

The relational layer is concerned with the question ‘What are the
relations among arguments?’ After extracting arguments from a
knowledge base, it is necessary to clarify the relation among argu-
ments to see how an argument relates to other arguments in favor
and against the argument (Pollock, 1987). To this end, one can use
the structure of arguments (Prakken, 2010).

The dialogical layer addresses the question ‘How can argumenta-
tion be undertaken in dialogues?’ Basically, the term ‘dialectical
method’ refers to a discussion among two or more people who have
different points of view about a subject but are willing to find a rea-
sonable conflict resolution by argumentation. In classical philosophy,
dialectic is a method of reasoning based on arguments and counter-
arguments (Krabbe, 2006; Macoubrie, 2003). There are several types
of dialogue: inquiry, negotiation, information seeking, deliberation,
and persuasion. Based on the rules of a dialogue, agents argue for or
against an argument. In a discussion we argue in a cooperative or
competitive manner to reach an agreement.

The assessment layer answers the question ‘How can arguments be
evaluated and conclusions drawn?’ Answering this question leads to
the introduction of several types of semantics in each argumentation
formalism. Evaluation of arguments in argumentation formalisms has
received increased attention in the two last decades. We present two
powerful formalisms of argumentation in Chapter 2, namely, abstract
argumentation frameworks (AFs), introduced informally in 1.2.2,
and abstract dialectical frameworks (ADFs). Then, we present a
set of semantics of AFs and ADFs in Section 2.3 and Section 2.5,
respectively. For the purpose of automated reasoning, a number of
solvers for formalisms of argumentation has been proposed. Further-
more, the International Competition on Computational Models of
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Argumentation (ICCMA) was organized to evaluate the solvers.!

e The rhetorical layer clarifies the question ‘How can the argumen-
tation be adapted to convince agents?’ This layer may be absent
in some contexts, for instance, when arguments are built from a
knowledge base. However, when an agent tries to persuade another
agent to do something, then it seems that some rhetorical device
is used (Chalaguine and Hunter, 2020; Hunter, 2018). Rhetorical
aspects of argumentation are not a topic of our work.

1.2.2 Dung’s Argumentation Frameworks

Since the landmark paper by Dung (1995) has been published in 1995,
abstract argumentation frameworks (AFs for short) have gained more and
more significance in the Al domain. AFs have become a base for formal
and computational argumentation (Baroni et al., 2020).The reader may
find the definition and examples of AFs in the background chapter in
Section 2.3. Some reasons to show that AFs are significant frameworks of
argumentation are as follows.

e First of all, AFs have proven useful to capture the essence of different
non-monotonic formalisms. It is shown in (Dung, 1995) that several
non-monotonic reasoning formalisms from the Al domain, such as
Pollock’s defeasible reasoning (Pollock, 1987), Reiter’s default logic
(Reiter, 1980), and logic programming (Gabbay et al., 1998) can be
regarded as instances of AF's.

e Further, in (Dung, 1995) it is shown that AFs can capture the
solutions of some well-known practical problems, namely, the theory
of n-person games and the well-known stable marriage problem.
Recently, in (Bistarelli and Santini, 2020) the connection between
several forms of AFs and several kinds of stable matching problems
has been studied.

e In addition, compared to other non-monotonic formalisms (which
are built on top of classical logical syntax), AFs are a much simpler
formalism indeed, they are just directed graphs in which nodes
present argument and directed edges indicate attack relation among
arguments.

'http://argumentationcompetition.org
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e Moreover, AFs are nowadays an integral concept in several advanced
argumentation-based formalisms in the sense that their semantics
are defined based on a formal connection to Dung AFs, for instance
by a translation, instantiation or extension.

e Furthermore, the simplicity of the syntax of AFs together with the
powerful semantics of AFs have made them an attractive modeling
and evaluating tool in diverse areas, like multi-agent systems (McBur-
ney et al., 2012), multi-agent negotiation (Amgoud et al., 2007) and
legal reasoning (Bench-Capon and Dunne, 2005).

e Based on Google Scholar there are more than 4000 citations to (Dung,
1995).

e As mentioned in Section 1.1.2, automated reasoning methods in the
legal domain have a long history (see (Sergot et al., 1986)). Since
then many connections to abstract argumentation have been made.
In (Bench-Capon, 2020) the role of AFs in Al and Law has been
discussed.

e The complexity of reasoning problems that can be defined for several
semantics for AFs is well understood (Dvofak and Dunne, 2018) and
ranges from tractability up to the second level of the polynomial
hierarchy. Furthermore, the analysis of complexity for restricted
classes of AFs has also been studied. Such restrictions can make
decision problems easier from a complexity perspective (Dvordk et al.,
2012).

e Due to the fact that AFs have become the centerpiece of higher-level
argumentation systems, there is a growing interest in efficient solving
techniques for reasoning tasks within AFs. This is witnessed by
efficient algorithms for reasoning tasks in AF's in terms of answer-set-
programming (Egly et al., 2010), and software systems for solving
reasoning tasks in AFs (Cerutti et al., 2017; Charwat et al., 2015).

e Finally, the relevance of AF's is witnessed by the International Compe-
tition on Computational Models of Argumentation (ICCMA), where
systems for solving different problems on AFs compete on different
tracks (Thimm and Villata, 2017).

The fundamental contribution of Dung is to abstract away from the content
of particular arguments and to focus only on conflicts among arguments,

17



where each argument is viewed as an atomic item. The only information
AF's take into account is whether an argument attacks another one or not.
Conflicts among arguments is a key factor for having an argumentative
discussion, since otherwise there is nothing to argue about. The discussion
of Example 1.1, depicted in Figure 1.2 is an instance of an AF.

A key query is “Which sets of arguments fit together, or which set of
arguments are acceptable together.” Semantics single out coherent subsets
of arguments which “fit” together, according to specific criteria (Baroni
et al., 2011). In other words, each semantics clarifies a point of view
of accepting a set of arguments together, thus, there exist several types
of semantics. More formally, an AF semantics takes an argumentation
framework as input and produces as output a collection of sets of arguments,
called extensions. An extension is a jointly acceptable set of arguments.

In abstract argumentation, the most basic concept underlying nearly
all semantics is conflict-freeness: a set of arguments is called conflict-
free if it does not contain any conflicting arguments. Different semantics
provide different ways to solve the inherent conflicts between statements.
Furthermore, in the presence of conflicts an argument cannot be accepted
just because it exists, but it has to be defended against possible counter-
arguments. In AFs, this intuition is captured by the notion of admissibility,
which also plays an important role with respect to rationality postulates
(Caminada and Amgoud, 2007). In the AF of Figure 1.2, it is not reasonable
to accept conflicting arguments. Thus, argument m; can be chosen with
neither a; nor as. There is no doubt on the acceptance of as, since no
counterargument was proposed against as. Furthermore, we can accept
a1 and ao jointly, since a; is defended by a9 against the attack of m;.
The set {a1,as} would be an admissible extension of this AF, since there
is no conflict among a; and ag (there is no direct edge among them in
Figure 1.2) and for any attacker of this set, there is a defender inside of
the set. In other words, set {a1, a2} is admissible since not only there are
no conflicts among the elements of this set, but also this set can defend its
arguments against its attackers. Often a new semantics is an adaptation
of an already existing one by introducing further restrictions on the set of
accepted arguments (that are chosen together) or possible attackers.

Although AFs are popular in the modeling of argumentation and are
widely used and studied within AI, AF's are limited to model an elementary
attack relation among arguments. However, the relation among arguments
might be more diverse than simple attack. For instance, an argument may
not be strong enough to defeat another argument, but jointly with another
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argument it may do so. However, this cannot be modeled explicitly via AFs.
Also one cannot directly model the support relation between arguments via
AFs. To overcome such deficiencies of AFs and still utilize the capabilities
of AF's, several generalizations of AFs have been proposed to present
different types of relations among arguments beyond simple attack. For
instance, 1. the notion of collective attack is presented in (Dvoiak et al.,
2020), to model the notion that a set of arguments together attack an
argument and a single argument within this set is not powerful enough to
attack the argument. 2. In (Cayrol and Lagasquie-Schiex, 2009) the notion
of support relation among arguments is presented. 3. Also a formalism
presented by Verheij (2003b) is expressive enough to model nested support
and attack ( i.e., support/attack of the support/attack relation) relations
among arguments. 4. Further, the notion of preference among arguments
that allows to rank arguments is presented in (Amgoud and Cayrol, 2002).
This framework allows to evaluate arguments based on their values and
their relation with other arguments. See (Brewka et al., 2014; Baroni et al.,
2020) for an overview of generalizations of AFs. In Section 1.2.3 we present
an outline of an expressive logical generalization of AFs which is the basis
of this PhD thesis.

1.2.3 Abstract Dialectical Frameworks

Abstract dialectical frameworks (ADFs for short) are generalizations of
Dung argumentation frameworks where arbitrary logical relationships
among arguments can be formalized with so-called acceptance conditions
which are attached to the arguments (Brewka and Woltran, 2010; Brewka
et al., 2017b). These acceptance conditions are usually in the form of
propositional logic formulas. This allows to express notions of support,
collective attacks, and other complex relations which bring more modeling
capacity for ADF's. For instance, the acceptance condition of an argument
receiving several individual attacks from other arguments would be the
conjunction of negated atoms, one for each argument. Or, if two arguments
jointly attack an argument this can be presented by the disjunction of
the negation of those atoms. It has been shown that ADFs unify several
generalizations of AFs, namely AFs with collective attacks (Nielsen and
Parsons, 2006), and bipolar AFs (Cayrol and Lagasquie-Schiex, 2005).
Due to their flexibility in formalizing relations between arguments, ADFs
have recently been used in several applications; in legal reasoning (Al-
Abdulkarim et al., 2014; Collenette et al., 2020; Al-Abdulkarim et al.,
2016), online dialog systems (Neugebauer, 2017, 2019; Piihrer, 2017), and
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Figure 1.3: ADF of Example 1.2

text exploration (Cabrio and Villata, 2016). Example 1.2 presents a simple
instance of an ADF.

Example 1.2 An instance of an ADF is depicted in Figure 1.3. This
ADF contains three arguments {a, b, c}. Dependencies between arguments
are shown by the directed edges in the associated graph. Here edges are
interpreted not necessarily as attacks, but as abstract relations. The edges
in the associated graph are called links. If there is a link from argument
a to b, we say that a is a parent of b. The concrete relation between an
argument and its parents is specified in the acceptance condition. FEach
argument has an acceptance condition shown as propositional formula
attached to each node. Given the status of each parent of an argument
in the attached propositional formula, the acceptance condition indicates
under which condition an argument is acceptable. For instance, argument
a is always acceptable, denoted by the acceptance condition T. By the
acceptance condition of b, this argument is acceptable if and only if a is
also accepted. This can be interpreted as a support relation. Further, the
acceptance condition of ¢, namely —bV ¢ says that c is acceptable if and
only if either b is denied or ¢ is accepted. The relation between b and c, i.e.,
(b,c) is an AF like attack. However, the acceptance of ¢ is more complex

than an AF attack, since it combines a support from ¢ and an attack from
b.

The semantics of ADF's are defined based on three-valued interpretations
that assign each argument to true (t), false (f) or undecided (u). For
instance, in Example 1.2, the interpretation that assigns argument a to
t, argument b to t and argument ¢ to f would be an admissible interpre-
tation, presented formally in Definition 2.47. In the following we present
some of the reasons that clarify why ADF's are expressive formalisms of
argumentation.

e ADFs are a proper generalisation of AFs. Thus, ADFs are at least
as expressive as AFs. Hence, the problems that can be presented in
AFs are also presentable in ADFs (Strass, 2013b).

20



1.3

This
formalism of argumentation called abstract dialectical frameworks (ADFs),

The notions of relation between arguments in ADFs are more flexible
than AFs, and can represent simple attack or support, joint attack
or support, or any logical mix of these.

ADFs provide nearly all standard semantics of AFs (Brewka and
Woltran, 2010; Brewka et al., 2013; Polberg et al., 2013; Strass,
2013Db).

ADFs are expressive enough to unify several generalisations of AFs,
for instance, SETAFs (Nielsen and Parsons, 2006) well-studied in
(Dvoték et al., 2020; Polberg, 2016; Linsbichler et al., 2016).

The distinction between supported and stable models from logic
programming is present in ADFs but is missing in AFs. Specifically,
ADFs allow cyclic support dependencies among arguments.

ADFs are expressive enough to model non-monotonic knowledge
representation languages, as investigated in (Alcantara and S&, 2018;
Heyninck et al., 2020).

ADFs are proposed in a number of applications, for instance, in
legal reasoning (Al-Abdulkarim et al., 2016, 2014), online dialog
systems (Neugebauer, 2017, 2019), the instantiation of defeasible
theories (Strass, 2014), and text exploration (Cabrio and Villata,
2016).

The additional expressiveness of ADFs comes with the price of
typically a higher computational complexity (Strass and Wallner,
2015). Specifically, reasoning in ADFs spans the first three (rather
than the first two, as for AFs) levels of the polynomial hierarchy.

Furthermore, other research investigating ADFs (Brewka et al., 2011;
Brewka and Gordon, 2010; Ellmauthaler, 2012; Strass and Wallner, 2015;
Strass, 2013a, 2018; Wallner, 2020) can be found in the literature. In
this thesis, ADF's are further investigated. The main contributions of this
thesis are explained comprehensively in Section 1.3.

Main Contributions and Thesis Outline

thesis is broadly concerned with studying different aspects of a
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first introduced in (Brewka and Woltran, 2010) and then further explored
in (Brewka et al., 2013, 2017a, 2018a). The main objectives are as follow:

1. Presenting semantics for ADF's that have not been introduced before
(Part II of the thesis);

2. Presenting discussion games for already existing semantics of ADF's
(Part III); and

3. Investigating subclasses and a superclass of ADFs (Part IV).

Taking into account the new set of semantics for ADFs, we introduce the
concept of strong admissibility semantics, in Chapter 3, and semi-stable
semantics, in Chapter 5. Then, in Chapter 6, we introduce discussion
games for grounded semantics, in Chapter 7, we introduce discussion games
for preferred semantics of ADF's to answer the credulous decision problems
of ADF's under these semantics. Discussion games presented in this thesis
show a dialogical proof procedure behind these two semantics of ADFs. In
order to study the expressiveness of ADFs we focus on subclasses and a
generalization of ADFs. With regards to the subclasses of ADFs, first we
introduce the subclasses of ADF's, in Chapter 8, and we study whether
these subclasses fulfill the same properties of the similar subclasses in
AFs. Then, in Chapter 9 we study the relation between a generalization
of AFs, namely SETAFs and a subclass of ADFs. Moreover, we compare
the expressiveness of subclasses of ADFs. At the end, in Chapter 10, we
present a generalization of ADFs and show how it can be used to model
and evaluate a practical problem. The main contribution of each chapter
is explained with further details in the following. Note that this overview
contains undefined terms that will be explained in the corresponding
chapters.

Part II: Semantics. The first major topic is the introduction of a new
type of semantics for ADFs: strong admissibility semantics. A reason
of presenting new types of semantics is that the issue of argumentation
semantics of formalisms of argumentation has been the subject of much
recent study, (see (Baroni et al., 2011) as an overview of semantics of AFs).
Much research on the topic of formal argumentation is based on abstract
argumentation frameworks (AFs) of Dung (1995) and the generalizations
of AFs. One central question in AFs is “Which sets of arguments can be
accepted jointly?,” where each such set is called an extension. Different
answers to this question correspond to different definitions of argumentation
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semantics. The question of how to define argumentation semantics is a
critical one in any formalism of argumentation.

Chapter 3: Strong Admissibility Semantics of ADFs We first
introduce a major new type of semantics for ADF's, namely, strong admis-
sibility semantics. Similar to AFs the concept of grounded semantics is
an important point of view of acceptance of arguments in ADFs. Each
ADF has a unique grounded interpretation which essentially consists in
an unquestionable assignment of truth values to arguments. Thus, it is
critical to investigate the truth value of a queried argument in the grounded
interpretation of an ADF. While, the grounded interpretation only presents
the truth value of arguments which are unquestionable, it is required to
explain why a queried argument has a specific truth value in the grounded
interpretation.

Thus, the first contribution of this work is to present the notion of
strong admissibility semantics for ADFs, in Chapter 3. We show that the
notion of strong admissibility semantics of ADF's presented in this work
will satisfy the following conditions which are akin to the properties of the
notion of strong admissibility semantics of AF's.

1. Strong admissibility is defined in terms of strongly justified argu-
ments.

2. Strongly justified arguments are recursively reconstructed from their
strongly justified parents.

3. Each ADF has at least one strongly admissible interpretation.

4. The set of strongly admissible interpretations of ADF's forms a lattice
with as least element the trivial interpretation and as maximum
element the grounded interpretation.

5. The strong admissibility semantics can be used to answer whether
an argument is justifiable under grounded semantics.

6. The strong admissibility semantics of ADFs is different from the
admissible, conflict-free, complete and grounded semantics of ADF's.

7. The strong admissibility semantics for ADFs is a proper generaliza-
tion of the strong admissibility semantics for AFs.

Chapter 4: Complexity of Strong Admissibility Semantics Com-
putational complexity of strong admissibility semantics of AFs is studied
in (Dvordk and Wallner, 2020; Caminada and Dunne, 2020). However, the
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computational complexity analysis under the strong admissibility semantics
of ADFs has not beed studied. Thus, the second contribution of Part II of
this work is studying the complexity of reasoning tasks under the strong
admissibility semantics of ADFs, in Chapter 4, as follows.

1. The credulous decision problem, i.e., whether there exists a strongly
admissible interpretation that satisfies the queried argument, is coNP-
complete.

2. The skeptical decision problem, i.e., whether all strongly admissible
interpretations satisfy a queried argument, is trivial.

3. The verification problem, i.e., whether a given interpretation is a
strongly admissible interpretation of an ADF, is coNP-complete.

4. The strong justification problem for an argument in an interpretation,
i.e., whether an argument is strongly justified in an interpretation is
coNP-complete.

5. The problem of finding a smallest witness of strong justification of
an argument, i.e, whether there exists a minimal strongly admissible
interpretation that satisfies a queried argument, is ZS -complete.

Chapter 5: Semi-Stable Semantics of ADFs The next contribution
of Part II is to define the notion of semi-stable semantics of ADFs. Stable
semantics reflect the ‘black-and-white’ character of the classical logic in
non-monotonic frameworks. Although it is possible that a non-monotonic
framework does not have any stable extension, researchers in these domains
sometimes preferred to have no outcome as opposed to an imperfect one,
like a preferred extension. To overcome the possibility that some AFs do
not have any stable extension, the concept of semi-stable semantics have
been introduced for AFs, first in (Verheij, 1996) (under a different name)
then further investigated in (Caminada, 2006).

Semi-stable semantics of AF's is a way of approximating stable semantics
when a given AF does not have any stable extension. Key characteristics
of semi-stable semantics in AFs are as follow.

1. It is placed between stable semantics and preferred semantics;

2. If an AF has at least one stable extension, then the set of stable
extensions and semi-stable extensions coincide;

3. Each finite AF has at least one semi-stable extension.
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As the main contribution in Chapter 5, we introduce the notion of semi-
stable semantics of ADF's, to approximate stable semantics in the cases that
a given ADF does not have any stable interpretation. Stable semantics of
AF's are generalised to ADFs in two ways, that is, to two-valued semantics
and stable semantics. In ADFs the notion of stable model is defined
based on the notion of two-valued model. Thus, in ADF's the user can
choose whether support cycles should be accepted or rejected, by choosing
two-valued models or stable models as semantics. An ADF may have no
stable model because of the following reasons.

e On the one hand, if a given ADF does not have any two-valued
model, then it does not have any stable model.

e On the other hand, an ADF may have two-valued models, while none
of them is a stable model.

To present the notion of semi-stable semantics of ADF's, we focus on the
first issue in this thesis, i.e., when a given ADF does not have a two-
valued model. To define the notion of semi-stable semantics for ADFs,
we follow the same method as for stable semantics of ADFs. That is,
first we introduce the notion of semi-two-valued semantics. Then, we pick
semi-stable models among semi-two-valued models of a given ADF. The
idea is detecting cycle supports via semi-stable semantics when an ADF
does not have a two-valued model.

We will show that the semi-stable semantics and semi-two-valued model
presented in Chapter 5 satisfy the following conditions which are akin to
the properties of the notion of semi-stable semantics of AFs.

1. A semi-stable model and a semi-two-valued model of a given ADF
should maximize the union of the sets of the accepted and of the
rejected/denied arguments among all complete interpretations.

2. Each semi-stable model and each semi-two-valued model is a preferred
interpretation;

3. Each stable model is a semi-stable model and a semi-two-valued
model;

4. Each finite ADF has at least one semi-two-valued model;

5. If an ADF has a stable model, then the set of stable models coincides
with the set of semi-stable models;

6. The notion of semi-stable semantics and semi-two-valued semantics
for ADFs is a proper generalization of semi-stable semantics for AFs.
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Part III: Discussion Games. In the realm of discussion games for
semantics we present two games for two of the semantics of ADFs; grounded
semantics, in Chapter 6, and preferred semantics, in Chapter 7. In ADF's
semantics have been introduced to indicate points of view of evaluating
of arguments, defined based on three-valued interpretations. In ADFs, an
admissible interpretation does not contain any unjustifiable information
about the arguments and a preferred interpretation presents maximum
information about the arguments without losing admissibility. Furthermore,
an interpretation is grounded if it collects all the information that is beyond
any doubt.

Answering whether there exists an interpretation of a particular type
of semantics in which an argument is justifiable, i.e., has a given value,
is a fundamental issue: this decision problem is called credulous decision
problem. Answering credulous decision problems under semantics of ADF's
is a significant issue. In application it is significant not only to answer
whether a queried argument is justifiable under a type of semantics but
also to explain why it is so. Although dialectical methods have a role in
determining semantics of both AFs and ADFs, the roles are not obvious
in the definition of semantics. To cover this gap, quite a number of works
have been presented to show that semantics of AFs can be interpreted in
terms of structural discussion (Jakobovits and Vermeir, 1999; Prakken and
Sartor, 1997; Caminada, 2018; Dung and Thang, 2007). The idea is that
these discussion games can be used as proof procedures for the semantics
of AFs .

Despite the fact that the essence of argumentation is dialogue, semantics
of ADFs specify the truth values of arguments, without indicating how
interpretations are to be constructed. This raises the question whether
semantics of ADFs are expressible in terms of discussion games (Barth
and Krabbe, 1982). Because of the special structure of the ADFs, the
existing methods used to interpret semantics of AFs cannot be reused in
ADFs. This motivates us to study whether there is a discussion game
and a winning strategy for justification of an argument under a specific
semantics.

Chapter 6: Grounded Discussion Games As the first contribution
of this part of the thesis we consider grounded semantics of ADFs. Answer-
ing the credulous decision problem of ADFs under grounded semantics is a
critical issue, since each ADF has a unique grounded interpretation and no
one has any doubt on the truth values of arguments in the grounded inter-
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pretation. Furthermore, it is required to explain why a queried argument
has a specific truth value in the grounded interpretation. In Chapter 6,
we present a grounded discussion game for ADFs, to show that grounded
semantics of ADF's are interpretable in terms of structural discussion. That
is, a queried argument is justifiable under grounded semantics of a given
ADF iff it is possible to win the associated discussion game. This makes it
possible to use the discussion games for the purpose of explanation “why
is an argument justifiable in the grounded interpretation?”

On the one hand, a grounded discussion game, presented in Chapter 6,
explains why a queried argument is justifiable under grounded semantics of
a given ADF. On the other hand, strong admissibility semantics of ADFs,
presented in Chapter 3, is a point of view to explain a reason of a truth
value of a queried argument in the grounded interpretation. In Section 6.4
we clarify the relation between the notion of strong admissibility semantics
of ADFs and the grounded discussion game.

Chapter 7: Preferred Discussion Games As the second contribu-
tion of Part III of the thesis we consider preferred semantics of ADFs.
Answering decision problems of preferred semantics has a higher compu-
tational complexity than other semantics in ADFs (Strass and Wallner,
2015). In this chapter we present preferred discussion games to show
that preferred semantics of ADF's are interpretable in terms of structural
discussion.

Similar works, with the purpose of showing the proof procedure of
justification of arguments in a preferred extension of AFs, have been done
via dialectical games (Vreeswijk and Prakken, 2000; Dung and Thang,
2007; Modgil and Caminada, 2009; Caminada et al., 2014; Cayrol et al.,
2003).

The main contributions of Chapters 6 and 7 are:

1. Presenting the discussion games which provide proof procedures to
answer credulous decision problems under preferred and grounded
semantics of ADF's.

2. Showing that our methods are sound and complete.
Based on the methods of discussion games, which have been presented in
chapters 6 and 7, algorithms can be provided not only to answer credulous

decision problems of ADF's under grounded and preferred semantics but
also to be used in a human-machine dialogue.
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Part IV: Variations. In this part of this thesis we focus on variations
of ADF's to show the expressiveness of ADFs.

Chapter 8: Investigating Subclasses of ADFs As the main contri-
bution of this chapter, we prove several results about subclasses of ADFs.
In the following, we first explain the motivation of presenting and investi-
gating subclasses of ADFs. To this end, we explain the state of the art of
introducing subclasses of AFs.

The analysis of restricted classes of AFs has been done, since the
complexity of the reasoning problems that can be defined for the several
semantics for AFs ranges from tractability up to the second level of the
polynomial hierarchy (Dvofdk and Dunne, 2018). In (Dung, 1995), Dung
already showed that the class of acyclic (also known as well-founded) AF's
leads to a collapse of the different semantics. Further studies include sym-
metric AFs (Coste-Marquis et al., 2005) and AFs under other graph-driven
restrictions (Dunne, 2007). Symmetric AFs have been proven to satisfy
the property of coherence (preferred and stable semantics coincide) and
relatively-groundedness (the grounded extension is given by the intersection
of the preferred extensions). These restrictions make decision problems
often easier from a complexity perspective.

ADF's are more flexible than AF's in formalizing relations between
arguments, however, this additional expressiveness comes with the price of
higher computational complexity (Strass and Wallner, 2015). It is thus
natural to investigate subclasses of ADFs. Hence, the first contribution
of Chapter 8 is to do a systematic investigation of subclasses of ADFs.
Thus, first we define several subclasses of ADFs and investigate how the
restrictions we define influence the semantic evaluation of such ADFs.

As a first contribution of Chapter 8, we introduce and study the
following subclasses.

1. We introduce acyclic ADF's (i.e., the link-structure forms an acyclic
graph) and we show that—analogously to well-founded AFs—the
main semantics, namely grounded, complete, preferred, and two-
valued model/stable semantics, coincide for this class.

2. We further investigate the concept of symmetric ADFs. In contrast
to the case of AFs, we will see that properties as coherence and
relatively-groundedness do not carry over to symmetric ADFs.

3. We find that the class of symmetric ADFs requires further restrictions
which leads us to the classes of acyclic support symmetric ADFs
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(ASSADFs) and support-free symmetric ADFs (SFSADFs). For both
classes we show that they satisfy a weaker form of coherence.

4. We also show that these two classes differ in the sense that odd-cycle
free SFSADF's are coherent while odd-cycle free ASSADFs are not.

As a second contribution of Chapter 8, following the work of Dunne
et al. 2015, we investigate the expressiveness of our ADF subclasses in
terms of signatures, i.e. the set of possible outcomes that can be achieved
by ADFs (of a particular class) under the different semantics. Some of the
main results of this part of the chapter are as follows:

1. We complement the results which have been obtained for general
(Piithrer, 2015; Strass, 2015) and bipolar ADFs (Linsbichler et al.,
2016) and also compare our ADF subclasses to abstract argumenta-
tion frameworks in terms of expressiveness.

2. In particular, we show that the expressiveness of SFSADFs, AS-
SADFs and bipolar ADFs is equal for some of the semantics, but
different for admissibility-based semantics.

Chapter 9: Expressiveness of SETAFs and Support-Free ADF's
under 3-valued Semantics In this chapter we investigate two of the
generalizations of AFs. The first formalism we consider are SETAFs as
introduced by Nielsen and Parsons (2006). SETAFs extend Dung AFs
by allowing for collective attacks such that a set of arguments B attacks
another argument a but no proper subset of B attacks a. SETAFs have
received increasing interest in the last years. For instance, (Yun et al.,
2018) observed that for particular instantiations, SETAFs provide a more
convenient target formalism than Dung AFs. The second formalism we
consider are support-free abstract dialectical frameworks (SFADFs), a
subclass of ADFs. The main contributions of Chapter 9 are as follows.

1. We embed SETAFs under 3-valued labeling based semantics (Flouris
and Bikakis, 2019) in the more general framework of ADFs.

2. We investigate the expressiveness of SETAFs under 3-valued se-
mantics by providing exact characterizations of the signatures for
preferred, stable, grounded and conflict-free semantics.

3. At the end, we study the relations between SETAFs and SFADF's.
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Chapter 10: A Generalization of ADFs As the last contribution
in Chapter 10 we show how ADFs can be used to model and evaluate a
practical problem. To this end, we generalize ADFs to a formalism which is
called numerical abstract dialectical frameworks (nADF's for short) in our
work. We show that nADFs are expressive enough to formalize standard
decision problems, namely expected utility problems. Then, we show how
the nADF semantics can be used to choose the best set of decisions.
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Part II: Semantics Chapter 3 is based on (Keshavarzi Zafarghandi
et al., 2021d), which is an extended version of (Keshavarzi Zafarghandi
et al., 2021b).
Chapter 4 is based on (Keshavarzi Zafarghandi et al., 2021a).
Chapter 5 is based on (Keshavarzi Zafarghandi et al., 2021c).

Part III: Discussion Games Chapter 6 is based on (Keshavarzi Za-
farghandi et al., 2020).
Chapter 7 is adapted from (Keshavarzi Zafarghandi et al., 2019a).

Part IV: Variations Chapter 8 is based on (Diller et al., 2020), which
is an extended version of (Diller et al., 2018).

Chapter 9 is based on (Dvotédk et al., 2020).

Chapter 10 is based on (Keshavarzi Zafarghandi et al., 2019b).

The full list of publications is as follows.

1. (Keshavarzi Zafarghandi et al., 2021b) Atefeh Keshavarzi Za-
farghandi, Bart Verheij and Rineke Verbrugge. Strong Admis-
sibility for Abstract Dialectical Frameworks. In: Chih-Cheng
Hung, Jiman Hong, Alessio Bechini and Eunjee Song, editors,
The 36th ACM/SIGAPP Symposium on Applied Computing SAC
"21. pages 873-880. ACM, 2021. Chapter 3.

2. (Keshavarzi Zafarghandi et al., 2021d) Atefeh Keshavarzi Za-
farghandi, Bart Verheij and Rineke Verbrugge. Strong Admissi-
bility for Abstract Dialectical Frameworks. Journal of Argument

30



& Computation. pages (online first). I0S press, 2021. Chap-
ter 3.

(Keshavarzi Zafarghandi et al., 2021a) Atefeh Keshavarzi Za-
farghandi, Wolfgang Dvofak, Bart Verheij and Rineke Verbrugge.
Computational Complexity of Strong Admissibility for Abstract
Dialectical Frameworks. In: Leila Amgoud and Richard Booth,
editors, 19th International Workshop on Non-Monotonic Rea-
soning (NMR). pages 295-304. NMR, 2021. Chapter 4.

(Keshavarzi Zafarghandi et al., 2021c) Atefeh Keshavarzi Za-
farghandi, Bart Verheij and Rineke Verbrugge. Semi-Stable
Semantics for Abstract Dialectical Frameworks. In: Meghyn Bi-
envenu and Gerhard Lakemeyer, editors, Proceedings 18th Inter-

national Conference on Principles of Knowledge Representation
and Reasoning (KR). pages 422-431, KR, 2021. Chapter 5.

(Keshavarzi Zafarghandi et al., 2020) Atefeh Keshavarzi Za-
farghandi, Bart Verheij and Rineke Verbrugge. A Discussion
Game for the Grounded Semantics of Abstract Dialectical Frame-
works. In: Henry Prakken, Stefano Bistarelli, Francesco Santini
and Carlo Taticchi, editors, Proceedings of Computational Models
of Argument COMMA 2020. Volume 326 of Frontiers in Arti-
ficial Intelligence and Applications, pages 431-442. 10S press,
2020. Chapter 6.

(Keshavarzi Zafarghandi et al., 2019a) Atefeh Keshavarzi Za-
farghandi, Bart Verheij and Rineke Verbrugge. Discussion Games
for Preferred Semantics of Abstract Dialectical Frameworks. In:
Gabriele Kern-Isberner and Zoran Ognjanovic, editors, Furopean
Conference on Symbolic and Quantitative Approaches with Un-
certainty. Volume 11726 of Lecture Notes in Computer Science,
pages 62-73. Springer, 2019. Chapter 7.

(Diller et al., 2020) Martin Diller, Atefeh Keshavarzi Zafarghandi,
Thomas Linsbichler, Stefan Woltran. Investigating Subclasses
of Abstract Dialectical Frameworks. In: Special Issue: On the
acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games: 25 years
later. Pietro Baroni, Francesca Toni, and Bart Verheij, editors,
Journal of Argument & Computation. Volume 11, pages 191-219.
IOS press, 2020. Chapter 8.

(Diller et al., 2018) Martin Diller, Atefeh Keshavarzi Zafarghandi,

31



10.

Thomas Linsbichler, Stefan Woltran. Investigating Subclasses of
Abstract Dialectical Frameworks. In: Sanjay Modgil, Katarzyna
Budzynska, and John Lawrence, editors, Computational Models
of Argument - Proceedings of COMMA. Volume 305, pages 61-72.
1OS press, 2018. Chapter 8.

(Dvoték et al., 2020) Wolfgang Dvotak, Atefeh Keshavarzi Za-
farghandi and Stefan Woltran. Expressiveness of SETAFs and
Support-Free ADFs Under 3-Valued Semantics. In: Henry
Prakken, Stefano Bistarelli, Francesco Santini and Carlo Tatic-
chi, editors, Computational Models of Argument - Proceedings of
COMMA. Volume 326, pages 191-202. 10S press, 2020. Chap-
ter 9.

(Keshavarzi Zafarghandi et al., 2021b) Atefeh Keshavarzi Za-
farghandi, Bart Verheij and Rineke Verbrugge.Embedding Prob-
abilities, Utilities and Decisions in a Generalization of Abstract
Dialectical Frameworks. In: Jasper De Bock, Cassio P. de
Campos, Gert de Cooman, Erik Quaeghebeur and Gregory R.
Wheeler, editors, International Symposium on Imprecise Proba-
bilities: Theories and Applications, ISIPTA. Volume 103, pages
246-255. PMLR, 2019. Chapter 10.

32



Chapter 2

Background

In this chapter, we introduce the formal background for our work. We
will first, in Section 2.1, give some preliminaries on propositional logic.
Furthermore, in Section 2.2 we recall the basics of order theory. Then,
in Section 2.3, we introduce the syntax and semantics of abstract argu-
mentation frameworks (AFs) (Dung, 1995). Subsequently, we present two
generalisations of Dung’s AFs. In Section 2.4, we consider SETAFs as
introduced by by Nielsen and Parsons (2006). In Section 2.5, we present the
syntax and semantics of abstract dialectical frameworks (ADFs) (Brewka
et al., 2018a, 2014; Polberg, 2017).

2.1 Propositional Logic

We assume basic knowledge of the syntax and semantics of propositional
logic. For a comprehensive introduction we refer to (Enderton, 2001). Let
2 be a set of propositional atoms. Sentences, expressions and formulas are
built in the language of propositional logic using logical connectives. For
propositional formulas we make use of the standard connectives negation
(=), logical and (A), logical or (V), implication (—), and equivalence (<)
and evaluate formulas with respect to standard semantics of propositional
logic. Let ¢ be a formula and let S be a set of atoms. We say that S is a
model of ¢, denoted by S = ¢, if ¢ evaluates to true when atoms in S are
considered true and all other atoms are considered false.

A formula is in conjunctive normal form (CNF) if it is of the form
Acec Vaee ®, where C'is a set of clauses, and a clause ¢, with ¢ € C, is a
disjunction of literals. The semantics of propositional formulas is defined
in terms of interpretation functions. While in classical logic there are
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two truth values, namely true, denoted by t, and false, denoted by f, in
three-valued logic there are three truth values indicating true, false and
undecided, denoted by u.

Definition 2.1 Let & be a set of atoms. A three-valued interpretation v
is a function v : P — {t,f,u}, that maps each atom to one of the three
truth values true (t), false (f), or undecided (u). If v assigns atoms to
{t,f}, then it is a two-valued interpretation.

Definition 2.2 Let v be a three-valued interpretation on atoms of A. We
write vt for {a € A | v(a) = t}, vf for {a € A | v(a) = £}, and v* for
{a € A ]v(a)=u}.

An interpretation v over a propositional formula ¢ indicates a particular
logical point of view on the propositions of formula ¢, that is, v shows
that each proposition of ¢ is assigned to either t, f, or u. Furthermore,
according to the standard evaluation of the formulas of propositional logic,
we consider two-valued interpretations that assign each atom to either t or
f, that is v(p) € {t,f}, based on the standard evaluation of ¢, as follows.

Definition 2.3 Let ¢ be a propositional formula over atoms of A and let
v be a two-valued interpretation over the atoms of ¢, i.e., v: A {t,f}.
The evaluation of ¢ under v, denoted by v(p), is defined recursively as
follows.

e ifo=aanda€ A, than v(p) = v(a),
o if p =T, then v(p) =t;
o if p=_1, thenv(p) =f;

o if o = (—), then

=
S
S~—
|
—N—
o+
<
=
=
I
o+ \"'h

e if p= (Y A0), then

f otherwise

o) = {t if v(v) =t and v(0) = t,
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o if o= (ypV0), then

t otherwise

{f if v() = f and v(0) = f,

o() = {f if v(¥) =t and v(0) =1,

t otherwise

o if p = (1 <> 0), then

t otherwise

o) = {f if v(w) # v(6),

Thus, a propositional formula can be evaluated by the two-valued inter-
pretation defined over its propositional atoms. A formula evaluates to
a unique truth value via a given interpretation. Next we define some
concepts of two-valued interpretation v with respect to a formula .

Definition 2.4 Let ¢ be a propositional formula and let v be a two-valued
interpretation over the atoms of .

e v satisfies p, denoted by v = ¢, if and only if v(p) = t. It is said
that v is a model of .

@ is satisfiable if and only if there exists an interpretation v over the
variables of ¢ where v |= .

¢ is a valid formula (or a tautology), denoted by = ¢ if for each
interpretation v over the variables of ¢ it holds that v |= .

@ is unsatisfiable if and only if no interpretation makes the formula
true, that is, for each v over the atoms of @, it holds that v(p) = £,
denoted by v = .

@ 1is falsifiable if and only there exists an interpretation v over the
set of variables of ¢ where v [~ .
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For instance, let ¢ = =bV a be a propositional formula and let v be an
interpretation that assigns both a and b to t, then v(p) = v(=bVa) = t,
that is, v satisfies . On the other hand, let v/ be an interpretation that
assigns a to f and b to t, then v'(p) = v/(=bV a) = f, that is, v' does
not satisfy . Thus, ¢ is a satisfiable formula, but not a valid formula of
propositional logic.

Furthermore, a propositional formula ¢ can be evaluated under three-
valued interpretations v, for which we write ?.!

Definition 2.5 Let ¢ be a propositional formula, let A be the set of atoms
of o, let a € A, and let v be a three-valued interpretation over the set of
atoms of ¢, i.e., v: A {t,f,u}. The partial evaluation of ¢ under a
three-valued interpretation v is the formula ¢V which is defined recursively
as follows.

e ifp=aandv(a) =t, then ¢* =T,

o ifp=a and v(a) =f, then ¢’ = 1,

e if p =a and v(a) = u, then ' = a,

o if o =, then ¢’ = ",

o if o= (VAO), then o® = (¥ A O°),

o ifp = (6V0), then ¢ = (U v OY),

o if o= (p—=0), then ¢* = (~¢" V"),

o if o = (1 > 0), then @ = (=7 V 0°) A (47 V 7).

Intuitively, the partial evaluation of ¢ with a three-valued interpretation v
replaces variable a of ¢ with T or L if v(a) is equal to t or f, respectively;
and if v(a) = u, then a remains unchanged. For instance, let ¢ = —a A b
and let v = {a — f,b — u}. Since v(b) = u, variable b will remain
unchanged in the evaluation of ¢ under v, while variable a will be replaced
by L so we get ¥ = =1 A b, which is logically equivalent to b. That is, the
partial evaluation of ¢ under v takes the two-valued part of v and replaces
the evaluated variables with their truth values:

v . _ . _
@' =pla/T :v(a) =tlla/L : v(a) =1]
Note that the notation of ¢V which we use in this work does not exactly correspond
to the evaluation of formulas in three-valued Kleene logics as presented in (Priest, 2008).
We use this notation based on substitutions as it is used in literature of argumentation
theory (Brewka et al., 2018a, page 15).
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2.2  Ordering Relations

Moreover, we use standard mathematical concepts such as functions, pre-
orders, and lattices. Let S be a set of variables and < .S x S be a binary
relation.

o < is called a partial order if it is reflexive, antisymmetric, and
transitive.

e A set S that is equipped with a partial order < is called a partially
ordered set (or poset), denoted as a pair (5, <).

e Let (S, <) be a poset and let S” C S. An element x € S is said to be
an upper bound of S” if s < x, for each s € 5.

e An upper bound z of S’ is said to be its least upper bound, (or join,
or supremum), if < a for each upper bound a of S’.

e Dually, the notions of lower bound and the greatest lower bound, (or
meet, or infimum) are defined for a poset.

o A poset (9, <) is called a join-semilattice if each two-element subset
{a,b} C S has a join. Furthermore, it is called a meet-semilattice if
each two-element subset has a meet.

e A poset (5, <) is called a lattice if it is both a join-semilattice and a
meet-semilattice.

e A poset (S, <) is called a complete lattice if every S’ such that S” C S
has both a greatest lower bound and a least upper bound in S.

e A poset (5,<) is called a complete meet-semilattice if every non-
empty subset S’ C S has a greatest lower bound in S and every
ascending chain in S has a least upper bound in S.

Truth values can be ordered via the information content.

Definition 2.6 The truth values, i.e., {t,f,u} are strictly ordered by <;
such that u <; t and u <; £ and no other pair of truth values are related
by <;. Relation <; is the reflexive closure of <;.

The pair ({t,f,u}, <;) is a complete meet-semilattice with the meet oper-

ator M;, such that tM; t =t and f r; f = f, while it returns u otherwise.
The meet of two interpretations v and w is defined pointwise as (v ;

w)(a) = v(a) N; w(a) for all a € A. The notion of meet operator between
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two interpretations can be extended to the meet of several interpretations.
Let v1,...v, be interpretations, the meet of these interpretations is denoted
by [i; v; and it is presented as follows, for each a € A.

t if for each i, it holds that v;(a) = t,
|—| vi(a) =< f if for each i, it holds that v;(a) = f,
' u

otherwise.

Interpretations can be ordered via <;-ordering with respect to their infor-
mation content, presented formally in Definition 2.7.

Definition 2.7 Let v and w be interpretations over a set of atoms A,
interpretation v is at least as informative as w, denoted by w <; v, if and
only if

w(a) <;v(a) for alla € A

For instance, let v = {a — t,b — f,c — f} and w = {a — u,b —
u, c — f} be two interpretations over a set of atomes A = {a, b, c}. Since
w(a) =u <;v(a) =t, wb) =u<;vd) =f, and w(c) =f <; v(c) =1, it
holds that w <; v. It is well-known that this definition ensures that <; a
partial order on interpretations.

2.3 Abstract Argumentation Frameworks

Abstract argumentation frameworks provide a formal way of presenting
arguments as abstract entities with direct conflict (attack) among them.
Every abstract argumentation framework (AF for short), as introduced in
the landmark paper by Dung (Dung, 1995), is composed of two components
1. a set of arguments, and 2. a binary relation on this set, interpreted as
attack. The formal definition of abstract argumentation frameworks is
presented in Definition 2.8. In the following we assume as given a set & of
propositional variables or atoms, which serves as the universe of arguments.
That is, we assume that each argument in AF can be associated with a
propositional variable.

Definition 2.8 (Dung, 1995) An abstract argumentation framework (AF)
is a pair (A, R) in which A C & is a set of arguments and R C A x A is
a binary relation representing attacks (conflicts) among arguments.

An AF can be represented as a directed graph in which nodes indicate the
set of arguments and directed edges show conflict among arguments. A
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D= i
Figure 2.1: AF of Example 2.9

directed edge from argument a to b means that there is an attack from a
to b.

Remark 2.8.1 Let F'= (A, R) be an AF.

e For each a,b € A, the notation R(a,b) or (a,b) € R is used to
represent that there is an attack from a to b.

e [ is named finite argumentation framework when A is a finite set of
arguments. Note that in this work we assume that all AFs are finite.

Example 2.9 Let F = (A,R) be an AF with A = {a,b,c,d} and R =
{(a,b), (b,a), (a,c),(b,c),(cc),(c,d),(d,b)}. The associated graph of this
AF is depicted in Figure 2.1. In this AF argument d attacks b since
(d,b) € R. Plus, (c,c) € R says that ¢ attacks itself. Furthermore,
(a,b) € R and (b,a) € R show that there is a symmetric attack between a
and b.

Note that we say set S C A attacks an argument a if there is a s € S such
that (s,a) € R. For instance, in AF of Example 2.9, set S = {b, d} attacks
argument ¢, since (b,¢) € R. In AF F = (A, R), it is said that argument
a is undefeated in F' if there is no b such that (b,a) € R, that is, if there
is no input edge over a in the associated graph of F. That is, argument
a, whatever it is, is acceptable/believable by everyone, since there is no
counterargument against a. In AFs arguments not only attack but also
defend one another. For instance, in an AF if argument a attacks b, and
argument b attacks ¢, then a defends (or supports) argument ¢ against the
attack of b.

AFs are a formalism not only for modeling argumentation but also
for evaluating arguments. Thus, a topic to study is ‘which argument is
believable/acceptable?’ or ‘which sets of arguments are believable/acceptable
together?’ In the field it is more common and rational to say that we are
collecting a set of arguments that are acceptable together rather than
believable because we may accept an argument even if we do not believe
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in it. For instance, a child, after arguing with her/his parents, accepts to
do his/her homework whether or not the child believes that it will be good
for herself/himself.

More formally, a key question is that ‘how is it possible to choose
arguments that fit together in an argumentation that contains conflicts?’
Answering this question leads to the introduction of several types of
semantics. That is, conflicts among arguments in an argumentation are
resolved using appropriate semantics. Different semantics in AFs reflect the
fact that there is no unique way of evaluating arguments. For an overview
about argumentation semantics we refer to (Baroni et al., 2011). Another
account of abstract argumentation semantics has been provided in (Baroni
and Giacomin, 2007) by introducing certain principles and studying their
fulfillment by the different semantics.

There are two main approaches for defining semantics of AFs extension-
based and labelling-based (see (Dung, 1995; Baroni et al., 2011) for an
overview). In Section 2.3.1 we present central semantics of AFs based on
extensions. Then, in Section 2.3.2 we present two of the semantics of AF's
based on labelling, namely admissible semantics and strongly admissible
semantics. We do not present the whole set of semantics that are presented
in Section 2.3.1 in the form of labelling, since we do not use those in our
work. The reader interested in further information on labelling based-
semantics of AFs is referred to (Baroni et al., 2011). We wrap up in
Section 2.3.2 by presenting functions that map extension-based semantics
of AFs to labelling-based semantics of AFs and vice versa.

2.3.1 Extension-based Semantics of AFs

As presented in Section 2.3, an issue of argumentation is to determine
acceptable sets of arguments, meaning informally, sets able to defend
themselves collectively while avoiding internal attacks. We aim to remind
the reader of the formal definitions of these notions, but first let us present
them informally. An extension is a set of jointly chosen arguments. A set
of semantics based on extensions presents a point of view of collecting and
accepting arguments together. Formally, an extension-based semantics is a
function that takes an AF as an input and produces a set of extensions
as the output. In this section we present the relevant extension-based
semantics to our work as they are presented in (Dung, 1995). That is,
we present the notions of conflict-free, admissible, preferred, complete,
grounded, and stable semantics based on extensions, introduced in (Dung,
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1995)2. Furthermore, we present the notion of ideal semantics, introduced
in (Dung et al., 2007). Moreover, we present the notion of semi-stable
semantics for AFs, first introduced in (Verheij, 1996) (under a different
name) then further investigated in (Caminada, 2006). Finally, we present
the extension-based notion of strongly admissible semantics for AFs, first
introduced in the work of Baroni and Giacomin (2007) based on the
notion of strongly defended of arguments, and later in (Caminada, 2014)
without having to refer to strong defence of arguments. In this section we
present semi-stable semantics and strongly admissible semantics of AFs
with further explanations, since we introduce these two notions for ADF's
in our work, Chapters 3 and 5.

Based on extension semantics of AFs to reach a coherent conclusion it
is not rational to choose a set of argument that are conflicting with one
another in an extension. Furthermore, we do not accept an argument only
because it exists but it is necessary that the argument is defended against
counterarguments. Thus, the semantics of AF's are typically defined based
on two important concepts, namely conflict-freeness and admissibility.
Intuitively, conflict-freeness states that if there is a conflict between two
arguments, then cannot be jointly accepted. Furthermore, the basic concept
of admissibility specifies two main factors 1. arguments within the set do
not attack one another, i.e., conflict-freeness, and 2. accepted arguments
must defend themselves against attacks. In Definition 2.10 we present the
notion of conflict-freeness and in Definition 2.11 we present the notion of
an argument defended by a set.

Definition 2.10 Let F' = (A, R) be an AF. The set S C A is a conflict-
free set (extension) in F if there is no a,b € S such that (a,b) € R. The
set of conflict-free sets of F' is denoted by cf(F).

Let us consider the AF, presented in Example 2.9. It holds that ¢f(F') =
{{},{a},{b},{d},{a,d}}. Note that ¢ does not belong to any conflict-free
extensions because of self attack over c.

Definition 2.11 Let ' = (A, R) be an AF. An argument a € A is de-
fended by a set S C A of arguments (alternatively, we say that a is
acceptable with respect to S or a is justifiable with respect S)(in F') if for
each argument ¢ € A, it holds that if (c,a) € R then there is a s € S such
that (s,c) € R (s is called a defender of a).

2In the literature, conflict-freeness and admissibility are often regarded as properties
rather than semantics. We will use the properties, but at the same time treat them as
semantics, i.e., conflict-free and admissible extensions.
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Intuitively, a set S defends an argument « if S can argue successfully against
attacking arguments of a. Consider again our AF from Example 2.9. In this
AF argument d is defended by set S = {b}, since b € S attacks the attacker
of d, namely c¢. Thus, d is acceptable with respect to S. Furthermore,
argument a is defended by S = {a}, since there is only one attack over a
from b and a € S attacks b as well. Thus, a is acceptable with respect to
S = {a}. On the other hand, argument b is not defended by set S = {b}.
Although, it holds that S defends argument b against the attack from a,
argument b is not defended against the attack from d by S. Thus, b is not
acceptable with respect to S.

In AFs the idea of collecting of arguments that can defend themselves
against counterarguments is captured in the notion of an admissible set
(extension). An admissible set is a conflict-free set of arguments, where
each argument in the set is defended by the set, formally presented in
Definition 2.12.

Definition 2.12 Let F' = (A, R) be an AF. A set S C A is an admissible
set in F if

e S is conflict-free in F'; and
e cach s € S is defended by S in F.
The set of all admissible extensions of F is denoted by adm(F).

Intuitively speaking, by choosing an admissible set in a given AF we
disagree/reject all the attackers over the arguments of this set. Since this
admissible set can defend all of its arguments against the attackers. In AF
of Example 2.9, it holds that adm(F) = {{},{a},{a,d}}. Set S = {a,d}
is an admissible extension in F', since 1. it is conflict-free, 2. S is defended
all of its arguments, i.e., a is defended against the attack from b by a,
and d is defended against the attack from ¢ by a. Note that set {d} is a
conflict-free set in F' but it is not an admissible extension in F', since it
is not defended against the attack from ¢ by {d}. Also, set {b} is not an
admissible extension in F', since b is not defended against the attack from
d by {b}.

In AFs, several kinds of admissible extension are distinguished, ex-
pressing different point of views on accepting arguments together. In
Definition 2.13 we present the notion of the characteristic operator over
sets of arguments. The characteristic operator is a function that takes a
set of arguments of an AF as an input and returns the set of arguments
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that are defended by that set. Then, we define semantics of AFs via the
characteristic operator.

Definition 2.13 Let F' = (A, R) be an AF. The characteristic operator,
denoted by U'r, is defined over the power set of A, as follows. Let S C A.
I'r(S)={a € A| a is defended by S}.

If we consider for an AF F' = (A, R) the partial order over the power set
of A with respect to set inclusion, i.e., (24, C), then I'r is a monotonic
function with respect to C-ordering (subset-ordering). That is, if S, S’ C A
with S C ', then I'p(S) C T'p(S’). Most of the semantics of Dung’s
framework can be given via the characteristic operator, namely admissible,
preferred, complete and grounded semantics. These semantics are then
certain fixed points of the characteristic function. In Definition 2.14 we
have the definitions of semantics of AFs.

Definition 2.14 Let F' = (A, R) be an AF. A set S € cf(F) is
o admissible in F if S CTp(5);

e preferred in F if S =T p(S) and there is no T € cf(F) with S C T
and T =Tp(T), in other words, S is C-mazimal admissible;

o complete in F if S =Tr(9);
o grounded in F if S is the C-least fixed point of I'p;
o stable in F ifVae A\ S: Fbe S s.t. (b,a) € R;

e ideal in F if it is a mazrimal admissible extension included in each
preferred extension, presented in (Dung et al., 2007).

We refer to the set of all preferred, complete, grounded, ideal, and sta-
ble extensions of AF F' as prf(F), com(F'), grd(F), idl(F'), and stb(F),
respectively. Note that an admissible set contains only arguments that
are defended by that set. In addition, a preferred extension represents
maximum information about arguments without losing admissibility. An
extension being preferred means that after adding any additional argument
to the set, the set is no longer admissible. Preferred semantics present a
way to solve as many conflicts as possible among arguments.

An interpretation is complete if it exactly contains justifiable argu-
ments. The grounded extension can be constructed by choosing unattacked
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arguments and each argument that can be iteratively defended by these
unattacked arguments. More informally speaking, the grounded extension
collects the set of all arguments that are beyond any doubt. Stable seman-
tics reflect the ‘black-and-white’ character of classical logic in AFs, that an
argument is either accepted or rejected, i.e., each argument which is not in
a stable extension is attacked by an accepted argument. An ideal extension
collects arguments which are in all preferred extensions without losing
of admissibility. Ideal semantics is a skeptical point of view of collecting
arguments which are accepted via preferred point of view of semantics.

Example 2.15 Considering again AF of FExample 2.9, depicted in Fig-
ure 2.1. As we presented earlier adm(F) = {{},{a},{a,d}}. It holds that
the empty set is an admissible extension, since it is conflict-free and it does
not contain any argument to defend. Plus, set {a} is also an admissible
extension in F', since it is conflict-free and a defends itself against an attack
from b. Furthermore, set {a,d} is admissible, since d is also defended by a
against an attack from c. The only preferred extension in F' is {a,d}, since
it @ maximal admissible extension with respect to set inclusion. Moreover,
com(F) = {{},{a,d}}, since Tp({}) = {} and I'r({a,d}) = {a,d}. Note
that the admissible set {a} is not a complete extension since a defends d,
but d does not belong to {a}, i.e., I'({a}) = {a,d}. The unique grounded
extension of this AF is the empty set. Further, since prf(F) = {{a,d}},
the ideal extension in F is also {a,d}. Moreover, set {a,d} is a stable
extension in I since this set attacks all the arguments that does not belong
to this set.

Theorem 2.16 presents the main relations among semantics of AF's, pre-
sented in Definition 2.14. Theorem 2.16 also shows distinctions among the
semantics of AFs.

Theorem 2.16 (Dung, 1995) Let F be an AF. The following properties
hold in F'.

e Fach stable extension is a preferred extension, but not vice versa.
o FEach preferred extension is a complete extension, but not vice versa.

e Fach complete extension is an admissible extension, but not vice
versa.

e FEach admissible extension is a conflict-free extension (set), but not
vice versa.

44



O——0 @

Figure 2.2: AF of Example 2.18 that does not have any stable extensions

e Fach ideal extension is an admissible extension, but not vice versa.

o Fach grounded extension is a complete extension, but not vice versa.

Note that stable extensions do not always exist, thus other semantics may
be used for resolving conflicts. One of the crucial lemmas in AFs proven
by Dung in 1995 is the Fundamental Lemma, presented in Lemma 2.17.

Lemma 2.17 Let F' = (A, R) be an AF and S C A be an admissible set
of arguments for F, and a and a’ be arguments that are acceptable with
respect to S in F'. Then,

e "= SU{a} is an admissible extension for F, and

e a' is acceptable with respect to S’ in F.

Semi-stable semantics

A basic property of semantics of AFs is that each AF has at least one
admissible, preferred, complete extension. This follows from the fact that
the empty set is an admissible extension in any AF. Furthermore, each AF
has a unique grounded extension and a unique ideal extension. However, it
is possible that an AF does not have any stable extension. In Example 2.18
we present an instance of AF that does not have any stable extension.

Example 2.18 Let F = ({a,b,c,d},{(a,b), (b,c),(c,b),(d,d)}) be an AF,
depicted in Figure 2.2. It holds that adm(F') = {{}, {a}, {c},{a,c}}, and
prf(F) = grd(F) = com(F) = idl(F) = {{a,c}}. However, F does not
have any stable extension. Since by the definition of stable semantics a
conflict-free set is a stable extension if it attacks all the arguments that
do not belong to this set. In F' argument d attacks itself, thus it cannot
belong to any conflict-free sets and stable extensions, as well. Further, no
argument different from d attacks d, that is none of the conflict-free subsets
of arguments of F satisfies the second condition of stable extensions. Thus,
F' does not have any stable extensions.
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Figure 2.3: AF of Example 2.19

Because stable extensions do not always exist, in order to pick at least a
set of arguments, preferred and grounded semantics have become popu-
lar in argumentation. In contrast, stable semantics still enjoys a strong
support in logic programming (Gelfond and Lifschitz, 1988) and answer
set programming (Gelfond and Lifschitz, 1991), since it can be preferred
to have no outcome as opposed to an imperfect one. On the one hand, in
argumentation a grounded extension presents the least amount of informa-
tion about the acceptance of arguments. That is, a grounded extension
collects a set of arguments about which there is no doubt. In other words,
the grounded extension of a given AF is too skeptical. On the other hand,
it is possible that an AF has a stable extension but the set of preferred
extensions and stable extensions are not equal. Example 2.19, presents
an AF that contains a stable extension but the set of stable extensions
and preferred extensions do not coincide. Furthermore, the grounded
extension in AF of Example 2.19 is a subset of a stable extension, i.e.,

stb(F) # grd(F).

Example 2.19 Let F = ({a,b,c},{(a,b),(b,a),(b,c),(c,c)}) be an AF,
depicted in Figure 2.3 It holds that prf(F) = {{a}, {b}}, however, the only
stable extension of F is {b} and the unique grounded extension of F' is
{}. F is an instance of AF that contains a stable extension, however, the
set of preferred extensions of F' is not equal to the set of stable extensions
of F'. Furthermore, the grounded extension of F' is a subset of the stable
extension of F.

To overcome the possibility of non-existence of any stable extension, the
semi-stable semantics has been proposed in AFs. Semi-stable semantics is
a way of approximating stable semantics when a given AF does not have
any stable extension. A key characteristic of the semi-stable semantics
is that if an AF has a stable extension, then the semi-stable semantics
coincides with the stable semantics. In contrast, this property does not hold
for preferred and grounded semantics, as it was shown in Example 2.19.
The notion of semi-stable semantics for AFs was first introduced in
(Verheij, 1996) (under a different name) then further investigated in (Cam-
inada, 2006). In Definition 2.20, we recall the definition of semi-stable
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semantics of AFs, as it is presented in (Caminada, 2006).

Definition 2.20 (Caminada, 2006) Let F' = (A, R) be an argumentation
framework and let S be an extension of F. For a € A, we write a™ =
{b| (a,b) € R} and ST = U{at | a € S}. Set S is called a semi-stable
extension iff S is a complete extension and S U ST is mazximal among
complete extensions of F', with respect to set inclusion. That is, set S is a
semi-stable extension of F iff S € com(F) and for all S" € com(F) such
that 8" #+ S, we have that SUST ¢ S'U S'T.

The set of semi-stable extensions of F' is denoted by semi-stb(F’) in this
work. Note that in Definition 2.20, ST collects all the arguments of A that
are attacked by S. Some alternative definitions of semi-stable semantics of
AFs are also presented in (Caminada, 2006), as follows.

e An extension S of F' is semi-stable if S is a preferred extension where
S'U ST is maximal among all preferred extensions of F, with respect
to set inclusion. That is, S € semi-stb(F') iff S € prf(F) and for all
S’ € prf(F) such that S’ # S, we have that SU ST ¢ U S'".

or alternatively,

e An extension S of F' is semi-stable if S is an admissible extension
where S U ST is maximal among all admissible extensions of F', with
respect to set inclusion. That is, S € semi-stb(F) iff S € adm(F") and
for all S € adm(F) such that S’ # S, we have that SUST ¢ S'US'".

The intuition of a semi-stable extension is that it maximizes the set of
evaluated arguments, that is, the set of arguments that have been accepted
or rejected, without losing admissibility. Key characteristics of semi-stable
semantics in AFs are presented in Theorem 2.21. This theorem says that
semi-stable semantics are placed between stable semantics and preferred
semantics. It also holds that if an AF has at least one stable extension,
then the set of stable extensions and semi-stable extensions coincide, and
that each finite AF has at least one semi-stable extension.?

Theorem 2.21 Let F = (A, R) be an AF, and let S be an subset of A.

o if S € semi-stb(F'), then S € prf(F);

3(Verheij, 2003b, Example 5.8) shows that existence is not guaranteed for infinite
AFs. See also (Caminada and Verheij, 2010).
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o if S € sth(F), then S € semi-stb(F);
o if stb(F) # 0, then stb(F') = semi-stb(F);
o if |A] is finite, then semi-stb(F) # ().

Consider the AF of Example 2.18, as we have shown that AF does not have
any stable extension. The reason is an isolated-self-attack argument d. An
argument is called an isolated-self-attack argument if it has no parent and
no child except itself, and it has a self-attack. Semi-stable semantics of
AF's can be used as a remedy in the cases that there is no stable extension.
The semi-stable extension of AF of Example 2.18 is {a, c}.

Strongly admissible semantics

All the semantics introduced until now may have multiple extensions, except
the grounded semantics and the ideal semantics. Among all semantics
the grounded semantics has a specific popularity, some reasons of which
are as follows. 1. Each AF has a unique grounded extension. 2. The
elements of the grounded extension usually belong to other semantics of
AFs. Specifically, the grounded extension is the least complete extension.
3. The grounded extension collects all unattacked (undoubted) arguments
and each argument that can be iteratively supported by these unattacked
arguments. Thus, all things considered, no one has any doubt on the
acceptance of the arguments that are in the grounded extension. Then, an
important reasoning task for the grounded semantics is to verify whether
a queried argument is part of the grounded extension.

However, if an agent asks ‘Why do you think that no one has any doubt
on the acceptance of a specific argument in an AF?’ The only answer is
that the queried argument belongs to the grounded extension of that AF.
But the grounded semantics does not have any explanation for that, i.e.
why a queried argument has to be accepted by anyone. Furthermore, to
answer this query not all arguments within the grounded extension are
necessary. That is, there is no need of constructing the grounded extension
to answer the query. To handle this issue the notion of strong admissibility
semantics of AFs has been introduced. A strongly admissible extension in
an AF explains why an argument is acceptable without any doubt, without
presenting all arguments in the grounded extension.

In AFs the concept of strong admissibility semantics has first been
defined in the work of Baroni and Giacomin (2007), based on the notion
of strong defence. Later in (Caminada, 2014) this concept was introduced
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without referring to strong defence. Further, in 2019 Caminada and Dunne
presented a labelling account of strong admissibility to answer the credulous
decision problem of AFs under grounded semantics. In the following we
present the notion of strong admissibility semantics of AFs based on the
notion of strong defence, as it is presented in (Baroni and Giacomin, 2007).

Definition 2.22 (Baroni and Giacomin, 2007) Given an argumentation
framework F = (A,R), a € A and S C A, it is said that a is strongly
defended by S if and only if each attacker ¢ € A of a is attacked by some
s € S\ {a} such that s is strongly defended by S\ {a}.

Note that this definition is well-defined since the number of arguments
in F' is finite and in each step an argument is excluded from the set of
ancestors of a given argument. In Example 2.18, depicted in Figure 2.2,
argument c is strongly defended by set S = {a, ¢}, since the attacker of ¢,
namely b is attacked by a € S\ {c} and a is strongly defended by S\ {c}.
Actually, a is strongly defended by S = (), since a is not attacked by any
argument. Note that in this example, although c is defended by S = {c}, it
is not strongly defended by S = {c}. Because there is no argument except
c in S that defends c against the attack of b.

Definition 2.23 Given an AF F = (A,R) and set S C A, it is said
that S is a strongly admissible extension of F' if every s € S is strongly
defended by S.

The set of strongly admissible extensions of F' is denoted by sadm(F') in
this work. In Example 2.18, sets S1 = ), Sa = {a}, and S5 = {a,c} are
strongly admissible extensions of F'; all of them are subsets of the grounded
extension of F'. However, set S” = {c} is not a strongly admissible extension
of F. Since, ¢ € S’ is not strongly defended by S’. Because argument c is
attacked by b, however, no argument in S’ \ {c} attacks b. Thus, although
S = {c} is an admissible extension of F, it is not a strongly admissible
extension of F.

In (Caminada and Dunne, 2019), the concept of strongly admissible
semantics of AF's are defined without having to refer to strong defence; we
rephrase it in Definition 2.24.

Definition 2.24 (Caminada and Dunne, 2019) Let F = (A, R) be an
argumentation framework. We say that S C A is a strongly admissible
extension of F if and only if every a € S is defended by some S" C S\ {a}
which in its turn is a strongly admissible extension.
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It is shown in (Baroni and Giacomin, 2007) that strongly admissible
extensions of an AF forms a lattice with the empty set as the least element
and the grounded extension as the maximum element; we recall it in
Theorem 2.25.

Theorem 2.25 (Baroni and Giacomin, 2007) Let F be an AF. The set
of strongly admissible extensions of F' forms a lattice with the empty set as
the least element and the grounded extension as the mazximum element.

Theorem 2.25 presents a significant result that leads to the distinction
between strongly admissible semantics and admissible and complete se-
mantics of AFs. In (Dung, 1995) it is shown that admissible extensions of
a given AF form a meet-semilattice with the empty set as the least element
and the preferred extensions as its maximal elements. Furthermore, it is
shown in (Dung, 1995) that the complete extensions of a given AF form a
complete meet-semilattice with the grounded extension as its least element
and the preferred extensions as its maximal elements. In contrast, the
strongly admissible extensions form a lattice with the empty set as the
least element and the grounded extension as the maximum element. These
different lattices show a distinction between strongly admissible semantics
and admissible/complete semantics of AFs.

Finally, in (Caminada and Dunne, 2019) and (Baroni and Giacomin,
2007), the relation between strongly admissible semantics of an AF and its
admissible, conflict-free and grounded semantics is clarified; let us recall
the properties in Proposition 2.26.

Proposition 2.26 (Caminada and Dunne, 2019; Baroni and Giacomin,
2007) Let F be an AF. The following properties hold:

o Fach strongly admissible extension in F is an admissible extension,
however, the other direction does not hold.

e Fach strongly admissible extension of F' is an admissible extension
and it is a subset of the grounded extension of F, however, the other
direction does not hold. That is, AF F may have an admissible
extension that is a subset of the grounded extension of F but that is
not a strongly admissible extension of F'.

Proof Let F be an AF.

50



e In Theorem 4 in (Caminada and Dunne, 2019) it has been proved that
each strongly admissible extension in F' is an admissible extension.
We provide a proof that the other direction does not hold, by giving
a counter-example. Let F' = ({a,b},{(a,b),(b,a)}). Now the set
S = {a} is a conflict-free and admissible extension of F', however, it
is not a strongly admissible extension in F'. This is because there is
no S’ C S\ {a} that defends a against the attack of b.

e It has been proved in (Baroni and Giacomin, 2007) that the strongly
admissible semantics of an AF form a lattice with the grounded ex-
tension as the maximum element. However, it does not hold that any
admissible extension of a given AF that is a subset of the grounded
extension is a strongly admissible extension. We provide a proof
by giving a counter-example. Let F' = ({a,b},{(a,b), (b,c), (¢c,d)}).
The grounded extension of F' is {a,c}; furthermore, S = {c} is an
admissible extension of F'. However, S is not a strongly admissible
extension of F, since there is no S’ C S\ {¢} that defends ¢ against
the attack of b.

O

In the following we present the distinction between strongly admissible
semantics of AFs and ideal semantics of AFs. The notion of the ideal
extension is presented in Definition 2.14. In Definition 3.48 in (Baroni and
Giacomin, 2007) first the notion of ideal set is defined, then the notion of
ideal semantics is presented; we rephrase this definition here. An admissible
extension S is called ideal set iff it is a subset of each preferred extension
of F. The ideal extension of F' is a maximal (with respect to set-inclusion)
ideal set. Note that an ideal set is not necessarily an ideal extension. We
show that the strongly admissible extensions differ from the ideal sets and
the ideal extension of a given AF.

Proposition 2.27 The notion of strongly admissible semantics of AFs
differs from the notion of ideal semantics of AF.

Proof We provide a proof by an example. Let F' = ({a, b}, {(a,b), (b, a),
(b,0)}), as depicted in Figure 2.4. The unique grounded extension of F
is the empty set. The set of strongly admissible extensions of F'is {0}.
However, the set of ideal sets of F' is {(),{a}}. Thus, {a} is the ideal
extension of F'. As we see, the set of strongly admissible extensions of F is
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Figure 2.4: AF of Proposition 2.27

neither equal with the set of ideal sets of F' nor is it equal with the ideal
extension of F.
O

The relations between the different semantics of AFs, presented in this sec-
tion, are depicted in Figure 2.5, studied in (Baroni et al., 2011; Baroni and
Giacomin, 2005, 2008; Caminada, 2007b; Caminada et al., 2012; Dung, 1995;
Dung et al., 2007; Verheij, 1996). Let o,v € {cf, adm, prf, com, grd, idl, stb,
semi-stb, sadm}. Each box in Figure 2.5 presents o semantics. In this
figure, for reasons of brevity in each box we remove ‘semantics’ from o
semantics and we have only the name of the associated semantics in a
box. For instance, instead of writing stable semantics we have stable in a
box. We show a o-extension is a y-extension by drawing an arrow from
a box contains ¢ to a box contains . That is, an arrow from ¢ box to
~ box means that o(F) C v(F) for a given AF F. The red dashed line
from strong admissibility semantics to grounded semantics means that any
strongly admissible extension is a subset of the grounded extension.

Proposition 2.28 In accordance with Figure 2.5, for any AF F the fol-
lowing relation holds among the semantics of AFs.

o sth(F') C semi-stb(F) C prf(F) C com(F) C adm(F) C cf(F);

grd(F) C com(F);

idl(F) C com(F);

each strongly admissible extension of F' is a subset of the grounded
extension of F.

2.3.2 Labelling-based Semantics of AF's

AF semantics can also be presented in terms of labelling functions, giving
a fine-grained view of the acceptance status of arguments. Already Pollock
(1995) used labeling functions for structured arguments, and Verheij (1996)

52



| stable |—>| semi-stable |—>| preferred |—>| complete |—>| admissible |—>| conflict-free
t 1

| grounded |(,| strongly admissible |

D

Figure 2.5: Relation among semantics of AF's

applied labeling to abstract argumentation, while introducing the stage and
semi-stable extensions (using another name). Caminada (2006) investigated
three-valued labelings using labels in, out, or undec. The concept of
labelings for AFs has been used for argument acceptability /deniability
(e.g., (Verheij, 2007)), and further labeling-based semantics have been
presented by Caminada and Gabbay (2009). Here we focus on three-valued
labellings of an AF, assigning to each argument either in, out, or undec.
In this section we only present the notions of admissible semantics and
strongly admissible semantics of AFs based on labelling, as they are the
only ones needed for our work.

Definition 2.29 (Caminada and Dunne, 2019, Definition 4) Let F =
(A, R) be an argumentation framework. An argument labelling is a function
£ : A {in,out,undec}. An argument labelling is called an admissible
labelling if and only if £ is a total function and for each a € A it holds
that:

o if £(a) = in, then for each b that attacks a it holds that £ (b) = out,

o if Z(a) = out, then there exists a b that attacks a such that £ (b) =
in.

A labelling account of strong admissibility semantics of I is presented in
(Caminada and Dunne, 2019); we recall this definition in Definition 2.32,
to use it in the proofs of theorems of Section 3.3 of Chapter 3, in order to
show that strongly admissible semantics of ADFs form a generalization
of strongly admissible semantics of AFs. To this end, let us first rephrase
the concept of min-max numbering in Definition 2.30. 4 Note that, if

“Caminada and Dunne (Caminada and Dunne, 2019) describe the intuition behind
the min-max number of an argument as follows: ‘The game-theoretic length of the path
(consisting of alternately in and out labelled arguments) from the argument back to
an unattacked ancestor argument. The player selecting the in labelled arguments aims
to make the path as short as possible whereas the player selecting the out labelled
arguments aims to make the path as long as possible.’
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Z is a labelling, we write in(.%) for {a € A | Z(a) = in}, out(.¥) for
{a € A| Z(a) = out}, and undec(Z) for {a € A | Z(a) = undec}.

Specifically, in Lemma 3.40 we use the notion of strongly admissible
labelling of AF's, which is defined in terms of min-max numbering (Defini-
tion 2.32) to show that the map of each strongly admissible labelling in a
given AF F' is a strongly admissible interpretation of the associated ADF
Dp, and vice versa. That is, we show that there is a one-to-one relation
between the set of strongly admissible labellings in a given AF F and the
set of strongly admissible interpretations of the associated ADF Dp.

Definition 2.30 Let £ be an admissible labelling of argumentation frame-
work F = (A, R). A min-max numbering is a total function M My :
in(Z)Uout(¥) — NUoo such that for each a € in(.Z)Uout(.Z) it holds
that:

e if Z(a) = in, then
MMy (a) = max({MMy(D) | (bya) € R and L (b) = out}) + 1
(with maz(0) defined as 0)

e if Z(a) = out, then
MMp(a) =min({ M #s ()| (ba) € R and £ (b) = in})+1 (with
min(0) defined as oo).

Theorem 2.31 (Caminada and Dunne, 2019, Theorem 6) Every admis-
sible labelling has a unique min-max numbering.

Definition 2.32 (Caminada and Dunne, 2019, Definition 10) A strongly
admissible labelling is an admissible labelling whose min-mazx numbering
yields natural numbers only (so no argument is numbered o).

Example 2.33 Let F' = ({a,b,c,d},{(a,b), (¢,d),(d,c)}). By Definition
2.80, admissible labelling {a + in,b +— out,c — in,d +— out} has a
unique min-max numbering {(a : 1), (b : 2),(c : 00),(d : 00)}. However,
this admissible labelling is not a strongly admissible labelling in F', since
the M My(c) = MMy(d) = co. On the other hand, the admissible
labelling {a — in,b — out, ¢ — undec,d — undec} has a unique min-max
numbering {(a : 1), (b: 2)}, since both M M y(a) and M M »(b) are finite,

so by Definition 2.32, it is a strongly admissible interpretation in F'.

In (Baroni et al., 2018a), both extension-based and labelling-based ap-
proaches of semantics of AFs are presented. Moreover, two functions are
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defined to map extension-based semantics of a given AF F' to labelling-based
semantics and vice versa, to show that each extension-based semantics of
AF has a labelling-based semantics reformulation and vice versa. Namely,
Ext2Lab(\) is used to present the extension form of labelling A of F', and
Lab2Ext(e) is used to present the labelling form of the extension e of F;
we recall them in Definitions 2.34-2.35.

Definition 2.34 (Baroni et al., 2018a, Definition 3.6) Let F = (A, R)
and let S be an extension of F. For a € A, we write a™ = {b | (a,b) € R}
and ST = U{at | a € S}. If S is a conflict-free set of F, then the
corresponding labelling is defined as Ext2Lab(S) = {S,S*, A\ (SUSH)}.

Function Ezt2Lab(.) in Definition 2.34 is such that arguments of S are
labelled in, elements of ST are labelled out and all other arguments of
A are labelled undec. The alternative way of presenting Fzt2Lab(.) is as

follows.
in ifa €s,

Ext2Lab(S)(a) = < out ifae ST,

undec otherwise.

Definition 2.35 (Baroni et al., 2018a, Definition 2.7)) Given an argu-
mentation framework F = (A, R) and a labelling \, the corresponding
set of arguments Lab2Ext(\) is defined as Lab2Ext(\) = in(\). That is,
Lab2Ext()\) is the set of all arguments that are labelled in in A.

Proposition 2.36 (Baroni et al., 2018a, Proposition 3.14) For any arqu-
mentation framework F = (A, R), it holds that:

e if S is a strongly admissible set of F', then Ext2Lab(S) is a strongly
admissible labelling of F';

e if X is a strongly admissible labelling of F', then Lab2Ext(\) is a
strongly admissible set of F'.

2.4 SETAFs: Argumentation Frameworks with
Collective Attacks

Since abstract argumentation frameworks have been introduced by Dung 1995
as a core formalism in formal argumentation, a popular line of research
investigates extensions of Dung AF's that allow for a richer syntax (see,
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e.g. (Brewka et al., 2014)). A generalisation of Dung AFs that allow for a
more flexible attack structure, but do not consider support between argu-
ments, are SETAFs as introduced by Nielsen and Parsons 2006. SETAFs
extend Dung AF's by allowing for collective attacks that a set of arguments
B attacks another argument a but no proper subset of B attacks a, as it
is presented formally in Definition 2.37.

Here we formally present the notion SETAFSs as a generalization of
AFs, since we work on this class in Chapters 8 and 9.

Definition 2.37 A set argumentation framework(SETAF) is an ordered
pair F = (A, R), where A is a finite set of arguments and R C (24\{0}) x A
is the attack relation.

Given a SETAF (A, R), we write S — g b if there is a set S” C S attacking
b, i.e. (S',b) € R. We say that in this case also S attacks b. Moreover, we
write S’ g S if S’ =g b for some b € S. We drop the subscript in g if
the attack relation is clear from the context.

Notions of conflict and defense can be defined for SETAF's in analogy
to these notions in the context of AFs. Given a SETAF F = (A, R), a set
S C Ais conflicting in F' if S —g S; S C A is conflict-free in F, if S is
not conflicting in F, i.e. if S"U{a} € S for each (S’,a) € R. An argument
a € Ais defended (in F') by a set S C A if for each B C A, such that
B a,also S —pg B. A set T of arguments is hence defended (in F') by
S if each a € T is defended by S (in F)).

The semantics of SETAFs can now also be defined similarly to AF's
via a characteristic operator. With a slight abuse of notation (because
of the use of the same notation for the characteristic operator), we
thus define first of all also for a SETAF F = (A, R), I'r(S) = {a €
A | a is defended by S in F'}; here the notion of “defense” clearly being
that defined for SETAFSs. For completeness we detail the definitions of all
semantics we consider in this work for SETAFSs, although the definitions
are exactly as those for AFs (modulo the use of the more general notions
of attack and that the characteristic operator referenced therein is the
characteristic operator defined for SETAF's):

Definition 2.38 Let F'= (A, R) be a SETAF. A set S which is conflict-
free in F is

e admissible in F iff S C Tp(S);

e complete in F iff S =Tp(S);

56



[
e,/ \e

Figure 2.6: The SETAF of Example 2.39.

e grounded in F iff S is the C-least fixed-point of I'p;
e preferred in F iff S is C-mazimal admissible (resp. complete) in F';
e stable in F iff for alla € A\ S, S attacks a.

We will use the same abbreviations for SETAFs as for AF's for denoting
the sets of arguments obtained when applying the semantics on SETAFs.
We also recall that several important properties of Dung AFs carry over
to SETAFs; we refer to (Nielsen and Parsons, 2006; Flouris and Bikakis,
2019) for details.

In the following we provide an example of a SETAF and also illustrate
the concept of extensions and semantics for SETAFs.

Example 2.39 The SETAF F = ({a,b,c},{({a,b}, ), ({a,c},b)}) is de-
picted in Figure 2.6. In F', ({a,b},c) € R says that there is a joint attack
from a and b to ¢, and ({a,c},b) € R says that there is a joint attack from
a and c to b. The former attack represents that neither a nor b are strong
enough to attack c by themselves. The latter attack indicates that neither a
nor ¢ are strong enough to attack b by themselves. The conflict-free exten-
sions of F' are cf(F) = {{}, {a}, {b}, {c},{a,b},{a,c},{b,c}}, the admissi-
ble extensions adm(F) = {{},{a},{a,b},{a,c}}, the complete extensions
com(F) = {{a},{a,b},{a,c}}, the unique grounded extension grd(F) =
{{a}}, and the preferred extensions prf(F) = stb(F) = {{a,b},{a,c}}.
Note that, for instance, {b,c} is a conflict-free extension. However, it is
not an admissible extension, since {b,c} € (T'r({b,c}) ={}). Further, {a}
is an admissible and a complete extension, since I'r({a}) = {a}. On the
other hand {a} is not a preferred extension because it is not a C-maximal
admissible extension.

SETAF's have received increasing interest in the last years. For instance,

semi-stable, stage, ideal, and eager semantics have been adapted to SETAF's
in (Dvorak et al., 2019; Flouris and Bikakis, 2019); translations between
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SETAFs and other abstract argumentation formalisms are studied in (Pol-
berg, 2017); (Yun et al., 2018) observed that for particular instantiations,
SETAFSs provide a more convenient target formalism than Dung AFs.

2.5 Abstract Dialectical Frameworks

While being popular and simple, AFs can only beused to model argumen-
tation contexts with simple attack relations among arguments, depicted
by directed edges in the associated graph. Thus, there exist a number
of generalizations for AFs, as many researchers felt a need to cover ad-
ditional relevant relationships among arguments. For instance, to model
group attacks among arguments (Nielsen and Parsons, 2006), or to model
preference over the arguments (Bench-Capon, 2003; Bench-Capon and
Atkinson, 2009), or to model support relation among arguments (Cayrol
and Lagasquie-Schiex, 2009), or to model nested support and attack (Ver-
heij, 2003b).

Abstract dialectical frameworks (ADF's) were first introduced in (Brewka
and Woltran, 2010), and further refined in (Brewka et al., 2013, 2017a,
2018a) Among the generalizations of AFs, ADFs allow for a systematic
and flexible generalization of AFs in which the logical relations among
arguments can be represented. In particular, arguments can not only
attack one another, but also support each other and interact in logically
composite ways.

In AFs acceptance of an argument depends on the rejection of its
attacker (parents). However, in ADFs any logical combination of accepted
and denied parents may lead to the acceptance of the argument in question.
This leads to the concept of acceptance condition of arguments, presented
formally in Definition 2.40. Again as for AFs we assume that &2 which is
a set of propositional variables or atoms is a universe of arguments.

Definition 2.40 An abstract dialectical framework (ADF) is a tuple F =
(A, L,C) where:

e AC P is a set of arguments (statements, positions), denoted by
letters;

o L. C Ax A isa set of links among arguments;

o C = {wa}acA is a collection of propositional formulas over arguments,
called acceptance conditions.
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Remark 2.40.1 ADF D = (A, L,C) is called a finite abstract dialectical
framework if A is a finite set of arguments. Note that in this work, we
assume that all ADF's are finite.

An ADF can be represented by a graph in which nodes indicate arguments
and links show the relation among arguments. Each argument a in an ADF
is labelled by a propositional formula, called acceptance condition, ¢, over
par(a) where par(a) = {b | (b,a) € L}. An argument a is called an initial
argument if par(a) = {}. The acceptance condition of each argument
clarifies under which condition the argument can be accepted (Brewka and
Woltran, 2010; Brewka et al., 2018a). Furthermore, acceptance conditions
indicate the set of links implicitly. Thus, in a concrete example of ADF's,
we oftentimes only define acceptance conditions explicitly and implicitly
define links via the variables of the propositional formulas. That is, for
the reason of brevity we avoid presenting the set of links of ADFs in our
examples. Also, there is an alternative notion for ADFs which is more
compact, which is also used in the literature (see e.g., (Piithrer, 2020a)),
presented in Definition 2.41.

Definition 2.41 An abstract dialectical framework (ADF) D is a set of
tuples {(a, pa) taca where A is the set of arguments and @, is a propositional
formula over par(a), called the acceptance condition of a.

Definition 2.42 Let D = (A, L,C) be an ADF and let a be an argument.
e a is called an initial argument if par(a) = 0;

e a is called an isolated argument if it is an initial argument and it
does not have any child, i.e., a does not have any outgoing links.

Note that if an argument a is initial or isolated, then its acceptance
condition ¢, must be either T or L.

Example 2.43 An example of an ADF D = (A, L,C) is shown in Figure
2.7, which contains four arqguments, i.e., A = {a,b,c,d}. Dependencies
between arguments are shown by the directed edges in the associated graph,
and acceptance conditions are shown as propositional formulas attached
to each node. The acceptance condition of an argument clarifies the set
of parents of the argument, thus, there is no need of presenting L in D
explicitly. Furthermore, an acceptance condition of an argument indicates
under which condition the argument can be accepted/denied. For instance,
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Figure 2.7: ADF of Examples 2.43

the acceptance condition of ¢, namely p. : =b A d, says that ¢ depends
on b and d, i.e., par(c) = {b,d}, and it states that ¢ can be accepted if
b is denied and d is accepted. In this ADF, the arguments a and d are
initial arguments, since par(a) = par(d) = {}. The acceptance condition
of a, namely p, : T, says that a is always acceptable and the acceptance
condition of d, namely g : L, says that d is always deniable.

2.5.1 Semantics of ADF's

In this section we present the semantics of ADFs. A more comprehensive
account of ADF semantics and their origins in approximation fixpoint
theory (Denecker et al., 2004) can be found in (Strass, 2013b). Since
the acceptance condition of each argument in ADFs is a propositional
formula, interpretations are proper tools to present the semantics of ADF's.
Thus, semantics of ADFs are defined based on three-valued interpretations,
presented in Section 2.1. A three-valued interpretation function assigns
each proposition, namely argument in ADFs, to a truth value; true, false
or undecided, which we denote with t, f and u, respectively.

Let D = (A, L,C) be an ADF, a three-valued interpretation v (for D)
is a function v : A — {t,f, u} that maps arguments to one of the three
truth values. Furthermore, v is called a two-valued interpretation if for
each a € A either v(a) = t or v(a) = f. Moreover, v is called trivial
interpretation (of D), and v is denoted by vy, if v(a) = u for each a € A.
In the current work we say that the truth value of a is presented in v,
if v(a) € {t,f}. As it is presented in Section 2.1, interpretations can be
ordered via <; with respect to their information content.

Definition 2.44 Let ¥ be the set of all three-valued interpretations for an
ADF D = (A,L,C). We say for interpretations v,w € V, interpretation
v extends w (v is an extension of w), if w(a) <; v(a) for each a € A,
denoted by w <; v. Note that <; is a partial order, in particular, it is
antisymmetric.

e Interpretations v and w are incomparable if neither w <; v nor
v <; w, denoted by w > v.
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o The set of all two-valued interpretations that extend a given inter-
pretation v is denoted by [v]2, i.e.,

[v]a = {v | V' is a two-valued interpretation and v <; v'}
FEach w € [v]g is called a completion of v.

For reasons of brevity, we will sometimes shorten the notion of three-valued
interpretation v = {ay — t1,...,am > t,,,} with arguments aq, . .., a,, and
truth values t1,...,t,, as follows: v = {a; | v(a;) =t} U {—a; | v(a;) = f}.
For instance, v = {a — f,b — t,c+— u} = {—a, b}.

Semantics for ADFs can be defined via the characteristic operator
I'p which maps interpretations to updated interpretations. Given an
interpretation v (for D), the partial valuation of ¢, by v, is v(¢,) = ¢l =
©a[b/T 1 w(b) = t][b/L : v(b) = f], for b € par(a).

Definition 2.45 Let D be an ADF and let v be an interpretation of D.
Applying Tp on v leads to v’ such that for each a € A, v' is as follows:

t if wb is irrefutable (i.e., oY is a tautology),
v'(a) =< f if @b is unsatisfiable (i.e., oY is a contradiction),
u otherwise.

An argument a is called justifiable with respect to interpretation v if v(a) €
{t,f} and T'p(v)(a) = v(a).

Intuitively, the characteristic operator I'p assigns an argument a to t (f)
if the partial evaluation of the acceptance condition of a, namely ¢,, by a
given interpretation v is irrefutable (unsatisfiable), respectively. In other
words, the characteristic operator I'p assigns an argument a to t (f) if
all completions of the given interpretation v satisfy (do not satisfy) the
acceptance condition of a. Note that the operator I'g is <;-monotonic, that
is, when v <; w for interpretations v and w, then I'p(v) <; I'p(w). The
idea of the proof is as follows; let a be an argument such that I'p(v)(a) = t.
Then, by the definition of the characteristic operator, ¢! is irrefutable.
Since v <; w, it holds that ¢¥ is a tautology. Thus, I'p(w)(a) = t. By
the similar proof method it holds that if I'p(v)(a) = f for an a, then
I'p(w)(a) = f. Hence, I'p(v) <; I'p(w).
Example 2.46 illustrates the definition of the characteristic operator.

Example 2.46 Consider ADF D = ({a,b,c,d},{pa: T,pp:aA—c,p.:
—bAd,pq: L}) from Example 2.43 and the trivial interpretation vy of
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D. We calculate v/ = T'p(va) over all the arguments of D. Consider
argument a; since pgq : 1, it holds that @i : T, that is, o= is irrefutable.
Thus, a is assigned to t in v'. However, since both of the parents of b,
namely, a and c are assigned to u in vy, it holds that p,* = @y, which is
neither a tautology nor unsatisfiable. Thus, v'(b) = T'p(vy)(b) = u. By the
same reason, it holds that v'(c) = I'p(vy)(c) = u. However, it holds that
g+ L, that is, @ is unsatisfiable. Thus, v'(d) = T'p(va)(d) = f. Hence,
vV ={a—t,b—u,c—ud— f}.

If we apply the characteristic operator I'p over v/, then since I'p is a
monotonic operator, the truth values of a and d in Tp(v') are equal to v'(a)
and v'(d), respectively. Since 0¥ = —-bAL = L, it holds that T p(v')(c) = f.
However, since pf = T A=c = —c, it holds that Tp(v')(b) = u. Thus,
p()={ar—t,b—>u,c— £ ,d—f}.

The operator-based semantics of ADFs can be routed back to the work of
Denecker, Marek, and Truszezynski (2000; 2003; 2004) on approximation
fix point theory (AFT) (for a detailed analysis of the relationship between
ADFs and AFT see, e.g. (Strass, 2013b)). The characteristic operator for
ADF's generalizes the characteristic function for AFs. The operator I'p
over interpretation v returns, the consensus truth value of the evaluation of
the acceptance formula ¢, under each two-valued interpretation extending
v. Intuitively, I'p checks which truth values can be justified based on
the information in v and the acceptance conditions. The semantics of
ADFs, as defined by (Brewka et al., 2018a), are based on (collections of)
three-valued interpretations. The semantics of ADFs are defined via the
characteristic operator as in Definition 2.47.

Definition 2.47 Given an ADF D, an interpretation v is:

o conflict-free iff v(s) = t implies ! is satisfiable and v(s) = f implies
@Y is unsatisfiable;

e admissible in D iff v <; 'p(v);
o preferred in D iff v is <;-mazximal admissible;

e complete in D iff v=Tp(v);

5Note that the notion of conflict-free semantics for three-valued semantics, presented
in Definition 2.47 is based on the given notion in (Strass, 2014; Gaggl et al., 2021).
However, the notion of conflict-free semantics can be proposed as it is given in (Strass
and Wallner, 2015), where an argument can be assigned to false if the partially evaluated
acceptance condition is refutable.
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o two-valued model in D iff v=Tp(v) and v is a two-valued interpre-
tation,

e the grounded interpretation of D iff v is the least fixed point of I'p.

The set of all o interpretations for an ADF D is denoted by o(D), where
o € {cf, adm, com, grd, prf, mod} abbreviates the different semantics in the
obvious manner. Conflict-free interpretations are defined by weakening
a condition of admissible interpretations. However, this definition differs
from admissibility by requiring satisfiability instead of a tautology. Thus,
each admissible interpretation is a conflict-free interpretation, (based on
the definition of conflict-freeness rewritten in this work).

Since the characteristic operator is monotonic, via the fix point theorem
for monotone operators in complete partial orders (see, e.g. (Davey and
Priestley, 2002, Theorem 8.22)) we have the existence of the least fix point
of T'p, i.e., the grounded interpretation, in each ADF D. Similar to AFs,
admissible interpretations of a given ADF form a semi-lattice with the
trivial interpretation as the least element and the preferred interpretations
as its maximum elements. Moreover, complete interpretations of a given
ADF form a semi-lattice with the grounded interpretation as its least
element and the preferred interpretations as its maximum elements.

The intuitions behind the semantics of ADFs are as follows. In ADFs
an interpretation is called admissible if it does not contain any unjustifiable
information. An interpretation is called preferred if it represents maximum
information about arguments without losing admissibility. Thus, each
admissible interpretation is contained in a preferred interpretation. That
is, to answer the credulous decision problem under preferred semantics
(i.e., to investigate whether there is a preferred interpretation that contains
the truth value of a given argument), it is sufficient to answer the problem
under admissible semantics. An interpretation is complete if it exactly
contains justifiable information. An interpretation is two-valued model if it
exactly contains justifiable information and it is a two-valued interpretation.
Finally, an interpretation is grounded if it collects all the information that
is beyond any doubt.

Example 2.48 Let us consider again ADF D = ({a,b,c,d},{pa: T,pp :
aN—c,pe: bAd, g L}) from Example 2.43, depicted in Figure 2.7. Fur-
thermore, consider several three-valued interpretations {vg, v1,ve, v3,v,v'}
as they are in Table 2.1. We investigate whether they are part of certain
semantics. Since for each i with 0 < i < 3 it holds that v; <; T'p(v;), it
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Interpretation | @ b ¢ d I'p part of semantics
V9 = Uy u u u u|I'ply) =v cf, adm
V1 t u u f|Tpv) =0 cf, adm
Vg t u f f|Tpve)=us cf, adm
U3 t t f f | Tp(vs) =vs | cf,adm,prf, grd, com
u t u u| I'plw)=uv cf
v u u u t|IpW)=u -

Table 2.1: Interpretations for ADF from Example 2.48

holds that each v; for i with 0 < i < 3 is an admissible interpretation of D.
In general, each admissible interpretation is a conflict-free interpretation,
since conflict-free interpretations are defined by weakening the condition of
admissible interpretations. Thus, each v; for i with 0 <4 < 3 is a conflict-
free interpretation of D. The interpretation vs is a complete interpretation
of D, since I'p(vs) = vs. Further, vs is the grounded interpretation of D,
since it the least fized point of U'p. In addition, vs is a mazimal admissible
interpretation of D, then vs is a preferred interpretation of D. Moreover,
since v3 is a two-valued interpretation, it is a two-valued model of D.

Note that the interpretation v = {b} is not a(n) admissible/preferred/
complete/the grounded interpretation of D, since I'p(v) = {a — t,b —
u,c — f.d — f}, that is, v £; T'p(v). However, v is a conflict-free
interpretation of D. The truth value of b is assigned to t in v. Thus, to
show that v is a conflict-free interpretation of D, it is enough to check
whether @y is satisfiable. Since @y is indeed satisfiable, it holds that v is a
conflict-free interpretation of D.

Furthermore, for v' = {d} it holds that T'p(v") = {a,—~d}. Thus, since
v' £; Tp(v'), it holds that v’ is not a(n) admissible/preferred/complete/the
grounded interpretation of D. To check whether v' is a conflict-free inter-
pretation, we have to check whether gpg is satisfiable. Since gog, =1 (ie.,
it is unsatisfiable), it holds that v’ is not a conflict-free interpretation of D.

Another semantics that we consider for ADF's in this work is stable se-
mantics. The notion of stable semantics for ADFs is defined following the
same ideas from logic programming. Stable models extend the concept of
minimal model in logic programming by excluding self-justifying cycles
of atoms. The notion of stable semantics of ADFs is defined over the
two-valued model semantics of ADFs. Roughly speaking, a two-valued
model is a stable model if it does not contain any support cycle. Thus, a
user may use stable semantics to detect support cycle in a given ADFs.
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Formally, to investigate whether a two-valued model v of an ADF D is
a stable model of D first we evaluate the reduction of D, namely DY,
introduced in Definition 2.49.

Definition 2.49 Let D = (A, L,C) be an ADF and let v be a two-valued
model of D. The reduction of D, denoted by D which is called a stb-reduct
of D, is evaluated via following steps:

1. eliminate all nodes that are assigned to £ in v and their corresponding
links from D;

2. replace the eliminated nodes with L in the acceptance conditions of
their children.

To check whether a two-valued model v (of ADF D) is a stable model,
after evaluating ADF DV i.e., a stb-reduct (reduct) of D for v, check
whether the arguments that are assigned to t in v are in the grounded
interpretation of DV. The concept of stable semantics of ADFs has been
presented in ((Brewka et al., 2013), Definition 6) and in ((Brewka et al.,
2018a), Definition 18), we recall it in Definition 2.50. Note that, v* contains
those arguments that v maps to true, as it is presented in Definition 2.2.

Definition 2.50 Let D = (A, L,C) be an ADF and let v be a two-valued
model of D. Then v is a stable model of D if vt = wt, where w is the
grounded interpretation of the stb-reduct DV = (A?, L®, C?), where AY = vt,
LY =LN (A" x A), and wu[p/L : v(p) = £] for each a € A”. The set of
all stable models of D is denoted by stb(D).

The grounded interpretation collects all the information that is beyond
any doubt, thus, it is called that there is a constructive proof for all
arguments presented in the grounded interpretation. Hence, intuitively. a
two-valued model v of D is a stable interpretation (model), if there exists a
constructive proof for all arguments assigned to true in v, if all arguments
which are assigned to false in v are actually false. Example 2.51 clarifies
the notion of stable semantics of ADFs.

Example 2.51 Let D = ({a,b,c},{wq : =b,pp : bV —c, oc : ma V —b}) be
an ADF, depicted in Figure 2.8. D has two two-valued models, namely vi =
{a—t,b—~fc—t} and vy ={a— f,b— t,c— t}. We check whether
they are stable models. To investigate whether vi is a stable model, first we
evaluate the stb-reduct of D under v1, namely D"t = (A", LY, C"). Here
A" = {a,c}, L' = {(a,0)}, and ¢, : =L =T and ¢, : maV L =T.
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Figure 2.8: The ADF of Example 2.51.

T
—aV-oL=T bV-c—-LVv-b=T

stb-reduct D! stb-reduct D"z

Figure 2.9: The reduct of ADF D of Example 2.51.

The reduct D** is depicted in Figure 2.9 (on the left). Since the unique
grounded interpretation of D! is w = {a — t,c — t}, i.e., w®
two-valued model v1 is a stable model of D.

.
= vy,

However, we show that vy is not a stable model of D. To this end, we
first evaluate DV? = (A2, LV2 C"?), where A2 = {b, c}, L"> = {(b,b), (b, ¢),
(¢,b)}, and @y : bV —c and @, : 7LV -b =T, depicted in Figure 2.9 (on the
right). Since the unique grounded interpretation of D2 isw = {b — u,c —
t}, d.e., wt #£ 08, it holds that two-valued model vy is not a stable model
of D. Intuitively, model vy is not a stable model of D, since vy contains
a support cycle over b, i.e., the acceptance of b in vy depends on b itself,
that is, there is a cyclic justification. Thus, vo violates the main condition
of stable semantics that a stable model should have no self-justifying cycles
of atoms. Thus, stb(D) = {v1}.

An ADF may have no stable model. Example 2.52 presents an ADF that
has a two-valued model, but no stable model.

Example 2.52 Let D = ({a,b,c},{@a : cVb,p: ¢, :a <> b}), depicted
in Figure 2.10. The only two-valued model of D is v ={a > t,b—t,c—
t}. We investigate whether v is a stable model of D. Since all arguments
m v are assigned to t, all of them stay in the stb-reduct DV. There is
no argument in v that is assigned to £, thus no argument is replaced by
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Figure 2.10: The ADF of Example 2.52

| stable |—>| model |—>| preferred |—>| complete |—>| admissible |—>| conflict-free

Figure 2.11: Relation among semantics of ADFs

L in the acceptance conditions of CY. Hence, D = D. Now we have
to check whether the set of arguments that are assigned to true in v and
the grounded interpretation of DV are equivalent. The unique grounded
interpretation of DV is w = {a — w,b — u,c — u}. That is, w* = {}.
Thus, w® # vt. Hence, v is not a stable model of D.

Semantics of ADFs generalize semantics for AFs. Note that stable seman-
tics of AFs have two generalisations in ADFs, namely two-valued model
semantics and stable semantics. Two-valued model semantics reflect the
‘zero-and-one’ character of classical logic in ADFs, where in each two-valued
model each argument is either acceptable or deniable without loosing of
admissibility. Furthermore, stable semantics of ADF's indicate support
cycle in a model. Akin to AFs, an ADF may have neither a two-valued
model nor a stable model. Since in AFs there is no direct support, both
notions of two-valued semantics and stable semantics coincide. In an ADF
D the following inclusions holds:

o sth(D) C prf(D) C mod(D) C com(D) C adm(D) C c¢f(D);
e grd(D) C com(D).

The relation between ADF semantics are shown in Figure 2.11. An arrow
from o to v, where ¢ and ~ are semantics of ADFs, denotes that for any
ADF D it holds that o(D) C y(D). It is shown in (Brewka et al., 2013),
that semantics of ADF's directly generalize semantic of AFs. Definition
2.53 presents the associated ADF for a given AF.
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Definition 2.53 For an AF F = (A, R), define the ADF' associated with
F as Dp = (A, R,C) with C = {@a}aca such that for each a € A the
acceptance condition is as follows:

Pa = /\ —b

(ba)eER

In (Brewka et al., 2013) it is shown that the semantics of ADFs general-
ize the corresponding notions defined for AFs. In (Brewka et al., 2013,
Theorem 2), it is presented that: an extension is admissible, complete,
preferred, grounded for F' iff it is admissible, complete, preferred, grounded
for Dp. To investigate the correspondence between semantics of an AF F
and its associated ADF Dp, we show how the extension-based semantics
and labelled-based semantics of AF's relate to the interpretation-based
semantics of ADF's.

Given an AF F = (A, R) and its corresponding ADF Dp = (A, R, C)
(see Definition 2.53), the set of all possible conflict-free extensions of F' is
denoted by & and the set of all possible conflict-free interpretations of D is
denoted by 7. The functions Ext2Intr and Int2Eztp, in Definitions 2.54-
2.56, are modifications of the labelling functions as given in (Baroni et al.,
2018a), which we recalled in Definitions 2.34-2.35. Function Ext2Intp(S)
represents the interpretation associated with a given extension S in F,
and function Int2Eztp, (v) indicates the extension associated with a given
interpretation v of Dp.

Definition 2.54 Let F' = (A, R) be an AF, and let S be an extension of
F. The truth value assigned to each argument a € A by the three-valued
interpretation vg associated with S is given by Ext2Intp : & — V as
follows.

t ifaes,
Ext2Intp(S)(a) = ¢ f if 3b € A such that (b,a) € R and b € S,
u

otherwise.

Proposition 2.55 Let F = (A, R) be an AF, let Dp be its associated
ADF, and let S be a conflict-free extension of F. Then Ext2Intp(S) is
well-defined.

Proof
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1. Assume that a € S. We show that a is only assigned to t in
Ezt2Intp(S). By Definition 2.54, definitely it holds that a — t €
Ezt2Intp(S), thus a — u & Ext2Int(S). We show that a cannot be
assigned the value f in Ext2Intp(S). Toward a contradiction, assume
that a — f € Ext2Intr(S). That is, by Definition 2.54, there exists
a parent of a, namely p, such that p, € S. However, this means that
S contains conflict arguments, i.e., a and p, with (ps,a) € R. Thus,
S is not a conflict-free extension. This contradicts the assumption
that S is a conflict-free extension of F. Thus, the assumption that
a— f € Ext2Intp(S) is wrong.

2. Assume that a ¢ S. We show that either a — f € Ext2Intp(S) or
a — u € Ext2Intr(S), but not both of them. Either at least one
parent of a belongs to S or none of them belong to S. By Definition
2.54, it is straightforward that if @ € S and a parent of a belongs to
S, then a — f € Fzt2Int(S). In other words, if a ¢ S and none of
the parents of a belong to S, then a — u € Ext2Intr(S). That is, if
a ¢ S, then either a — f € Ext2Intp or a — u € Ezt2Intp(S) but
not both of them together.

Thus, if S is a conflict-free extension, then Ext2Intr(S) is well-defined.
O

Note that in Definition 2.54, the basic condition that S has to be a conflict-
free extension is a necessary condition for Ext2Intr(S) being well-defined.
For instance, let F' = ({a, b}, {(a,b)}). Set S = {a, b} is an extension of F.
However, S does not satisfy the conflict-free property. On the other hand,
Ext2Intp(S) = {a — t,b+— t,b+— f}. In other words, the correspondence
between extensions and interpretations via Ezt2Intr(.) is well-defined for
conflict-free sets of arguments. This is the reason why we restrict & and ¥
to the set of all conflict-free extensions of F' and conflict-free interpretations
of D, respectively. By (Caminada and Dunne, 2019, Theorem 4), every
strongly admissible extension of an AF is a conflict-free extension. Thus,
if S is a strongly admissible extension of AF F, then, by Proposition
2.55, it holds that Ext2Intp(S) is well-defined. So extensions of F' can be
presented as interpretations of Dp. Also an interpretation of Dp can be
represented as an extension via the following function.

Definition 2.56 Let Dp = (A, R,C) be the ADF associated with AF F,
and let v be an interpretation of Dp, that is, v € ¥. The associated
extension S, of v is obtained via application of Int2Fztp, : V' — & on v,
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Figure 2.12: AF conversion to ADF of Example 2.59

as follows:
Int2Extp,(v) ={a € A | a—t v}

Furthermore, the relation between labelled-based semantics of AFs and
interpretation-based semantics of ADF's is presented in Definitions 2.57
and 2.58. Note that .Z denotes the set of labellings of AF F'.

Definition 2.57 The function Lab2Int(:) : £ — ¥ maps three-valued
labellings to three-valued interpretations such that

o Lab2Int(N)(a) =t iff A(a) = in,
o Lab2Int(N)(a) = f iff AN(a) = out, and
o Lab2Int(\)(a) = u iff A(a) = undec.

Definition 2.58 The function Int2Lab(-) : ¥ — £ maps three-valued
interpretations to three-valued labellings such that

o Int2Lab(v)(a) = in iff v(a) =t;
e Int2Lab(v)(a) = out iff v(a) = £;
e Int2Lab(v)(a) = undec iff v(a) = u.
Example 2.59 presents an instance of AF and its associated ADF.

Example 2.59 Let F = ({a,b,c,d},{(a,b),(b,c),(a,c),(b,d),(d,d)}) be
an AF. The associated ADF Dp to F is Dp = (A, R, {¢a : T,p: 7@, @ :
—b A —a,@q: —bA—d}), depicted in Figure 2.12. For instance, S = {a} is
an admissible interpretation of F. The associated interpretation of S is
Ext2Intp(S) = {a — t,b— f,c— £,d — u} which is also an admissible
interpretation of Dp.
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Links in ADFs are abstract in the sense that their meaning are determined
solely by the acceptance conditions of the arguments. However, in ADF's,
relations between arguments can be classified into four types, reflecting the
relationship of attack and/or support that exists between the arguments.
These are listed in Definition 2.61. Further, we present the update of an
interpretation with a truth value of a given argument in Definition 2.60.

Definition 2.60 Let D = (S,L,C) be an ADF, and let v be an inter-
pretation of D. The update of v with a truth value x € {t,f,u} for an
argument b is denoted by v|%, where,

ol (q) — T for a =0,
(@) {v(a) for a #b.

Definition 2.61 Let D = (S,L,C) be an ADF. A relation (b,a) € L is
called

e supporting (in D) if for every two-valued interpretation v, v(py) =t
implies v|2(gq) = t;

e attacking (in D) if for every two-valued interpretation v, v(pg) = f
implies v|2(¢q) = f;

e redundant (in D) if it is both attacking and supporting;

e dependent (in D) if it is neither attacking nor supporting.

Example 2.62 Consider the acceptance condition of p, : bV —c for argu-
ment a. By p, the set of parents of a is {b,c}. Thus, we clarify the type of
(b,a) and (c,a). There are three satisfying two-valued interpretations, i.e.,
vi={b—=t,c—t},vo={b—t,c—f} andvs ={b— f,c— f}, and
one that does not satisfy the formula, i.e., v4 = {b+— f,c+— t}. By the
definition of supporting links we have to check that whether vi(pg) =t fori
with 1 < < 3 implies vi]%(¢a) = t. Since for i with 1 <i <3, vi(py) =t
implies v;|2(pq) = t, it holds that (b,a) is a supporting link. Furthermore,
since v4(pa) = £ but v4)(¢a) = t, link (b,a) is not an attack link.

Moreover, since vs(a) =t but v3|f(ps) = £, it holds that (c,a) is not a
support link. However, it holds that va(pa) = £ and v4|§(pa) = £. Thus,
(c,a) is only an attacking link.

As an example for a link that is both attacking and supporting, consider
pq : bV —b. There are two satisfying two-valued interpretations for the
formula, i.e., vi = {b— t} and va = {b — f}. Since fori with 1 <1i <2 it

71



holds that v;(w,) = t implies v;|2(wq) = t, it holds that (b, a) is a supporting
link. Furthermore, since there is no two-valued interpretation that does not
satisfy the formula, the link (b,a) is also an attacking link. Thus, (b,a) is
a redundant link in @g : bV —b.

As an example for a link that is neither an attacking nor supporting,
consider pq : (mcV D) A (cV =b). Let v={b— f,c— £} be a two-valued
interpretation that satisfies the formula. However, v|}(¢s) = f. Thus,
(b,a) is not a support link. Further, let v = {b+— f,c— t} be a two-valued
interpretation that does not satisfy the formula. However, it holds that
v[¥(pa) = t. Thus, (b,a) is not attacking. Hence (b,a) is a dependent link.

2.5.2 Subclasses of ADF's

In this section we restrict the syntactic structure of the acceptance condi-
tions of ADF's to define a subclass of ADF's, called bipolar ADF's, introduced
in (Brewka and Woltran, 2010). Furthermore, we show how a generaliza-
tion of AFs, namely SETAFs (Nielsen and Parsons, 2006), presented in
Section 2.4, can be embedded in ADFs.

Bipolar ADFs

Bipolar ADFs are now defined as ADFs which contain only supporting
and attacking links.

Definition 2.63 Let D = (A, L,C) be an ADF and L™ be the set of all
support links of L and L™ be the set of all attack links of L. ADF D is
named a bipolar ADF (BADF for short) iff L= LT UL™.

Since all links in the associated ADF Dp of AF F are attacking, it is clear
that Dr is a BADF, presented in Corollary 2.64.

Corollary 2.64 Let F' be an AF and let D be its associated ADF. It
holds that D is a BADF.

Example 2.65 is an instance of ADF which is also a BADF.

Example 2.65 Let D = ({a,b,c},{pa : 7cV b, gy : maVa,p. : aAc}),
depicted in Figure 2.13. It holds that Lt = {(a,b), (b,a),(a,c),(c,c)}
and L= = {(c,a),(a,b)}, where (a,b) is a redundant link of D, since
(a,b) € LY NL~. Since L =L*"U L™, it holds that D is a BADF.

In contrast with Example 2.65, Example 2.66 presents an instance of ADF
which is not a BADF. This shows that the class of BADFs is a strict
subclass of ADFs.
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Figure 2.13: The ADF/BADF of Example 2.65
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Figure 2.14: The ADF which is not a BADF of Example 2.66

Example 2.66 Let D = ({a,b,c},{¢q : c <> b,y : ma, @ : a}), depicted
in Figure 2.14. It holds that Lt = {(a,c)} and L~ = {(a,b)}. Similar to
Ezample 2.62 one can check that (b,a),(c,a) € LT U L~. That is, (b,a)
and (c,a) are dependent links of D. Thus, D is not a BADF.

Embedding SETAFs in ADFs

Translations between SETAFs and other abstract argumentation for-
malisms are studied in (Polberg, 2017). Furthermore, as observed by
Polberg (2016) and Linsbichler et.al (2016), the notion of collective attacks,
introduced in (Nielsen and Parsons, 2006), can also be represented in ADF's
by using the right acceptance conditions. That is, SETAFs can be seen as
a certain subclass of ADFs where sets of attacking arguments are captured
in the acceptance conditions of these ADFs as conjunctions of disjunctions
of negated atoms. Definition 2.67 presents the associated ADF for a given
SETAF.

Definition 2.67 Let F' = (A, R) be a SETAF. The ADF associated to F
is a tuple Dp = (A, L,C) in which L = {(a,b) | (B,b) € R,a € B} and
C = {@a}aes is the collection of acceptance conditions defined, for each

ac€ A, as
pa= N\ V.

(B,a)eRa’€B
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Figure 2.15: SETAF conversion to ADF of Example 2.68

Example 2.68 considers SETAF of Example 2.39 and presents its associated
ADF.

Example 2.68 Let ' = ({a,b,c},{({a,b},c),({a,c},b)}) be a SETAF,
presented in FExample 2.39. The associated ADF Dp to F is Dp =

({a,b,c}, {(a,c), (b,c),(a,b),(c,;b)},{va : T,pp : maV ¢, @ : maV —b}).
The conversion of F' to Dp is depicted in Figure 2.15.

The relation between different sub-classes of ADFs, i.e. AFs, SETAFs
and bipolar ADF's, has been formally studied in (Linsbichler et al., 2016).
Note that the ADFs associated to AFs and SETAFSs, respectively, only
contain attacking links, and are therefore bipolar ADFs. As discussed
in (Polberg, 2017), in general, SETAFs translate to bipolar ADF's that
contain attacking and redundant links. Furthermore, it is proven that an
extension is admissible, complete, preferred, grounded, stable for SETAF F'
iff it is admissible, complete, preferred, grounded, stable for the associated
ADF Dp.

2.6 Computational Complexity

In the field of computational complexity one is eager to investigate the
question ‘how difficult is a computational problem?’ or in other words,
to answer: ‘How much does it cost to solve a computational problem?’
The word ‘cost’ may relate to the amount of time or space (i.e., memory)
taken by an algorithm to solve a problem. Thus, we mostly consider
two types of complexity, namely, time complexity and space complexity
to investigate how much time and space an algorithm (or a formalized
machine) requires to solve a problem in the worst case. Complexity classes
contain those computational problems that have a formally comparable
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complexity. Also the notion of a Turing machine, as a representation of a
formalized computational machine, is considered in complexity theory.

This section briefly explains some complexity classes and presents
reasoning tasks related to AFs and ADFs. For comprehensive introductions
to complexity theory we refer to (Papadimitriou, 2007; Arora and Barak,
2009) and for an overview of the complexity of reasoning tasks for AF's
and ADFs we refer to (Dvotdk and Dunne, 2018).

2.6.1 Basics

A decision problem L consists of a set of instances (possibly infinite) and
a query which can be answered yes or no. That is for an instance [ an
algorithm decides whether [ € L; if actually [ belongs to L, then the answer
to the decision problem would be yes, and if [ € L, then the answer would
be no. An instance of a specific decision problem would be SAT which has
all propositional formula as its instances and the query to answer is that
whether a given instance is satisfiable.

Informally speaking, a Turing machine (TM for short) is a description
of an algorithm. If in a state of an algorithm (a machine) we have several
choices, then the Turing machine is non-deterministic, otherwise it is
deterministic. Then, the class of decision problems decidable with a
deterministic TM in polynomial time is called P. Using a non-deterministic
TM leads to the definition of another important complexity class. The class
of decision problems decidable with a non-deterministic TM in polynomial
time is called NP. Typically problems of P are considered ‘tractable’ and
the ones outside of this class are considered ‘intractable’. A useful notion
is the concept of ‘co-problem’ of a problem. L’ is a co-problem of L if for
each [ the following property holds: [ is a yes instance of L if and only if
it is a mo instance of L’. For NP the class containing the co-problems is
called coNP.

Given the complexity class %, an oracle machine for a class € decides
a given problem from % in one computational step. The class P% contains
the problems that can be decided in polynomial time by a deterministic
TM with access to a @-oracle. The class NP? contains the problems
that can be decided in polynomial time by a non-deterministic TM with
access to a @-oracle. Finally, the class coNP? contains the problems
whose complementary problems can be decided in polynomial time by a
non-deterministic TM with an access to a %-oracle. We can now define
the complexity classes of the polynomial hierarchy as follow.

75



Definition 2.69 Let Zg =NP = Ag = P. Define for i > 0 the following
classes.

° Af = Pzﬁ—l;
o ¥P = NP™1;
o NP = coNPZ-1.

Furthermore, L is the class of problems that can be decided by a TM
that only uses a logarithmic amount of memory with respect to the size
of input. Moreover, the class DP ‘difference class’ contains an instance
of x =< x1, 9 > where z is accepted by a problem L; (with L; € NP)
and x9 is accepted by a problem Ly (with Ly € coNP). For instance,
the decision problem x =< @1, 2 > in which ¢; is satisfiable and ¢y is
unsatisfiable is an instance of DP problem, since x is the intersection of
positive instance of Lj and Ly where L1 = {< ¢1,p2 > | 1 is satisfiable }
and Lo = {< 1,92 > | p2 is unsatisfiable }. The last class we consider
is @f . This class contains problems which are decidable by a deterministic
TM in polynomial time, where the number of oracle calls is bounded by
O (log(n)) such that n is the input size. To further study the polynomial
hierarchy we refer the reader to (Stockmeyer, 1976).

A useful method to investigate the complexity class of a given problem
is the concept of reduction, presented in Definition 2.70.

Definition 2.70 Let A and B be two decision problems. Decision problem
A is P-reducible to B if there exists a function f that satisfies the following
conditions. For each instance x,

1. = is a yes instance of A if and only if f(x) is a yes instance of B;

2. f(x) is computable by a deterministic TM in polynomial time.

We wrap up this section by rephrasing the notions of %-hard and %-
complete, for a complexity class %, in Definition 2.71.

Definition 2.71 Let ¥ be a complexity class and let L be a decision
problem.

e L is €-hard when every problem L' in € can be reduced in polynomial
time to L.

o L is €-complete, if it is €-hard and L € €.
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2.6.2 Decision Problems and Complexity of AF's

Decision problems have been defined for the semantics of AFs (Dvordk and
Dunne, 2018). Central reasoning tasks within argumentation formalisms are
the credulous and sceptical acceptance problems as well as the verification
problem. The credulous/skeptical decision problems are presented in
Definition 2.72 and the verification problem is presented in Definition 2.73.

Definition 2.72 Let F' = (A, L) be an AF, let a be an argument of F', and
let o be semantics i.e., o € {adm, prf, grd, cf, com, idl, semi-stb, sadm, stb}.

e a is credulously acceptable under o if there exists a o-extension S of
F,i.e., S € o(F) such that a € S, denoted by Cred,. The credulous
decision problem is presented formally in the following.

yes if 3S € o(F') such that a € S,

no  otherwise

Credy(a, F) = {

e a is skeptically acceptable under o if for all o-extension S of F, i.e.,
VS € o(F) it holds that a € S, denoted by Skept,. The skeptical
decision problem is presented formally in the following.

yes if VS € o(F) it holds that a € S,

Skept,(a, F) = { '
no  otherwise

Definition 2.73 Let F = (A, L) be an AF, let S a set of arguments of F,

and let o be semantics of AFs. The verification problem indicates whether

a given set S is a o-extension of F, i.e., whether S € o(F), denoted by

Ver,. The verification problem is presented formally in the following.

Very (S, F) {yes if S G.O'(F),
no  otherwise

For strong admissibility semantics of AFs one more decision problem is
proposed in (Dvoidk and Wallner, 2020), called the minimum size strongly
admissible set problem. Since we introduce this reasoning task for strong
admissibility semantics of ADFs in Chapter 4, here we rephrase this notion
for AFs as it is presented in (Dvofdk and Wallner, 2020). Considering
strong admissibility semantics we are interested in investigating whether
a queried argument belongs to at least one strongly admissible extension
S of size of at most k, i.e., |S| = k, this decision problem is denoted by
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o Cred, Skept, Ver,

cf inL  trivial in L
adm NP-c¢c  trivial in L,
prf NP-c I'I2P—c coNP-c
com NP-c P-c in P
grd P-c P-c P-c

stb NP-c  coNP-c  in P
semi-sth | L5-c Nf-c coNP-c
sadm P trivial P
idl in©F inef inef

Table 2.2: Complexity of reasoning with AFs.

k- Witnesssqqm- Note that k is a part of the input of this problem and
specifies the size constraint. In (Dvorak and Wallner, 2020) it is shown
that k- Witnessgqqm is NP-complete.

The complexity of reasoning problems for AF's has been studied in (Dunne
and Caminada, 2008; Dunne and Bench-Capon, 2002; Dvorédk, 2012; Dvorak
and Dunne, 2018; Dvoidk and Wallner, 2020) and is summarized in Ta-
ble 2.2 for the semantics considered in this work. In Table 2.2, for reasons
of brevity, instead of writing %-complete we have %-c, for a class €.

2.6.3 Decision Problems and Complexity of ADF's

Key reasoning problems in ADFs are the credulous and skeptical decision
problems of arguments, and the problem of verification of an interpretation.
In ADFs beside an argument being acceptable in an interpretation, there
is a symmetric notion of an argument being deniable. Thus, first in
Definition 2.74 we present the notions of an argument being accepted
or denied in an interpretation. Then, we present the associated decision
problems for ADFs.

Definition 2.74 Let D = (A, L,C) be an ADF and let v be an interpre-
tation of D.

o An argument a € A is called acceptable with respect to v if ¢ is
irrefutable.

o An argument a € A is called deniable with respect to v if ol is
unsatisfiable.
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We say that an argument a s justifiable with respect to v if it is either
acceptable or deniable with respect to v.

For instance, let D = ({a,b}, {4 : a,pp : —a}) be an ADF. It holds that a
is acceptable with respect to v = {a — t,b — u}, and b is deniable with
respect to v. Furthermore, both a and b are justifiable with respect to v.
Dung’s Fundamental Lemma of AFs is reformulated in (Diller et al., 2018)
for ADFs, represented in Lemma 2.75.

Lemma 2.75 Let D be an ADF. Assuming v is an admissible interpreta-
tion of D, and a and a’' are arguments which are justifiable with respect to
v. Then,

o v = vlg/f is an admissible interpretation of D,
e d is justifiable with respect to v'.

The credulous and skeptical decision problems of ADFs are presented in
Definition 2.76.

Definition 2.76 Let D = (A, L,C) be an ADF, let o be semantics of
ADEFs, let a be an argument of A, and let © be a two-valued truth value,
i.e., x € {t,f}.

e a is credulously justifiable under o if there exists a o-interpretation
v of D in which v(a) = z, denoted by Cred, and presented formally
in the following.

yes if v € o(D) such that v(a) = x;

Cred,(a — x,D) = )
no  otherwise

Note that in the above definition if x = t, then it is called that a is
credulously acceptable under o (in v), and if x = £, then it is called
that a is credulously deniable under o (inv).

e a is skeptically justifiable under o if for each v with v € o(D) it
holds that v(a) = z, denoted by Skept, and presented formally in the
following.

yes if Yu € a(D) it holds that v(a) = x;

Skept,(a — x,D) = _
no  otherwise
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If x = t, then it is called that argument a is skeptically acceptable
under o (inv) , and if x = £, then it is called that a is skeptically
deniable under o (in v).

Example 2.77 Let us consider again ADF D = ({a,b,c,d},{pa: T,pp:
aAN=e, pc: bAd, g L}) from Example 2.43. Since there is an admissible
interpretation assigning a to true (t) (e.g. vi = {a— t,b—u,c— u,d—
f}, see Table 2.1) it holds that a is credulously acceptable under admissible
semantics in the ADF D. However, argument d is not credulously acceptable
under admissible semantics in D. We explain why d cannot be credulously
accepted under admissible semantics of D. Note that the only preferred
interpretation of D is vs = {a > t,b+— t,c— £, d— f}, as in Table 2.1,
in which d is assigned to £. That is, d is credulously and skeptically deniable
under preferred semantics of D. Since any admissible interpretation must
be equally or less informative than at least one preferred interpretation, d
cannot be credulously accepted under admissible semantics of ADFs.
Furthermore, since the unique preferred interpretation vs is also a
unique complete interpretation, stable model, two-valued model, and the
grounded interpretation of D, it holds that b is skeptically acceptable, and c
is skeptically deniable under o semantics, for o € {prf, mod, com, stb, grd}.

Due to the relations between different semantics one can find relations
between reasoning tasks. For instance, by the definition of preferred seman-
tics; each preferred interpretation is <;-maximal admissible interpretation
and each preferred interpretation is a complete interpretation. Thus, it
holds that the credulous decision problems under preferred, admissible,
and complete semantics coincide.

Furthermore, since there is only one grounded interpretation in any
ADF, credulous and skeptical decision problems under grounded seman-
tics coincide. Also, since the grounded interpretation is the <;-minimal
complete interpretation, skeptical decision problems under complete and
grounded semantics coincides.

Another important reasoning task of ADFs is the verification problem,
presented in Definition 2.78.

Definition 2.78 Let D be an ADF, let o be semantics of ADFs, and let
v be an interpretation of D. The verification problem decides whether v
is a o-interpretation, i.e., if v € o(D), denoted by Versygm(v, D), and is
presented formally as follows:

Very(v,D) = {

yes ifv e o(D),

no  otherwise
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o Cred,  Skept, Ver,
cf NP-c trivial NP-c
adm | ¥B-c  trivial coNP-c
prf | Zh-c nt-c nb-c
com | ¥F-c  coNP-c DP-c
grd | coNP-c  coNP-c  DP-c
stb ¥Pc Nf-c  coNP-c

mod | NP-¢c  coNP-c in P

Table 2.3: Complexity of reasoning with ADF's.

Example 2.79 Considering ADF D = ({a,b,c,d},{pa : T,0p : a A
—c,pc 1 b ANdypg : L}) from Example 2.43. Let v = {a — u,b
u,c — f,d— f}. Since v is an admissible interpretation of D but it is
not a preferred interpretation of D, it holds that Verygm(v, D) = yes and
Veryf(v, D) = no.

The complexity of nearly all ADF reasoning tasks has been analyzed
in (Strass and Wallner, 2015; Dvofdk and Dunne, 2018; Gaggl et al., 2021).
The complexity landscape of reasoning in ADFs, under semantics which
are presented in this work, is shown in Table 2.3. Except for the trivial
tasks, computational complexity of nearly all reasoning tasks in ADFs
when compared to AFs increases by one step in the polynomial hierarchy.
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Part 11

Semantics
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Chapter 3

Strong Admissibility

Different criteria for settling the acceptance of arguments are called se-
mantics. Semantics of ADFs have so far mainly been defined based on the
concept of admissibility. A new type of admissibility-based semantics is
usually proposed by introducing further restrictions on the set of accepted
arguments. However, the notion of strongly admissible semantics studied
for abstract argumentation frameworks has not yet been introduced for
ADFs. Strong acceptability of AF's is not only a new point of view on the
acceptability of arguments, but it is also a way of providing reasons why
an argument belongs to the grounded extension. In this part of the thesis,
we present the concept of strong admissibility of interpretations for ADFs.
Furthermore, we show that strongly admissible interpretations of ADF's
form a lattice with the grounded interpretation as the maximal element.
We also present algorithms to answer the following decision problems:

1. whether a given interpretation is a strongly admissible interpretation
of a given ADF, and

2. whether a given argument is strongly acceptable/deniable in a given
interpretation of a given ADF.

In addition, we show that the strongly admissible semantics of ADF's forms
a proper generalization of the strongly admissible semantics of AFs.

3.1 Introduction

Interest and attention in argumentation theory from artificial intelligence-
related researchers has been increasing, as witnessed by the wide variety of
formalisms to model argumentation and by the variety of semantics that
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clarify the acceptance of arguments (Baroni et al., 2018b; van Eemeren
et al., 2014). Abstract argumentation frameworks (AFs for short) as
introduced in the landmark paper by Dung (1995) have gained more
and more significance in the Al domain. First of all, it has been shown
in (Dung, 1995) that AFs are useful to capture the essence of different
non-monotonic formalisms. In addition, compared to other non-monotonic
formalisms (which are built on top of classical logical syntax), AFs are a
much simpler formalism; indeed, they are just directed graphs in which
nodes present arguments and directed edges indicate attack relations among
arguments. Moreover, AFs are nowadays an integral concept in several
advanced argumentation-based formalisms in the sense that their semantics
are defined based on a translation (typically called an instantiation) to
Dung’s AFs. Finally, the simplicity of the syntax of AFs has made them
an attractive modeling tool in several areas, such as multi-agent systems
(McBurney et al., 2012), multi-agent negotiation (Amgoud et al., 2007),
and legal reasoning (Bench-Capon and Dunne, 2005).

Despite the popularity and simplicity of AFs, these frameworks are used
to model argumentation with simple attack relations among arguments.
Thus, there exist a number of generalizations of AF's, for instance, modeling
group attacks among arguments (Nielsen and Parsons, 2006) or modeling
preference over the arguments (Bench-Capon, 2003; Bench-Capon and
Atkinson, 2009). Among all generalizations of AFs, abstract dialectical
frameworks (ADF's) were first introduced in (Brewka and Woltran, 2010)
and further refined in (Brewka et al., 2013, 2018a). They are expressive
generalizations of AFs in which the logical relations among arguments
can be represented. This allows researchers to express notions of support,
collective attacks, and even more complicated relations. Thanks to their
flexibility in formalizing relations between arguments, ADFs have recently
been used in several applications; in legal reasoning (Al-Abdulkarim et al.,
2016, 2014; Collenette et al., 2020), online dialog systems (Neugebauer,
2017, 2019), and text exploration (Cabrio and Villata, 2016).

A key question in formal argumentation is ‘How is it possible to evaluate
arguments in a given formalism?’. Answering this question leads to the
introduction of several types of semantics. In AFs, different semantics
single out coherent subsets of arguments that “fit” together, according to
specific criteria (Baroni et al., 2011). More formally, an AF semantics takes
an argumentation framework as input and produces as output a collection
of sets of arguments, called extensions. Thus, different semantics reflect
different points of view about the acceptance or denial of arguments. Most
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of the semantics of AFs/ADF's are based on the concept of admissibility.

In AFs, admissibility plays an important role with respect to rationality
postulates (Caminada and Amgoud, 2007). Often a new semantics is an
improvement of an already existing one by introducing further restrictions
on the set of accepted arguments (that are chosen together) or possible
attackers. One of the main admissibility-based semantics of AF's is the
grounded semantics. First, each AF has a unique grounded extension.
Second, the elements of the grounded extension usually belong to other
semantics of AFs. The grounded extension collects all unattacked (un-
doubted) arguments and each argument that can be iteratively supported
by these unattacked arguments. Informally, the grounded extension ac-
cepts those arguments that no one can avoid to accept; it rejects all the
arguments that no one avoid to reject; and it does not have any idea
about all other arguments. Thus, no one has any doubt on the acceptance
of the arguments that are in the grounded extension. Thus, answering
the credulous decision problem under grounded semantics of AF's (i.e.,
investigating whether a queried argument is part of the grounded extension
of a given AF) has a considerable importance.

It has been shown that to answer the credulous decision problem under
grounded semantics, not all arguments within the grounded extension
are necessary. As a remedy, another set of semantics, namely strong
admissibility semantics has been introduced for AFs (Baroni and Giacomin,
2007; Caminada, 2014; Caminada and Dunne, 2019). While the grounded
extension collects all the arguments of a given AF that can be accepted
without any doubt, strongly admissible extensions are subsets of the
grounded extension that satisfy the same condition. Actually a strongly
admissible extension explains why its arguments can be accepted without
any doubt, without presenting further information of all arguments in the
grounded extension. In AF's, the concept of strong admissibility semantics
has first been defined in the work of Baroni and Giacomin (2007), based on
the notion of strong defence. Later in (Caminada, 2014) this concept was
introduced without referring to strong defence. Furthermore, in (Caminada
and Dunne, 2019), Caminada and Dunne presented a labelling account of
strong admissibility to answer the decision problems of AFs under grounded
semantics.

The role and the relevance of strong admissibility semantics and
grounded discussion games for AFs has been studied in (Caminada, 2018,
2014; Caminada and Dunne, 2019). That is, it has been shown that strongly
admissible extensions/labellings make a lattice with the maximum element
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being the grounded extension of a given AF. Therefore, the concept of
strong admissibility semantics of AFs relates to grounded semantics of
AFs in a similar way as the relation between admissible semantics of AFs
and preferred semantics of AFs. That is, to answer the credulous decision
problem of AFs under grounded semantics, it is sufficient to solve the
decision problem for AFs under strongly admissible semantics, i.e., it is
enough to indicate whether there exists a strongly admissible extension
that contains a queried argument. Furthermore, it has been shown that the
strong admissibility semantics and the corresponding discussion games may
be the basis for an algorithm that can be used not only for answering the
decision problem but also for human-machine interaction (cf. (Caminada
and Uebis, 2020; Booth et al., 2018)). In addition, the computational
complexity of strong admissibility of AFs has been analyzed (Caminada
and Dunne, 2020; Dvorak and Wallner, 2020).

It has been shown in (Brewka et al., 2018a) that each AF can be
represented as an ADF; furthermore, it has been shown that ADF's provide
all of Dung’s standard semantics, proposed in (Dung, 1995) for AF's, so there
is no loss in semantic richness. By the use of general propositional formulas
as argument acceptance conditions, ADFs allow for richer relations between
arguments than AFs, which only allow attack. Because ADFs are at least
as expressive as AFs, they can represent all important problem aspects that
AFs can represent. However, some of the semantics of AFs have not yet
been introduced for ADF's, namely, strongly admissible semantics. Because
of the special structure of ADF's, the definition of strong admissibility
semantics of AFs cannot be directly reused in ADFs. Because of the
importance of the notion of strongly admissible semantics to investigate
the acceptance of a queried argument under the grounded semantics, in the
current work we introduce the concept of strongly admissible semantics of
ADFs that satisfies/follows the same set of properties as this concept has
in AFs, presented in Section 3.1.1. We do so not only because ADFs are
generalisations of AFs, but also because ADFs are expressive enough to
model a wide range of non-monotonic knowledge representation languages,
and the role of strongly admissible semantics to answer the credulous
decision problem. ADFs have been very actively researched (Brewka et al.,
2011; Brewka and Gordon, 2010; Ellmauthaler, 2012; Strass and Wallner,
2015; Strass, 2013a, 2018; Wallner, 2020).

A main characteristic of strongly admissible semantics of ADFs is
that they can be used to explain the answer to the question: ‘Why is an
argument justified under grounded semantics of ADFs?’. For instance,
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suppose that an ADF is used to formalize a knowledge-base that presents
methods to cure a disease or to make a decision in the legal domain. It is
not enough to tell a patient or client that we pick a certain argument since
it is presented in a semantics, but they to be convinced why this is the case.
Moreover, having automated argumentation systems that can help people
to make better choices is a goal of human-machine interaction (Hunter,
2018; Chalaguine and Hunter, 2020). To persuade agents to perform (or
not to perform) an certain action, a user needs to have further explanation
about the acceptance of arguments. To address this open problem, we
previously considered grounded semantics of ADF's, since no one has any
doubt on the evaluation of arguments in the grounded interpretation. Then,
as a first remedy in (Keshavarzi Zafarghandi et al., 2020), we introduced a
discussion game to answer the credulous decision problem of ADFs under
grounded semantics without constructing the full grounded interpretation
of the given ADF. Subsequently, in the current work we propose the notion
of strong admissibility semantics of ADFs. Both methods can be used to
explain the truth values of arguments in the grounded interpretation. We
think that grounded discussion games of ADFs and strong admissibility
semantics of ADFs are two sides of the same coin. However, studying
the relation between grounded discussion games, presented in (Keshavarzi
Zafarghandi et al., 2020), and the strong admissibility semantics of ADFs
is beyond the topic of this work and is left for future research.

3.1.1 Requirements of strong admissibility semantics

As mentioned before, it is important to investigate whether a queried
argument is in the grounded extension of an AF. This is mainly because
each AF has a unique grounded extension and no one has any doubt on the
acceptance of the arguments of the grounded extension. Furthermore, in
applications it is significant not only to answer whether a queried argument
is in the grounded extension but also to explain why it is so.

On the one hand, some discussion games have been presented to
answer this decision problem under the grounded semantics (Caminada
and Podlaszewski, 2012a; Caminada, 2015; Modgil and Caminada, 2009;
Caminada, 2018). The idea is that these discussion games can be used as
proof procedures for the grounded semantics. That is, a queried argument
belongs to the grounded extension of a given AF iff it is possible to win the
associated discussion game. This makes it possible to use the discussion
games for the purpose of explanation “why is an argument in the grounded
extension?”. That is, instead of simply mentioning that an argument is in
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the grounded extension, a discussion game explains why no one has any
doubt to accept the argument in question. A web-based implementation
of grounded discussion games is presented in (Booth et al., 2018).

On the other hand, the notion of strongly admissible semantics of
AFs has been presented in (Baroni and Giacomin, 2007; Caminada, 2014;
Caminada and Dunne, 2019). to deal with the same issue. That is, the
notion of strongly semantics of AFs explains “Why does a queried argument
belong to the grounded extension of an AF?” without presenting the whole
grounded extension, that is, without presenting any further explanation
about the irrelevant arguments to the argument in question. Furthermore,
the role and the relevance of strong admissibility semantics of AFs in
the Standard Grounded Game (Modgil and Caminada, 2009; Prakken
and Sartor, 1997) and the Grounded Persuasion Game (Caminada and
Podlaszewski, 2012a,b) has been studied in (Caminada, 2014; Caminada
and Dunne, 2019).

AF's have the property that each AF has a strongly admissible extension.
In addition, the set of strongly admissible extensions of a given AF forms a
lattice with the least element being the empty set and the maximum element
being the grounded extension. Moreover, it has been shown that the notion
of strongly admissible semantics differs from all other existing semantics of
AFs, namely conflict-free, admissible, preferred, complete, grounded and
ideal semantics (Caminada and Dunne, 2019; Baroni and Giacomin, 2007).
That is, indeed the notion of strongly admissible semantics is a new point
of view on the acceptance of arguments of a given AF.

Similar to AFs, in ADFs the concept of grounded semantics is an
important point of view on the acceptance of arguments. Each ADF has a
unique grounded interpretation that presents the truth values of arguments
about which no one has any doubt. Thus, it is crucial to investigate the
truth value of a queried argument in the grounded interpretation of an
ADF. Furthermore, it is required to explain why a queried argument has a
specific truth value in the grounded interpretation. To investigate this issue
in (Keshavarzi Zafarghandi et al., 2020), the notion of discussion game for
grounded semantics of ADFs has been presented. This game works locally
by considering those ancestors of a certain argument that can affect the
evaluation of the argument in the grounded interpretation. In this way,
the grounded decision problem can be answered without constructing the
full grounded interpretation. However, the notion of strongly admissible
semantics has not yet been presented for ADF's to explain the reason for
a truth value of a queried argument in the grounded interpretation. We
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show that the notion of strongly admissible semantics of ADF's presented
in this work will satisfy the following conditions, which are akin to the
properties of the notion of strongly admissible semantics of AFs.

e Strong admissibility is defined in terms of strongly justified argu-
ments.

e Strongly justified arguments are recursively reconstructed from their
strongly justified parents.

e Each ADF has at least one strongly admissible interpretation.

e The set of strongly admissible semantics of ADF's forms a lattice with
the least element being the trivial interpretation and the maximum
element being the grounded interpretation.

e Strongly admissible semantics is used to answer whether an argument
is justified in the grounded interpretation of a given ADF. This is
because this notion has a close relation to the grounded semantics,
in the formally precise sense that the maximal element of the lattice
of strongly admissible interpretations is the grounded interpretation.

e The notion of strongly admissible semantics of ADFs differs from the
notions of admissible, conflict-free, complete and grounded semantics
of ADFs.

e The notion of strongly admissible semantics for ADF's is a proper
generalization of strongly admissible semantics for AF's.

Our result leads to the presentation of an algorithm to answer the decision
problem whether a given interpretation is a strongly admissible interpreta-
tion in a given ADF. In addition, since some generalizations of Dung’s AF's
can be seen as special cases of ADFs, for instance, SETAFs (Nielsen and
Parsons, 2006), as shown in (Polberg, 2017, 2016), and bipolar AFs (Cayrol
and Lagasquie-Schiex, 2005; Oren et al., 2010; Nouioua, 2013), the notion
of strongly admissible semantics presented for ADFs may carry over to
these special cases. However, the focus of this work is to present a formal
proof of clarifying the relation between strongly admissible semantics of
AFs and ADFs.

This chapter is structured as follows. In Section 3.2, the main con-
tribution of our work is to introduce the concept of strongly admissible
semantics for ADFs. Subsequently, we show that in each ADF, the set of
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strongly admissible interpretations forms a lattice with the trivial interpre-
tation as the unique minimal element and the grounded interpretation as
the unique maximal element. In Section 3.3 we show that the concept of
strongly admissible semantics of ADF's is a generalization of the notion of
strongly admissible semantics of AFs.

Section 3.4 presents an alternative definition for strongly admissible
semantics of ADFs that is presented without referring to strongly justified
arguments, when compared to the definition in Section 3.2. This definition
also leads to a straightforward algorithm to answer the verification problem
of ADFs under strongly admissible semantics. We also present an alter-
native definition for investigating whether a given argument is strongly
justified in a given interpretation, which does not have the difficulties of
the definition of strongly justified of arguments in an interpretation that
is presented in Section 3.2. This method also leads to an algorithm to
answer whether a given argument is a strongly justified argument in a
given interpretation.

In Section 3.5, we present a finer relation between the sequence of
strongly admissible extensions of a given AF and the sequence of strongly
admissible interpretations constructed in the associated ADF. Finally, in
Section 3.6, we present the conclusion of our work and we present some
future research questions arising from this work.

A preliminary version of the material included in this chapter appeared
as (Keshavarzi Zafarghandi et al., 2021b) As the first addition to the
previous work, we prove that strongly admissible semantics of ADF's form
a generalization of strongly admissible semantics of AFs, presented in
Section 3.3. This extended version contains new technical results including
answering the verification problem under strong admissibility semantics of
ADFs without considering whether all of the arguments that are presented
in the given interpretation are strongly justified, reported in Section 3.4. In
addition, in Section 3.4, we present a new method to investigate whether
a given argument is strongly justified in a given interpretation. Further,
in Section 3.5, we study finer relations between the sequence of strongly
admissible extensions constructed based on a given extension of an AF and
the sequence of strongly admissible interpretations of the associated ADF.

3.2 The Strongly Admissible Semantics for ADF's

In the following, we present the concept of strong admissibility semantics
for ADFs. As we discussed in the introduction, we are aiming to generalize
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the notion of strong admissibility semantics of AFs, so that the concept of
strong admissibility semantics of ADFs relates to grounded semantics of
ADFs in a similar way as the concept of admissible semantics of ADFs re-
lates to preferred semantics of ADFs. As we mentioned in the introduction,
following the definition by Baroni and Giacomin (2007), Caminada showed
in (2018; 2014) that strong admissibility plays a critical role in discussion
games for AFs under grounded semantics (Caminada, 2014; Caminada and
Dunne, 2019). In (Keshavarzi Zafarghandi et al., 2020), we introduced a
discussion game to answer the credulous decision problem of ADF's under
grounded semantics without constructing the full grounded interpretation
of the given ADF. However, the concept of strong admissibility semantics
of ADFs has not been introduced in the literature so far. This was a
motivation for us to present the notion of strong admissibility semantics
for ADFs and study the characteristics of this concept. Similarly to the
AF case, a strongly admissible interpretation of an ADF may be used not
only to answer the credulous decision problem, but also to explain why an
argument is justified in the grounded interpretation.

In ADFs, beside an argument being acceptable in an interpretation,
there is a symmetric notion of an argument being deniable. In contrast
with Definition 2.23, in which the concept of strong admissibility semantics
of AFs is defined based on the concept of strongly defended arguments,
in ADFs we define the concept of strong admissibility semantics based on
the concept of strongly acceptable/deniable arguments. To this end, in
Definition 3.1 we introduce the notion of strong justification (i.e., strongly
accepted/denied) of an argument in an ADF in a given interpretation.

Note that in the following, v|,, is equal to v(p) for any p € P; however, it

€P
5(1)) '
Definition 3.1 Let D = (A, L,C) be an ADF and let v be an interpreta-
tion of D. Argument a is a strongly justified argument in interpretation v
with respect to set E if one of the following two conditions hold:

assigns all other arguments that do not belong to P to u, i.e., v, = vy|

e v(a) = t and there exists a subset P of parents of a excluding F,
namely P C par(a) \ E, such that (a) a is acceptable with respect to
v, and (b) all p € P are strongly justified in v w.r.t. set E'U{p}.

e v(a) = f and there exists a subset P of parents of a excluding E,
namely P C par(a) \ E, such that (a) a is deniable with respect to
v, and (b) all p € P are strongly justified in v w.r.t. set E'U{p}.

P
An argument a is strongly acceptable, respectively strongly deniable, in
v if v(a) = t, respectively v(a) = f, and a is strongly justified in v with
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respect to set {a}. We say that an argument is strongly justified in v if it
1s either strongly acceptable or deniable in v.

Note that in Definition 3.1, if par(a) = 0, then ¢, must be either T or L.
In case o, = T and v(a) = t, then it follows that a is strongly acceptable
in v by taking P = (). Similarly, in case ¢, = L and v(a) = f, then it
follows that a is strongly deniable in v. In all other cases, a is not strongly
justified in v. Furthermore, we say that a is not strongly justified in an
interpretation v if there is no subset P of parents of a that satisfies the
condition of Definition 3.1 for a.

Definition 3.1 is well-defined. That is, checking whether « is a strongly
justified argument in interpretation v is decidable. Because a given ADF
is finite, a has a finite number of ancestors. Furthermore, in each step, to
check whether the conditions of Definition 3.1 are satisfied for a, we exclude
the argument in question from the set of parents of a. Hence, checking
whether there exists a set of arguments that satisfies the conditions of
Definition 3.1 for a given argument will stop after finitely many steps,
since at some point par(a) \ F must be the empty set, and hence the only
possible P is the empty set, which means that we can decide whether a is
strongly justified in v without inspecting any further parents of a.

Since the class of ADF's is a generalization of the class of AFs (see
Definition 2.53), in the following, we informally discuss why Definition 3.1
can be viewed as a generalization of Definition 2.22 for AFs. In Section 3.3,
we formally show that the strongly admissible semantics of ADFs is a
proper generalization of strongly admissible semantics of AFs.

In the two items of Definition 3.1, the set P contains exactly those
parents of a, excluding a, that satisfy v(a) and of which the truth value is
presented in v. Definition 3.1 presents the same idea as Definition 2.22:
that an argument « is strongly defended (accepted) if it can be defended
by some arguments other than itself. Furthermore, each defender of a has
to be strongly defended. Akin to AFs, in ADFs an argument a is strongly
justifiable if its truth value is justified by some arguments other than itself,
where each of those other arguments is strongly justified.

The notion of strong acceptability /deniability of arguments in a given
interpretation is illustrated in Example 3.2.

Example 3.2 Consider the ADF presented in Example 2.43, i.e., D =
({a,b,e,d}, {pa: T, :aN—c, 00 DA, pq: L}), depicted in Figure 2.7.
Let v={a— u,b— t,c— f.d— f}. We show that c and d are strongly
Justified in v and b is not strongly justified in v. Since v(c) = v(d) = f,
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we show that ¢ and d are strongly deniable in v. First, since p3* = L and
v(d) = £, it holds that d is strongly deniable in v.

Furthermore, to show that c is strongly deniable in v, we show that c
is strongly deniable in v with respect to E = {c}. We choose a subset of
parents of ¢ excluding ¢, namely, P = {d}. It is easy to check that gpzlp 18
unsatisfiable, i.e., goZ‘P = @Z‘d = 1. Now we have to show that each p € P
1s strongly justified in v. The only parent of ¢ in P is d. Since d € P,
v(d) = f and d is also strongly deniable in v, it holds that ¢ is strongly
deniable in v.

To show that b is not strongly justified in v, since v(b) = t, we show
that b is not strongly acceptable in v. Toward a contradiction, assume that
b is strongly acceptable in v. Thus, we have to choose a set P of parents
of b that satisfies gpzlp = T. Let P = par(b). Since gpzlp % T, there is
no subset of par(b) that satisfies the conditions of Definition 3.1 for b.
Therefore, b is not strongly acceptable in v.

Note that in Example 3.2, if we choose a subset of parents of ¢ equal to
P = {b}, then we cannot show that c is strongly deniable in interpretation
v. While the first condition of strong deniability holds for ¢, i.e., @Z"’ =1,
the second condition does not hold, i.e., b is not strongly acceptable in v,
as is shown in Example 3.2.This shows the importance of choosing a right
set of parents that satisfies the conditions of Definition 3.1 for a queried
argument. Furthermore, if we choose a subset of parents of ¢ equal to
{b,d}, then we face with the sane issue since b is not strongly acceptable
in v. This way you illustrate that it is necessary to allow P to be a subset
of par(a) \ E in Definition 3.1.

However, there exists an alternative definition for strongly justified
arguments, which we present in Definition 3.53, in which there is no need
of indicating a set of parents of a queried argument. In order to prove the
main result of this section, which is that the set of strongly admissible
interpretations forms a lattice, we need some auxiliary results that are
proven based on the current definition of an argument being strongly
justified in an interpretation, i.e., Definition 3.1.

In Definition 3.3, similar to Definition 2.23, we introduce the concept
of strong admissibility of interpretation v of a given ADF, using the notion
of strong justifiability of arguments presented in v.

Definition 3.3 Let D = (A, L,C) be an ADF and let v be an interpreta-
tion of D. An interpretation v is a strongly admissible interpretation if
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and only if for each a such that v(a) € {t,f}, we have that a is a strongly
justified argument in v.

The set of all strongly admissible interpretations of ADF D is denoted
by sadm(D).

To clarify the notion of strongly admissible interpretations of ADF's, we
continue Example 3.2 in Example 3.4.

Example 3.4 Consider ADF of Example 3.2, i.e., D = ({a,b,c,d}, {¢q :
T,0p : aN—c,p.: “bAd,pg : L}), depicted in Figure 2.7. Let v =
{a = w,b— t,c— f,d— f}. As was shown in Example 3.2, ¢ and
d are strongly deniable in v. However, b is not strongly justified in v.
Thus, v is not a strongly admissible interpretation of D. However, vi =
{a = t,b —» u,c = u,d — u}, v2 = {a —» w,b — u,c— f,d— f},
v3={a—t,b—t,c— f,d— £} are strongly admissible interpretations
of D. We show that b is strongly acceptable in vs. To this end, let

P = {a,c} be a set of parents of b. First, it holds that <p:3‘P = T. Thus,
the first condition is satisfied for b. We also have to check whether each
parent of b in P is also strongly justified in vy. To this end, we show
that a s strongly acceptable in vs and c is strongly deniable in vs. The
latter is obvious by the method that was presented in Example 3.2 to show
that c is strongly deniable in v. In addition, pi* = T, thus, a is strongly
acceptable in vs. Hence, b and a are strongly justified in vs. Thus, vs is
a strongly admissible interpretation of D. Furthermore, vs is a unique
grounded interpretation of D.

In Example 3.4, c is strongly deniable both in v and w3, however, v
presents less information than vs. Interpretation ve explains that c is
strongly deniable in a strongly admissible interpretation, in other words,
c is credulously deniable in the grounded interpretation of D, since its
parent d is strongly deniable in v,. Based on the acceptance condition
of ¢, namely ¢, : =b A d, this piece of information about parents of ¢
is enough to convince a user about the truth value of ¢ in a strongly
admissible interpretation and the grounded interpretation as well. That is,
to convince a user about the truth value of ¢ in the grounded interpretation
of D, there is no need of further information about the truth values of
a and b in the grounded interpretation. We are interested in finding a
strongly admissible interpretation with the least amount of information in
which the truth value of a queried argument is satisfied.
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Definition 3.5 Let D be an ADF, let a be an argument and let v be
a strongly admissible interpretation of D. Interpretation v is called a
witness of strong justifiability of a in D if v € sadm(D) and v(a) € {t,f}.
Interpretation v is called a least witness of strong justifiability of a if the
following conditions hold.

e v is a witness of strong justifiability of a; and

e there is no strongly admissible interpretation v' such that v'(a) €
{t,f} and V' <; v.

The set of all least witnesses of strong justifiability of a in D is denoted by
LWSJ,.

Note that if argument a is strongly justified in an interpretation, then there
exists a strongly admissible interpretation that is a least witness of strong
justifiability of a. Intuitively, the reason is that the number of arguments
of a given ADF is finite, so one can guess an interpretation v and check
whether it is the least witness of strong justifiability of a. More formally, to
find a least witness of strong justifiability of a, follow the following steps:

1. Guess an interpretation v;

2. check whether v is a strongly admissible interpretation. If the answer
is yes, then go to item 3, else go to item 1.

3. check whether v(a) € {t,f}. If the answer is yes, then go to item 4,
else go to item 1.

4. Pick v" where v' <; v and check if v'(a) € {t,f} and v is a strongly
admissible interpretation. If the answer is yes, then replace v with
v’ and repeat this item, else pick another v and repeat this item.

5. If there is no v’ that satisfies item 4, then v is a least witness of
strong justifiability of a.

For instance, in Example 3.4, interpretation vs is a least witness of strong
justifiability (or deniability) of ¢. This is because v9 contains the truth
values of ¢ and d, and the truth value of d is the necessary and sufficient
piece of information needed for denying ¢ in the grounded interpretation.

Note that an argument may have more than one least witness of strong
justifiability. For instance, let D = ({a,b,c},{@a : T,pp:aVec,pc: T}).
Argument b is strongly acceptable in both v; = {a,b} and ve = {b,c};
furthermore, by Definition 3.5, both v; and v are least witnesses of strong
justifiability of b in D, i.e., LWSJ, = {v,v2}.
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In the following, let v* = v* Uvf. The sets vt, vf, and v™ contain those
arguments that v maps to true, false and undecided, respectively, as it is
presented in Definition 2.2. Note that the update of an interpretation v
with a truth value x € {t,f,u} for an argument b, as it is presented in
Definition 2.60, is denoted by v|%, where,

v]b(a) _ )= for a = b,
’ v(a) for a # b.

Definition 3.6 Let D be an ADF, a be an argument, let v € LWSJ, and
let p € (par(a)\{a})Nv*. Furthermore, let F' = ((anc(p) \{a}) Nv*)U{p}
and let F' = A\ F. We define v, p) = o|E" | that is, V(awp)(€) = v(e) for
e € F and vy, p(e) =u forec F'.

The notation v(,, ), presented in Definition 3.6, stands for a witness of
strong justifiability of p constructed based on a and v.

Proposition 3.7 Let D be an ADF, let a be an argument, let v € LWSJ,
and let p € (par(a) \ {a}) N (v*).

® V(ap) <i VUi

® U € sadm(D).

a7v7p)

In particular, v, p) i a witness of p’s strong justifiability, with strictly
less information than v.

Proof

e By the definition of v(q,, ), it holds that v(, , ;) (e) = v(e) for any
e € F,and v, py(e) = u for any e € F'. Since F' = ((anc(p) \{a}) N
v*) U {p}, that is F' does not contain a, it holds that F' C v*. Thus,
v(a) € {t,f}, while v, ) (a) = u. Hence, v ,p) <i v

e In order to show that v(,,, ;) € sadm(D), we show that if v, ;) (e) €
{t,f}, then e is strongly justified in v(, , ). Toward a contradiction
assume that there exists e such that v(q, ,)(e) € {t, f}, but e is not
strongly justified in v(q 4y p). If V(a0 p)(€) € {t,f}, then e € F. Thus,
V(a,v,p)(€) = v(e). Since v is a strongly admissible interpretation of
D, by Definition 3.3, for each e with v(e) € {t,f}, it holds that e is
strongly justified in v. Thus, for each e with v(e) € {t,f} there exists
a subset P, C par(e) that satisfies the condition of Definition 3.1 for e.
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If v(g0p)(€) € {t,f}, then e € F' = ((anc(p) \ {a}) Nv*)U{p}, that is,
e € anc(p) Up. Thus, anc(e) C anc(p) Up. Hence, P, C F. That is,
for each e € F, it holds that e is strongly justified in v(, , ;). Thus, the
assumption that there exists e such that v(g, » (e) € {t,f}, but e is
not strongly justified in v(, , ,) was wrong. Hence, v(q4, ) € sadm(D).

O

Let v € LWSJ, and p € (par(a) \ {a}) Nv*. Since v, ) (p) = v(p) and
by Proposition 3.7, v ,p) € sadm(D), it holds that v(g, ) is a witness
of strong justifiability of p. Example 3.8 shows how one can construct a
witness of strong justifiability of p, with p € (par(a) \ {a}) Nv*, based on
v and a. Note that in Example 3.8 each v(, , ), for p € (par(a) \ {a}) Nv*,
is a least witness of strong justifiability of p, i.e., v(q4 ) € LWSJp.

In Example 3.8 for reasons of brevity, we use the shortened notion of
three-valued interpretations. That is, instead of v = {a +— u,b+— u,c+—
t,d— f} we write v = {¢, ~d}.

Example 3.8 Let D = ({a,b,c,d},{wa : b,pp eV e, o0t nd, gt L, e
bV —b}) be an ADF, depicted in Figure 3.1. We show the least witnesses
of strong justifiability of each argument of D: LWSJy = {{~d}}, LWSJ. :
{{c,—d}}, LWSJ. = {{e}}, LWSJ, = {{e,b},{b,c,~d}}, and LWSJ, =
{{e,b,a},{b,c,~d,a}}. In this example arguments a and b have more than
one least witness of strong justifiability.

Since vq, = {e,b,a} € LWSJ, and b € (par(a) \ {a}) N}, one can
construct v(q.,p) as it is presented in Definition 3.6. By this definition,
F = ((anc(b) \ {a}) Nvz) U{b} = (({e, ¢, d} \{a}) Nvg) U{b} = {e,b} and
F'={a,c,d}. Thus, v(qu, ) = {e,b}. As it is shown in Proposition 3.7,
V(a,va,b) 18 @ witness of strong justifiability of b such that v(g .,y <i Va-
Furthermore, here v(q ., p) € LWSJp.

Furthermore, v, = {b, ¢, ~d,a} is another member of LWSJ, in which
b € (par(a) \ {a}) Nv,*. Thus, we construct v(q, p) as it is presented
in Definition 3.6. By this definition it holds that F = ((anc(b) \ {a}) N
vl YU{b} = (({e, e, d}\{a}) N, *)U{b} = {d,c,b} and F' = {a,e}. Thus,
Vaw,p) = {7d,b,c}. It holds that v(q. py is a member of LWSJ, such
that V(g p) <i Vg- As we see V(qq, 5 € LWSTy and v(q . ) € LWSJy are
different least witnesses of strong justifiability of b in D.

Moreover, we show how one can construct a least witness of strong
Justifiability of e based on b and vy, = {b,e} € LWSJy,. By Definition 3.6, it
holds that F = ((anc(e) \ {b}) Nvp*)U{e} = (({b} \ {b}) nupy*) U{e} = {e}
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Figure 3.1: ADF of Examples 3.8 and 3.12

and F' = {a,b,c,d}. Thus, vy, ey = {e}. It holds that vy, oy is the
unique member of LWSJe for which vy, o) <i b

Corollary 3.9 is a direct result of Proposition 3.7. This corollary states
that if v € LWSJ,, then for each p € (par(a) \ {a}) Nv*, there exists at
least one vy, such that v, € LWSJ), and vy <; v(q,4p) <i v, i.€., vp is a least
witness of p’s strong justifiability, with strictly less information than v.

Corollary 3.9 Let D be an ADF, let a be an argument, let v € LWSJ,, let
p € (par(a) \ {a}) N (v*) and let v(, ) be a witness of strong justifiability
of p constructed based on a and v. Then there exists a v, such that
vp € LWSJ, and vy <; V(g,,p) <i V-

Proof Let v € LWSJ,, let p € (par(a) \ {a}) N (v*). By Definition 3.5,
it holds that v(4, ) (p) = v(p). Furthermore, by Proposition 3.7, it holds
that v, € sadm(D). That is, v(q, ) is a witness of strong justifiability
of pin D. Since vy, p) 18 @ witness of strong justifiability of p in D, there
exists a least witness of strong justifiability of p in D, namely v, such that
Up <i V(q,p)- By Proposition 3.7, it holds that v(, , ;) <i v. Thus, there
exists a least witness of strong justifiability of p in D, namely v, such that
Vp <i V(au,p) <i V- O

Example 3.10 presents an instance of ADF in which v(4,3) is a witness of

strong justifiability of b, constructed based on v and a, but v(, , ) is not a
least one, that is, v, p) & LWSJp.
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Figure 3.2: ADF of Example 3.10

Example 3.10 Let D = ({a,b,c,d,e},{¢vq : cANbDA—d,pp : =dV ¢, ¢ :
—e,0q: L, pe: L}) be an ADF, depicted in Figure 3.2. We show the least
witnesses of strong justifiability of each argument of D: LWSJ; = {{—d}},
LWSJ, = {{—e}}, LWSJ. = {{—e,c}}, LWSJ, = {{~d,b},{—e,c,b}}, and
LWSJ, = {{~d,—e,b,c,a}}. In this example, since v, = {—d,—e,b,c,a} €
LWSJ, and b € (par(a) \ {a}) Nv;, one can construct v(qq, s as it is
presented in Definition 3.6. By this definition, F' = ((anc(b) \ {a}) N
vI)U{b} = (({d,c,e} \ {a}) Nu)U{b} ={d,c,e,b} and F' = {a}. Thus,
V(avap) = 17d, e, b,c}. As we see, it holds that v, ) is a witness
of strong justifiability of b in D such that v(q, ) <i Va, which is also
shown in Proposition 5.7. However, v(q .y, py & LWSJ, i.e., gy, p) 18
not a least witness of strong justifiability of b in D. However, it holds
that vy, = {~d,b} € LWSJ, and v, = {—e,c,b} € LWSJy, such that v, <;
V(a,00,b) <i Va and vy <; V(a,0a,b) <i Va, as it is presented in Corollary 3.9.

We now define the level of a in a least witness of strong justifiability of a;
see Definition 3.11.

Definition 3.11 Let D be an ADF, let a be an argument, and let v €
LWSJ,. We define level,(a) as follows:

o if v* = {a}, then level,(a) =1;

o if v* # {a}, then level,(a)=
maz{level,, (p) p€ (par(a)\{a})Nv*andv, € LWSJ, and v, <;v}+1

We call level,(a) the level of a with respect to v.

Note that Corollary 3.9 indicates that Definition 3.11 is well-defined. This
is because if v* # {a}, then (par(a) \ {a}) Nv* # 0. If v € LWSJ,
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and p € (par(a) \ {a}) Nv*, then there exists at least one v, such that
v, € LWSJ,, and v, <; v. To clarify the notion of level function of ADFs,
we continue Example 3.8 in Example 3.12.

Example 3.12 Consider the ADF of Example 3.8, shown in Figure 3.1,
i.e., D = ({a,b,c,d},{pa :b,0p: eV e, oc: e, 0q: L,pe: bV —b}). Since
vg = {~d} € LWSJy, it holds that v}y = {d}. Thus, by the first item of
Definition 3.11, it holds that level,,(d) = 1.

Let v, = {—d, c}. It holds that v. € LWSJ.. Since vi = {c,d}, by the
second item of Definition 3.11, it holds that level,, (c) = max{level,,(p) | p €
(par(c) \ {c})Nv} and v, € LWSJy, vy, <j ve}+ 1. Since par(c) Nv} = {d},
it holds that level, (c) = max{level,,(d) | d € par(c)\ {c} Nv}vg €
LWSJ4,vq <; ve} + 1. Since level,,(d) = 1, it holds that level, (c) = 2.

Let vo = {e}. By the first item of Definition 3.11, it holds that
level,, (e) = 1.

Let vy = {b,c,~d}. By the second item of Definition 3.11, it holds that
level,, (b) = max{level,,(p) | p € (par(b)\{b})Nvy, vy, € LWSJy, vy <; vp}+
1. Since par(b) Nv; = {c}, it holds that level,,(b) = max{level,. (c) | c €
(par(b) \ {b}) Nv; and v. € LWSJ.,v. <; vp} + 1. Since level, (c) = 2, it
holds that level,, (b) = 3.

Let v, = {b,e}. Since level, (b) = maz{level,, (p) | p € (par(b)\ {b}) N
v," and v, € LWSJy, v, <; v} + 1 and par(b) Nv," = {e}, it holds that
level,; (b) = max{level, (e) | e € (par(b) \ {b}) N v, ve € LWS T, ve <1
vyt + 1. Since level,, (e) =1, it holds that level, (b) = 2.

Let vy, = {a,b,c,~d}. Since par(a) Nv,* = {b}, vp <; vq, and
level,, (b) = 3, it holds that level,,(a) = 4. That is, the level of a with
respect to v, is 4.

Let v}, = {a,b,e}. Since par(a)Nv),* = {b}, v, <; v}, and levely (b) = 2,
it holds that levely (a) = 3. That is, the level of a with respect to v is 3.

This example shows that the level of an argument depends on the given
least witness of strong justifiability of the argument in question.

Intuitively, a least witness v of strong justifiability of a collects exactly the
truth values of those ancestors of a that suffice to determine the truth value
of a. For instance, in Example 3.10, interpretation v(, ,, ) = {—d, 7e, b, c}
is a witness of strong justifiability of b in D, however, this interpretation
contains extra information to show that b is strongly acceptable in a
strongly admissible interpretation of D. The information of either {—e, ¢, b}
or {—d,b} is enough to show that b is strongly acceptable in a strongly
admissible interpretation of D. The level of a in a least witness v of strong
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justifiability presents the largest distance of a from an initial ancestor of a
in v that may have an effect on the truth value of a in a given ADF.

We continue Example 3.10 in Example 3.13 to clarify the notion of level
when an argument has more than one least witness of strong justifiability,
each of which has less information than a given interpretation. For instance,
in Example 3.10, we see that LWSJ, = {{—d,b},{—e,c,b}} such that
{=d,b} <; v and {—e,c,b} <; v, where v, = {—d, —e,c,b,a}.

Example 3.13 Consider the ADF of Example 3.10, shown in Figure 3.2,
i.e., D = ({a,b,c,d e}, {pg : cANDAN—-d,op 1 2dV ¢, 0 0 me,0q 0 L, e -
1}). Since vg = {—~d} € LWSJy and v, = {—e} € LWSJ,, it holds that
level,,(d) =1 and level,, (e) = 1.

Since v, = {—e,c} € LWSJ., e € par(c) N (v}), ve € LWSJe, and
level,, (€) = 1, it holds that level,, (c) = 2.

Since v, = {~d,b} € LWSJ, d € par(b) N (v}), vg € LWSJy, and
level,,(d) = 1, it holds that level,, (b) = 2.

Since v, = {—e,c,b} € LWSJy, ¢ € par(b) N (vi), v. € LWSJ., and
levely, (c) = 2, it holds that level, (b) = 3.

Since vq, = {~d,—e,c,b,a} € LWSJ,, (par(a)\ {a}) N (v}) = {b,c,d},
U, vy € LWS Ty, vy <i vq and vy <; vq, and level,, (b) = 2, levelvé(b) = 3,
it holds that level,, (a) = max{level,,(b), level, (b'), level, (c), level, (d)} +
1=4.

In Lemma 3.14 we show that if v € LWSJ,, then level,(a) is at most |v*|.

Lemma 3.14 Let D be an ADF, let a be an argument, and let v € LWSJ,.
It holds that level,(a) < |v*|.

Proof Assume that v € LWSJ,. Since v* # (), it holds that |[v*| > 0. We
prove the lemma by induction on |v*|. That is, we show that if |v*| = n,
then level,(a) < n.

Base case: Let |[v*| = 1. We show that level,(a) = 1. If |v*| = 1 and
v € LWSJ,, then v* = {a}. Thus, by Definition 3.11, level,(a) = 1.

Induction hypothesis: Let n > 0 and assume that if [v*| = n, then
level,(a) < n.

Inductive step: We show that this property also holds for [v*| =n + 1.
That is, we show that if [v*| = n+ 1, then level,(a) < n+1. Since [v*| > 1,
it holds that v* # {a}. Thus, by the second item of Definition 3.11,
level,(a) = max{level,,(p) | p € par(a) Nv* and v, € LWSJ,, v, <; v} +1.
By the first item of Proposition 3.7, for each p € par(a) N v* it holds that
V(a,v,p) <i v- By Corollary 3.9, for each p € par(a) Nv* and v(q, ), i-€., a
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Figure 3.3: ADF of Example 3.16

witness of strong justifiability of p, constructed based on a and v, there
exists a vy such that v, € LWSJ), and v, <; v. Thus, it holds that vy C v*,
that is, |vy| < [v*|. By the induction hypothesis, for each p € par(a) N v*,
it holds that level,, (p) < |vy| < |v*[. That is, for each p € par(a) Nv*, it
holds that level,, (p) < |vy| <n+ 1. Thus, level,(a) < n+ 1.

O

Corollary 3.15 is a direct result of Lemma 3.14.

Corollary 3.15 Let D be an ADF, let a be an argument, and let v, €
LWSJ,. Then level,,(a) is finite.

Example 3.16 is an instance of an ADF with a redundant link.

Example 3.16 Let D = ({a,b}, {¢q : bV —b, pp : b}) be an ADF, depicted
in Figure 3.3. We show that v = {a — t,b — u} is a strongly admissible
interpretation of D. To this end, we show that a is strongly acceptable in
v with respect to E = {a}. Now let a subset of parents of P = 0. Thus,
V|, = Uu, t.e., the trivial interpretation. It is clear that pg* =T, i.e., the
evaluation of the acceptance condition of a under the trivial interpretation,
is irrefutable. Thus, a is strongly acceptable in v. Furthermore, v is a least
witness of strong justifiability (acceptability) of a and by Definition 3.11,
the level of a in v is 1, since v* = {a}. Note that v' = {a — t,b — t} is
an admissible interpretation of D. However, it is not a strongly admissible
interpretation of D, since b is not strongly acceptable in v'.

Example 3.17 presents the associated ADF Dp to the AF F presented in
Example 2.33.

Example 3.17 Consider AF F = ({a,b,c,d},{(a,b), (c,d),(d,c)}), pre-
sented in Example 2.33, and the associated ADF Dp = ({a,b,c,d}, {pq :
T,0p: 0a,@c: d,pq: —c}). The set of all strongly admissible interpreta-
tions of D is as follows: sadm(Dr) = {{},{a},{a,—b}}. We show that,
interpretation v = {a, b} is a strongly admissible interpretation of Dp.
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To substantiate our claim, we show that a is strongly acceptable in v and
b is strongly deniable in v. The former one is clear, since pi* = T. For
the latter one, let P = {a} be the set of parents of b. First, it holds that
cpZ“’ = 1; second, a s strongly acceptable in v. Thus, b is strongly deniable
i v. Hence, v is a strongly admissible interpretation of D. Furthermore,
v is a least witness of strong justifiability (deniability) of b and the level of

b in v is 2, since a € par(b) and the level of a in v, = {a} is 1.

Lemma 3.18 presents the monotonic characteristic of strongly justified
arguments, i.e., if a is strongly justified in v and v <; v/, then a is strongly
justified in v’.

Lemma 3.18 Let D be an ADF. If a € A is strongly justified in interpre-
tation v of D and v <; v/, then a is also strongly justified in v'.

Proof Assume that a is strongly justified in v, thus, either a is strongly
acceptable in v or it is strongly deniable in v. We show the lemma for the
case that a is strongly acceptable in v; the proof method for the case that
a is strongly deniable in v is similar. Assume that v is also a least witness
of strong justifiability of a. We complete the proof by induction on the
level of argument a in v.

Base case: let a be an argument of the level 1 that is strongly acceptable
with respect to v. Therefore, i = T. Thus, a is clearly strongly
acceptable with respect to v'.

Induction hypothesis: Assume that the property holds for each argu-
ment of the level j with 1 < j <iin v, i.e., if a is an argument with the
level j in v and a is strongly acceptable in v, then a is strongly acceptable
in v'.

Inductive step: We show that this property also holds for arguments of
level ¢. That is, if a is an argument with the level ¢ in v and a is strongly
acceptable in v, then a is strongly acceptable in v’. Let a be an argument
of the level 7. Since a is strongly acceptable in v, by Lemma 3.14, the level
i of a is a finite number. Since a is strongly acceptable in v, there exists
a set of parents P of a excluding a where a is acceptable with respect to
v, and all p € P are strongly justified in v. Since v <; v/, it holds that
P C v* U, Thus, it holds that a is acceptable with respect to v"P. We
have to show that each p € P is strongly justified in v'. By Corollary 3.15,
the level of each p € P is at most ¢ — 1 in v. Thus, by induction hypothesis,
p is strongly justified in v’. Therefore, the second condition of strong
acceptability of a in v’ also holds. Thus, «a is strongly acceptable in v’.
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A sequence of interpretations for a given ADF D, each member of which
is strongly admissible, is presented in Lemma 3.19. In Proposition 3.20,
it is shown that the maximum element of this sequence is the grounded
interpretation of D.

Lemma 3.19 Let D be a finite ADF, let vg = vy and let v; = I'p(vi—1)
fori>0. For each 0 <1 it holds that:

® U < Vit1;
e v; is a strongly admissible interpretation of D.
Proof

e The first item holds because the characteristic operator is a monotonic
function.

e We show by induction on i that each v; is a strongly admissible
interpretation.

Base case: For ¢ = 0, it is clear that vg = vy is a strongly admissible
interpretation.

Induction hypothesis: Assume that each v; for j with 0 < j <iisa
strongly admissible interpretation.

Inductive step: We show that v; is a strongly admissible interpreta-
tion. Let a be an argument that is assigned to either t or f in v;.
We show that a is strongly justifiable in v;. If v;_1(a) € {t,f}, then
there is nothing to prove, since by the induction hypothesis v;_; is a
strongly admissible interpretation. Thus, a is strongly justified in
vi—1, and since v;_1 <; v;, by Lemma 3.18, a is strongly justifiable
n v;.

Assume that a — t € v; and a — u € v;,_1. We show that a is
strongly acceptable in v;. For the case that a — f € v;, the proof
follows a similar method. Since v;(a) = t, we can conclude that
gozi’l is irrefutable. Let P be a subset of parents of a the truth
value of which appears in v;_1 and @ZZ_I‘P = T. Otherwise, ¢q *
cannot be irrefutable. Assume that P # {}, otherwise, there is
nothing to prove. Let p € P. Since v;_1(p) € {t,f} for each p € P,
p is strongly justifiable in v; by the induction hypothesis. Thus, by
Lemma 3.18, p is strongly justifiable in v;. Thus, both conditions of
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Definition 3.1 hold for a in v;. Therefore, for an arbitrary argument
a, if vi(a) € {t,f}, then it holds that a is strongly justifiable in
v;. Thus, v; is a strongly admissible interpretation. Hence, every
interpretation in the sequence vy, I'p(vy), . .. is a strongly admissible
interpretation.

g

Proposition 3.20 Let D be an ADF.
o D has at least one strongly admissible interpretation.

o The least strong admissible interpretation of D, with respect to the
<; ordering, is the trivial interpretation.

o The mazximal strongly admissible interpretation in the sequence of
interpretations as in Lemma 3.19, with respect to the <; ordering, s
the unique grounded interpretation of D.

Proof

e The first and the second item of the lemma are clear by Lemma 3.19,
which says that v, is a strongly admissible interpretation.

e By definition, the grounded interpretation of D is the least fixed-
point of the characteristic operator. By Lemma 3.19, each element
of the sequence I'}y(vy), for n with n > 0, is a strongly admissible
interpretation. Since the number of arguments is finite, this sequence
has a limit; that is, there exists an m with m > 0 where I'}(vy) =
I‘g“(vu). Therefore, the limit of this sequence, namely I'7}(vy),
which is the grounded interpretation of D, is also a strongly admissible
interpretation. Note that the nth power of I'p is defined inductively,
that is, I} =T p(T').

O

In Theorem 3.21, we show that each strongly admissible interpretation is
an admissible interpretation as well as conflict-free. However, the other
direction of the following theorem does not work.

Theorem 3.21 Let D = (A,L,C) be an ADF and let v be a strongly
admissible interpretation of D. Then the following hold:
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e v is an admissible interpretation of D.

e v is a conflict-free interpretation of D.

Proof

e Let v be a strongly admissible interpretation of D. We show that v is
an admissible interpretation. Toward a contradiction, assume that v
is not an admissible interpretation, that is, v £; I'(D)(v). Therefore,
there exists an a such that either v(a) = t but I'p(v)(a) # t, or
v(a) = f but I'p(v)(a) # f. By the assumption, v is a strongly
admissible interpretation. That is, if v(a) € {t,f}, then a is strongly
acceptable/deniable in v. Thus, there exists a subset of parents P of
a such that a is acceptable with respect to v|, if v(a) =t, and a is
deniable with respect to v|, if v(a) = f. However, ng‘P = T implies
that ¢} is irrefutable and cpZ‘P = 1 implies that ¢ is unsatisfiable.
The former implies that if v(a) = t, then I'p(v)(a) = t; the latter
one implies that if v(a) = f, then I'p(v)(a) = f. This contradicts
the assumption that there exists an a such that either v(a) =t and
I'p(v)(a) #t, or v(a) =f and I'p(v)(a) # f. Thus, the assumption
that v is not an admissible interpretation is wrong. Hence, if v is
a strongly admissible interpretation, then it is also an admissible
interpretation.

e If v is a strongly admissible interpretation, then by the first item
of this theorem, it is an admissible interpretation. By the fact
that in ADF's every admissible interpretation is a conflict-free inter-
pretation, based on the definition of conflict-freeness (presented in
Definition 2.47), we conclude that v is a conflict-free interpretation,
as well.

O

Example 3.22 indicates the distinction between the notion of strong admis-
sibility semantics of ADFs and the notions of admissible and conflict-free
semantics of ADFs.

Example 3.22 let D = ({a,b},{pq : bV a,pp : —a}) be a given ADF.
The interpretation v = {a +— £,b+— t} is an admissible interpretation of
D. However, a is not strongly deniable, nor is b strongly acceptable in
v. Thus, v is not a strongly admissible interpretation of D. Furthermore,
v/ ={aw u,b— t} is a conflict-free interpretation of D that is neither
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an admissible nor a strongly admissible interpretation. The only strongly
admissible interpretation of D, which is also the grounded interpretation
of D, is the trivial interpretation.

3.2.1 Lattice Structure

Although the sequence of interpretations presented in Lemma 3.19 produces
a sequence of strongly admissible interpretations of a given ADF D, this
sequence does not contain all of the strongly admissible interpretations
of D. For instance, in ADF D = ({a,b,¢,d},{pq : T,pp : a A e, @ :
—bAd,pq: L}), presented in Example 3.2, it holds that v = {a + u,b —
u,c+— f,d— f} is a strongly admissible interpretation of D. However, v
is not equal to any of the elements of the sequence vy, I'p(vy), ... (for D),
as in Lemma 3.19. In this section we show that the strongly admissible
interpretations of an ADF form a lattice.

Theorem 3.23 indicates that any strongly admissible interpretation of
an ADF D is bounded by the grounded interpretation of D.

Theorem 3.23 Let D be an ADF, let w be a strongly admissible interpre-
tation of D, let v; for 0 <1 be the sequence of interpretations presented in
Lemma 3.19, and let g be the grounded interpretation of D. Then, w <; g.

Proof Let w* = wtUwf = {ay,...,a,}. For each i with 1 <i < n, since
a; is strongly justified in w, we have that there exists w; € LWSJ,,. Let
I = maz{levely, (a;) | a; € w*,w; € LWSJ,,,w; <; w}. We show that for
all a; € w*, if levely, (a;) = k for k with 1 < k < n, then g(a;) € {t,f},
that is, a; is strongly justified in g. We do so by induction on levely, (a;).

Base case: Let levely,(a;) = 1. We show that g(a;) € {t,f}. Since
levely, (a;) = 1, the first item of Definition 3.11 says that w} = {a;}. Thus,
peu =T or pgu = L, that is, I'p(vo)(a) € {t,f}. Hence, g(a) € {t,f}.

Induction hypothesis: For each a; € w*, if levely, (a;) = j with 1 < j <
k <1, it holds that g(a;) € {t,f}.

Induction step: Let a; € w* such that level,, (a;) = k+1. We show that
g(a;) € {t,f}. Since a; is strongly justified in w;, there exists a non-empty
subset P C par(a;)\ {a;} such that goZZ‘P =Tor @ZZ‘P = 1. Since p, with
p € P, is a parent of a;, by Definition 3.1, p is also a strongly justified
argument in w;. By Corollary 3.15 the level of a; and the level of each p,
for p € P, is finite. Furthermore, p # a; for each p, with p € P. Thus, by
Definition 3.11 the level of each p in its associated v, € LWSJ, is strictly
less than the level of a; in wj, i.e. level,, (p) < k. Then, by the induction
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Yip _ 9

hypothesis, g(p) € {t,f}, for each p € P. Therefore, ,, * = @a”. Since

g is the grounded interpretation of D, it holds that if @ZLP = T, then
g(a;) = t, and if go‘glf’ = 1, then g(a;) =f.

That is, for all a; € w*, it holds that a; is strongly justified in g. Thus,

O

Corollary 3.24 is a direct result of Theorem 3.23.

Corollary 3.24 Let D be an ADF, let w be a strongly admissible interpre-
tation of D, and let v; for 0 < i be the sequence of interpretations presented
in Lemma 8.19. Then there exists a least m > 0 such that w <; v,.

Proof Let w be a a strongly admissible interpretation of D, and let ¢
be the grounded interpretation of D. We show that set X = vj|w < v; is
non-empty, where v; is an interpretation in the sequence of interpretations
as presented in Lemma 3.19. Based on Theorem 3.23, it holds that w <; g.
Furthermore, based on Proposition 3.20 grounded interpretation g is the
maximal strong admissible interpretation in the sequence of interpretations
as in Lemma 3.19. Thus, X # (). By the fact that every non-empty subset
of the natural numbers has a minimum and the fact that elements of X
form a chain, we get a least element of X. Thus, there exists a least m >0
such that w <; vyy,. O

To show that the set of strongly admissible interpretations of a given ADF
form a lattice, first, in Theorem 3.28 we show that every two strongly
admissible interpretations of D have a unique supremum. To this end, we
first introduce the notion of join of two strongly admissible interpretations;
see Definition 3.25.

Definition 3.25 Let D be an ADF and let v and w be two strongly ad-
missible interpretations of D. The join v U; w is defined as

(@) ifv(a) €{t £},
vU;w(a) =< w(a) if w(a) € {t,f},

u otherwise.

<

Proposition 3.26 The join of two strongly admissible interpretations of
D is a well-defined function.
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Proof Let D be an ADF and let v and w be two strongly admissible
interpretations of D. We show that the join operator is a well-defined
function. That is, we have to show that there is no a that has two different
values via (v ; w)(a). Toward a contradiction, assume that there is an a
that has two different outputs via (vLU; w)(a). That is, a is assigned to t in
one of the interpretations and to f in another one. For instance, v(a) =t
and w(a) = f. By Corollary 3.24, there exist the least natural numbers
k and m such that v <; vy and w <; v, respectively. Since v <; v
and v(a) = t, a — t € v,. Furthermore, since w <; vy, and w(a) = f,
a > f € vy,. That is, vy £; v, and vy, £; ve. This is a contradiction by
Lemma 3.19, which says that either vy, <; vy, or v, <; vg, because v and
v, are elements of the sequence of interpretations presented in Lemma
3.19. Thus, the assumption that there exists a that is acceptable in a
strongly admissible interpretation of D but that is deniable in another
strongly admissible of D is wrong. Thus, v L; w is a well-defined function.
O

Lemma 3.27 presents that the join of two strongly admissible interpretations
of a given ADF is also a strongly admissible interpretation of that ADF.

Lemma 3.27 Let D be an ADF and let v and w be strongly admissible
interpretations of D. Then vU;w is also a strongly admissible interpretation

of D.

Proof Toward a contradiction, assume that v L; w is not a strongly
admissible interpretation of D. Thus, there exists an a such that vU;w(a) €
{t,f} but it is not strongly justifiable in v L; w. By Definition 3.25, either
v(a) € {t,f} or w(a) € {t,f}. Since v and w are strongly admissible
interpretations, a is strongly justifiable in v or w. Since v <; v L; w
and w <; v U; w, by Lemma 3.18, a is strongly justifiable in v U; w. This
contradicts the assumption that a is not strongly justifiable in v 1; w. Thus,
the assumption that v U; w is not a strongly admissible interpretation was
wrong. That is, the join of two strongly admissible interpretations of D is
a strongly admissible interpretation of D. O

Theorem 3.28 Let D be an ADF. Every two strongly admissible inter-
pretations of D have a unique supremum.

Proof Let D be an ADF and let v and w be two strongly admissible
interpretations of D. We show that v L; w is a supremum of v and w. By
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Definition 3.25, v L; w is an upper bound of v and w. By Lemma 3.27,
v U; w is a strongly admissible interpretation of D. It remains to show
that v U; w is a least upper bound of v and w. Toward a contradiction,
assume that v Ll; w is not the least upper bound of v and w. That is,
there exists a strongly admissible interpretation w’ of D such that v <; w/,
w <; w and w' <; vU; w. Thus there exists ¢ with a — u € w' and
(v U; w)(a) € {t,f}. However, (v U; w)(a) € {t,f} implies that either
v(a) € {t,f} or w(a) € {t,f}. That is, either v £; w’ or w %; w’. This
contradicts the assumption that w’ is the least upper bound of v and w.
Thus, the assumption that v L; w is not the least upper bound of v and w
was wrong. ]

Subsequently, to show that the set of strongly admissible interpretations of
ADF D form a lattice, in Theorem 3.31 we show that every two strongly
admissible interpretations of D have an infimum. To this end, in Defi-
nition 3.29, we present the concept of the maximum strongly admissible
interpretation contained in an interpretation of D.

Definition 3.29 Let D be an ADF and let v be an interpretation of D.
Interpretation w is called a maximum strongly admissible interpretation
contained in v with respect to <; ordering if the following conditions hold:

1. w is a strongly admissible interpretation of D such that w <; v;

2. If w <; v, then there is no strongly admissible interpretation w' of
D such that w <; w' <; v.

Lemma 3.30 Let D be an ADF and let v be an interpretation of D. Then
there exists a unique maximum strongly admissible interpretation contained
n v, with respect to the <; ordering.

Proof Each interpretation of D has at least as much information as the
trivial interpretation. Thus, each v of D has at least as much information
as vy, which is a strongly admissible interpretation. Since the number
of arguments of D is finite, there exists at least one maximal strongly
admissible interpretation of D (with respect to the <; ordering), let us call
it w, contained in a given interpretation v. We show that this w is unique.
Toward a contradiction, assume that there are two maximal strongly
admissible interpretations that satisfy the condition of the lemma, namely
w and w’. By Lemma 3.27, w L; w’ is a strongly admissible interpretation
of D. Since w <; v and w’ <; v, it also holds that w L; w’ <; v. However,
w<; wl;w', w <; wi;w' and wl; w' <; v together with the assumption
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that w and w’ are maximal strongly admissible interpretations contained
in v lead to w = w U; w’ and w’ = w U; w'. That is, w = w’. Thus, the
maximum strongly admissible interpretation which is contained in v is
unique. ]

Theorem 3.31 Let D be an ADF. Every two strongly admissible inter-
pretations of D have a unique infimum.

Proof Let D be an ADF and let v and v' be two strongly admissible
interpretations of D. Let w = v M; v'. By Lemma 3.30, there exists a
unique maximum strongly admissible interpretation w’ with w’ <; w.
That is, w’ is a lower bound of v and v’. It remains to show that w’ is the
greatest lower bound of v and v'. Toward a contradiction, assume that
there exists a w” that is a lower bound of v and v'. That is, w” <; v and
w” <; v'. Then by the definition, w” <; (v; v/ = w). By the assumption,
w’ is the maximum strongly admissible interpretation that is less or equal
to w, thus, w” <; w’. Thus, w’ is an infimum of v and v'. O

Theorem 3.32 Let D be an ADF. The strongly admissible interpretations
of D form a lattice with respect to the <;-ordering, with the least element
va and the top element grd(D).

Proof We have to show that each pair of strongly admissible inter-
pretations of D has a supremum and an infimum. Theorem 3.28 shows
the former one and Theorem 3.31 indicates the latter one. Thus, the
strongly admissible interpretations of D form a lattice with respect to the
<;-ordering. In Proposition3.20, it is shown that vy is the least strongly ad-
missible interpretation and the grounded interpretation of D is the largest
strongly admissible interpretation of the sequence of the interpretations
presented in Lemma 3.19. This fact, together with Theorem 3.23, shows
that the grounded interpretation D is the greatest element of this lattice.
It is trivial that vy is the least element of this lattice. O

Corollary 3.33 The maximal strongly admissible interpretation of ADF
D, with respect to the <; ordering, is the unique grounded interpretation
of D.

The set of strongly admissible interpretations of ADF D = ({a,b,¢,d}, {¢q :
T,0p:a A, 0c: bAdypg: L}) given in Example 3.2 form a lattice,
depicted in Figure 3.4. The top element of this lattice is the grounded
interpretation of D {a — t,b— t,c— f,d — f} = {a,b, —c,~d}.
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{a,b, —c,~d}

AN

{a, ~d, ~c}

SN

{a,—d} {—c¢, ~d}

N
o

{

{a} {~d}

Figure 3.4: Complete lattice of the strongly admissible interpretations of the
ADF of Example 3.2

3.3 Strong Admissibility for ADFs Generalizes
Strong Admissibility for AFs

In this section we show that the concept of strong admissibility semantics
for ADF's is a proper generalization of the concept of strong admissiblity
semantics for AFs (Caminada and Dunne, 2019).

Given an AF F' = (A, R) and its corresponding ADF Dp = (A, R, C)
(see Definition 2.53), the set of all possible conflict-free extensions of F' is
denoted by & and the set of all possible conflict-free interpretations of Dp is
denoted by 7. The functions Ezxt2Intr and Int2Eztp,. in Definitions 3.34-
3.36, are modifications of the labelling functions as given in (Baroni et al.,
2018a), which we recalled in Definitions 2.34-2.35. Function Ext2Intp(S)
represents the interpretation associated with a given extension S in F,
and function Int2Extp, (v) indicates the extension associated with a given
interpretation v of Dp.

Definition 3.34 Let F' = (A, R) be an AF, and let S be an extension of
F. The truth value assigned to each argument a € A by the three-valued
interpretation vs associated with S is given by Ezxt2Intp : & — V as
follows.

t ifaes,
Ext2Intp(S)(a) = ¢ f if 3b € A such that (b,a) € R and b € S,
u

otherwise.
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Proposition 3.35 Let FF = (A, R) be an AF, let Dp be its associated
ADF, and let S be a conflict-free extension of F. Then Ext2Intp(S) is
well-defined.

Proof

1. Assume that a € S. We show that a is only assigned to t in
Ezt2Intp(S). By Definition 3.34, it definitely holds that a — t €
Ezt2Intp(S), thus a — u & Ext2Intp(S). We show that a cannot
assign to f in Ext2Intp(S). Toward a contradiction, assume that
a — f € Ext2Intp(S). That is, by Definition 3.34, there exists
a parent p, of a such that p, € S. However, this means that S
contains conflicting arguments, i.e., a and p, with (pg,a) € R. Thus,
S is not a conflict-free extension. This contradicts the assumption
that S is a conflict-free extension of F'. Thus, the assumption that
a— f € Ext2Intp(S) is wrong.

2. Assume that a ¢ S. We show that either a — f € Ext2Intp(S) or
a — u € Ert2Intp(S), but not both. Either at least one parent of
a belongs to S or none of them belong to S. By Definition 3.34,
it is straightforward that if a ¢ S and a parent of a belongs to S,
then a — f € Ext2Intp(S). In other words, if @ ¢ S and none of
the parents of a belong to S, then a — u € Ext2Intr(S). That is, if
a ¢ S, then either a — f € Ext2Intp or a — u € Ezt2Intp(S) but
not both.

Thus, if S is a conflict-free extension, then Ext2Intp(S) is well-defined.
O

Note that in Definition 3.34, the basic condition that S has to be a conflict-
free extension is a necessary condition for Ext2Intr(S) being well-defined.
For instance, let F' = ({a,b},{(a,b)}). Set S = {a,b} is an extension
of F. However, S does not satisfy the conflict-free property. On the
other hand, Fzt2Intp(S) = {a — t,b — t,b — f}. In other words, the
correspondence between extensions and interpretations via Ext2Intp(.) is
well-defined for conflict-free sets of arguments. This is the reason why we
restrict & and ¥ to the set of all conflict-free extensions of F' and the
set of all conflict-free interpretations of Dy, respectively. By Theorem
4 in (Caminada and Dunne, 2019), every strongly admissible extension
of an AF is a conflict-free extension. Thus, if S is a strongly admissible
extension of AF F, then, by Proposition 3.35, Ext2Int(S) is well-defined.
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So extensions of F' can be represented as interpretations of Dp. Also an
interpretation of D can be represented as an extension via the following
function.

Definition 3.36 Let Dp = (A, R,C) be the ADF associated with AF F,
and let v be an interpretation of Dp, that is, v € ¥. The associated
extension S, of v is obtained via application of Int2Extp, : V' — & on v,
as follows:

Int2Extp,.(v) ={a € A|a—tecuv}

To present the correspondence between strongly admissible extensions of
F and strongly admissible interpretations of the associated Dp, we first
present the correspondence between strongly admissible labellings of F' and
strongly admissible interpretations of the associated Dp in Lemma 3.40.
To this end, we define two functions, Lab2Int and Int2Lab to indicate the
correspondence between labellings and interpretations in Definitions 3.37
and 3.38. Note that .Z denotes the set of labellings of AF F.

Definition 3.37 The function Lab2Int(-) : £ — ¥ maps three-valued
labellings to three-valued interpretations such that

o Lab2Int(N)(a) =t iff A(a) = in,
o Lab2Int(N)(a) = f iff AN(a) = out, and

o Lab2Int(N)(a) = u iff A(a) = undec.

Definition 3.38 The function Int2Lab(-) : ¥ +— £ maps three-valued
interpretations to three-valued labellings such that

o Int2Lab(v)(a) = in iff v(a) =t;
e Int2Lab(v)(a) = out iff v(a) =f£;
e Int2Lab(v)(a) = undec iff v(a) = u.
In Proposition 3.39 we show that Int2Lab is the inverse of Lab2Int.

Proposition 3.39 Lab2Int(Int2Lab(.)) = idy and Int2Lab(Lab2Int(.)) =
idgy.
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Proof We show that Lab2Int and Int2Lab are bijective functions. To
this end, we show that Lab2Int is a surjective and injective function. Let
A be a labelling. We define interpretation vy as follows:

By Definition 3.37, it holds that Lab2Int(\) = vy. Thus, Lab2Int(.) is a
surjective function.

Toward a contradiction, assume that Lab2Int(.) is not an injective func-
tion. That is, there are A1, A2 € .Z such that Lab2Int(\;) = Lab2Int()\s2),
and A; # Ag. That is, there exists a such that Aj(a) # A2(a). Thus,
by Definition 3.37, Lab2Int(A\1)(a) # Lab2Int(A2)(a), i.e., Lab2Int(A\1) #
Lab2Int(\2). This contradicts our assumption. Thus, the assumption that
Lab2Int(.) is not an injective function was wrong.

Thus, Lab2Int is a bijective function. With a similar method we have
that Int2Lab(.) is a bijective function. Thus, Lab2Int and Int2Lab have
inverse functions.

Let v be an interpretation. We show that Lab2Int(Int2Lab(v)) = v.
1. If v(a) = t, then by Definition 3.38, Int2Lab(v)(a) = in. Then, by defini-
tion 3.37, Lab2Int(Int2Lab(a)) = t. 2. If v(a) = f, then by Definition 3.38,
Int2Lab(v)(a) = out. Then, by Definition 3.37, Lab2Int(Int2Lab(a)) = f.
3. If v(a) = u, then by Definition 3.38, Int2Lab(v)(a) = undec. Then, by
Definition 3.37, Lab2Int(Int2Lab(a)) = u. Thus, Lab2Int(Int2Lab(v)) = v.
Hence, Lab2Int(Int2Lab(.)) = idy. With the same method it is easy to
show that, Int2Lab(Lab2Int(.)) = idy. Thus, Lab2Int(.) is the inverse of
Int2Lab(.). O

Lemma 3.40 For any argument framework F' = (A, R) and its associated
ADF Dp, the following properties hold:

e if X\ is a strongly admissible labelling of F, then Lab2Int(\) is a
strongly admissible interpretation of Dp;

e if v is a strongly admissible interpretation of Dp, then Int2Lab(v) is
a strongly admissible labelling of F.
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Proof

e Assume that A is a strongly admissible labelling of F. Let v =
Lab2Int(\). By Definition 2.32, a strongly admissible labelling A\ of
F' is an admissible labelling whose min-max numbering yields natural
numbers only. We show that v is a strongly admissible interpretation
of Dp. To this end, we show that if A(a) € {in,out}, then a is a
strongly justified argument in v. We show this by induction on the
min-max numbering of arguments.

Base case: If A(a) € {in,out} and the min-max numbering of a is
1, then we show that a is a strongly justified in v. If the min-max
numbering a is 1, then a is an initial argument of F' and Dp. That
is, piu =T or v = L. Thus, a is strongly acceptable in v.

Induction hypothesis: For all j with 0 < j < 4, if A(a) € {in,out}
and the min-max numbering a is j, then a is a strongly justified
argument in v.

Inductive step: We show that if A(a) € {in, out} and the min-max
numbering a is i, then a is a strongly justified argument in v.

1. Assume that A\(a) = in and min-max numbering a is i. Since A
is a strongly admissible labelling of F', it is also an admissible
labelling of F. Thus, A(a) = in implies that any attacker
of a, namely p, is labelled out in A. That is, by Definition
3.37, each attacker of a is assigned to f in v, i.e., v(py) = f.
Thus, vg = (A@pe)er ~0)” = T. By Definition 2.30 (min-max
numbering) and since A is a strongly admissible labelling of
F, for each attacker pg, it holds that A .# ¢ (p,) < M M y(a)
(otherwise, .# .# 4 does not yield natural numbers). Since
MMy (p,) < i and \(p,) = out, by the induction hypothesis,
each p, is strongly deniable in v. This implies that the conditions
of Definition 3.1 are satisfied for a. Thus, a is strongly acceptable
in v.

2. By the similar proof method one can check when A(a) = out,
then a is strongly deniable in v.

Thus, v is a strongly admissible interpretation of Dp.

e Let v be a strongly admissible interpretation of Dp. Let A =
Int2Lab(v). We show that A is a strongly admissible labelling of
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F. To this end, we show that X\ is an admissible labelling whose
min-max numbering yields natural numbers only.

1. Since by Theorem 3.21 each strongly admissible interpretation
is an admissible interpretation, v is an admissible interpretation.
Thus, A = Int2Lab(v) is an admissible labelling of F'.

2. To complete the proof, we show that min-max numbering of A
leads to natural numbers only. For each a with a € {t,f}, let
vg be a least witness of strong admissibility of a (as Definition
3.5), where v, <; v. We show that the level of a in a least v, is
equal to the min-max numbering of a in A.

(a) Assume that v(a) = t (i.e., A(a) = in). Thus, by the
acceptance condition of a and since each AF does not have any
redundant links, for each parent p, of a it holds that v(p,) = f
(i.e., M(pg) = out). Thus, all parents of a are assigned to f in
vg. By Definition 3.11, the level of a in vy, i.e., level,, (a) is the
level of p, plus 1 such that p, has the maximum level among
the parents of a in its associated v, where v, € LWSJ,,. This is
exactly equal to A M y(a) in \.

(b) Assume that v(a) = f (i.e., A(a) = out). Thus, by the
acceptance condition of @ and Definition 3.1 and since AF does
not contain any redundant or dependent links, there exists a
parent p, of a such that v,(p,) = t. Thus, the level of a in v, is
maz{level,, (pa) | pa € par(a) N VL, vy <; Va,vp € LWSI,} + 1.
Let us fix a p, such that level,,(a) = level,, (p,) + 1. Since
v(ps) = t, by the previous item, it holds that level,, (p.) =
MMy (pa). Thus, level,, (pa) +1 = 4 My (ps)+ 1. That is,
levely, (a) = M My (a)

Thus, for each a with v(a) € {t,f} the level of a in v, is equal
to M M y(a) in \. Furthermore, by Lemma 3.14, each a has a
finite level in v, since level,, (a) < |v,*|. Thus, A is a strongly
admissible labelling of F'.

O

Theorem 3.41 is a direct result of Propositions 2.36, 3.39, and Lemma 3.40.
It presents the correspondence between strongly admissible extensions of
F' and strongly admissible interpretations of the associated Dp.

Theorem 3.41 For any argument framework F = (A, R) and ils associ-
ated ADF Dp, the following properties hold:
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e If S is a strongly admissible extension of F, then Ext2Intp(S) is a
strongly admissible interpretation of Dp;

e Ifv is a strongly admissible interpretation of Dp, then Int2Extp, (v)
is a strongly admissible extension of F.

Proof

e It is enough to show that Ezt2Intp(S) = Lab2Int(Ext2Lab(5)).

1. Let a be an argument such that ¢ € S. By Definition 3.34, a € S
if and only if Fzt2Intr(S)(a) = t. In other words, a € S if and only
if Ext2Lab(S)(a) = in if and only if Lab2Int(Ext2Lab(S)(a)) = t.

2. Let a be an argument such that a ¢ S and there exists a parent of a,
namely p,, with p, € S. By Definition 3.34, a € S and p, € S if and
only if Ezt2Intr(S)(a) = f. In other words, a ¢ S and p, € S if and
only if Ext2Lab(S)(a) = out if and only if Lab2Int(Ext2Lab(S)(a)) =
f.

Thus, Ezt2Intp(S) = Lab2Int(Ext2Lab(S)). Hence, by Proposi-
tion 2.36, if S is a strongly admissible extension of F', then A =
Ext2Lab(S) is a strongly admissible labelling of F. Furthermore,
by Lemma 3.40, if X is a strongly admissible labelling of F', then
Lab2Int()\) is a strongly admissible interpretation of Dp. That is,
Ext2Intp(S) is a strongly admissible interpretation of Dp.

e By the similar method as the one presented in the proof of the
previous item, we have Int2Extp, (v) = Lab2Ext(Int2Lab(v)). By
Lemma 3.40, if v is a strongly admissible interpretation of D, then
A = Int2Lab(v) is a strongly admissible labelling of F'. By Proposi-
tion 2.36, if A is a strongly admissible labelling of F', then Lab2FEzt(\)
is a strongly admissible extension of F. Hence, Int2Eztp, (v) is a
strongly admissible extension of F'.

0

We have already shown that the projection of a strongly admissible exten-
sion/labelling of AF F' via Ext2Intp(.)/Lab2Int(.) is a strongly admissible
interpretation of the associated Dp. The commutative diagrams in Figure
3.5 show the relation between strong admissibility semantics of AF F' and
strong admissibility semantics of its associated ADF Dg. In the following,
the set of strongly admissible extensions of F', the set of strongly admissible
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Exzt2Lab(.) Lab2Fxt(.)

sadm(F) ————— sadmy(F) sadm(F) «——— sadmg(F)
Extgfm lLab?Int(-) IntQExtDFN [IntQLab(.)
sadm(Dp) sadm(Dp)

Figure 3.5: The left diagram shows that strong admissibility semantics of F'
project to strong admissibility semantics of Dp, via Ext2Intr. The right diagram
shows that strong admissibility semantics of D project to strong admissibility
semantics of F', via Int2Extp,..

labellings of F', and the set of strongly admissible interpretations of D
are denoted by sadm(F'), sadmg(F'), and sadm(Dp), respectively.

The direct result of Theorem 3.41 is that the strong admissibility semantics
of ADFs form a proper generalization of strong admissibility semantics of
AFs, as presented in Corollary 3.42.

Corollary 3.42 Let F be an AF and let D be its associated ADF. An
extension S is a strongly admissible semantics of F if and only if v =
Ext2Intp(S) is a strongly admissible interpretation of Dp.

However, Corollary 3.42 does not claim that there is a one-to-one relation
between the set of strong admissibility extensions of F' and the set of
strong admissibility interpretations of Dg. In other words, for the strong
admissibility semantics, neither Ext2Intp(.) nor Int2Extp, (.) is a bijective
function. The reason is that for the strong admissibility semantics, the
function Fzt2Intr is not a surjective function and function Int2Fztp, is
not an injective function, as clarified in Example 3.43.1

Example 3.43 Let F = ({a,b,c,d},{(a,b),(b,c),(c,d)}). The associated
ADF of F is D = ({a,b,c,d},{(a,b), (b,c), (c,d)},{¢a : T,pp : ma, e :
—b,pq : —c}). The interpretation {a — t,b — f,c — t,d — u} is a
strongly admissible interpretation of Dp, but it is not a projection of
any strongly admissible extension of ' via Ext2Intp. Thus, Ext2Intp is
not a surjective function. Furthermore, both of the strongly admissible
interpretations of Dp, namely, vi = {a — t,b — f,c — t,d — u}
and v = {a — t,b — f,c — t,d — £}, are mapped to the strongly
admissible extension {a,c} via Int2Extp,. Thus, Dp is not an injective

In (Baroni et al., 2018a; Caminada and Dunne, 2019), it is shown that Ezt2Lab is
not a a surjective function and function Lab2FExt is not an injective function, for strong
admissibility semantics of a given AF.
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function. In other words, we did not claim that Ext2Intr is an inverse of
Int2Extp,, for strongly admissible semantics. For instance, in this example
Ext2Intr (Int2Extp,. (v1)) = va.

Although Int2Ezt(.) is not an injective function, by the second item of
Theorem 3.41, function Int2FEzt(.) maps any strongly admissible interpre-
tation of Dp to a strongly admissible extension of F. That is, Int2Ezt(.)
may map an element of sadm(Dp) to an element of sadm(F). On the
other hand, it is possible that there exists an element of sadm(Dp) that is
not an image of any element of sadm(F') by Ext2Int(.), since Ezt2Int(.) is
not a surjective function. However, the image of any element of sadm(F)
by Ext2Int(.) is a strongly admissible interpretation of Dp, by the first
item of Theorem 3.41. These results together lead to Corollary 3.44.

Corollary 3.44 The concept of strong admissibility semantics of ADFs
is a generalization of the concept of strong admissibility semantics of AFs.

3.4 Algorithm for Strong Admissibility Seman-
tics of ADFs

Definition 3.3 says that an interpretation v is strongly admissible in a
given ADF D if and only if for each argument a that is presented in v,
i.e., v(a) € {t,f}, we have that a is a strongly justified argument in v. In
the following, we present an alternative method to answer the verification
problem under strong admissibility semantics of ADFs. In this method of
investigating whether the given interpretation v is a strongly admissible
interpretation of D, there is no need to check whether each argument is
strongly justified in v. The results of this section lead to algorithms to
answer the following decision problems.

1. The verification problem: whether a given interpretation is a strongly
admissible interpretation of a given ADF.

2. The strong justification problem: whether a given argument a is a
strongly justified argument in a given interpretation.

To this end, we introduce I'p, a variant of the characteristic operator
restricted to a given interpretation v, presented in Definition 3.45.

Definition 3.45 Let D = (A, L,C) be a given ADF and let v,w be inter-
pretations of D. LetT'p ,(w) = I'p(w)M;v where I'p  (w) = T'p.o(Th Hw))
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for n with n > 1. Note that T'Y,  (w) = w. We call the collection of the
interpretations of F%}U(UU) forn > 1, the set of interpretations constructed
based on v in D.

In Lemma 3.46, we show that each interpretation in the set of interpreta-
tions constructed based on v is a strongly admissible interpretation.

Lemma 3.46 Let D = (A, L,C) be a given ADF and let v be an interpre-
tation of D. Let I, (va) be the sequence of interpretations constructed
based on v, as in Definition 3.45. For each i with i > 0 it holds that;

o I, (vu) <i T 1 (va);

Ky

. FiDyv(vu) is a strongly admissible interpretation of D;

o if Fbv(vu)(a) € {t,f}, then a is strongly justifiable in FiD,v(Uu)-
Proof

e We show the first item by induction on .

Base case: By Definition 3.45, for ¢ = 0 it holds that FOD’,U(UU) = Vu
and it is clear that v, <; Fb’v(vu).

Induction hypothesis: Suppose that I‘% o (V) < I‘g& (vy) for each j
with 0 < j < 3.

Inductive step: We show that this property holds for j = i, i.e.,
FiDﬂ} (vu) <4 F’Ji (va). From the fact that the characteristic opera-
tor is monotonic together with the induction hypothesis, it follows
that T'p(I} ,(va)) <i Dp(), (va)), for j with 0 < j < 4. Thus,
FD(Fiqul}(vu)) < FD(FZb,U(Uu)) and further, FD(FZ'[I})(UH)) Mo <;

I‘D(I‘iDm(vu)) M; v. That is, I‘iDﬂ}(vu) < FiDJiqu(vu).

e We show the second item by induction on i.

Base case: For ¢ = 0 it is clear that F%,v (va) = vy is a strongly
admissible interpretation of D.

Induction hypothesis: Suppose that for each j with 0 < j < i it holds
that I',  (vy) is a strongly admissible interpretation of D.

Inductive step: We prove that FZb’U (vy) is also a strongly admissible
interpretation of D. To this end, we show that if the truth value of
a is presented in FE,U (vu), then a is a strongly justified argument

in Fhv(vu). We assume that I"'Dm(vu)(a) =t and '} (vy)(a) = u,
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otherwise if the truth value of a is presented in I”'Dii(vu), then a is
strongly acceptable in F’ﬁi(vu) and there is nothing to prove (because
by induction hypothesis F’ﬁi(vu) is a strongly admissible interpreta-
tion of D). We show that a is strongly acceptable in I'}, | (vy). For
the case that I',  (vu)(a) = f the proof follows a similar method.
Since F’b’v(vu)(a) = t, we can conclude that FD(FE})(UU)) = t, that
is, the evaluation of ¢, under I‘E})(vu) is irrefutable. Thus, there
exists a non-empty subset of parents of a, namely P such that the
truth value of each p € P is presented in I‘gﬂl)(vu). Since by induction
hypothesis ng(vu) is strongly admissible if the truth value of an
argument is presented in Fgﬂl) (vu), then that argument is strongly
justified in F’E’i(vu). That is, each p € P is also strongly justified in
I‘gﬂl) (va). This satisfies the conditions of Definition 3.1. Thus, every

interpretation in the sequence FiDyv(vu) for ¢ with ¢ > 0 is a strongly
admissible interpretation.

Toward a contradiction, assume that there exists an ¢ and an argu-
ment a such that I'},  (vy)(a) € {t,f} but a is not a strongly justified
argument in I'yy  (vy). Thus, by Definition 3.3, I'y;  (vy) is not a
strongly admissible interpretation of D. This contradicts the second
item of the current lemma, in which we showed that for each ¢ with
i > 0, it holds that FiDﬂ] (vy) is a strongly admissible interpretation
of D. Thus the assumption that there exists an argument a such
that Fiva(vu)(a) € {t,f} but a is not a strongly justified argument
(va)(a) € {t,f}, then a is a
strongly justified argument in I‘Ew (V).

U

in FiD,v(UU) was wrong. Thus, if I';

,U

O

Remark 3.46.1 The sequence of interpretations I"'Dm(vu) as in Defini-
tion 3.45, 1s named the sequence of strongly admissible interpretations
constructed based on v in D.

Proposition 3.47 presents that for each interpretation v the sequence of
interpretations constructed based on v has a limit.

Proposition 3.47 Let D be an ADF and let v be an interpretation of D.
Let Fhv(vu) (for i > 0) be the sequence of strongly admissible interpreta-

tions constructed based on v in D. Then there is an m with m > 0 such
that T, (va) = T4 (va).

,U
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Proof Let vy,I'}, (vy),... be the sequence of strongly admissible inter-

pretations constructed based on v in D. Since Fﬁv(vu) < Figi(vu) for
i > 0, by the first item of Lemma 3.46, and the number of arguments of D
is finite, the sequence vy, FlD »(Vu), ... has to stop. That is, there exists

m > 0 such that I'} | (va) = Fgfgl(vu). O

Definition 3.48 Let D be an ADF and let v be an interpretation of D. Let
Fhv(vu) (for i > 0) be the sequence of strongly admissible interpretations
constructed based on v in D. Consider an m with m > 0 such that
Dao(vn) = F"Dlzl(vu). Then, w = I'f (va) is called the limit of the
sequence of FlD,v(Uu) (for i > 0) which is the least fized-point of T'p,,.

Theorem 3.49 proposes the necessary and sufficient condition for an inter-
pretation being a strongly admissible interpretation.

Theorem 3.49 Let D be an ADF and let v be an interpretation of D. Let

E’v(vu) (for i > 0) be the sequence of strongly admissible interpretations
constructed based on v in D. Interpretation v is a strongly admissible
interpretation if and only if v is the limit of the sequence of FE’U(UU) (for
i>0), (i.e., there exists an m such that v =17  (vu)).

Proof ‘—’ Assume that v is a strongly admissible interpretation of D. By
Proposition 3.47, there exists an m (m > 0) such that I'} | (va) = T4 ().
We show that v = I'})  (vu).

e By the definition of the constructed sequence of interpretations based
on v in Definition 3.45 it is clear that I'p  (ve) <; v for i > 0.
Therefore, I'f) , (vu) <; v.

e It remains to show that v <; ng(vu). Toward a contradiction
assume that v £; I'}}  (vy). This means that there exists a such that
either v(a) = t, but I:”Dlyv(vu)(a) #torv(a) =f, but I'p (vu)(a) # f.
Since v is a strongly admissible interpretation, a is a strongly justified
argument in v. Thus, by Definition 3.1, there exists a non-empty
subset of parents of a, namely P such that the truth value of each p €
P is presented in v, such that P satisfies the condition of Definition
3.1 for a. This means that each p € P is also a strongly justified
argument in v. Note that if P = () the fact that a is strongly justified
in v implies that T'p ,(va)(a) € {t,f}, ie, TG (va)(a) € {t,f}.
Thus, P has to be a non-empty set to satisfy the assumption that
I3, (va)(a) & {t.£}.

125



If the truth value of arguments of P are presented in I} (vu),
then there exists a 7 with 0 < 7 < m such that the truth value
of arguments of P are also presented in F%’v(vu). If so, it holds
that Fﬁ; (va)(a) € {t,f}. This contradicts the assumption that
I'p(vu)(a) & {t, £}

Hence, there exists p € P such that the truth value of p is not
presented in I}, (vy). The fact that p is a strongly justified argument
in v implies that there exists a non-empty subset of parents of p,
namely P; such that the truth value of elements of P, are presented
in v, such that P; satisfies the condition of Definition 3.1 for p. Using
the same method of reasoning for p, we conclude that there exists a
parent of p, namely p; such that the truth value of p; is not presented
in I'p , (vu)-

Following the same method of reasoning, we find that there exists
a sequence of ancestors of a, namely p,p1,... such that the truth
value of none of them is presented in I'})  (vy). Since the number of
arguments of A is finite, the sequence p, p1,... cannot be an infinite
sequence. If the sequence p, p1, ... is finite, then for some i, P; = (). If
P; = (0, then by Definition 3.1, @p | is irrefutable/unsatisfiable. This
means that F}j’v(vu)(pi_l) € {t,f}. This contradicts the assumption
that the truth values of arguments of sequence p,pi,... are not
presented in I'f) (vy). Thus, the assumption that I'f)  (vu)(a) €
{t,f} is wrong. Hence, v <; I'p  (vu).

" Assume that v = I') (vy). We show that v is a strongly
admissible interpretation. Lemma 3.46 says that each I'},  (vy), for
7 > 0, is a strongly admissible interpretation of D. Thus, I"B »(Vu) is
a strongly admissible interpretation of D. As v =T (vy) it follows
that v is a strongly admissible interpretation of D. 7

g

Based on the above observations, one can characterise a strongly admissible
interpretation v as the least fixed point of the corresponding operator I'p ,,.
That is, we can verify an interpretation by computing this sequence of
strongly admissible interpretations. By Theorem 3.49, to investigate
whether interpretation v is a strongly admissible there is no need of
indicating whether each argument which is presented in v is a strongly
justified argument in v. That is, there is no need of following Definition
3.1 to answer the verification problem for strong admissibility semantics
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of ADFs. That is, by Theorem 3.49, it is enough to investigate whether
v =TI7,(va), where I”bw(vu) (1 > 0) is a sequence of strongly admissible
interpretations constructed based on v in D. Example 3.50 illustrates the
role of Theorem 3.49 and the sequence of strongly admissible interpretations
constructed based on a given interpretation.

Example 3.50 Consider the ADF given in Example 3.2, i.e., D = ({a, b, c,
A} {pa : Typp:a A, 00t mbANd,pq 2 L}). To investigate whether in-
terpretation v = {a — t,b — u,c — f,d — £} is a strongly admissible
interpretation, we follow the method presented in Theorem 3.49 by con-
structing the sequence of strongly admissible interpretations constructed
based on v, as in Definition 3.45. That is, we investigate whether there
exists an m such that v = ng(”u)- The sequence of strongly admissible
interpretations constructed based on v is as follows.
v1 =I'py(va) =Tpvy) M v ={a,~d} M; {a, ¢, ~d} = {a,~d},
vy = FQDW(UU) =T'py(vi) = Tp(v1) Miv = {a, ¢, ~d} M; {a, ~¢,~d} =
{a,—c,~d}
Since v is the limit of the sequence vy,v9, i.e., v = F%yv(vu), (i.e., v
is a least fized point of I'p, ), interpretation v is a strongly admissible
interpretation of D.

On the other hand, we investigate that v' = {a — t,b— t,c — u,d —
u} is not a strongly admissible interpretation of D. The sequence of
interpretation constructed based on v' are as follow.
vy = Tp(ve) M 0" = {a,~d} M; {a,b} = {a},
ve =Tp(v1) M v = {a,~d} N; {a,b} = {a}.
Thus, the sequence of interpretations constructed based on v' leads to
v = {a}, which is not equal to V', i.e., v’ # vy (that is, v' is not a least
fized point of T'p ). Hence, v' is not a strongly admissible interpretation
of D. The reason is that the truth value of b is presented in v', however,
with a similar reason as was presented in FExample 3.2, it is easy to show
that b is not strongly acceptable in v'.

Lemma 3.46 and Theorem 3.49 lead us to present an algorithm to answer
the decision problem of whether interpretation v is a strongly admissible
interpretation, presented in Algorithm 1.

The results of this section lead to an alternative definition for strongly
admissible semantics of ADFs, presented in Definition 3.51.

Definition 3.51 Let D be an ADF and let v be an interpretation of
D.  Let I'p (va) (for i > 0) be the sequence of strongly admissible
interpretations constructed based on v in D. Interpretation v is a strongly
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Algorithm 1 Algorithm to decide whether v is a strongly admissible
interpretation of D
Input: D is an ADF,
v is an interpretation of D
Output: v is (not) a strongly admissible interpretation of D
for + > 0 do
w=I%, (va)

if T !(vy) =v then
Print: v is a strongly admissible interpretation of D
else if I'J!(vy) = w then
Print: v is not a strongly admissible interpretation of D
break
else
Pass
end if
end for

admissible interpretation if v is the limit of the sequence of FiD,v(Uu) (for
i>0), (i.e., if there exists an m such that v =T (va)).

In the current section we presented an alternative definition (i.e., Definition
3.51) of strongly admissible interpretations of a given ADF in which there
is no need to investigate that all the arguments the truth values of which
are presented in a given interpretation are strongly justifiable. If a given
interpretation v is a strongly admissible interpretation of D, then it is clear
that a is strongly acceptable in v if v(a) = t and it is strongly deniable
in v if v(a) = f. In contrast, when v is not strongly admissible, it may
contain some arguments that are strongly justifiable in v. For instance, in
Example 3.50, a is strongly acceptable in v/, however, v’ is not a strongly
admissible interpretation of D, because b is not strongly acceptable in v’.
Algorithm 2 presents a method to answer whether an argument is strongly
justifiable in a given interpretation. Note that in this method, presented in
Definition 3.53, in contrast with Definition 3.1 there is no need to find a set
of ancestors of a given argument to answer the decision problem. Theorem
3.52 shows why the method presented in Algorithm 2 and Definition 3.53
works to answer the decision problem whether an argument is strongly
justifiable in a given interpretation.

Theorem 3.52 is a direct result of Definition 3.3 and Theorem 3.49.
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Algorithm 2 Algorithm to decide whether a is a strongly justified argu-

ment in v
Input: D is an ADF,

v is an interpretation of D
Is a strongly justified in v?
Output: a is (not) strongly justified in v
v’ is the limit of the sequence T’ Z’D,v (va)
if v(a) € {t,f} and v'(a) = v(a) then
Print: a is strongly justified in v
else
Print: a is not strongly justified in v
end if

Theorem 3.52 Let D be an ADF and let v be an interpretation of D. Let
Fhv(vu) (for i > 0) be the sequence of strongly admissible interpretations
constructed based on v in D. Assume that v’ is the limit of the sequence
of I’bv(vu) (for i > 0). It holds that v'(a) € {t,f} if and only if a is a
strongly justified argument in v.

Theorem 3.52 leads to an alternative definition of strong acceptabil-
ity /deniability of arguments, presented in Definition 3.53, in which to
answer whether a given argument is a strongly justified argument in a
given interpretation there is no need to find a proper set P of parents of
the argument in question to satisfy the conditions of Definition 3.1.

Definition 3.53 Let D be an ADF and let v be an interpretation of D. Let
F’bw(vu) (for i > 0) be the sequence of strongly admissible interpretations
constructed based on v in D. Assume that v’ is the limit of the sequence of

o o (va) (fori>0). Argument a, with v(a) € {t,£}, is a strongly justified
argument in v if v(a) = v'(a).

3.5 Sequence of Strongly Admissible Extensions
for AFs and ADF's

In Section 3.3 we showed that the concept of strongly admissible semantics
of ADFs forms a generalization of the concept of strongly admissible
semantics of AFs. Furthermore, we indicated that there is no one-to-
one relation between the set of strongly admissible extensions of AF
F and the set of strongly admissible interpretations of the associated
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ADF Dp. In this section we clarify the relation between the sequence
of strongly admissible extensions of a given AF F and the sequence of
strongly admissible interpretations of the associated ADF Dp.

In Lemma 3.46, we constructed a sequence of strongly admissible inter-
pretations FiDm (va) (for i > 0) based on a given interpretation v in an ADF.
In Theorem 3.49, we proved that v is a strongly admissible interpretation
of a given ADF if and only if v is the limit of the sequence FiDm(vu) (for
i > 0). There is a similar method to indicate whether a given extension
is a strongly admissible extension of a given AF, presented in (Caminada
and Dunne, 2019). In the following, we first recall the necessary notations
from (Caminada and Dunne, 2019). Then we investigate the relation
between the sequence of extensions presented in (Caminada and Dunne,
2019) for an AF and the sequence of interpretations for the associated
ADF presented in the current work.

In (Caminada and Dunne, 2019, Lemma 2), it is presented that, in
a given AF F| for an arbitrary extension S of F', each extension in the
sequence H? = (), H'*! = Tp(H")N S is a strongly admissible extension of
F. We recall this lemma in Lemma 3.54. Note that in the following, I'r(.)
is the characteristic function of AFs, as it is defined in Definition 2.13, i.e.,
I'r(S) = {a | a is defended by S}.

Lemma 3.54 (Caminada and Dunne, 2019, Lemma 2) Let F = (A, R)
and let S C A. Let H* = () and H" =Tp(H)NS (i > 0). For each
1 > 0 1t holds that

° Hz C Hi—‘rl;
o H' is strongly admissible;
o H' strongly defends each of its arguments.

Let S be a strongly admissible extension of F' and let v = Ezt2Intr(S5).
The main goal of the rest of this section is to show the exact relation
between the sequence of strongly admissible extensions of F', namely H* as
in Lemma 3.54, and the sequence of the strongly admissible interpretations
of Dp, namely v’, as in Definition 3.51. In Theorem 1 of (Caminada and
Dunne, 2019), it was shown that S is a strongly admissible extension of F
if and only if S = (J;2, H'; we rephrase it in Theorem 3.55.

Theorem 3.55 (Caminada and Dunne, 2019, Theorem 1) Let F' = (A, R),
let S C A and let H' (i > 0) be as in Lemma 3.54. S is strongly admissible

iff S = U2, H'.
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Since the number of arguments of F is finite and H* C H**!, we conclude
that there exists j > 0 such that S = H7 iff S is a strongly admissible
extension of F. It is easy to check that FExt2Intp is a monotonic function
over H', that is, if H* C H7, then Ext2Intp(H') <; Ext2Intp(H7). Before
presenting the formal relation between the sequence of strongly admissible
extensions of F' (in the sense of Theorem 3.55) and the sequence of strongly
admissible interpretations of D (in the sense of Theorem 3.49), we clarify
this relation by an example, in Example 3.56.

Example 3.56 Consider F' = ({a,b,c,d},{(a,b),(b,c),(c,d)}) and exten-
sion S = {a,c}. We show that S is a strongly admissible extension of F
via Theorem 3.55. That is, we construct the sequence of extensions H'
and we show that S = J;2, H. Furthermore, in the right-hand column we
show the associated interpretation to each extension via Definition 3.34.

H ={} Ext2Int(H®) = {}
H'=FHNS = {a}n{a,c} = {a} Ext2Int(H') = {a, b}
H?>=FHYNS ={a,c}n{a,c} ={a,c} Ext2Int(H?) = {a, b, c,~d}

Since S = H?, i.e., S is a unique fized point of U2 H?, it is a strongly
admissible extension of F'. The interpretation associated with S in Dp
via Definition 3.34 is Ext2Int(S) = v = {a — t,b — f,c — t,d —
f}. By Theorem 3.41, we already know that v is a strongly admissible
interpretation of Dp. In other words, we illustrate that v is a strongly
admissible interpretation of Dp wvia Definition 3.51. To this end, we
construct the sequence of strongly admissible interpretations I‘bv(vu) based
on v. It is expected that there is a one-to-one relation between Ext2Int(H?)
and the elements of the sequence of Fti(vu) in Definition 3.51.

Vo = Vu

In fact, by Theorem 3.49, it holds that v is a strongly admissible interpreta-
tion of D, since v = F%Fw(vu). However, the guess that each I'py (vu),

for i >0, is equal to Ext2Int(H') was wrong. Since as we can see, on
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the one hand, Ext2Int(H') contains the truth value of initial arguments
that are in S and the arguments that are attacked by H', i.e., the children
of arguments of H'. On the other hand, F}:)F’v(vu) contains the truth
values of initial arguments that are presented in v and do not contain
the truth values of children of initial arguments presented in v. In other
words, I'p,.(v1) produces the truth values of children of initial arguments
presented in vi. That is, vo = I'p,(v1) M; v contains the truth values of
initial arguments and their children that are presented in v. Thus, it seems
that, fori > 0, it holds that each Ext2Int(H') is equal to ve;. For instance,
in the current example Ext2Int(H') = vy and Ext2Int(H?) = vy. Further,
in this example the projection of each strongly admissible extension of F'
via Ext2Int(.) is a strongly admissible interpretation of Dp. However, for
instance, v1 is not a projection of any strongly admissible extension. This
shows that Ext2Int(.) is not a surjective function, as presented earlier in
Example 3.43.

Theorem 3.57 Let F be an AF and let Dg be its associated ADF. Let S
be a strongly admissible extension of F and let H' be as in Lemma 3.54.
Let Ext2Int(S) = v and let v; = FiDm(vu) be the sequence of interpretations
as in Lemma 3.46. Then it holds that Ext2Int(H*) = vy;, for each i > 0.

Proof For i > 0, we show that Ext2Int(H') = vy; by induction on i.

Base case: It is obvious that Ext2Int(H°) = vy = vo.

Induction hypothesis: assume that Ext2Intp(H7) = vq; for each j with
0<j<i.

Inductive step: we have to show that Fzt2Intp(H ’) = v9;. To show
the inductive step, we show that a — 2 € Ezt2Intp(H?) if and only if
a— x € vy, for z € {t,f}.

1. First we show that a + t € Ext2Intp(H?) if and only if a > t € vg;.
We claim that a + t € Ext2Intp(H?) if and only if a — t € ve; 1.
Assume that a +— t € Ext2Intp(H'), ie., a € H'. Since H' =
F(H™Y NS, it holds that @ € F(H!) and a € S. Relation
a € F(H"!) implies that a is defended by H~!. Thus, for each p
such that (p,a) € R, there exists a defender of a, namely ¢,, such
that (cp,p) € R, ¢, € H'™! and since H*™! is a strongly admissible
extension, ¢, # a. Since defender ¢, belongs to H =1 it holds that
cp > t € Ext2Intp(H'™!) and each parent of a is assigned to f in
Ext2Intp(H™'). By the induction hypothesis, Ext2Intp(H™') =
Vg(i—1) = v2i—2. That is, for each p such that (p,a) € R, it holds that
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Vi —

p— £ € vgi_g. Thus, p* > =T, that is, a — t € I'p,.(v2;_2). Since
a vt € Ext2Intp(S), it holds that a — t € I'p,, (v2i—2) M; v. Thus,
a—t € uvy_q.

We have already shown that if a — t € Ext2Intp(H"), then a —
t € vg;_1. Since all the relations are equivalence relations, the other
direction works as well. That is, if a — t € v9;_1 then a — t €
Ext2Intp(H?). Thus, a — t € Ext2Intp(H?) iff a — t € vg;_1. We
use this equation in the proof of the next item. Further, since the
characteristic function is a monotonic function, a +— t € v9;_1 implies
that a — t € T'p,(v2i—1). Hence, a — t € Ext2Intp(H') if and only
ifa—te (FDF(UQZ‘_l) ; U) = V9;.

2. We show that a — f € Ext?[ntF(Hi) if and only if a — f € vy;.
Assume that a — f € Ext2Intp(H'). By the definition of the
Ezxt2Intp function, there exists a parent of a, namely p, such that
p € H' ie., p+— t € Ext2Intp(H?). As shown in the first item,
p — t € Ext2Intp(H') if and only if p — t € wg_1. Thus,
0o ™" = L. Hence, a — f € T'p,(v2i—1). On the other hand,
a — f € Ext2Intp(H") implies that a + f € Ext2Intp(S), since
Ext2Intp(HY) = Ext2Intp(F(H™Y)) 1 Ext2Intp(S). That is, a
f € I'pu(v2ie1) Miv) = vg. Thus, if a = f € Ext2Intp(HY),
then a — f € vy;. Since all the relations are equivalence relations,
a+— f € Ext2Intp(H?) if and only if a +— f € vy;.

To conclude, Ext2Intp(H') = vo;, for i > 0. O

In Section 3.3, we showed that an extension is a strongly admissible
extension of AF F' if and only if Ext2Intp(S) is a strongly admissible
interpretation of the associated ADF Dp. Thus, the map of each H*
via Ext2Intp(.), such that H? is as in Lemma 3.54, is a strongly admis-
sible interpretation of Dp. However, by Theorem 3.57, F%’U(vu) as in
Lemma 3.46 is a map of an H® if and only if j is an even number, i.e.,
Ext2Intp(HY) = F%m(vu), for ¢ with ¢ > 0.

3.6 Conclusion

In this chapter we have defined the concept of strong admissibility se-
mantics for ADFs, based on the concept of strongly justified arguments.
From a theoretical perspective, in Section 3.2, we observe that the strongly
admissible interpretations of a given ADF form a lattice with the trivial
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interpretation as the unique minimal element and the grounded interpre-
tation as the unique maximal element. Furthermore, in Section 3.3 we
prove that the concept of strong admissibility semantics of ADFs forms a
proper generalization of the concept of strong admissibility semantics of
AFs (Baroni and Giacomin, 2007; Caminada, 2014).

In addition, in Section 3.4 we have presented an alternative definition
for an interpretation being strongly admissible without checking whether
all the arguments that are presented in that interpretation are strongly
justified. This leads to an algorithm for answering the verification problem
under strong admissibility semantics of ADFs (Algorithm 1). Moreover,
based on the new definition of strongly admissible interpretations of ADFs,
we have presented an alternative definition for an argument being strongly
justified in a given interpretation, in which there is no need to find a set
of arguments that satisfies the conditions of Definition 3.1, for a given
argument. This definition leads to Algorithm 2, which answers the decision
problem whether a given argument is a strongly justified argument in a
given interpretation.

In Section 3.5, we have indicated further relations between the sequence
of strongly admissible extensions of an AF F and the sequence of strongly
admissible interpretations of the associated ADF Dp. That is, we have
shown that there is no one-to-one relation between the sequence of strongly
admissible extensions constructed based on a strongly admissible extension
S of a given AF F and the sequence of strongly admissible interpretations
constructed based on Ext2Int(S) of the associated ADF Dp.

It is a possible topic of future research to show that the notion of strong
admissibility semantics of ADFs can be reused for those generalizations
of AF's that can be represented in ADF's, namely SETAFs (Nielsen and
Parsons, 2006) and bipolar AFs (Cayrol and Lagasquie-Schiex, 2005).

In addition, we have proven that each grounded interpretation is the
unique maximal element of the lattice of strongly admissible interpretations.
Thus, it seems that the concept of strong admissibility can play a significant
role in the dialectical proof procedures that we have introduced for grounded
semantics in (Keshavarzi Zafarghandi et al., 2020), (see Chapter 6).

The idea of the grounded discussion games presented in (Keshavarzi
Zafarghandi et al., 2020, Chapter 6) is that a discussion game can serve as
an explanation why a particular argument should be accepted/denied in the
grounded interpretation of a given ADF. Since the grounded semantics is the
unique maximal element of the lattice constructed by strongly admissible
interpretations, the concept of strong admissibility is related to grounded
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semantics in a similar way as the concept of admissibility is related to
preferred semantics. That is, to answer the credulous decision problem
of an ADF under the grounded semantics, there is no need to construct
the full grounded interpretation of the given ADF. Instead, it is enough
to construct a strongly admissible interpretation of the given ADF that
satisfies the decision problem. In other words, answering the credulous
decision problem of ADFs under the grounded semantics is equivalent
to answering the same decision problem under the strong admissibility
semantics. Similarly, to answer the credulous decision problem of ADFs
under preferred semantics, it is enough to investigate whether there exists
an admissible interpretation in order to solve the decision problem. We
used this method in preferred discussion games in (Keshavarzi Zafarghandi
et al., 2019a) to answer the credulous decision problem of ADFs under
preferred semantics.

On the other hand, the grounded discussion game (GDG) presented
in (Keshavarzi Zafarghandi et al., 2020) was defined over ADF's without
any redundant links, to answer whether a given argument is credulously
justifiable under the grounded semantics of an ADF. However, the concept
of strongly admissible semantics is presented for all kinds of ADFs. Thus,
we will investigate whether the concept of strongly admissible semantics is
at the basis of the proof procedures of the grounded discussion games for
ADFs without any redundant links.

Intuitively, it seems that the grounded discussion game and a strongly
admissible interpretation are two sides of the same coin to investigate
whether a queried argument is credulously justified in the grounded in-
terpretation of an ADF. Moreover, both methods can be used to explain
‘why is an argument credulously justified in the grounded interpretation?’
Thus, a motivation for future work is to study the relation between these
two approaches.

In addition, another possible question that can be answered using the
concept of strongly admissible semantics of ADF's is whether a grounded
discussion game contains the least possible amount of information about
the truth values of ancestors of the argument in question to answer the cred-
ulous decision problem under grounded semantics; in other words, whether
the grounded discussion game presents the shortest explanation that an-
swers the credulous decision problem under strongly admissible/grounded
semantics for a given argument in an ADF. This question is interesting,
since specifically when the proponent wins the game, we are eager to
know whether the proponent presents the least possible amount of infor-
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mation to convince the opponent about the truth of their initial claim, i.e.,
acceptance/denial of an argument in the grounded interpretation.

Computational complexity results of different semantics of AFs and
ADFs are presented in (Dvoidk and Dunne, 2018; Nouioua, 2013; Lins-
bichler et al., 2018; Strass and Wallner, 2015). Computational complexity
of strongly admissible semantics of AFs is studied in (Dvotrdk and Wall-
ner, 2020). Further, in (Caminada and Dunne, 2020), the computational
complexity of identifying strongly admissible labellings with bounded or
minimal size is studied. As a future work, it would be interesting to
clarify the computational complexity of investigating: 1. whether a given
interpretation is a strongly admissible interpretation, 2. whether a given
argument is credulously /skeptically justifiable under the strongly semantics
of a given ADFs.
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Chapter 4

Complexity of Strong
Admissibility

The notion of strong admissibility semantics has been introduced for ADFs
in Chapter 3. In the current chapter, we study the computational
complexity of several reasoning tasks under strong admissibility semantics.
We address the following problems:

. the credulous decision problem;

. the skeptical decision problem:;

1

2

3. the verification problem:;

4. the strong justification problem; and
5

. the problem of finding a smallest witness of strong justification of a
queried argument.

4.1 Introduction

Interest and attention in argumentation theory has been increasing among
artificial intelligence researchers (Bench-Capon and Dunne, 2007). Appli-
cations of argumentation theory are based on a variety of argumentation
formalisms and methods of evaluating arguments (Atkinson et al., 2017;
Baroni et al., 2018b; van Eemeren et al., 2014). Dung’s abstract argu-
mentation frameworks (Dung, 1995) (AFs for short) have received notable
attention, also thanks to their simple syntax that can model and evaluate
a number of non-monotonic reasoning tasks. Semantics of AFs single
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out coherent subsets of arguments that fit together, according to specific
criteria (Baroni et al., 2011).

AFs model individual attack relations among arguments. Abstract
dialectical frameworks (ADF's) are expressive generalizations of AF's in
which the logical relations among arguments can be represented. ADF's
were first introduced in (Brewka and Woltran, 2010), and were further
refined in (Brewka et al., 2013, 2017a, 2018a).

Often a new semantics is a refinement of an already existing one
by introducing further restrictions on the set of accepted arguments or
possible attackers. One of the main types of semantics of AF's is the
grounded semantics. Its characteristics include that 1. each AF has a
unique grounded extension; 2. the grounded extension collects all the
arguments about which no one doubts their acceptance; 3. the grounded
extension is often a subset of the set of extensions of other types of AF
semantics. Thus, it is important to investigate whether an argument
belongs to the grounded extension of a given AF. The notion of strong
admissibility is introduced for AFs to answer the query ‘Why does an
argument belong to the grounded extension?’.

While the grounded extension collects all the arguments of a given AF
that can be accepted without any doubt, a strongly admissible extension
explains why an argument belongs to the grounded extension, without
presenting further information about each argument in the grounded
extension. Thus, the strong admissibility semantics can be the basis
for an algorithm that can be used not only for answering the credulous
decision problem but also for human-machine interaction that requires an
explainable outcome (cf. (Caminada and Uebis, 2020; Booth et al., 2018)).

In AFs, the concept of strong admissibility semantics has first been
defined in the work of Baroni and Giacomin (2007), and later in (Caminada,
2014). Furthermore, in (Caminada and Dunne, 2019), Caminada and
Dunne presented a labelling account of strong admissibility to answer the
decision problems of AFs under grounded semantics. Moreover, Caminada
showed in (Caminada, 2018, 2014) that strong admissibility plays a role
in discussion games for AFs under grounded semantics. In addition,
the computational complexity of strong admissibility of AFs has been
analyzed (Caminada and Dunne, 2020; Dvorak and Wallner, 2020).

Because of the specific structure of ADF's, the definition of strong
admissibility semantics of AFs cannot be directly reused in ADFs. Thus the
concept of strong admissibility for ADFs has been introduced (Keshavarzi
Zafarghandi et al., 2021b). This concept fulfils properties that are related
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to those of the strong admissibility semantics for AF's, as follows:

1.

Strong admissibility is defined in terms of strongly justified argu-
ments.

. Strongly justified arguments are recursively reconstructed from their

strongly justified parents.

. Each ADF has at least one strongly admissible interpretation.

The set of strongly admissible interpretations of ADF's forms a lattice
with as least element the trivial interpretation and as maximum
element the grounded interpretation.

. The strong admissibility semantics can be used to answer whether

an argument is justifiable under grounded semantics.

. The strong admissibility semantics of ADF's is different from the

admissible, conflict-free, complete and grounded semantics of ADF's.

The strong admissibility semantics for ADFs is a proper generaliza-
tion of the strong admissibility semantics for AFs.

Whereas several fundamental properties of strong admissibility semantics
for ADFs have been established, the computational complexity under
strong admissibility semantics has not been studied. This chapter fills this
gap by studying the complexity of the central reasoning tasks under the
strong admissibility semantics of ADF's, as follows.

1.

The credulous decision problem, i.e., whether there exists a strongly
admissible interpretation that satisfies the queried argument, is co-
NP-complete.

. The skeptical decision problem, i.e., whether all strongly admissible

interpretations satisfy a queried argument, is trivial.

. The verification problem, i.e., whether a given interpretation is a

strongly admissible interpretation of an ADF, is co-NP-complete.

. The strong justification problem for an argument in an interpretation,

i.e., whether an argument is strongly justified in an interpretation, is
co-NP-complete.

. The problem of finding a smallest witness of strong justification of

an argument, i.e, whether there exists a minimal strongly admissible
interpretation that satisfies a queried argument, is ZQP -complete.

139



4.2 Algorithm for Strongly Admissible Interpre-
tations of ADF's

For the ease of the readers we repeat the algorithms presented in Section 3.4.
To this end, we also rephrase the concept of strong admissibility semantics
for ADF's from Chapter 3, which is defined based on the notion of strongly
justifiable arguments (i.e., strongly acceptable/deniable arguments). Below

v, is equal to v(p) for any p € P, and assigns all arguments that do not

belong to P to u, i.e., v, = Uuli(epj)j.

Definition 4.1 Let D = (A, L,C) be an ADF and let v be an interpreta-
tion of D. Argument a is a strongly justified argument in interpretation v
w.r.t. set E if one of the following conditions hold:

e v(a) =t and there exists a subset of parents of a excluding E, namely
P C par(a) \ E such that (a) a is acceptable with respect to v, and
(b) all p € P are strongly justified in v w.r.t. set EU{p}.

e v(a) =f and there exists a subset of parents of a excluding E, namely
P C par(a) \ E such that (a) a is deniable with respect to v|,, and
(b) all p € P are strongly justified in v w.r.t. set EU{p}.

An argument a is strongly acceptable, resp. strongly deniable, in v if
v(a) =t, resp. v(a) = £, and a is strongly justified in v w.r.t. set {a}. We
further say that an argument is strongly justified in v if it is either strongly
acceptable or deniable in v.

Note that in Definition 4.1, the set of parents of a can be the empty
set, i.e., P = (). If the set of parents of an argument,is empty, then
v|p = vy. In this case, a is strongly acceptable/deniable in v if g»
is irrefutable/unsatisfiable, respectively. We say that a is not strongly
justified in an interpretation v if there is no such a set of parents of a that
satisfies the conditions of Definition 4.1 for a. Akin to AFs, the notion
of strong admissibility semantics for ADF's is presented in Definition 4.2
based on strongly justified arguments.

Definition 4.2 Let D = (A, L,C) be an ADF and let v be an interpreta-
tion of D. An interpretation v is a strongly admissible interpretation if for
each a such that v(a) = t/f, it holds that a is a strongly justified argument
m .
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Example 4.3 clarifies the notion of strong admissibility semantics of ADFs,
which is a repeat of Example 3.4 presented in Chapter 3.

Example 4.3 Considering ADF D = ({a,b,c,d},{vq: T,0p:aA—c,pc:
—OAd, pq: L}). Letv = {b,—~c,—d}. Since pgq: L, it holds that d is strongly
deniable in v. Let P = {d}, since @o? = L, it holds that ¢ is strongly
deniable in v. Thus, ¢ and d are strongly justified in v. However, b is not
strongly justified in v, since ¢y # T. Thus, v is not a strongly admissible
interpretation of D. However, for instance, v = {a}, va = {—c,~d} and
vy = {a,b,~c,d} are strongly admissible interpretations of D. We show
that b is strongly acceptable in vs. To this end, let P = {a,c} be a set of

parents of b. First, it holds that ¢Z3|P = T. Thus, the first condition of
Definition 4.1 is satisfied for b. We also have to check whether each parent
of b is strongly justified in vs. To this end, we show that a is strongly
acceptable in v and c is strongly deniable in vs. The latter one is obvious
as we show it in the beginning of this example. In addition, ¢i* = T, thus,
a 1s strongly acceptable in v3. Hence, b and a are strongly justified in vs.
Further, vs is a unique grounded interpretation of D.

In Example 4.3, if we choose a set of parents of ¢ equal to {b}, then we
cannot show that c¢ is strongly deniable in interpretation v. The reason is
that b is not strongly justified in v, as it is presented in Example 4.3. This
shows the importance of choosing a right set of parents that satisfies the
conditions of Definition 4.1 for a queried argument. However, there exists
an alternative definition for strongly justified of arguments, we recall it in
Algorithm 4, in which there is no need of indicating a set of parents of a
queried argument. First, we rephrase an alternative method, presented in
Section 3.5, to answer the verification problem under strong admissibility
semantics of D.

Definition 4.4 Let D = (A, L,C) be a given ADF and let v,w be inter-
pretations of D. LetT'p ,(w) = I'p(w)M;v where I'p , (w) = I‘D,U(F%Tvl(w))
for n with n > 1. Note that T'Y  (w) = w. We call the collection of the
interpretations of I'}y  (vy) forn Z 1, the set of interpretations constructed
based on v in D. 7

We rephrase the properties of the sequence of interpretation constructed
based on an interpretation v in Lemma 4.5.

Lemma 4.5 Let D = (A, L,C) be a given ADF and let v be an interpre-
tation of D. Let ', (va) be the sequence of interpretation constructed
based on v, as in Definition 4.4. For each i it holds that;
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o I, (va) <i T, (va),

° Fhv(vu) is a strongly admissible interpretation of D,
o if 'y (va)(a) = t/f, then a is strongly justifiable in T,  (vy).

Remark 4.5.1 the sequence of interpretations F}),U(Uu) as Definition 4.4,
are named the sequence of strongly admissible interpretations constructed
based on v in D.

Theorem 4.6 presents a method to investigate whether an interpretation v is
a strongly admissible interpretation based on the sequence of interpretations
constructed based on v.

Theorem 4.6 Let D be an ADF and let v be an interpretation of D. Let
Zb,v(”u) (for i > 0) be the sequence of strongly admissible interpretations
constructed based on v in D. The following conditions hold:

o there is an m with m > 0 s.t. I'p (vy) = I”B’tl(vu);

e v is a strongly admissible interpretation of D if and only if there
exists an m s.t. v =17 (va).

Theorem 4.6 presents a powerful method to answer the verification problem
under the strong admissibility semantics by which there is no need of
examining whether all the arguments which are presented in v are strongly
justifiable in v. Lemma 4.5 and Theorem 4.6 lead us to present an algorithm
to answer verification problem under the strong admissibility semantics,
presented in Algorithm 3.

If a given interpretation v is a strongly admissible interpretation of D,
then it is clear that a is strongly justifiable in v if v(a) = t/f. In contrast,
when v is not strongly admissible, it may contain some arguments that are
strongly justifiable in v. For instance, in Example 4.3, ¢ and d are strongly
deniable in v, however, v is not a strongly admissible interpretation of
D, because b is not strongly acceptable in v. Algorithm 4 presents a
method to answer whether an argument is strongly justified in a given
interpretation. Note that in this method, presented in Algorithm 4, in
contrast with Definition 4.1 there is no need of finding a proper set of
parents of a queried argument to answer the decision problem.

Theorem 4.7 Let D be an ADF and let v be an interpretation of D. Let

E’v(vu) (for i > 0) be the sequence of strongly admissible interpretations
constructed based on v in D. Let v’ be a limit of this sequence. It holds
that v'(a) = t/f if and only if a is strongly justifiable in v.
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Algorithm 3 Algorithm to decide whether v is a strongly admissible
interpretation of D
Input: D is an ADF
v is an interpretation of D
Output: v is (not) a strongly admissible interpretation of D
for + > 0 do
w=1I%, (vn)

if T ! (vy) =v then
Print: v is a strongly admissible interpretation of D
else if I'J!(vy) = w then
Print: v is not a strongly admissible interpretation of D
break
else
Pass
end if
end for

4.3 Computational Complexity

We analyse the complexity under strong admissibility semantics for (a) the
standard reasoning tasks of ADFs (Dvofék and Dunne, 2018) and (b) two
problems specific to strong admissibility semantics, i.e., the small witness
problem introduced for AFs in (Dvorédk and Wallner, 2020; Caminada and
Dunne, 2020) and the strong justification problem.

For a given ADF D we consider the following problems:

1. The credulous decision problem: whether an argument a is credulously
justifiable with respect to the strong admissibility semantics of D.
That is, if there exists a strongly admissible interpretation of D
in which a is strongly justified. This reasoning task is denoted as
Credsqgm(a — t/f, D) and is presented formally as follows:

yes if Jv € sadm(D) s.t.
Credsqgm(a — t/£,D) = v(a) =t/f,

no otherwise

2. The skeptical decision problem: whether an argument a is skeptically
justified with respect to the strong admissibility semantics of D. That
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Algorithm 4 Algorithm to decide whether a is a strongly justified in v
Input: D is an ADF
v is an interpretation of D
Is a strongly justified in v?
Output: a is (not) strongly justified in v
v’ is a limit of the sequence Flbm(vu)
if v(a) € {t,f} and v'(a) = v(a) then
Print: a is strongly justified in v
else
Print: a is not strongly justified in v
end if

is, if a is strongly justified in all strongly admissible interpretations
of D, denoted as Skept, g, (a — t/f, D), which is presented formally
as follows:

yes if Vv € sadm(D) :
Skeptggam(a— t/f,D) = v(a) = t/f holds,

no otherwise

3. The verification problem: whether a given interpretation v is a
strongly admissible interpretation of D, denoted by Versygm (v, D),
which is presented formally as follows:

yes if v € sadm(D),

Versqam(v, D) = )
no otherwise

4. The strong justification problem: The problem whether a given
argument a is strongly justified in a given interpretation v is denoted
as StrJust(a — t/f,v, D), which is presented formally as follows:

yes if a is strongly
StrJust(a — t/f,v,D) = justified in v,

no otherwise

5. The small witness problem: We are interested in computing a strongly
admissible interpretation that has the least information of the an-
cestors of a given argument, namely a, where v(a) = t/f. The
decision version of this problem is the k-Witness problem, denoted
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by k- Witnesssqam, indicating whether a given argument is strongly
justified in at least one v such that v € sadm(D) and |v* Uvf| < k.
Note that k is part of the input of this problem. This decision
problem is presented formally as follows:

yes if Jv € sadm(D)
s.t. v(a) =t/f
&lvt Uof| <k,

no otherwise

k- Witnessgqgm(a — t/£,D) =

4.3.1 The Credulous/Skeptical Decision Problems

In this section we study the credulous/skeptical problem under the strong
admissibility semantics for ADFs. That is, we show the complexity of
deciding whether an argument in question is credulously/skeptically justi-
fiable in at least one/all strongly admissible interpretation(s) of a given
ADF.

We show that Credsqgrm, is coNP-complete and Skept,, 4, is trivial. To
this end, we use the fact that the set of strongly admissible interpretations
of a given ADF D forms a lattice with respect to the <;-ordering, with the
maximum element being grd(D). Thus, any strongly admissible interpreta-
tion of D has at most an amount of information equal to grd(D). Thus,
answering the credulous decision problem under the strong admissibility
semantics coincides with answering the credulous decision problem under
the grounded semantics.

Theorem 4.8 Credy,g,, is cONP-complete.

Proof We have that Credsoam(a — t/f,D) = Credgq(a — t/f, D)
and the latter has been shown to be coNP-complete in (Wallner, 2014,
Proposition 4.1.3.). O

Concerning skeptical acceptance, notice that the trivial interpretation is the
least strongly admissible interpretation in each ADF. Thus, Skept,,,,,(a —
t/f, D) is trivially no.

Theorem 4.9 Skept,,,,, is a trivial problem.

4.3.2 The Verification Problem

In this section, we settle the complexity of Vers,qm(v, D), i.e., of deciding
whether a given interpretation v is a strongly admissible interpretation of
an ADF D.
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Already, there exist two approaches to answer Verg,gm (v, D); one is
presented in Algorithm 3, and the other one is to transfer a given ADF D
to another ADF D’ and using (Wallner, 2014, Theorem 4.1.4) to answer
Vergrq(v, D'). However, there exists an alternative method presented in
this section, which shows that Vers,gm,(v, D) is coNP-complete. Why do
we present this alternative method? Based on the method, presented in
this section, it turns out that Vergygm(v, D) can be solved within coNP,
however,

1. the evaluation of the operator I'p, in Algorithm 3, is costly, namely
a PNP_algorithm.

2. To investigate the complexity of the latter method, we first sketch
a simple translation-based approach that reduces the verification
problem of strongly admissible semantics to the verification prob-
lem of grounded semantics. In order to reduce Vergygm(v,D) to
Vergra(v, D'), we modify the acceptance conditions ¢, of D to ¢ =
—a if v(a) = u and ¢}, = ¢, otherwise. We then have that v €
sadm(D) iff v € grd(D’), so that we can use the DP procedure
for Vergrg(v, D) (Wallner, 2014, Theorem 4.1.4). This gives a DP
procedure.

Intuitively, since the grounded interpretation is the maximum element of
the lattice of strongly admissible interpretations and the credulous decision
problem under grounded semantics is coNP-complete, it seems that the
verification problem under the strong admissibility semantics has to be
coNP-complete. However, having the positive answer for Credgq(a —
t/f, D) for each a with v(a) = t/f does not lead to the positive answer
of Versgam(v, D). This is because v <; grd(D) does not imply that v is a
strongly admissible interpretation of D (see Example 4.10 below).

Example 4.10 Let D = ({a,b},{pa : T,pp : aVb}). The grounded
interpretation of D is {a — t,b > t}. Furthermore, the interpretation
v = {a — uw,b — t} is an admissible interpretation of D such that
v <; grd(D). However, v is not a strongly admissible interpretation of D.
As we know, the answer of Credgq(b— t,D) is yes, but b is not strongly
acceptable in v. Thus, v is not a strongly admissible interpretation of D,
i.e., the answer to Versygm(v, D) is no.

To show that Verg,qm, is coNP-complete, we modify and combine both the
fixed-point iteration from Algorithm 3, and the grounded algorithm from
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(Wallner, 2014). To this end, we need some auxiliary results that are shown
in Lemmas 4.11 and 4.13.

Lemma 4.11 Given an ADF D with n arguments, the following state-
ments are equivalent:

1. v is a strongly admissible interpretation of D;
2. v=T%  (vu);

3. for each w <; v, it holds that v =T, (w).
Proof
e 1 <> 2: by Theorem 4.6.

e 2 — 3 : Assume that v = I'}, (vy) and that w <; v. We show
that v = F%jv(w). Since vy <; w <; v, and I'p is monotonic and
thus also I'p,, monotonic, we have I'y,  (vu) <; I'p , (w) <; I'p , (v).
Now using that v =I'},  (vy), we obtain v <; I'p,  (w) <; F%’fv(vu).
Because I'p,, is a monotonic operator, the fixed-point is reached
after at most n iterations and thus F%fv(vu) =TI} ,(vu) = v. Hence,
'y, (w) =v.

e 3 — 2 : Assume that for each w <; v it holds that v = I'}, (w).
Thus, since vy <; v, it holds that v = F%’U(vu).

O

In the following, let v* = v* U vf. The notions of completion of an inter-
pretation and model are presented in Definition 4.12, used in Lemma 4.13.

Definition 4.12 Let w be an interpretation. We define the completion
of w as the set of all two-valued extensions of w, denoted by [w]e where:
[wla = {u | w<; u and u is a two-valued interpretation}.

Furthermore, a two-valued interpretation u is said to be a model of
formula ¢, if u(p) = t, denoted by u = ¢.

Lemma 4.13 Let D be an ADF and let v be an interpretation of D.
v & sadm(D) if and only if there exists an interpretation w of D that
satisfies all the following conditions:

1. w<; v;

2. For each a € w* N ' there exists uq € W]z 8.t. Ug [ a;

147



3. For each a € w* NvF there exists u, € [w]y s.t. uq = @a.

Proof <«: Assume that v and w are interpretations of D that satisfy all
of the items 1, 2, 3 presented in the lemma. We show that v € sadm(D).
Toward a contradiction assume that v € sadm(v). Let a be an argument
such that a € w" Nt thus, since w satisfies the conditions of the lemma,
it holds that there exists u, € [w]2 such that ug = ¢q, ie., uq(a) = f.
Furthermore, since v(a) = t and v € sadm(D), for any j € [v]2 it holds that
J E @q. Since w <; v, it holds that j € [w]a. We have shown that there are
two two-valued extensions of w that differ in their truth value on a. Hence,
based on the definition of the characteristic operator I'p(w)(a) is neither
unsatisfiable nor irrefutable, i.e., I'p(w)(a) = u. The proof method for the
case that a € w¥Nof is similar, i.e., if a € w*N(v*UY), then T'p(w)(a) = u.
Thus, for a € w" Nv* we have I'p ,(w)(a) = (I'p(w) Mv)(a) = u. In other
words, I'p,(w) <; w and thus, by the monotonicity of I'p,(w) also
', (w) < w <; .

Thus, since I'}, , (w) # v the third item of Lemma 4.11 does not hold
for w with w <; v. Thus, v € sadm(D).
=1 Assume that v & sadm(D). That is, for the fixed point w =T} ,(vu)
we have w <; v. Consider a € w* Nwvt. Because w is a fixed point, we have
that I'p ,(w)(a) # t and thus I'p(w) # t. That is, there is a u, € [w]s
such that ug f~ @4 Similar reasoning applies to a € w™ Nof. O

Lemma 4.14 shows that the verification problem is a coNP-problem, and
Lemma 4.15 shows the hardness of this problem.

Lemma 4.14 Vers,gm, is a coNP-problem for ADFs.

Proof Let D be an ADF and let v be an interpretation of D. For
membership, consider the co-problem. By Lemma 4.13, if there exists an
interpretation of w that satisfies the condition of Lemma 4.13, then v is not
a strongly admissible interpretation of D. Thus, guess an interpretation w,
together with interpretations u, € [w]s for each a € v*, and check whether
they satisfy the conditions of Lemma 4.13. Note that since w <; v we have
to check the second and the third items of Lemma 4.13 a total of |v* \ w"|
number of times. That is, this checking has to be done at most |v*| number
of times, when w is the trivial interpretation. Thus, this checking step
is linear in the size of v*. Therefore, the procedure of guessing of w and
checking if it satisfies 1, 2, 3 of Lemma 4.13 is an NP-problem. Thus, if
a w satisfies the items of Lemma 4.13, then the answer to Vers,gm(v, D)
is no. Otherwise, if we check all interpretations w such that w <; v and
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-bVb b

Figure 4.1: Reduction used in Lemma 4.15 and 4.23, for ¢ = =b V b.

none of them satisfies the conditions of Lemma 4.13, then the answer to
Versaam(v, D) is yes. Thus, Verg,gm(v, D) is a coNP-problem. O

Lemma 4.15 Vers,gm is coNP-hard for ADFs.

Proof For hardness of Verg,gm, we consider the standard propositional
logic problem of VALIDITY. Let 9 be an arbitrary Boolean formula and
let X = atom(1)) be the set of atoms in 1. Let a be a new atom, i.e.,
a ¢ X. Construct ADF D = ({X U{a}},L,C) where ¢, : = for each
x € X and ¢, : . We show that v is valid if and only if v = vy|{ is a
strongly admissible interpretation of D. An illustration of the reduction
for the formula ¢» = =bV b to the ADF D = ({a,b}, L, q : ¥, pp : b) is
shown in Figure 4.1. Assume that ¢ is a valid formula. We show that v is
the grounded interpretation of D. By the acceptance condition of each z,
for x € X it is clear that x is assigned to u in the grounded interpretation
of D. Further, since v is a valid formula, it holds that ¢, = T. Thus,
the interpretation v = vy|{ is the grounded interpretation of D. Hence,
v € sadm(D).

On the other hand, assume that v is not valid. Then there exists a
two-valued interpretation v of atom(v) such that v = ¢. This implies
that a — t does not belong to the grounded interpretation of D. Since
the grounded interpretation of D is the maximum element of the lattice of
strongly admissible interpretations, it holds that a is not strongly acceptable
in any strongly admissible interpretation of D, that is, v & sadm(D). O

Theorem 4.16 is a direct result of Lemmas 4.14-4.15.

Theorem 4.16 Verg,g,, is coNP-complete for ADFs.

4.3.3 Strong Justification of an Argument

Note that it is possible that an interpretation v contains some strongly
justified arguments but v is not strongly admissible itself. Example 4.17
presents such an interpretation. Thus, the problem StrJust(a — t/f,v, D)

149



of deciding whether an argument is strongly justified in a given interpreta-
tion of an ADF is different from the previously discussed decision problems.
We show that StrJust is coNP-complete.

Example 4.17 Let D = ({a,b,c,d},{¢a : L,pp: maAc,pc:d,pq: T})
be an ADF. Let v = {b,c,d} be an interpretation of D. It is easy to
check that ¢ and d are strongly acceptable in v. However, b is not strongly
acceptable in D. Thus, v is not a strongly admissible interpretation of D.
However, there exists a strongly admissible interpretation of D in which c

and d are strongly acceptable and that has less information than v, namely,
v ={e,d}.

Algorithm 4 presents a straightforward method of deciding whether a
is strongly justified in a given interpretation v. That is, a is strongly
acceptable/deniable in v if it is acceptable/deniable by the least fixed point
of the operator I'p,, (which is equal to I'},  (vy) for sufficiently large n).

However, the repeated evaluation of I'p is a costly part of this algorithm
and results in a PNP algorithm. We will next discuss a more efficient method
to answer this reasoning task. To this end, we translate a given ADF D
to ADF D', presented in Definition 4.18, such that the queried argument
is strongly justifiable in a given interpretation of D if and only if it is
credulously justifiable in the grounded interpretation of D’. As shown in
(Wallner, 2014, Proposition 4.1.3), the credulous decision problem for ADFs
under grounded semantics is a coNP-problem. Thus, verifying whether a
given argument is strongly justified in an interpretation is a coNP-problem,
since the translation can be done in polynomial time with respect to the
size of D.

Definition 4.18 Let D = (A, L,C) be an ADF and let v be an interpre-
tation of D. The translation of D under v is D' = (A',L’,C") such that
A" = AU{z,y} where x,y ¢ A. Furthermore, for each a € A" we define
the acceptance condition of a in D', namely ¢, as follows:

o o iux;
I

° ¢l y;

e ifv(a) =, then ¢, : —a;

e ifv(a) =t, then ¢, = po V x;

o ifv(a) =f, then ¢, = pa AN y.
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Notice that our reduction ensures that arguments with v(a) = u will
always be u in D', arguments with v(a) = t will be assigned to either t or
u during the least fixed-point computation and arguments with v(a) = f
will be assigned to either f or u. That is we introduced arguments z, y to
ensure that arguments in v* are not assigned to the opposite truth value
during the iteration of I'ps that leads to the grounded interpretation of D’.
Lemmas 4.19 and 4.20 show the correctness of the reduction.

Lemma 4.19 Let D be an ADF, let v be an interpretation of D, and let
D’ be the translation of D, via Definition 4.18. It holds that if StrJust(a —
t/f,v, D) = yes, then Credgq(a — t/f,D") = yes.

Proof We assume that StrJust(a — t,v, D) = yes, and we show that
Credgrg(a — t, D") = yes. The proof for the case that StrJust(a — f,v, D)
= yes is similar.

Assume that vy is the trivial interpretation of D and v}, is the trivial
interpretation of D', i.e., v}, = vy U{x + u,y — u}. Assume that T’ (vy)
is a sequence of strongly admissible interpretations constructed based on v
in D, as in Definition 4.4. Let w be the limit of the sequence of I'%; , (vy).

StrJust(a — t,v,D) = yes implies that w(a) = t. Since w is a
strongly admissible interpretation of D, it holds that a — t in the
grounded interpretation of D, i.e., there exists a natural number n such that
I} (vy)(a) = t. By induction on n, it is easy to show that I'}), (v},)(a) = t.
That is, a is assigned to t in the grounded interpretation of D’. Thus,
Credgrg(a — t,D") = yes.

O

Lemma 4.20 Let D be an ADF, let v be an interpretation of D, and let
D' be the translation of D wvia Definition 4.18. It holds that if Credgq(a —
t/f, D) = yes, then StrJust(a — t/f,v, D) = yes.

Proof Assume that a is justified in the grounded interpretation of D',
namely w. Thus, there exists a j such that w = I%,(wu) for 7 > 0, where
wy is the trivial interpretation of D’. By induction we prove the claim
that for all 4, if a +— t/f € I'%,, (wy), then a is strongly justified in v.

Base case: Assume that a — t/f € I'L,(wy). By the acceptance
conditions of z and y in D', both of them are assigned to u in w. Then
it has to be the case that either ¢, = ¢, Vz or ¢, = p, Ay in D'
Thus, a — t/f € T'}, (wy) implies that ¢, = T/L. Thus, w(z/y) = u,

Pu = PaV @/ Ay and @ = T /L together imply that g = T/L.
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Hence, ¢ = T /L where vy, is the trivial interpretation of D. That is, a
is strongly justified in v.

Induction hypothesis: Assume that for all j with 1 < j <4, if a
t/f € I, (wy), then a is strongly justified in v.

Inductive step: We show that if a — t/f € I‘?{,l(wu), then a is strongly
justified in v. Because z/y +— u € w, we have that ¢ = T /L implies that
pv = T/L. Further, a — t/f € Fgl(wu) says that there exists a set of
parents of a, namely P, where P C w*Uwf, such that, gpz)‘P = T/L. Thus,
cpZ‘P = T/L. By induction hypothesis, each p € P is strongly justified in
v. Thus, a is strongly justified in v. O

Theorem 4.21 is a direct result of Lemmas 4.19 and 4.20.

Theorem 4.21 Let D be an ADF, let v be an interpretation of D, and let
D' be the translation of D, via Definition 4.18. It holds that Credgq(a —
t/f, D) = yes iff StrJust(a — t/f,v, D) = yes.

We use the auxiliary Theorem 4.21 to present the main result of this
section, i.e., to show that StrJust is coNP-complete.

Lemma 4.22 Let D be an ADF, let a be an argument, and let v be an
interpretation of D. Deciding whether a is strongly justified in v, i.e.,
whether StrJust(a — t/f,v, D), is a coNP-problem.

Proof It is shown in (Wallner, 2014, Proposition 4.1.3) that the credu-
lous decision problem under grounded semantics, i.e., Credg.q, is a coNP-
problem. Further, the translation of a given ADF D to D’ via Definition
4.18 can be done in polynomial time. By Theorem 4.21, it holds that
Credgrq(a — t/f, D) = yes iff StrJust(a — t/f,v,D) = yes. Thus, decid-
ing whether a given argument is strongly justified in interpretation v, i.e.,
StrJust(a — t/f,v, D) is a coNP-problem. O

Lemma 4.23 Let D be an ADF, let a be an argument, and let v be an
interpretation of D. Deciding whether a is strongly justified in v, i.e.,
StrJust(a — t/f,v, D), is coNP-hard.

Proof Let ¢ be any Boolean formula and let X = atom(v)) be the set of
atoms in ?. Let a be a new variable that does not appear in X. Construct
D = ({X U{a}}, L,C), such that ¢, : x for each x € X and ¢, : . ADF
D can be constructed in polynomial time with respect to the size of . We
show that a is strongly acceptable in any v where v(a) = t if and only if ¢
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is a valid formula. An illustration of the reduction for a formula ¢ = —bV b
to the ADF D = ({a,b}, L, pq : ¥, pp : b) is depicted in Figure 4.1.

Assume that a is strongly acceptable in v, thus by Definition 4.1, there
exists a set of parents of a, namely P, such that @Z‘P = T and for each
p € P it holds that p is strongly justified in v. By the definition of D the
acceptance condition of each parent of a, namely p is ¢, : p, thus, by the
acceptance condition of p, it is not strongly justifiable in v. Thus, the only
case in which a is strongly acceptable in v is that P = 0, i.e., pl» = T.
Hence, for any two-valued interpretation v of X U {a} it holds that u |= 1.
Moreover since the atom a does not appear in 1) we obtain that for any
two-valued interpretation u of X it holds that u = . Hence, 1 is a valid
formula and it is a yes instance of the VALIDITY problem of classical
logic.

On the other hand, assume that ¢ is a valid formula. Then it is
clear that the interpretation v that assigns a to t and x to u, for each
x € X, is the grounded interpretation of D. Thus, the answer to the strong
acceptance problem of a in any v with v(a) =t is yes.

For credulous denial of a, it is enough to present the acceptance
condition of a equal to the negation of ¢ in D, i.e., ¢4 : =1, and follow
a similar method. That is, a is strongly deniable in v, where v(a) = f, if
and only if 9 is a valid formula. ]

Theorem 4.24 is a direct result of Lemmas 4.22 and 4.23.

Theorem 4.24 Let D be an ADF, let a be an argument, and let v be
an interpretation of D. Deciding whether a is strongly justified in v, i.e.,
StrJust(a — t/f,v, D) is coNP-complete.

4.3.4 Smallest Witness of Strong Justification

Assume that an argument a, its truth value, and a natural number k are
given. We are eager to know whether there exists a strongly admissible
interpretation v that satisfies the truth value of @ and |v* Uvf| < k. This
reasoning task is denoted by k- Witnesssqgm(a — t/f, D). We show that
k-Witnesssqdm is Zg -complete. Lemma 4.25 shows that this problem is a
> P-problem and Lemma 4.26 indicates the hardness of this reasoning task.

Lemma 4.25 Let D = (A,L,C) be an ADF, let a be an arqument, let
x € {t,f}, and let k be a natural number. Deciding whether there exists a
strongly admissible interpretation v of D where v(a) = z and [vt Uvf| < k
s a Zzp—pmblem, i.e., k-Witnesssagm 1S a ZQP—problem.
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Proof For membership, non-deterministically guess an interpretation v
and verify whether this interpretation satisfies the following items:

1. v € sadm(D);
2. v(a) = ;

3. vtudf| < k.

If v satisfies all the items, then the answer to the decision problem is
yes, 1.e., k- Witnesssqam(a — t/f, D) = yes. The complexity of each of the
above items is as follows.

1. Verifying strong admissibility of v is co-NP-complete, as is presented
in Section 4.3.2.

2. Verifying if v contains the claim, i.e., if v(a) = z, can clearly be done
in polynomial time.

3. Collecting v* U vf and checking whether |[v* U vf| < k takes only
polynomial time.

That is, the algorithm first non-deterministically guesses an interpretation
v and then performs checks that are in coNP to verify that v satisfies the
requirements of the decision problem. Thus, this gives an NP©NP = ¥P
procedure. O

Lemma 4.26 Let D = (A,L,C) be an ADF, let a be an argument, let
x € {t,f}, and let k be a natural number. Deciding whether there exists a
strongly admissible interpretation v of D where v(a) = z and [vt Uvf| < k
18 Zg—hard, i.e., k-Witnessgadgm 1S Zg—hard.

Proof Consider the following well-known problem on quantified Boolean
formulas. Given a formula © = 3YVZ (Y, Z) with atoms X =Y U Z (and
Y N Z = ()) and propositional formula 6. Deciding whether © is valid is
¥ P-complete (see e.g. (Arora and Barak, 2009)). We can assume that ¢
is of the form ¢ A /\er(y V —y), where 1 is an arbitrary propositional
formula over atoms X, and that 0 is satisfiable. Moreover, we can assume
that the formula 6 only uses A, V, — operations and negations only appear
in literals. Let Y = {g:y € Y}, i.e., for each y € Y we introduce a new
argument .
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Figure 4.2: TIllustration of the reduction from the proof of Lemma 4.26 for
© =Ty Va1 (1 A —z1) V(2 A ) A (yn V-

We construct an ADF Dg = (A, L, C') with

A=Y UYUZU{6}
C={py: TlyeY}U{py: T|yeY}
U{p.:—z |2 € ZYU{pe: 0[-y/y]}

It is easy to verify that the grounded interpretation g of Dg sets all
arguments Y UY to t and all arguments Z to u. Moreover, g(0) € {t,u}.
An illustration of the reduction for a formula 6 = ((y3 A —21) V (21 A
—y1)) A (y1 V—y1) to the ADF D = (A, L,C) is shown in Figure 4.2, where:
A =A{y1, 1, x,0}, Oy 2 Topg 2 Tz @72 and @ : ((y1 A —z1) V (21 A
1)) A (y1Vy1). We show that there is a strongly admissible interpretation
v with v(f) = t and |S| = |Y|+1 where S = vt Uvf iff © is a valid formula.

e Agssume that O is a valid formula. We show that there exists a
strongly admissible interpretation v with |S| = |Y| 4+ 1. Since © is a
valid formula, there exists an interpretation Iy of Y such that for
any interpretation Iz of Z, it holds that Iy U Iz = 0(Y, Z), i.e., 6 is
true. Specifically, it holds that Iy = (Y, Z).

We define a three-valued interpretation v of A such that v(y) =t if
Iy(y) =t,v(y) =t if Iy (y) =1, v(d) = t, and v(x) = u otherwise.
It is easy to check that v is a strongly admissible interpretation of
D where |S| = |Y| + 1. Thus, 6 is strongly acceptable in a strongly
admissible interpretation v where |S| = |Y| + 1.

e Let v be the strongly admissible interpretation with v(f) = t and
|S| < Y]+ 1. Let g be the unique grounded interpretation of D.
It holds that v <; ¢q. For each z € Z, since ¢, : -z, it is clear that
v(z) = u in any strongly admissible interpretation v of D. Moreover,
because 0 is of the form Y A A\ oy (yV—y) [~y /7], we have that for each
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‘Credsadm Skept,pgm  Versaam Strdust k-Witnesssadm

AFs P trivial P n.a. NP-c
ADFs | coNP-c trivial coNP-c  coNP-c ¥h-c

Table 4.1: Complexity under the strong admissibility semantics of AFs and
ADFs (%-c denotes completeness for class &)

y € Y either v(y) =t or v(y) = t and thus |S| = |[Y| + 1. Because
of this, we also have that not both v(y) = t or v(g) = t can be
simultaneously true. We can thus define the following interpretation
Iy of Y such that Iy(y) =t if v(y) =t and Iy (y) = f if v(y) = t.
Since @ is strongly accepted with respect to v, we have that for each
interpretation Iz of Z, the formula 6 is satisfied by Iy U Iz. That is,
the QBF © is valid.

O

Theorem 4.27 is a direct result of Lemmas 4.25 and 4.26.
Theorem 4.27 k-Witnesssudm S Zg—complete.

In Table 4.1, we summarize our results on the complexity of strong ad-
missibility semantics in ADFs and compare them with the corresponding
results for AFs (Caminada and Dunne, 2020; Dvoidk and Wallner, 2020).

4.4 Conclusion

We studied the computational properties of the strong admissibility seman-
tics of ADFs. When compared to AF's, computational complexity for ADF's
increases by one step in the polynomial hierarchy (Stockmeyer, 1976) for
nearly all reasoning tasks (Strass and Wallner, 2015; Dvofak and Dunne,
2018). We have shown that, similarly, ADFs have higher computational
complexity under the strong admissibility semantics when compared to
AFs (Table 4.1).
From a theoretical perspective we observe that:

1. The credulous decision problem under the strong admissibility se-
mantics of ADF's is coNP-complete, while this decision problem is
tractable in AFs.

2. Since the trivial interpretation is the least strongly admissible in-
terpretation for each ADF, the skeptical decision problem is trivial,
which is similar for AFs.
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3. The verification problem for ADFs is coNP-complete, while it is
tractable for AFs.

4. Since an argument can be strongly justified in an interpretation
that is not a strongly admissible interpretation, we defined a new
reasoning task in Section 4.3.3, called the strong justification problem.
The complexity of this decision problem, which investigates whether
a queried argument is strongly justified in a given interpretation, is
coNP-complete.

5. The problem of finding a smallest witness of strong justification of
an argument investigates whether there exists a strongly admissible
interpretation that assigns a minimum number of arguments to t/f
and satisfies a queried argument is ¥5-complete, while this reasoning
task is NP-complete for AFs.

We next highlight an interesting difference in the complexity landscapes
of AFs and ADFs. When relating the complexity of grounded and strong
admissibility semantics, we have that for AFs the verification problems
can be (log-space) reduced to each other, while for ADF's there is a gap
between the coNP-complete Verg,gn, problem and the DP-complete Very,q
problem. That is, on the ADF level the step of proving arguments to be
u in the grounded interpretation adds an NP part to the complexity; a
similar effect can be observed for admissible and complete semantics.

As future work, it would be interesting to analyse the computational
complexity of the current reasoning tasks for strong admissibility semantics
over subclasses of ADF's, in particular bipolar ADFs (Brewka and Woltran,
2010) and acyclic ADFs (Diller et al., 2020).
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Chapter 5

Semi-Stable Semantics

In ADF's stable semantics both shows the ‘black-and-white’ character of a
knowledge representation and indicates support-cycle among arguments.
However, similar to AFs, an ADF may not have any stable model. In
the case that an AF has no stable extension, the notion of semi-stable
semantics of AFs has been proposed as a way of approximating stable
semantics of AFs.

However, the notion of semi-stable semantics as studied for AF's has
received little attention for ADF's, as a remedy of approximating stable
semantics if an ADF does not have any stable model. In the current chapter,
we present the concepts of semi-two-valued models and semi-stable models
for ADFs. We show that these two notions satisfy a set of plausible
properties required for semi-stable semantics of ADFs. Furthermore, we
show that semi-two-valued and semi-stable semantics of ADF's form proper
generalization of the semi-stable semantics of AF's, just like two-valued
model and stable semantics for ADFs are generalizations of stable semantics
for AFs.

5.1 Introduction

Formalisms of argumentation have been introduced to model and evaluate
argumentation. Abstract argumentation frameworks (AFs) as introduced
by Dung (1995) are a core formalism in formal argumentation. A popular
line of research investigates extensions of Dung’s AFs that allow for a
richer syntax (see, e.g. Brewka et al. 2014).

In this chapter, we investigate a generalisation of Dung’s AFs, namely,
abstract dialectical frameworks (ADFs) (Brewka et al., 2018a), which are
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known as an advanced abstract formalism for argumentation covering
several generalizations of AFs (Brewka et al., 2014; Polberg, 2017; Dvorak
et al., 2020). This is accomplished by acceptance conditions which specify,
for each argument, its relation to its neighbour arguments via propositional
formulas. These conditions determine the links between the arguments
which can be, in particular, attacking or supporting.

In formal argumentation one is interested in investigating ‘How is
it possible to evaluate arguments in a given formalism?’ Answering this
question leads to the introduction of several types of semantics. In AF's,
one starts with selecting a set of arguments without any conflicts. Conflict-
freeness is a main characteristic of all types of semantics of AFs. Very
often a new semantics is an improvement of an already existing one
by introducing further restrictions on the set of accepted arguments or
possible attackers. A list of semantics of AFs is presented in (Dung, 1995),
namely conflict-free, admissible, complete, preferred, and stable semantics.
Further semantics for AFs have been introduced later on, for instance,
stage semantics (Verheij, 1996), semi-stable semantics first in (Verheij,
1996) (under a different name) then further investigated in (Caminada,
2006), ideal semantics (Dung et al., 2007), and eager semantics (Caminada,
2007b). Each semantics presents a point of view on accepting arguments.

Most of the semantics of AFs have been defined for ADFs and it has
been shown that semantics of ADFs are generalizations of semantics of
AFs (Brewka et al., 2018a; Gaggl et al., 2021). In this work, we focus on
semi-stable semantics for ADFs, in a way that follows the same idea of
semi-stable semantics of AFs. To this end, we first present a weaker version
of the two-valued models of ADFs, which we call semi-two-valued models.
Then we define semi-stable models for ADFs as a special case of semi-two-
valued models of a given ADF. The relation between semi-two-valued and
semi-stable models is similar to the relation between two-valued and stable
models for ADFs. The difference is that a stable model is chosen among
two-valued models, however, a semi-stable model will be chosen among
semi-two-valued models of a given ADF.

Some of the semantics have become popular in the domain of argu-
mentation, such as grounded semantics, preferred semantics and stable
semantics. Each AF has a unique grounded extension, and one or more
preferred extensions. However, it is possible that an AF does not have any
stable extension. Because of this shortcoming of stable semantics, in order
to pick at least one set of arguments, preferred and grounded semantics
become more popular in argumentation. In contrast, stable semantics still
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enjoys a strong support in logic programming (Gelfond and Lifschitz, 1988)
and answer set programming (Gelfond and Lifschitz, 1991), since it is
preferred to have no outcome as opposed to an imperfect one. On the one
hand, in argumentation a grounded extension presents the least amount
of information about the acceptance of arguments. That is, a grounded
extension collects a set of arguments about which there is no doubt. In
other words, the grounded extension of a given AF is very skeptical. On
the other hand, it is possible that an AF has a stable extension but the
set of preferred extensions and stable extensions are not equal.

To overcome this deficiency, semi-stable semantics have been introduced
for AFs. Semi-stable semantics is a way of approximating stable semantics
when a given AF does not have any stable extension. Key characteristics
of semi-stable semantics in AFs are:

1. It is placed between stable semantics and preferred semantics;

2. If an AF has at least one stable extension, then the set of stable
extensions and the set of semi-stable extensions coincide;

3. Each finite AF has at least one semi-stable extension.

Computational complexity of semi-stable semantics is studied in (Dunne

and Caminada, 2008). Furthermore, (Caminada, 2007a) presents an algo-

rithm to compute semi-stable semantics of AFs.

In this chapter we propose a notion of semi-stable semantics for ADFs.
First we discuss required properties for such a semantics in order to ensure
that our notion is a proper generalization of the notion of semi-stable
semantics for AFs. Then we define our notion of semi-stable semantics for
ADF's and study its properties. It turns out that our notion fulfills the
required properties presented in Section 5.1.1.

5.1.1 Requirements of Semi-Stable Semantics

For AF's, the property holds that a semi-stable extension is stable in the
AF restricted to the arguments that have a truth value (accepted/rejected,
in/out). This holds in general, and in particular also for AFs that have no
stable extension. In the current work we follow this same idea to extend
the notion of semi-stable semantics of AFs for ADFs.

In ADFs, the notion of stable model is defined based on the notion
of two-valued model. An ADF may have no stable model. On the one

1(Verheij, 2003b, Example 5.8) shows that existence is not guaranteed for infinite
AFs. See also (Caminada and Verheij, 2010).
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hand, if a given ADF does not have any two-valued model, then it does not
have any stable model. On the other hand, an ADF may have two-valued
models, while none of them is a stable model. We focus on the first issue
here. To define the notion of semi-stable semantics for ADFs, we follow the
same method as for stable semantics of ADFs. That is, first we introduce
the notion of semi-two-valued semantics. Subsequently, we pick semi-stable
models among semi-two-valued models of a given ADF. A semi-two-valued
model is a complete interpretation, that is, the number of arguments that
are assigned to unknown is C-minimal among all complete interpretations.
Further, a semi-stable model is a semi-two-valued model v that has a
constructive proof for arguments that are assigned to t in v. We show
that the semi-stable semantics and semi-two-valued semantics presented
in this work will satisfy the following conditions, which are akin to the
properties of the notion of semi-stable semantics of AF's.

1. A semi-stable/semi-two-valued model of a given ADF should maxi-
mize the union of the sets of the accepted and of the rejected/denied
arguments among all complete interpretations, with respect to subset
inclusion;

Each semi-stable/semi-two-valued model is a preferred interpretation;
Each stable model is a semi-stable/semi-two-valued model;

Each finite ADF has at least one semi-two-valued model;

Bl

If an ADF has a stable model, then the set of stable models coincides
with the set of semi-stable models;

6. The notion of semi-stable/semi-two-valued semantics for ADF's is a
proper generalization of semi-stable semantics for AFs.

This chapter is structured as follows. In Section 5.2.1, we present the
relevant background of AFs, i.e., the notion of semi-stable semantics of AF's.
Then, in Section 5.2.2, we present definitions of semi-two-valued/semi-
stable semantics for ADFs. In this section, we show that the notion of
semi-stable semantics and semi-two-valued semantics satisfy the required
properties, items 1 — 5, presented above in this section. Further, in Section
5.3 we show that the notion of semi-stable/semi-two-valued semantics of
ADFs is a proper generalization of the concept of semi-stable semantics
of AFs, cf. the 6th property. In Section 5.4, we present the conclusion of
our work. Furthermore, we briefly discuss a related research, in particular,
(Alcantara and S&, 2018) has also proposed a notion of semi-stable semantics
for ADFs.
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5.2 Semi-stable Semantics

A main goal of this section is to introduce the notion of semi-stable seman-
tics of ADF. First, in Section 5.2.1 we recall the definition of semi-stable
semantics of AFs, presented in (Caminada, 2006). Then, in Section 5.2.2
we propose the notion of semi-stable semantics of ADF's as a way of ap-
proximating stable semantics of a given ADF D, when D have no stable
model.

5.2.1 Semi-stable Semantics for AFs

The notion of semi-stable semantics of AFs has been presented in Sec-
tion 2.3.1, comprehensively. Here we recall the notion briefly. Semi-stable
semantics, introduced in (Verheij, 1996) (under a different name) then
further investigated in (Caminada, 2006), we recall it in Definition 5.1, is
a way of approximating stable semantics when a given AF does not have
any stable extension.

Definition 5.1 (Caminada, 2006) Let F = (A, R) be an AF and let S
be an extension of F. For a € A, we write at = {b | (a,b) € R} and
ST =U{a" | a € S}. Set S is called a semi-stable extension iff S is a
complete extension where S'US™ is mazimal.

The set of semi-stable extensions of F' is denoted by semi-stb(F'). Some
alternative definitions of semi-stable semantics of AFs are also presented in
(Caminada, 2006), as follows. Extension S of F' is a semi-stable semantics
if:

e S is a preferred extension where S U ST is maximal.
e S is an admissible extension where S U ST is maximal.

Semi-stable semantics in an AF is placed between stable semantics and
preferred semantics. Each finite AF has at least one semi-stable extension.
Further, if an AF has at least one stable extension, then the set of stable
semantics and semi-stable semantics coincide, presented in Theorem 2.21.

5.2.2 Semi-stable Semantics for ADF's

The notion of stable semantics for ADFs is defined following similar ideas
from logic programming. Stable models extend the concept of minimal
model in logic programming by excluding self-justifying cycles of atoms.
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The concept of stable semantics of ADFs has been presented in (Brewka
et al., 2013, Definition 6) and in (Brewka et al., 2017a, Definition 18); we
recall it in Definition 5.2.

Definition 5.2 Let D be an ADF and let v be a two-valued model of
D. Then v is a stable model of D if v* = w*, where w is the grounded
interpretation of the stb-reduct DV = (AY, LV, CV), where AY = vt, LV =
LN (AY x AY), and q[p/L : v(p) = f] for each a € A".

Intuitively, the grounded interpretation collects all the information that
is beyond any doubt, thus, it is said that there is a constructive proof
for all arguments presented in the grounded interpretation. Hence, a
two-valued model v of D is a stable interpretation (model), if there exists
a constructive proof for all arguments assigned to true in v, in case all
arguments that are assigned to false in v are actually false. Example 5.3
clarifies the notion of stable semantics of ADFs.

Example 5.3 Let D = ({a,b,c}, {pa: —b,0p : bV —c, e : maV —b}) be an
ADF, depicted in Figure 5.1. D has two two-valued models, namely v1 =
{a—t,b—fc—t} and vy ={a—f,b— t,c— t}. We check whether
they are stable models. To investigate whether vi is a stable model, first we
evaluate the stb-reduct of D under v1, namely D"t = (A", L, C"). Here
A" = {a,c}, L' = {(a,0)}, and ¢, : =L =T and ¢ : —aV L =T.
The reduct D" is depicted in Figure 5.2 (on the left). Since the unique
grounded interpretation of D! is w = {a — t,c — t}, i.e., w*
two-valued model vy is a stable model of D.

However, we show that vy is not a stable model of D. To this end, we
first evaluate DV = (AV2, LV2, CV?), where A" = {b,c}, L"> = {(b,b), (b, c),
(¢,b)}, and @p : bV —c and p. : =LV =b =T, depicted in Figure 5.2 (on
the right). Since the unique grounded interpretation of D2 is w = {b
u,c st} d.e., wb # Y, two-valued model vy is not a stable model of D.
Intuitively, model vy is not a stable model of D, since in vy the acceptance
of b depends on b itself, that is, there is a cyclic justification. Thus, vo
violates the main condition of stable semantics that a stable model should
have no self-justifying cycles of atoms. Thus, stb(D) = {v1}.

— b
= vy,

An ADF may have no stable model. Example 5.4 presents an ADF that
has a two-valued model, but no stable model.

Example 5.4 Let D = ({a,b,c},{@a: cVb,pp:c,oc:a<>b}), depicted
in Figure 5.3. The only two-valued model of D isv = {a + t, b t,c— t}.
However, w* = {} where w is the grounded interpretation of D°. Thus,
wt # vt. Hence, v is not a stable model of D.
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Figure 5.1: The ADF of Example 5.3.

T

(@)
© D—0O

—aV-L=T bV—-c—-lV-b=T
stb-reduct D"t stb-reduct D"z

Figure 5.2: The reduct of ADF D of Example 5.3.

Before providing the formal definition of semi-stable semantics for ADF's,
we present the intuition why an ADF may have no stable models. An
ADF D may not have any stable model due to either of the following two
reasons:

1. mod(D) = 0, i.e., D does not have any two-valued models from which
to pick a stable model; or,

2. mod(D) # (), but for any v € mod(D) it holds that v & stb(D);
that is, when there is no constructive proof for arguments that are
assigned to t in v where v € mod(D).

Nonetheless, there are many cases about which one might want to draw a
conclusion even when a given ADF does not have any two-valued model or
stable model. One option is focusing on other semantics like preferred and
grounded semantics that exist for any ADF. However, a unique grounded
interpretation presents a piece of information about those arguments about
which there is no doubt. That is, it is possible that in a given ADF the
grounded interpretation has less information than each of its stable models.
In other words, the information of the grounded interpretation is too
skeptical. Furthermore, there exists an ADF D such that stb(D) # () but
the set of stable semantics of D and the set of preferred semantics of D
are not equivalent, i.e., stb(D) C prf(D). That is, by preferred semantics
some non-stable models may be introduced, even in the case that a stable
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Figure 5.3: The ADF of Example 5.4
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Figure 5.4: The ADF of Example 5.5

model exists. Example 5.5 is an instance of an ADF such that stb(D) # ()
but stb(D) € prf(D).

Example 5.5 Let D = ({a,b,c},{@a:cV b, pp:cV-a,p.:bV-a}) be
an ADF, depicted in Figure 5.4. The set of preferred interpretations of
D is prf(D) = {{a — t,b— t,c — t},{a — t,b— f,c— f}}. Both of
the preferred interpretations of D are two-valued models of D. However,
sth(D) = {{a > t,b— f,c— f}}. That is, stb(D) C prf(D).

Furthermore, the unique grounded interpretation of D is the trivial
interpretation that has strictly less information than the stable model of D,
i.e., {a—t,b— £ c— f}.

Still, it is interesting to present a semantics for ADF's that is equal to
stable semantics if there exists a stable model. In ADFs, to define the
notion of stable semantics as it is in (Brewka et al., 2018a), first the notion
of two-valued semantics is introduced. Then a two-valued model is called
a stable model if it satisfies the conditions of Definition 5.2, i.e., if it does
not contain any support cycle. Since in AFs there is no support cycle,
these two notions are equal. That is, for the associated ADF Dy of a
given AF F' it holds that mod(Dp) = stb(Dp). Due to this distinction
between two-valued models and stable models in ADF's, different levels of
semi-stable semantics can be considered in ADFs for the notion of semi-
stable semantics of AFs. Here we follow a similar method as presented
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in (Brewka et al., 2018a) for stable semantics to present the concept of
semi-stable semantics.

The first reason that an ADF D does not have any stable semantics
is that D does not have any two-valued model. We focus on this issue
to present an alternative semantics for stable semantics of ADFs. In this
alternative option, i.e., semi-stable semantics for ADF's, we are looking for
a semi-two-valued model, which is a partially two-valued model, presented
in Definition 5.6, that satisfies the condition of Definition 5.2, that is,
it does not contain any support cycles among arguments. These new
points of view of acceptance of arguments, which are called semi-two-
valued semantics and semi-stable semantics of ADFs, have to satisfy the
requirements presented in Section 5.1.1. The properties in Section 5.1.1
are akin to the properties of the notion of semi-stable semantics of AFs,
presented in Theorem 2.21.

Definition 5.6 Let D be an ADF and let v be an interpretation of D. An
interpretation v is a semi-two-valued model (interpretation) of D if the
following conditions hold:

1. v is a complete interpretation of D;

2. v is C-minimal among all w™ such that w is a complete interpreta-
tion of D.

The set of semi-two-valued models of D is denoted by semi-mod(D). Note
that when an ADF has a two-valued model, then the set of semi-two-
valued models and the set of two-valued models coincide, which is shown
in Lemma 5.15. We introduce the concept of semi-stable models over the
notion of semi-two-valued models in Definition 5.7.

Definition 5.7 Let D be an ADF and let v be a semi-two-valued model
of D. An interpretation v is a semi-stable model (interpretation) of D if
the following condition holds:

o vt = wt s.t w is the grounded interpretation of sub-reduct D® =

(AY, LY, C"), where A = vt Uv", LV = LN (AY x AY), and pu[p/L :
v(p) = f] for each a € A".

The set of semi-stable models of D is denoted by semi-stb(D). Note that
in Definition 5.7, in sub-reduct DV we assume that v is a semi-two-valued
model (complete interpretation) of D, however, in Definition 5.2, in sub-
reduct D" it is assumed that a given interpretation v is a two-valued model
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of D. Since in Definition 5.7, interpretation v is a semi-two-valued model,
it may contain an argument that is assigned to u. Therefore, in sub-reduct
DV in Definition 5.7, we keep those arguments that are assigned to u in
v as well, i.e., AY = v* Uv"™. Arguments that are assigned to u in v will
remain in ¢,[p/L : v(p) = f] for each a € A". Intuitively, a complete
interpretation v is a semi-stable model of D if v" is C-minimal among
complete interpretations of D and there exists a constructive proof for
arguments which are assigned to t in v, in case all arguments which are
assigned to false in v are actually false. Corollary 5.8 is a direct result of
Definition 5.1, which defines the notion of semi-stable model over the set
of semi-two-valued models of a given ADF.

Corollary 5.8 Let D be an ADF. FEach semi-stable model of D is a semi-
two-valued model of D.

Example 5.9 clarifies the notion of semi-stable semantics of ADFs.

Example 5.9 Let D = ({a,b,c},{¢a : 7a,p : cA(maVe), . bA(aVbd)})
be an ADF, depicted in Figure 5.5. The set of preferred interpretations of
D is prf(D) = {{a —» u,b— t,c— t},{a— u,b— f c— f}}. None of
the preferred interpretations is a two-valued model. Thus, D does not have
any stable model. Both vy = {a +— u,b+ t,c— t} and vo = {a — u,b—
f,c— f} are complete interpretations of D. Furthermore, both vi and vo
are semi-two-valued models of D, since vi* = v = {a}. However, we show
that only vo is a semi-stable model of D. To this end, we first evaluate
sub-reduct D'2. Since no argument is assigned to t in vy and only a is
assigned to u in v, A¥? = {a}. Thus, D? = ({a},{ps : —a}), depicted
i Figure 5.6. It is clear that the unique grounded interpretation D2 is
w = {a > u}. Since w® = vy =0, it holds that vy is a semi-stable model
of D.

On the other hand, vy is not a semi-stable model of D. In vy, both b
and ¢ are assigned to t and a is assigned to u, therefore, A¥* = A. Since
no argument is assigned to f in vy, we have D** = D. The grounded
interpretation of D/D" is w = {a + u,b > u,c+ u}. That is, w* = 0.
However, v8 = {b,c}, i.e., w* # vt. Thus, v1 is not a semi-stable model of
D.

Proposition 5.10 shows the first property of semi-two-valued model pre-
sented in Section 5.1.1.

Proposition 5.10 Let D be an ADF, and let v be a semi-two-valued
model of D. It holds that v maximizes the union of the sets of the accepted
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Figure 5.6: reduct D2 of ADF of Example 5.9

and of the denied among all complete interpretations of D, i.e., v* Uvf is
maximal with respect to subset inclusion.

Proof Let D = (A,L,C) be a given ADF. Assume that v is a semi-two-
valued model of D. Toward a contradiction, assume that v* U of is not
C-maximal among all complete interpretations of D. Thus, there exists
a complete interpretation w such that w® U wf is C-maximal. Thus, it
holds that vt Uvf C wt Uwf. Hence, it holds that w® C v, i.e., v“ is not
minimal among complete interpretations of D. That is, by Definition 5.6,
v is not a semi-two-valued model of D. This contradicts the assumption
that v is a semi-two-valued model of D. Thus, the assumption that v* U vf
is not C-maximal among complete interpretations is wrong. O

Proposition 5.10 clarifies the distinction between preferred semantics and
semi-two-valued models of ADFs. While interpretation v is a preferred
interpretation of D if it is <;-maximal in com(D), interpretation v is a semi-
two-valued model of D if v* Uvf is C-maximal in com(D). Corollary 5.11
is a direct result of Proposition 5.10 and the fact that each semi-stable
model is a semi-two-valued model.

Corollary 5.11 Let D be an ADF, and let v be a semi-stable model of D.
It holds that v mazimizes the union of the sets of the accepted and of the
denied among all complete interpretations of D, i.e., v* Uvf is C-mazimal
in com(D).

Theorem 5.12 presents the second and the third required properties for
semi-stable/semi-two valued semantics for ADF's, presented in Section 5.1.1.
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Theorem 5.12 Let D be an ADF.

1. Each semi-two-valued model of D is a preferred interpretation of D;
2. Each semi-stable model of D is a preferred interpretation of D;

3. Each stable model of D is a semi-two-valued model of D;

4. Fach stable model of D is a semi-stable model of D.

Proof Let D be an ADF.

e Proof of item 1: assume that v is a semi-two-valued model of D. We
show that v is a preferred interpretation of D. Toward a contradic-
tion, assume that v ¢ prf(D). By Definition 5.6, v is a complete
interpretation of D. That is, if v is not a preferred interpretation,
then there exists a preferred interpretation v’ such that v <; v’. Thus,
v"™ C v, Hence, by Definition 5.6, v is not a semi-two-valued model
of D. This contradicts the assumption that v is a semi-two-valued
model of D. Therefore, the assumption that v is not a preferred
interpretation of D is wrong.

e Proof of item 2: assume that v is a semi-stable model of D. We show
that v is a preferred interpretation of D. By Corollary 5.8, each
semi-stable model of D is a semi-two-valued model of D. Thus, v is
a semi-two-valued model of D. By the first item of this theorem, v
is a preferred interpretation of D.

e Proof of item 3: Assume that v is a stable model. First, each stable
model is a complete interpretation. Thus, the first item of Definition
5.6 is satisfied. Second, each stable model is a two-valued model,
ie., v = (0. Thus, v" is C-minimal among all w", where w is a
complete interpretation of D. Hence, the second item of Definition
5.6 is satisfied. Thus, v is a semi-two-valued model of D.

e Proof of item 4: assume that v is a stable model. By the previous
item, v is a semi-two-valued model of D. We show that v satisfies the
condition of Definition 5.7. Since v is a stable model, by Definition
5.2, v¥ = w® such that w is the grounded interpretation of sub-reduct
DV = (AY, LY, CV). Since v = (), in Definition 5.7, AY = vt. That is,
Definition 5.7 (semi-stable model) and Definition 5.2 (stable-model)
coincide for v. Thus, if v is a stable model of D, then v is a semi-stable
model of D.
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Figure 5.7: An ADF with a preferred interpretation that is not a semi-
stable/semi-two-valued model
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The first two items of Theorem 5.12 imply that the set of semi-stable/semi-
two-valued models of an ADF D is a subset of the set of preferred inter-
pretations of D, i.e., semi-stb(D) C prf(D) and semi-mod(D) C prf(D).
However, Proposition 5.13 indicates that the notion of preferred semantics
coincides neither with the notion of semi-stable semantics nor with the
notion of semi-two-valued semantics. That is, there exists an ADF D such
that priD) € semi-stb(D) and prf(D) € semi-mod(D).

Proposition 5.13 There is an ADF D such that the set of preferred
interpretations of D does not coincide with the set of semi-stable models,
nor with the set of semi-two-valued models of D.

Proof We show that there exists an ADF with a preferred interpretation
which is not a semi-two-valued model. To this end, we use the ADF
presented in ((Diller et al., 2020, Theorem 6 )). Consider ADF D =
({a,b,c,d, e}, {¢q : 7cA(=dV=b), pp 1 maN(—dV=C), e 1 DA (=dV—a), pq
—e A (maV-bV ), e : ~d}), depicted in Figure 5.7. D has four preferred
interpretations, namely v; = {a — f,b — f, ¢ = t, d — t, e — f},
vv={a—=f, b=t c—f d—t, esflhuyy={a—=t b—=f c—
f,d—t, e—f}andvyy={a—u, b—u, c—u, d—f, e—t} It
holds that vy, ve, vs are semi-two-valued models/two-valued models of D,
since v}' = v§ = v§ = (). However, vy is not a semi-two-valued/semi-stable
model, since v}' = {a,b, c}, that is, v} is not C-minimal among v}, for
1 <i < 4. Thus, in ADF's, the notion of preferred semantics is not equal

to the notion of semi-stable/semi-two-valued semantics.
O

Proposition 5.14 presents the fourth property required for semi-two-valued
semantics, presented in Section 5.1.1.
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Proposition 5.14 Each ADF has at least one semi-two-valued model.

Proof Let D be an ADF. Each ADF has a unique grounded interpretation.
By the facts that the grounded interpretation is the least fixed point of
I'p and the grounded interpretation is a least complete interpretation with
respect to the <;-ordering, we conclude that each ADF has at least one
complete interpretation. By Definition 5.6, each semi-two-valued model v
is a complete interpretation where v is C-minimal among other complete
interpretations of D. Since the number of arguments is finite, the set
of complete interpretations is finite. That is, there exists a complete
interpretation v where v" is C-minimal among all compete interpretations
of D. Thus, the set of semi-two-valued models of D is non-empty. g

In Theorem 5.18, we show the fifth property of semi-stable semantics,
presented in Section 5.1.1: If an ADF D has a stable model, then the
set of stable models and the set of semi-stable models of D coincide. To
show this theorem, we need some auxiliary results that are shown in
Lemmas 5.15-5.17.

Lemma 5.15 Let D be an ADF. Assume that D has a two-valued model.
Then, the set of semi-two-valued models of D and the set of two-valued
models of D coincide.

Proof Assume that D has a two-valued model v. Since v is a two-valued
model, it holds that v* = (). Thus, by Definition 5.6, v is a semi-two-valued
model, i.e., mod(D) C semi-mod(D). It remains to show that every semi-
two-valued model of D is also a two-valued model. Toward a contradiction,
assume that D has a semi-two-valued model w which is not a two-valued
model. Since w is a semi-two-valued but not a two-valued model, it holds
that w is a complete interpretation and w" # (). However, since D has a
two-valued model, w" is not C-minimal among all complete interpretations
of D. That is, by Definition 5.6, w is not a semi-two-valued model. This
contradicts the assumption that w is a semi-two-valued model. That is, if
D has a two-valued model, then semi-mod(D) C mod(D). Hence, if ADF
D has a two-valued model, then semi-mod(D) = mod(D). O

Lemma 5.16 Let D be an ADF. Assume that D has a stable model. Then,
the set of semi-two-valued models of D and the set of two-valued models of
D coincide.
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Proof Let D be an ADF that has a stable model v. By the fact that
each stable model of a given ADF is a two-valued model, it holds that v is
a two-valued model. By Lemma 5.15, if there exists a two-valued model,
then the set of two-valued models and the set of semi-two-valued models
coincide. So if an ADF has a stable model, then semi-mod(D) = mod(D).
O

Lemma 5.17 Let D be an ADF. Assume that D has a stable model. Then
each semi-stable model of D is a two-valued model of D.

Proof Let D be an ADF that has at least one stable model v. By
Lemma 5.16, the set of semi-two-valued models of D coincides with the
set of two-valued models of D, i.e., semi-mod(D) = mod(D). Moreover, by
Corollary 5.8, each semi-stable model of D is a semi-two-valued model of D,
i.e., semi-stb(D) C semi-mod(D). Thus, if D has a stable model, then each
semi-stable model of D is a two-valued model of D, i.e., semi-sth(D) C
mod(D). O

Theorem 5.18 If ADF D has a stable model, then the sets of stable
models and semi-stable models of D coincide.

Proof Let D be an ADF. By the forth item of Theorem 5.12, each stable
model of D is a semi-stable model of D, i.e., stb(D) C semi-stb(D).
Assume that D has a stable model v and a semi-stable model v'. We
show that v’ is a stable model of D. Toward a contradiction, assume that
v is not a stable model of D. By Lemma 5.17, v’ is a two-valued model
of D, i.e., v" = (. If v’ is not a stable model of D, by Definition 5.2, it
has to be held that v'* # w® where w is the grounded interpretation of the
stb-reduct DV = (A", LY, C""), where AV = o LY = LN (AY x AV,
and @q[p/L : v'(p) = f] for each a € A", This implies that the condition
of Definition 5.7 does not hold for v/, since v'* = (). Thus, v is not a
semi-stable model of D. This is a contradiction by the assumption that v’ is
a semi-stable model of D. Hence, the assumption that D has a semi-stable
model which is not a stable-model is wrong. Thus, if D has a stable model,
then semi-stb(D) C stb(D). Hence, if ADF D has a stable model, then
stb(D) = semi-stb(D).
O
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Proposition 5.14 says that each ADF has at least one semi-two-valued
model. In contrast, Proposition 5.19 shows that an ADF may have no semi-
stable model. As we presented in the beginning of this section the notions
of semi-two-valued semantics and semi-stable semantics of ADFs together
fulfil the properties required for the concept of semi-stable semantics,
presented in Section 5.1.1.

Proposition 5.19 There exists an ADF that does not have any semi-
stable model.

Proof Let D be the ADF presented in Example 5.4, i.e., D = ({a,b, c}, {¢q :
cVb gy :c,pe:a <+ b}). We showed, in Example 5.4, that v = {a —
t,b — t,c— t} is a two-valued model of D, however, it is not a stable
model of D. Thus, by Lemma 5.15, v is a semi-two-valued model of D.
As we know grd(DV) = {0}, however, v* = {a,b,c}. Thus, v is not a
semi-stable model. O

Corollary 5.20 Let D be an ADF that has a two-valued model. If none
of the two-valued models D 1is a stable model of D, then D does not have
any semi-stable model.

Proof Let D be an ADF that has a two-valued model. Thus, by
Lemma 5.15 the set of two-valued models of D coincides with the set of
semi-two-valued models of D. That is, for each two-valued model/semi-
two-valued model v of D it holds that the condition of semi-stable model in
Definition 5.7 coincides with the definition of stable model in Definition 5.2.
Thus, if for each v € mod(D), v is not a stable model, then v is not a
semi-stable model of D, as well. O

As Corollary 5.20 says, if an ADF has a two-valued model but no stable
model, then it will not have any semi-stable model either. As we presented
in the beginning of Section 5.2.2, the semi-stable semantics presented in
this work deal with the first issue, namely, that an ADF may not have a
stable model. That is, semi-stable semantics is a new point of view on the
acceptance of arguments if an ADF does not have any two-valued model.

5.3 Generalization of the Semi-stable Semantics
of AF's

In this section, we show that the notions of semi-stable and semi-two-valued
semantics for ADF's satisfy the last property presented in Section 5.1.1,

174



required for these semantics. To this end, we show that the concept of semi-
stable/semi-two-valued semantics for ADF's is a proper generalization of the
concept of semi-stable semantics for AFs (Verheij, 1996; Caminada, 2006),
in Theorems 5.23 and 5.25. Furthermore, we show that the concepts of
semi-stable models and semi-two-valued models coincide for the associated
ADF of a given AF, in Proposition 5.24.

Given an AF F' = (A, R) and its corresponding ADF Dp = (A, R, C)
(see Definition 2.53), the set of all possible conflict-free extensions of Fis
denoted by & and the set of all possible conflict-free interpretations of D is
denoted by 7. The functions Ext2Intr and Int2Eztp, in Definitions 5.21-
5.22 are modifications of the labelling functions as given in (Baroni et al.,
2018a). Function Ezt2Intp(e) represents the interpretation associated to a
given extension S in F', and function Int2Eztp, (v) indicates the extension
associated to a given interpretation v of Dp.

Definition 5.21 Let F' = (A, R) be an AF, and let S be an extension of
F. The truth value assigned to each argument a € A by the three-valued
interpretation vg associated to S is given by Ext2Inty : & — ¥V as follows.

t ifa€s,
Ext2Intp(S)(a) =< £ ifac ST,
u

otherwise.

It is shown in (Keshavarzi Zafarghandi et al., 2021d, Proposition 20) that
if S is a conflict-free extension of F, then Ext2Intp(S) is well-defined.
Moreover, the basic condition that S has to be a conflict-free extension is a
necessary condition for Fxt2Intp(S) being well-defined. By Definition 5.1,
every semi-stable extension of an AF is a complete extension and a conflict-
free extension. Thus, if S is a semi-stable extension of AF F, then
Ezt2Intr(S) is well-defined. An interpretation of Dp can be represented
as an extension via the function Int2Extp, , presented in Definition 5.22.

Definition 5.22 Let Dp = (A, R,C) be the ADF associated with AF F =
(A, R), and let v be an interpretation of Dp, that is, v € V. The associated
extension S, of v is obtained via application of Int2Fztp, : V" — & on v,

as follows:
Int2Extp,(v) ={se€ S |s—tecuv}

Theorem 5.23 presents that the notion of semi-two-valued model semantics
for ADFs is a generalization of the concept of semi-stable semantics for
AFs.
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Theorem 5.23 For any AF F = (A, R) and its associated ADF Dp =
(A, R,C), the following properties hold:

if S is a semi-stable extension of F', then Ext2Intp(S) is a semi-two-
valued model of Dp;

if v is a semi-two-valued model of D, then Int2Extp,. (v) is a semi-
stable extension of F.

Proof Let I’ be an AF and let Dp be its associated ADF, as in Defini-
tion 2.53.

We assume that {Sg, S1, ..., Sk} is the set of all complete extensions
of F'. Since F is a finite AF, the set of complete extensions of F
is finite. Assume that {vg,v1,..., v} is the set of corresponding
complete interpretations of Dp, i.e., v; = Ext2Intp(S;) for i with
0<i<k.

Without loss of generality, assume that Sy is a semi-stable extension
of F'. By Definition 5.1, Sy is a complete extension of F' such that
SpU Sy is maximal. We show that vy = Ext2Intp(Sp) is a semi-two-
valued model of Dg. Since vy is a complete interpretation of D, to
show that vg is a semi-two-valued interpretation of Dp, it remains
to show that v§ is C-minimal among all v;* for 7 with 0 < i < k.
Toward a contradiction, assume that vp" is not C-minimal among
all v;* for ¢ with 0 < ¢ < k. Thus, there exists a j for 0 < j < k
such that v;* C vo". Thus, there exists an a such that a ¢ v;" and
a € vg". Thus, by Definition 5.21, it holds that, for each such an
a,a € S;US;T but a g SoUSy". Thus, SopUSp" is not maximal.
This contradicts the assumption that Sy is a semi-stable extension
of F'. Hence, vy is a semi-two-valued model of Dp.

Assume that v is a semi-two-valued model of Dp; we show that
S = Int2Extp, (v) is a semi-stable extension of F'. To show that S
is a semi-stable extension of F, we show that S U S™ is maximal.
Toward a contradiction, assume that S U ST is not maximal. Thus,
there exists a complete extension of F, namely S’, with S’ U S'"
is maximal, i.e., SU ST C S’ U S'". Thus, by Definition 5.21, it
holds that v <; v/, where v' = Ezt2Int(S’). Thus, v’ is a complete
interpretation of Dp such that /" C v". Hence, v is not a semi-two-
valued model of Dp. This contradicts the assumption that v is a
semi-two-valued model of Dy. Thus, the assumption that S U ST is
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not maximal among all complete extensions of F' is wrong. Hence, S
is a semi-stable extension of F.

Proposition 5.24 Let F = (A, R) be an AF and let Dp be its associated
ADEF. The semi-two-valued semantics of D coincide with the semi-stable
models of Dp.

Proof Let F = (A, R) be an AF and let Dy be its associated ADF. By
Corollary 5.8, semi-stb(Dr) C semi-mod(Dp). Thus it remains to show
that semi-mod(Dp) C semi-stb(Dp).

Assume that v is a semi-two-valued model of Dg. To show that v is a
semi-stable model of Dy, we show that v* = w®, where w is the grounded
interpretation of sub-reduct D% = (A?, LY, C?), where AY = v* Uv". We
show that v* C wt. Assume that a — t € v. Since D is an associated
ADF to AF F, ¢, : /\bepar(a) —b. Thus, if a € v, then either a is an initial
argument of Dy or for each b € par(a) it holds that b € vf. In both cases,
it is clear that ¢4[p/L : v(p) = f] = T. Therefore, a € w®. Thus, v* = wt.
Hence, v is a semi-stable model of Dpg. O

Theorem 5.25 For any AF F = (A, R) and its associated ADF Dp, the
following properties hold:

e if S is a semi-stable extension of F, then Ext2Intp(S) is a semi-stable
model of Dp;

o if v is a semi-stable model of D, then Int2Eztp, (v) is a semi-stable
extension of F.

Proof [Sketch| The theorem is a direct result of combining Theorem 5.23,
which says that semi-two-valued semantics of ADFs are a generalization of
semi-stable semantics of AFs, and Proposition 5.24, which says that in the
associated ADF Dp of a given AF F, the notions of semi-stable semantics
and semi-two-valued semantics coincide. O
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5.4 Conclusion

In this chapter, we have defined the semi-stable and semi-two-valued
semantics for finite ADFs. From a theoretical perspective, in Sections 5.2.2
and 5.3, we observe that the notions of semi-stable and semi-two-valued
semantics for ADFs fulfil the requirements for these two notions presented
in Section 5.1.1.

An ADF may have no stable model, for one of two reasons:

1. D does not have any two-valued model; or

2. each two-valued model contains a support cycle.

The condition presented in Definition 5.2 characterizes the stable semantics
for ADFs. The condition says that a two-valued model is stable if it does
not contain any support cycle, i.e., if there exists a constructive proof
for the arguments that are assigned to t. Thus, to present an alternative
definition for stable semantics we focus on the first reason that an ADF does
not have a stable model, and we present a partial two-valued semantics in
Section 5.2.2, called semi-two-valued semantics in Definition 5.6. Then we
define the notion of semi-stable semantics over semi-two-valued semantics
in Definition 5.7.

In Section 5.2.2, we show that the notions of semi-two-valued/semi-
stable semantics of ADF's presented in this work satisfy the main require-
ments presented in Section 5.1.1. Specifically:

1. Proposition 5.10 and Corollary 5.11 say that if v is a semi-two-
valued /semi-stable model of D, then v* Uvf is C-maximal among all
complete interpretations of D.

2. Theorem 5.12 says that each semi-stable/semi-two-valued model is
a preferred interpretation and each stable model of an ADF is a
semi-stable/semi-two-valued model of that ADF.

3. Proposition 5.14 says that each ADF has at least one semi-two-valued
model.

4. Theorem 5.18 says that if an ADF has a stable model, then the sets
of stable models and semi-stable models coincide.

In Section 5.3, we show that the notions of semi-stable/semi-two-valued
semantics of ADFs are proper generalizations of the notion of semi-stable
semantics of AFs. In Proposition 5.24, we show that the concepts of
semi-stable and semi-two-valued semantics coincide in the associated ADF
of a given AF, intuitively, since in AFs there cannot be a support cycle.
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Alcantara and S& (2018) have also considered the semi-stable semantics
for ADFs. To prevent confusion with the notion of semi-stable semantics
presented in the current work, we call their notion semi-stable2 semantics,
abbreviated SSS2. A key difference between our notion and SSS2 is that
ours is compatible with the standard ADF definitions. In particular, in their
discussion, the characteristic operator I'p and in addition, the semantics
of ADFs, and specifically the complete semantics, have not been presented
in the way as introduced by Brewka and Woltran (Brewka et al., 2018a;
Brewka and Woltran, 2010). For instance, by their deviating definition of
complete labelling (Alcantara and Sa, 2018), only {—a, —b} is a complete
labelling /grounded model of D = ({a, b}, {¢a : b, pp : a}). Hence—unlike
the standard definitions—the set of preferred labellings of D is in their
approach not a subset of the set of complete labellings of D, and the unique
grounded labelling {} is not a complete labelling.

The computational complexity of semantics of AFs and ADFs is pre-
sented in Dvotak and Dunne (2018). Computational complexity of semi-
stable semantics of AFs is studied in Dunne and Caminada (2008). As a
future work, it would be interesting to clarify the computational complexity
of investigating:

1. whether a given interpretation is a semi-stable model , or a semi-two-
valued model,

2. whether a given argument is credulously acceptable/deniable under
semi-stable/semi-two-valued semantics of a given ADFs,

3. whether a given argument is skeptically acceptable/deniable under
semi-stable/semi-two-valued semantics of a given ADFs.
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Chapter 6

A Discussion Game for the
Grounded Semantics

The reasoning tasks that can be defined for the several semantics for ADF's
have been presented (Dvordk and Dunne, 2018). Also dialectical methods
have a critical role in evaluating arguments. In ADFs this role is not
obvious via the definition of semantics. In this chapter, we focus on the
grounded semantics of ADFs and provide the grounded discussion game.
Because each ADF has a unique grounded interpretation, no one has any
doubt on the truth value of arguments of the grounded interpretation, and
the grounded interpretation is the least complete interpretation. Thus, it
is reasonable to ask ‘why is an argument justifiable under the grounded
semantics of a given ADF?’ We handle this issue by presenting a discussion
game under grounded semantics of ADFs. We show that an argument
is acceptable (deniable) in the grounded interpretation of an ADF if
and only if the proponent of a claim has (respectively, does not have) a
winning strategy in the grounded discussion game. Furthermore, we study
the relation between grounded discussion games and strong admissibility
semantics of ADFs, presented in Chapter 3.

6.1 Introduction

Argumentation has received increased attention within artificial intelligence,
since the remarkable paper of Dung (1995), in which abstract argumen-
tation frameworks (AF's) are presented. Abstract dialectical frameworks
(ADFs) introduced in (Brewka and Woltran, 2010) are expressive gener-
alizations of AFs in which the logical relations among arguments can be
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represented. Applications of ADFs have been presented in legal reason-
ing (Al-Abdulkarim et al., 2016, 2014), online dialog systems (Neugebauer,
2017, 2019) , the instantiation of defeasible theories (Strass, 2014), and
text exploration (Cabrio and Villata, 2016).

Although dialectical methods have a role in determining semantics
of both AFs and ADFs, the roles are not immediately obvious from the
definition of semantics. To cover this gap, quite a number of works have
been presented to show that semantics of AFs can be interpreted in terms
of structural discussion (Jakobovits and Vermeir, 1999; Prakken and Sartor,
1997; Modgil and Caminada, 2009; Caminada, 2018; Dung and Thang, 2007;
van Eemeren et al., 2014). Furthermore, in (Booth et al., 2018) it is shown
that the structural discussion method has been used in human-machine
interaction.

Because of the special structure of ADFs, existing methods used to
interpret semantics of AFs cannot be reused in ADFs. To address this
problem, we have presented the first existing game for ADFs (Keshavarzi
Zafarghandi et al., 2019a). That game characterizes the preferred semantics.
In this work we focus on the grounded semantics of ADFs.

In ADFs, a key question is ‘How is it possible to evaluate arguments in
a given ADF 77 Answering this question leads to the introduction of several
types of semantics, defined based on three-valued interpretations. Different
semantics reflect different types of point of view about the acceptance or
denial of arguments. In ADF's an interpretation is called admissible if it does
not contain any unjustifiable information. Most of the semantics of ADF's
are based on the concept of admissibility. An interpretation is complete if
it exactly contains justifiable information. In addition, an interpretation is
grounded if it collects all the information that is beyond any doubt. Each
ADF contains the unique grounded interpretation that can be the trivial
interpretation. Furthermore, in the hierarchy, grounded semantics have the
lowest computational complexity (Strass and Wallner, 2015). However, by
indicating whether an argument is credulously acceptable (deniable) in a
given ADF under grounded semantics we have the answer of the skeptical
decision problem of the argument in question under complete semantics.

In this chapter, we present a game that can answer both the credulous
and the skeptical decision problem of a given ADF, called grounded discus-
sion game. In (Polberg, 2017) it is shown that each ADF is equivalent with
an ADF without any redundant links. Thus, without loss of generality,
the current game is presented over the subclass of ADFs that do not have
redundant links. This game works locally by considering those ancestors of
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an argument in question that can affect the evaluation of the argument in
the grounded interpretation. In this way, the grounded decision problem
can be answered without constructing the full grounded interpretation.
Furthermore, the current methodology can be used to answer the decision
problems under grounded semantics of formalisms that can be represented
as ADFs, such as AFs.

In Section 6.2, we present the grounded discussion game that can
capture the notion of grounded semantics. Furthermore, in Section 6.3 we
present soundness and completeness of the method. Finally, in Section 6.4
we study the relation between the grounded discussion games of ADFs,
presented in this chapter, and strong admissibility semantics of ADF's,
presented in Chapter 3.

6.2 Grounded Discussion Games

In this section we present a discussion game to answer the credulous
(skeptical) decision problem under grounded semantics in a given ADF
F that does not have any redundant relation, without loss of generality,
since any ADF has an equivalent of ADF of this kind; see (Polberg, 2017).
Below we first present an informal definition of the grounded discussion
game, however, if the reader prefers to start with the formal definition,
they can skip the next part and start with Definition 6.2.

A grounded discussion game (GDG) is a dispute between a proponent
(P) and an opponent (O). A GDG is started by a claim of P about the
truth value of argument « in the grounded interpretation of a given ADF.
That is, P believes that the trivial interpretation gy = vy can be extended
to the grounded interpretation that contains the initial claim. O challenges
P by asking whether «a is an initial argument. If P finds that a is an initial
argument and presents the truth value of a to O, then O has to check
whether this value is the same as the initial claim. In this case P wins
if the checking of O leads to a positive answer. On the other hand, if P
answers a is not an initial argument, then O asks whether an ancestor of
a is an initial argument. If P finds that there is no initial argument in the
ancestors of a, then the game is stopped and O wins the game.

However, if a is not an initial argument but P finds that b is an ancestor
of a which is also an initial argument, then P updates the information
of go with g = go|%, such that z is the truth value of b in the grounded
interpretation F. Furthermore, in this step a set of arguments in the
shortest paths, between a and b, are presented by P to O. Note that it
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is possible that there exists more that one shortest path between two
arguments. Actually, by presenting g, P says that g can be extended to
the grounded interpretation of F'.

Now, O checks a piece of information presented in g and the initial
claim. If g contains the initial claim, then the game halts and P wins the
games. If the information of g is in contradiction with the initial claim,
then O wins the game. Since a is not an initial argument, this checking
step by O does not lead to acceptance or rejection of the initial claim.
That is, presenting of g by P did not convince O about the initial claim.

Thus, O asks P whether P can extend the information of g to an
interpretation that contains the initial argument. To this end, P evaluates
the acceptance conditions of the children of the argument presented in g
under the information of g and presents ¢’. Then, the game continues by
O. If O indicates that ¢’ contains the initial claim, then the game stops. If
g and ¢’ contain the same piece of information, O asks P for a new initial
ancestor of a. Otherwise, O asks P to extend ¢’ more.

The game continues between P and O alternately. P tries to extend
the information of gy to an interpretation that contains the initial claim
to support the belief. O tries to challenge P by either: 1. checking the
information of the interpretation which is presented by P as an answer, or
2. asking whether the initial claim is an initial argument, or 3. requesting
P to find an ancestor of a which is an initial argument, or 4. requesting P
to extend the information of the answer given by P to an interpretation
that contains the initial claim.

In Example 6.1 we show how the game works before presenting the
formal definitions and the algorithm.

Example 6.1 Let F' = ({a,b,c,d,e, f},{pa: L, 0p:maVae, oc: bASf, @q:
eN—c, e f, 0 T}) be a given ADF, depicted in Figure 6.1. We know
that grd(F) = fttfft. P claims that d is deniable with respect to the
grounded interpretation of F. That is, by the initial claim P believes that
d — f belongs to the grounded interpretation. In other words, the claim
of P says that go = vy can be extended to the grounded interpretation that
contains the initial claim.

o P says go = vy can be extended to the grounded interpretation of F
that contains d — f.

e O asks P whether d is an initial argument.

o P checks the acceptance condition of d and the answer is ‘no, d is not
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an nitial argument’. Thus, the information of gy does not change.
For technical reasons we let g1 = go.

O challenges P by asking whether any of the ancestors of d is an
itial argument.

P checks the acceptance conditions of the parents of d, namely ¢ and
e; neither of them is an initial argument. Then, P goes one step
further and checks the parents of ¢ and e, which are b and f. Here,
f s an initial argument. Since P finds an ancestor of a which is an
initial argument, P stops searching. By ¢y : T, f is acceptable in
the grounded interpretation of F'. Thus, P presents interpretation
g2 = gl,{ = uuuuut and set Ancestors(d,g1) = {d,e,c, f}, which
contains the arguments on the shortest paths between the initial claim
d and the initial argument f, that is presented in go but not in g.
P claims that go can be extended to the grounded interpretation of F
that contains the initial claim.

Then O checks the information that is presented by go. Since go
does not contain any information about the initial claim, O asks P
whether P can extend gs.

To this end, P evaluates the truth value of the children of f that are
in Ancestors(d, g1) under ga. The children of f that appear in that
set are ¢ and e. Thus, P evaluates 03> = bA T = b and p?* =
That is, e is deniable with respect to the grounded interpretation of
F. Thus, P presents g3 = g2|¢ = uuuuft to O as an extension of go
and P claims that g3 can be extended to the grounded interpretation
of F' that contains the initial claim.

O finds that gs extends the information of g2 and it does not present
any information in contrast with the initial claim. However, g3 does
not contain any information about the initial claim. Thus, O asks P
whether P can extend g3 to an interpretation that contains the initial
claim.

Again P evaluates the only child of e in set Ancestors(a, g1), namely
d, under g3. This attempts leads to g4 = uuufft.

O checks the information given by g4. Since gy contains the initial
claim, the discussion between P and O halts here and P wins the
game.
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Figure 6.1: ADF of Examples 6.1

Here, P does not present the grounded interpretation of F', however, P
presents a constructive proof for the initial claim. That is, to indicate the
initial claim, P works on the truth value of the argument in question locally.
Thus, the grounded discussion game can answer the credulous decision
problem under the grounded semantics of an ADF without indicating the
truth value of all arguments in the grounded interpretation.

Definition 6.2 Let F' = (A, R,C) be an ADF, let a be an argument and
let S be a set of arqguments. Function Par(S) shows the set of parents of
the elements of S; function child(a) designates the set of children of a; and
function anc(a) presents the set all ancestors of a, defined formally in the
following.

o Par(S) = U,cq par(a),
e child(a) ={b | (a,b) € R},

e Let m be a smallest integer such that: Par™(a) C I Par(a).
Now we define: anc(a) =, Par"(a).

Note that whenever S contains only one argument a, Par(S) = par(a)
and we also write Par(a) for Par({a}). The aim of anc(a) is to collect all
ancestors of a and condition Par™(a) C Ulrl_ll Pari(a) is a guarantee that
the function does not go into a loop. If b € anc(a) is an initial argument,
then we call it an initial ancestor of a.

The grounded discussion game is defined based on the following moves;
some of them have an argument as a parameter and some of them are
binary functions, defined on arguments and interpretations.

e IniClaim(a): with this move P presents her/his beliefs about the
truth value of a in the grounded interpretation of F'.

e Ini(a): with this move O asks P whether a is an initial argument.
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o CheckIni(a): with this move P checks whether a is an initial argu-
ment.

e Check(g;—1,g;): with this move O compares the information presented
in g;—1 and g;.

e IniAnc(a, g): with this move O asks P to present at least one initial
ancestor of @ which is not presented in g, together with its truth
value.

e NewlniAnc(a,g): with this move P presents initial ancestors of a
which are requested by O in InidAnc(a,g).

e Ancestors(a, g): with this move P presents the set of arguments in
the shortest paths between a and the elements of NewIniAnc(a, g).

e Extend(g): with this move O requests P to extend the information
of g.

e Fwal(g): with this move P evaluates the truth value of the chil-
dren of the arguments presented in ¢ which appears in the last
Ancestors(a,—) under g.

In the game, P has the responsibility of constructing a proof for the initial
claim. On the other hand, O aims to block the discussion by finding a
contradiction or challenging P in such a way that P cannot answer the
challenge.

e The game between P and O starts with IniClaim(a) by which P
presents a belief about the truth value of argument « in the grounded
interpretation of F'. In this step, intuitively, P believes that gy = vy
can be extended to the grounded interpretation that contains the
claim.

e Then, O applies Ini(a), asks whether a is an initial argument.

e Now, it is P’s turn to apply CheckIni(a) to check the acceptance
condition of a. If @ is an initial argument, then the output of
CheckIni(a) is g1 = go\g/f. Otherwise, g1 = go.

e By Check(gi—1,9i), O checks whether ¢g;_1 <; g; or gi—1 = g;.

— If gi_1 <; g; and g; contains the initial claim, then the game
stops.
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— If g;—1 <; g; but g; contains the negation of the initial claim,
then the game stops.

— If g;_1 <; ¢g; and g¢; does not contain any information about the
initial claim, then O requests P to extend g;. That is, O applies
Extend(g;).

— If gi-1 = gi,

* if g; is the output of either CheckIni(a) or Eval(g;—1), then
O asks P to present a new initial ancestor of a. That is, O
applies IniAnc(a, gi—1),

« if g; is the output of NewlIniAnc(a,g;—1), then the game
stops.

e After move IniAnc(a,g;) by O, P applies NewIniAnc(a, g;) to find
new initial ancestors of a. The output of this function is interpretation
gi+1 with g1 = gi|lt)/f such that b is an initial ancestor of a, that
was not presented in g;. This function will be defined precisely in
the following.

e Subsequently, after move IniAnc(a, g;) presented by O, P presents
a set of arguments between the initial claim and the elements of
NewIniAnc(a, g;), with the shortest distance, by applying
Ancestors(a, g;). If there are more than one shortest path between the
initial claim and an element of NewIniAnc(a, g;), then Ancestors(a, g;)
presents the arguments of all paths with the shortest length.

o After move Extend(g;) presented by O, P applies Eval(g;). The
output of this function is interpretation g;1 with g;y1 = gilb@gi such

b
that b is a child of an argument that is presented in g; which also
appears in the last output of Ancestors(a,—).

The only function that needs more explanation is NewlniAnc(a,g), by
which P tries to find the truth values of the initial ancestors of a that are
not presented in g. To this end, P uses the modification of the function
anc, defined in Definition 6.2, which is called NewAnc(a, g). This function
is a binary function that takes the argument ¢ and interpretation g, and
returns the set of ancestors of a. However, if there exists an initial ancestor
of a, the truth value of which is not indicated in g, then the function stops.
This is the reason why this function is called the new ancestors of a with
respect to g.

Let m be a smallest integer such that:
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e Par™(a) C Par™ '(a); or
e Jp € Par™(a) such that ¢, = T /L, and p was not presented in g.

Now we can define NewAnc(a,g) = ;" Par"(a).

Then among the elements of NewAnc(a, g), P looks for the initial arguments.
Function NewlniAnc(a,g), presented in the following, takes a and g, and
updates g by adding the truth values of the initial ancestors of a that
appear in NewAnc(a, g).

NewIniAnc(a,g) = g[ﬁ’pg such that b € NewAnc(a,g) and b is an initial
argument. ’

Definition 6.3 Let F = (A, R,C) be an ADF. A grounded discussion
game for credulous acceptance (denial) of a € A is a sequence [go,. .., gn]
such that the following conditions hold:

® gy = Uy;
e g1 = CheckIni(a);
o for0<i<m, gi <; git1;
® g, contains either

— the initial claim, or
— the negation of the initial claim, or

— gn—1 is the output of NewIniAnc(a, gn—2) and gn—1 = gn.-
o forl <i<mn,ifgi—1<igi, then gi11 is the output of FEval(g;);

o for0<i<mn,ifgi—1 = gi, then gi1 is the output of NewIniAnc(a, g;).

Definition 6.4 Let F' be a given ADF. Let |qgo,...,g9n] be a grounded
discussion game for credulous acceptance (denial) of an argument.

o P wins the game if g, satisfies the initial claim,
e O wins the game if g, satisfies the negation of the initial claim, or
In—-1 =

NewIniAnc(a, gn—2) and gn—1 = gn.

Example 6.5 is an instance of a game in which O wins.
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Example 6.5 Let F' = ({a,b,c},{¢q : 7b,¢p : —¢, 00 : ma}) be an ADF.
We know that grd(F') = vy. P claims that b is acceptable in the grounded
interpretation of F.

e niClaim(b) = go = vu: P believes that gy can be extended to the
grounded interpretation of F' in which b is acceptable.

o O asks Ini(b).

o P applies CheckIni(b) to answer the challenge. The output of CheckIni(b)
is g1 = go-

e O applies Check(go,g1). Since go = ¢1 and g1 is the output of
CheckIni(b), O requests IniAnc(b, g1).

e To answer IniAnc(b, g1), P applies NewIniAnc(b,g1). To this end,
first P computes NewAnc(b,g1) = {a,b,c}. Since none of them is an
initial argument, then the output of NewIniAnc(b,g1) is g2 = g1.

e O applies Check(g,g2), which leads to g1 = g2. Since ga is an output
of function NewIniAnc(b, g1), the game stops and by Definition 6.4,
O wins the game.

That is, the initial claim of P that b is acceptable with respect to the
grounded interpretation of F is false. This corresponds with the fact that
the grounded interpretation vy of F' does not satisfy the belief of P.

6.3 Soundness and Completeness

In this section we show that the presented method is sound and complete.
To show the completeness, first we show that in an ADF without any
redundant links, the grounded interpretation assigns the truth value of
an argument to t or f if it is either an initial argument or its truth value
is affected by the initial ancestors. This corollary is the direct result of
Lemma 6.6.

Lemma 6.6 Let F' be an ADF without any redundant link, that does not
have any initial argument. Then the grounded interpretation of F' is vy.

Proof Toward a contradiction, assume that F' does not contain an initial
argument and grd(F') # vy. Let a be an arbitrary argument. We show
that pgv is neither irrefutable nor unsatisfiable. Since F' does not have any
initial argument, a has a parent.

192



e Consider that a has a parent b such that (b, a) is a dependent link. By
the definition of dependent link, there are two-valued interpretations
v, w such that v(g,) = t and v|2(v,) # t, and w(p,) = f and
w|?(¢q) # £. Thus, v,w € [vy]2 and v(p,) # w(p,). Therefore, pYu
is neither irrefutable nor unsatisfiable.

e Consider that none of the parents of a is dependent. Construct
the two-valued interpretation v in which 1. b — f if (b,a) is an
attacker, and 2. b — t if (b,a) is a supporter. Construct the two-
valued interpretation w in which 1. b — t if (b,a) is an attacker,
and 2. b+ £ if (b,a) is a supporter. That is, v,w € [vy]e. If either
a & par(a) or (a,a) is a supporter, then v(y,) = f and w(p,) = t.
Thus, ¢!* is neither irrefutable nor unsatisfiable. If a € par(a) and
(a,a) is an attacker, then v(yp,) = w(p) = u. Thus, Y is neither
irrefutable nor unsatisfiable.

Thus, the assumption that a — t/f € grd(F') is wrong. Hence, the unique
grounded interpretation of F' is vy. O

Note that in Lemma 6.6, the assumption that F' does not have any redun-
dant links is a necessary condition. Example 6.7 presents an instance of
ADFs in which none of the arguments are initial arguments, however, the
grounded interpretation of which is not the trivial interpretation.

Example 6.7 Let F' = ({a,b},{pa : bV —b,p : b}) in which (b,a) is
a redundant link. F does not have any initial argument. However, the
grounded interpretation of F is {a — t,b+ u}.

Lemma 6.8 Let F' be an ADF without any redundant link, let a be an
argument that does not have any initial ancestor but has a parent, and let
v be the grounded interpretation of F. Then it holds that v(a) = u.

Proof Towards a contradiction, assume that v(a) # u. Since a is not
an initial argument, it holds that par(a) # (). By a similar method as a
proof of Lemma 6.6, we conclude that for any ancestors of a, namely b,
i.e., b € anc(a), it holds that ;" is neither irrefutable nor unsatisfiable.
Thus, for any b with b € anc(a), it holds that v(b) = u. Hence, v(a) = u.
O The following corollary is a direct results of Lemmas 6.6 and 6.8.

Corollary 6.9 Every argument that is acceptable (deniable) with respect
to the grounded interpretation of F either is an initial argument or has at
least one initial ancestor.
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Theorem 6.10 (Soundness) Let F' be a given ADF. If there is a grounded
discussion game for an initial claim of P in which P wins, then the grounded
interpretation of F satisfies the initial claim of P.

Proof of Soundness Suppose that the initial claim of P is that ‘a is
acceptable (deniable) in the grounded interpretation’. Let [go,...,gn] be a
grounded discussion game for the initial claim of P, that is, g,, satisfies the
initial claim. We show that the grounded interpretation v of F' satisfies
the initial claim. By the definition the grounded interpretation of F' is
the least fixed point of the characteristic operator. That is, there exists m
such that I'f(vy) = v. We show that g, <; v.

In the grounded discussion game if n = 1, that is [go, g1], then a is
an initial argument. Thus, clearly g1 <; I'r(vy). Since I' is a monotonic
operator, g1 <; v. Consider that in the grounded discussion game n > 1.
By induction on n it is easy to show that for each m with 0 < m < n,
gm <; v holds.

Therefore, in the grounded discussion game [go, . .., g,] for any i with
0 <i<n, g; <;vholds. In specific, g, <; v. Thus, the initial claim of P
is satisfied in the grounded interpretation of F'.

O

Definition 6.11 Let F be an ADF. The distance from argument a to b in
F is the distance from a to b in the associated directed graph of F', denoted
by d(a,b). That is, d(a,b) is the length of a shortest directed path from a
to b in the directed graph associated to F.

Theorem 6.12 (Completeness) Let F' be a given ADF without any re-
dundant links. If a is acceptable (deniable) in the grounded interpretation
of F, then P wins the grounded discussion game for the initial claim of
accepting (denying) of a.

Proof of Completeness Let F' be an ADF and let v be the grounded
interpretation of F'. Furthermore, let a be an argument which is accepted
(denied) with respect to v. Since F' does not have any redundant links, by
Corollary 6.9, either a is an initial argument or a has at least one initial
ancestor. We construct a grounded discussion game for the initial claim
of a — t/f in which P wins. Let go = vy. If @ is an initial argument,
then g1 = gol{ Jg- Thus, [90, g1] is the grounded discussion game, in which
g1 = CheckIni(a), that satisfies the initial claim.
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If @ is not an initial claim, then let g1, = go and list the set of initial
ancestors of a, for instance L = [ai,...,ax]. Assume that L is ordered
based on the distance to a, increasingly. That is, d(a;,a) < d(a;+1,a), for i
with 1 <4 < k. Let us categorize L based on the distance of arguments to
a. For instance, let Ly = {a1} U B such that B = {a; | d(a;,a) = d(a1,a)}.
If B # {}, then let m = |B|, otherwise, m = 1. Let Ly = {a; | d(a;,a) =
d(am+1,a)}. Continue this process. Since L is finite, there exists p such
that L = J/_, L,.

Let g2, = 911|Z(b) such that b € Ly. For j > 1, fori > 2, 1. if g;; > gi—1;,
then let g1, = gi; \f} ) such that b is a child of an argument in L; that
is on a path between a and an element of L;. 2. If 9i; = Gi—1;, then let
gi+1; = gij|g(b) such that b € Lji1. If any of the g;; satisfies the initial
claim, then stop the above loop.

Because the number of arguments on the paths between a and elements
of L is finite, then the above sequence [go, g1,, - - - | will stop. Consider that
the above loop halts in g;;. We claim that D = [go, ..., g;;] is the GDG
that satisfies the initial claim. To show that D is a GDG it is enough
to show that D satisfies the fourth item of Definition 6.3, since all other
items are trivial by the way of defining D. It is easy to check that D
satisfies the first four items of Definition 6.3. Thus, it is enough to show
that g; satisfies the initial claim. Assume that a — t € v. We show that
a vt € g;;. Toward a contradiction, assume that a — t ¢ g;;. That is,
either a = f € g;; or a — u € g;;. Since each element of D is the update
of the previous interpretation in D by updating the truth value of a b with
v(b), it is not possible that a + f € g;;. On the other hand, a — u € g;;
means that there is b parent of a the truth value of which has effect on the
truth value of a and v(b) = u. By continuing this process, it holds that
there is ¢ initial ancestor of a that v(c) = u. It is a contradiction that v is
the grounded interpretation of F. O

6.4 Grounded Discussion Games and Strong Ad-
missibility

On the one hand, the grounded discussion game (GDG), presented in
Section 6.2, answers the credulous (skeptical) decision problem of an
ADF under grounded semantics without constructing the full grounded
interpretation. On the other hand, a goal of presenting strong admissibility
semantics of ADF's is to explain ‘why a queried argument is justified in
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the grounded interpretation’. In other words, since the concept of strong
admissibility semantics of AFs relates to grounded semantics of AFs in a
similar way as admissible semantics of AFs relates to preferred semantics of
AFs, to answer the credulous decision problem under grounded semantics
one can answer the query under strong admissibility semantics.

In this section we study the relation between interpretations in a
grounded discussion game and strongly admissible interpretations of a
given ADF. As background for the current section, one needs the primitive
notions of strong admissibility semantics of ADFs, presented in Section 3.2
(in Chapter 3). Let D be an ADF, and let [go,...,gn] be a grounded
discussion game used to investigate whether argument a is credulously
justified under grounded semantics of D.

e First we investigate whether each interpretation presented in the
game, i.e., each g; for ¢ with 0 < ¢ < n, is a strongly admissible
interpretation of D.

e Then, we study whether g, is a least witness of strong justifiability
of a, as defined in Definition 3.5.

In Theorem 6.14 we show that each g; is a strongly admissible interpretation
of D. However, there is no guarantee for g, being a least witness of strong
justifiability of a queried argument. We investigate a counterexample in
Example 6.16. The main result of this section is presented in Corollary 6.17
below.

Proposition 6.13 Let D = (A,L,C) be an ADF, let a be an initial
argument of A, i.e., po = T/L, let v be an interpretation such that
v(a) = t/f. Then a is strongly justified in v.

Proof Since a is an initial argument, ¢ is irrefutable/unsatisfiable.
Thus, by Definition 4.1, since v(a) = t/f, it holds that a is strongly justified
in v. O

Theorem 6.14 Let D be an ADF and let [go,...,gn) be a GDG for a
credulous acceptance (denial) of a € A. Each g; for i with 0 <i<n is a
strongly admissible interpretation of D.

Proof We show the theorem by induction on 4.

Base case: Let i = 0. By Definition 6.3, g9 = vy and by Lemma 3.19,
the trivial interpretation is a strongly admissible interpretation. Thus, g
is a strongly admissible interpretation.
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Induction hypothesis: Assume that for each j with 0 < j < i < n, it
holds that g; is a strongly admissible interpretation of D.

Inductive step: We show that g; is also a strongly admissible interpre-
tation. By Definition 6.3, either g; is the output of Ewval(g;—1) or it is the
output of NewIniAnc(a, g;—1). Further, by Definition 6.3, g;—1 <; g;, for all
i such that 0 < i <mn. If g;_1 = ¢g;, since by the induction hypothesis g;_1
is a strongly admissible interpretation, then g; is also a strongly admissible
interpretation. Thus, we assume that ¢g;_1 <; ¢g;. By Lemma 3.18, it
follows that if g;—1(b) = t/f, then b is also strongly justified in g;. We show
that for each b if g;—1(b) = u and g¢;(b) # u, then b is a strongly justified
argument of g;, thus g; is a strongly admissible interpretation of D.

e Assume that g; is the output of NewlniAnc(a,g;—1). Let b be an
argument the truth value of which is presented in g; but not in g;_1,
ie., gi(b) = t/f but g;—1(b) = u. Since g; = NewlniAnc(a, gi—1),
by the definition of NewIniAnc(a,g;—1), b is an initial ancestor of a.
Thus, by Proposition 6.13, b is strongly justified in g;.

e Assume that g; is the output of Fval(g;—1). Let b be an argument
the truth value of which is presented in g; but not in g;_;. By the
definition of Eval(—) function, b — t/f € g; if "' = T/L. That
is, there exists a subset of parents of b, namely P, such that the
truth value of each p € P is presented in ¢g; 1. 1. Thus, cpbilp =T/L.
2. Furthermore, by induction hypothesis, each p € P is strongly
justifiable in g;_1.

Thus, the conditions of Definition 4.1 are satisfied for b in g;. Hence,
b is a strongly acceptable/deniable argument in g;.

Hence, g; is a strongly admissible interpretation of D. Thus, every inter-
pretation g; in a GDG [go, ..., gn] is a strongly admissible interpretation
of D. 0

Theorem 6.14 implies that for each argument a if g;(a) = t/f, then a is
strongly justified in g;. Corollary 6.15 is a direct result of Theorem 6.14.
Since if @ in an initial claim of P and P wins in a GDG of [go, . .., gn], then
the truth value of a is presented in gy,.

Corollary 6.15 Let D be an ADF, let ‘a is credulously acceptable/deniable
i the grounded interpretation of D’ be an initial claim of P, and let
[90s .-, gn] be a grounded discussion game in which P wins. Then, a is
strongly justified in g,.
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Corollary 6.15 states that a is strongly acceptable/deniable in g,. For
instance, in Example 6.1, for the initial claim of ‘d is deniable with respect
to the grounded interpretation of F’, the GDG is [gp = uuuuuu, g; =
uuuuuu, g2 = uuuuut, g3 = uuuuft, g4 = uuufft] implies that 1. d is
deniable in the grounded interpretation of D, 2. furthermore, d is strongly
deniable in g4, 3. moreover, g4 is the least witness of strongly justifiability
of d. This raises the question whether in any GDG |[go, ..., gn], it holds
that g, is a least witness of strong justifiability of a queried argument.
We show that there is no guarantee that g, for the game [go,. .., gn]
in which P won, is always a least witness of strong justifiability of the
queried argument, by presenting a counterexample in Example 6.16.

Example 6.16 Let F' = ({a,b,c,d,e, f},{va : L,p : maV —e, o0 : bV
frpa e N—c,pe : af,0p ¢ T}) be an ADF. Proponent claims that d
18 credulously deniable in the grounded interpretation of this ADF. The
grounded discussion game that clarifies the claim is [go = uuuuuu, g; =
uuuuuu, g2 = uuuuut, gs = uutuft, g4 = uutfft|, by which P wins. Here
d is strongly deniable in g4. However, here g4 is not a least witness of
strong justfiability of d. Because here g4 contains the truth values of an
argument, namely c, which is not necessary to know to accept the truth
value of d in the grounded interpretation.

Although c is a parent of d and if we know that ¢ is accepted in the
grounded interpretation, we concludes that d is deniable in the grounded
interpretation, there exists a strongly admissible interpretation with a
fewer piece of information of ancestors of d, namely v = uuuftt. It is
straightforward to check that v is a strongly admissible interpretation of D
that has strictly less amount of information than g4. Thus, to know the
truth value of d in the grounded interpretation of F' there is no need of any
further information of the truth value of c.

Example 6.16 shows that the GDG may produce some information about
the truth values of some of the ancestors of the argument in question that
are not necessary for answering the credulous decision problems under
grounded semantics/strong admissibility semantics.

Corollary 6.17 Let D be an ADF, let [go, ..., gn] be a GDG which satis-
fies the initial claim of proponent. It holds that g, is a strongly admissible
interpretation of D which satisfies the initial claim of P, however, g, may
not be a least witness of strong justifiability for the queried argument.
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6.5 Conclusion

Grounded discussion games between two agents are presented in this work
to answer the credulous decision problem of ADFs under grounded seman-
tics (Keshavarzi Zafarghandi et al., 2020). Since each ADF is equivalent
with an ADF without any redundant links, we present the game over this
subclass of ADFs. A sub-goal of this game is presenting a constructive
proof for the truth value of the argument in the grounded interpretation
of a given ADF. To this end, there is no need of evaluating the whole
grounded interpretation of a given ADF. Furthermore, in Section 6.3 we
have shown that the method is sound and complete. In each move, P
tries to show that the initial claim can be in an extension of the trivial
interpretation, and O tries to challenge P by checking the content of the
interpretation presented by P and either finding the initial claim or request-
ing P to extend the interpretation or find a new initial ancestor. Since
the notion of strong admissibility semantics of ADFs presents a point of
view of explaining why a queried argument is justified in the grounded
interpretation (Keshavarzi Zafarghandi et al., 2021d,b), we have studied
the relation between grounded discussion games and strong admissibility
semantics of ADFs, in Section 6.4. As future work, it would be interesting
to investigate a game for infinite ADFs and for ADFs the acceptance
conditions of which are not restricted to propositional formulas.
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Chapter 7

Discussion Games for
Preferred Semantics

As presented in the previous chapter, the main query considered in this
part of the thesis is: ‘Why is an argument credulously justifiable under a
type of semantics in a given ADF?’ In the previous chapter, we answered
the query by considering grounded semantics of ADFs and presenting
grounded discussion games for ADFs, to clarify the dialectical character of
grounded semantics for ADFs.

In this chapter, we focus on the preferred semantics of ADF's, and we
provide a discussion game as a proof method to show the role of discussion
in reasoning in ADFs under preferred semantics. Properties of the pre-
ferred semantics of ADF's include that a preferred interpretation represents
maximum information about arguments without losing admissibility; that
each admissible interpretation is contained in a preferred interpretation;
and that the complexity of reasoning tasks under preferred semantics is the
highest among the known semantics of ADFs in the polynomial hierarchy.
We show that an argument is acceptable (deniable) by an ADF under
preferred semantics if and only if there exists a discussion that can defend
the acceptance (respectively, denial) of the argument in question. We show
that our method is sound and complete.

7.1 Introduction

Abstract Dialectical frameworks (ADFs), first introduced in (Brewka and
Woltran, 2010) and further refined in (Brewka et al., 2013, 2018a), are
expressive generalizations of Dung’s widely used argumentation frame-
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works (AFs) (Dung, 1995). ADFs are formalisms that abstract away from
the content of arguments but are expressive enough to model different
types of relations among arguments. Applications of ADFs have been
presented in legal reasoning (Al-Abdulkarim et al., 2016, 2014) and text
exploration (Cabrio and Villata, 2016).

Basically, the term ‘dialectical method’ refers to a discussion among
two or more people who have different points of view about a subject but
are willing to find out the truth by argumentation. That is, in classical
philosophy, dialectic is a method of reasoning based on arguments and
counter-arguments (Krabbe, 2006; Macoubrie, 2003).

In ADFs, dialectical methods have a role in picking the truth-value of
arguments under principles governed by several types of semantics, defined
mainly based on three-valued interpretations, a form of labelings. Thus, in
ADFs, beyond an argument being acceptable (corresponding to defended
in AFs), there is a symmetric notion of being deniable. One of the most
common argumentation semantics are the admissible semantics, which in
ADFs come in the form of interpretations that do not contain unjustifiable
information. The other semantics of ADFs fulfil the admissibility property.
Maximal admissible interpretations are called preferred interpretations.
Preferred semantics have a higher computational complexity than other
semantics in ADFs (Strass and Wallner, 2015)!. That is, answering the de-
cision problems of preferred semantics is more complicated than answering
the same problems of other semantics in a given ADF. Therefore, having a
structural discussion to investigate whether a decision problem is fulfilled
under preferred semantics in a given ADF has a crucial importance.

There exists a number of works in which the relation between semantics
of AFs and structural discussions are studied (Jakobovits and Vermeir,
1999; Prakken and Sartor, 1997; Caminada, 2018; Dung and Thang, 2007;
Modgil and Caminada, 2009; van Eemeren et al., 2014). As far as we
know, the relation between semantics of ADFs and dialectical methods in
the sense of discussion among agents has not been studied yet (Barth and
Krabbe, 1982).

In this chapter, we introduce the first existing discussion game for ADFs.
We focus on preferred semantics and we show that for each argument that
is credulously accepted (denied) under preferred semantics in a given ADF,
there is a discussion game successfully defending the argument. Given the
unique structure of ADFs, standard existing approaches known from the
AFs setting could not be straightforwardly reused (Caminada et al., 2014;

!provided that the polynomial hierarchy does not collapse.
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Cayrol et al., 2003; Vreeswijk and Prakken, 2000; Verheij, 2007). We thus
propose a new approach based on interpretations that can be revised by
evaluating the truth values of the parents of the argument in question.
The current methodology can be reused in other formalisms that can be
represented in ADFs, such as AFs (Vreeswijk and Prakken, 2000; Verheij,
2007).

In Section 7.2, we present the preferred discussion game, which is a
game with perfect information, that can capture the notion of preferred
semantics. We show that there exists a proof strategy for arguments that
are credulously acceptable (deniable) under preferred semantics in a given
ADF and vice versa. Furthermore, we show soundness and completeness
of the method.

7.2 Discussion Game for Preferred Semantics

In this section, we present the structure of the discussion game for preferred
semantics. The aim is to show that an argument is credulously accepted
(resp. denied) under preferred semantics in an ADF iff there exists a winning
dialogue in a preferred discussion game for the player who starts the game
with the corresponding claim of acceptance (resp. denial). A preferred
discussion game, which is similar to Socrates’ form of reasoning (Walton
and Krabbe, 1995; Caminada, 2008), is a (non-deterministic) game in
which the proponent of an initial claim should establish its initial claim
and subsequent commitments. The game starts with a claim by the
proponent (P) about credulous acceptance (resp. denial) of an argument
under preferred semantics in a given ADF. Then at each step in the
dialogue, P makes new commitments in order to establish an interpretation
that supports the initial claim. The game is continued as long as there is
a new claim by P and there is no contradiction.

Since each preferred interpretation is an admissible interpretation, if we
want to investigate whether an argument is credulously acceptable (resp.
deniable) under preferred semantics, we study whether the argument is
credulously acceptable (resp. deniable) under admissible semantics. The
key advantage of the current method is that the credulous acceptance
(resp. deniability) problem for preferred semantics in an ADF F' can be
solved without enumeration of all admissible interpretations of F'. In the
following, Examples 7.1, 7.8, and 7.10 represent preferred discussion games,
in which there are winning dialogues for P’s belief.
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Figure 7.1: ADF of Example 7.1

Example 7.1 Given an ADF F = ({a,b,c,d},{paq : T, @p : (cV —d) A
a, @.:dV b, pg:cV-b}), depicted in Figure 7.1.

o Assume that P claims that d is credulously acceptable under preferred
semantics. The claim of P consists of information about the truth
value of d, and there is no further information about the truth values
of other arguments. This initial information of P is represented by
the interpretation v1 = uuut.

o We check the consequences of P’s claim. Based on the acceptance
condition of d, argument d is acceptable in a preferred interpretation
iff either c is accepted or b is denied in that interpretation. That is,
the information of v must be extended to one of two interpretations;
ve = uutt and vy, = ufut, and P must answer the question, ‘Does
either b have to be assigned to f or ¢ have to be assigned to t, if d is
assigned to t in a preferred interpretation?’

e Since there exist new commitments in both vy and v, the dialogue
must be continued on either one of them. P chooses to work on vy, in
which the only new challenged argument is c. P checks under which
condition ¢ can be accepted in a preferred interpretation. Based on
the acceptance condition @ : d V —b, argument c is assigned to t if
and only if either d is assigned to t or b is assigned to £f. That is,
the new information of P about the truth values of arguments can
be represented by vz = uutt and vy = uftt. In the former one there
s no new claim, that is, the dialogue v1,v2 and v3 does not have to
be continued anymore. P wins this dialogue, since P can defend the
matial claim via this dialogue.

Definitions 7.2-7.5 are needed to define a dialogue, which is presented in
Definition 7.6.

Definition 7.2 Let k and v be interpretations such that k <; v. An
argument a is recently presented in interpretation v with respect to k
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Table 7.1: Definition of operator ® on the set {t,f, u}

iff k(a) = u and v(a) # u. Note that in the following, Ay, shows the set
of all arguments that are recently presented in v with respect to k, i.e.,
Ay = kU No*.

Definition 7.3 Let v be an interpretation of an ADF F, and let a be an
argument such that v(a) € {t,f}. An interpretation w? is called a minimal
interpretation around a in F with respect to v, if ['p(w?)(a) = v(a)
and there exists no w' <; w¥ such that T'p(w')(a) = v(a). The set of all
manimal interpretations around a in F' with respect to v is denoted by W/ .

Since the acceptance condition of each argument is indicated by a propo-
sitional formula, argument a may have more than one minimal interpre-
tation around a in F. For instance, in Example 7.1, it is assumed that
d is credulously accepted, v; = uuut. With respect to interpretation
v = vy = uuuu, argument d is recently presented in vy, i.e., A,y ., = {d}.
Based on the acceptance condition of d, namely ¢4 : ¢V —b, interpretations
wi ={a—ub— uc— t,d—u}and vy ={a—~ ub~fc—
u,d — u} are minimal interpretations around d in F. In Example 7.1,
the set of all minimal interpretations around d in F' with respect to v is,
WY = {w?’w/gl}‘

We define an operator @ on the set {t,f,u} of truth values, such
that uGzr=z0u=zcifz € {t,fu}, t ot =t and f ©f = f, while
foOt=tof =u, as depicted in Table 7.1.

We define the binary operator ® on interpretations pointwise as follows:
(vOw)(a) =v(a) ®w(a) for all @ € A. Note that ® is associative, com-
mutative and idempotent. The binary operator ® on two interpretations
can be extended to finite sequences of interpretations. Let vq,...v, be
interpretations, The definition of () is given pointwise as follows, for each
a € A.

n

Orila) = v1(a) 0~ © vu(a)

i=1
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Definition 7.4 Let v and k be interpretations such that k <; v. For each
w € [[,ea,  Ws, we define (v, w), which is called an evaluation of the
parents of arguments in Ay, with respect to v and w, as follows:

5(v,w)(b) = v(b) © ( () wa(b))

aEAk’v

The set of all possible evaluations of the parents of arguments in Ay, is
called all evaluations of parents of Ay, and denoted by d4, ,(v) such
that:

Say,(v) = {(v,w) we [ Wi}

QEA]CW

In the following, we use 04, ,(v) to define the moves of the player. Note
that we evaluate d4, ,(v) if and only if Ay, # (. We explain the reason
why we stop a dialogue of the game in which Ay , = 0. Furthermore, if Ay,
contains only one argument a, that is, v = k|¢ or v = k¢, as it is presented
in Definition 2.60, and w = (w_) where w} is a minimal interpretation
around a with respect to v, then we denote §(v,w) by d(v,w?), and we
denote the set of all evaluations of Ay, by d4(v).

In Example 7.1 presented above, the set of all minimal interpretations
around d in F with respect to vy is W' = {wj', w'y'}, where wj' =
{uutu} and w';' = {ufuu}. Thus, w is either w};' or w'y'. The evaluation
of the parents of d with respect to v; and w = wj' is 6(vi,w) = uutt,
while with respect to v; and w = w/,"" the interpretation is d(vi,w) =
ufut. Therefore, the set of evaluations of the parents of d is §4(v1) =
{uutt, ufut}.

The information of the player in a dialogue can be represented by an
interpretation. In the first claim of P, there exists only information about

the truth value (t or f) of the argument that is claimed.

Definition 7.5 Let a be an argument and let v be an interpretation in
which all arguments are assigned to u except for the argument a which is
assigned to either t or £f. Then v is called an initial claim.

Definition 7.6 A dialogue is a sequence of interpretations [vo, .. .,vy)
such that the following hold:

e v is the trivial interpretation in which all arguments are assigned to
u.

e vy is an initial claim (as in Definition 7.5).
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e Fori>1,v;€éa, ,,  (vi-1) (asin Definition 7.4).
o For0<i<n-—1, it holds that v; <; vit1.
o [t holds that either v,_1 = vy 0T Up_1 L4 Un.

Connecting the above definition of dialogue to the player, v; is an initial
claim, presented by P, and each step in the dialogue is a move in which
P makes new commitments aiming to establish an interpretation that
supports the initial claim.  Figure 7.2 shows the tree of all possible
dialogues for Example 7.1 about the claim that argument d is acceptable.

The last item in Definition 7.6 indicates the conditions under which
a dialogue stops. If v,_1 = v,, then A,, ., = 0. That is, the truth
value of no argument is recently presented in v, and the truth values of all
arguments in v,_1 are exactly the same as v,. Thus, there is nothing to
discuss and the claim by P was successfully defended in the dialogue, and P
wins. If v,_1 £; vp, this means that v,_1 and v,, do not agree on the truth
value of at least one argument in v} _;. We say that there is a contradiction
in a dialogue [vg, . ..,v,] if the dialogue contains interpretations v,_; and
vy, such that v,_1 £; v,. In this case, the claim by P was not successfully
defended by P in the dialogue, and P loses.

Actually, a preferred discussion game can be represented as a labeled
rooted tree in which the root is labeled by the trivial interpretation, namely,
Vg = Vy; the node in the first level of the tree is labeled by the initial claim,
the interpretation v;. The nodes of depth ¢ > 0 are labeled one by one by
all interpretations in d(v,w), where v is the label of the directly preceding
node of the tree with depth ¢ — 1, and w € HaeAk,v Wy in which Ay, is
the set of all arguments that are recently presented in v with respect to
the label of the directly preceding node of v, namely, k. The game tree of
Example 7.1, including a winning dialogue for P, is depicted in Figure 7.2.
The dialogue [vg, v1, d(v1, wy'), 6(v2, w's?), 6(vs, w;?)] in Fig. 7.2 leads to a
contradiction, since §(va, w';?) £; 0(vs, w?).

Definition 7.7 Let [vg, ..., v,] be a dialogue. Then we say that the dialogue
is won by the proponent if v,—1 = v,. The dialogue is lost by the
proponent if v,_1 £; vp.

We say that P wins the game iff P wins at least one dialogue of the game. P
loses the game iff P loses all dialogues of the game. As we see in Figure 7.2,
P wins the dialogue [vg,v; = uuut, vy = uutt, vs = uutt], since vy = vs.
This dialogue shows that P can defend the initial claim. Thus, after this
dialogue there is no need for continuing the game.
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A preferred discussion game is here presented as a game tree. Our aim
with the game is to establish that there is a winning dialogue for P if and
only if the initial claim is satisfied by a preferred interpretation.

Example 7.8 is another instance of a preferred discussion game in which
P wins the game, since there is a winning dialogue for the initial claim.

Example 7.8 Let F' be the ADF given in Example 7.1, i.e.,
F = ({a,b,c,d},{pa : T, @p: (cVd)ANa, pc:dV —b, pq:cV -b}),
depicted in Figure 7.3.

o P claims that d is credulously deniable in a preferred interpretation
in F': vy = uuuf; here, Ay, ., = {d}.

o Applying 6(—,—) on vy and wy' leads to vy = 6(vi,wy') = utff.

o The recently presented arguments are b and c, i.e., Ay, v, = {b,c}.
The minimal interpretations around b in F with respect to vy are
wy? ={a—t,c—t} and W'y’ = {a — t,d — £}, and the minimal
interpretation around c in F' with respect to ve is w¥? = {b+ t,d —
f}. Thus, vz = §(v2, Wie) = ttuf and vy = 6(vo, W) = ttff.

e In dialogue [vy, v1,v2,v3], since vy £; vs, P loses the dialogue. That
is, P cannot defend the initial claim in this dialogue.

e However, in dialogue [vg, v, v2, V5] applying 6(—,—) on vy and w3,
it holds that vy = 6(vh, we*) = vy. Then, dialogue [vo,v1,v2, Vs, v4] is
a winning dialogue for P.

In dialogue [vo, v1,v2, V5, v4], P gradually constructs an interpretation mak-
ing further commitments that support the initial claim, sometimes making
a choice between several possibilities. Here P is successful, since no contra-
diction is encountered at the final dialogue step.

The ADF of Example 7.1 can also be used as an example in which P loses
the game, because P loses all dialogues that start with a certain claim by
P; we explain this in Example 7.9.

Example 7.9 Given ADF F of Example 7.1, i.e., F' = ({a,b,c,d}, {pq :
T, wp:(cVad)Aa, pc:dV —b, @q:cV —b}), depicted in Figure 7.4.

e P claims that b can be denied in a preferred interpretation in F,
v1 = ufuu.
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e There are three different dialogues based on this initial claim;

1. [vg,v; = ufuu, vy = ufft, v3 = uufu],
2. [vy,v1 = ufuu, vy = ufft, vf = uuuu,
3.

[Uu, v1 = ufuu, v, = ffuu,v”3 = ufuul.

Each of the dialogues of this game ends in a contradiction. That is, in each
dialogue P is unsuccessful, and P cannot defend the initial claim. Thus, P
loses the game starting from this claim.

Example 7.10 shows that P may have more than one winning dialogue for
an initial claim. Actually, whenever there exists more than one preferred
interpretation that satisfies the truth value of the initial claim, P has more
than one winning dialogue.

Example 7.10 Given ADF F of Ezample 7.1, i.e., F' = ({a,b,c,d}, {¢q :
T, gp: (cV—=d)Na, pc:dV =b, @4:cV b)), apart of the game tree
presents two winning dialogues of P, depicted in Figure 7.5.

e P claims that b can be accepted in a preferred interpretation in F:
v1 = utuu.

o There are two different winning dialogues based on this initial claim
for P:

1. [vg,v1,v9 = tttu, v = tttt, vy = tttt],
2. [vg,v1,vh = ttuf, v = ttff, v} = ttff].

After P presents the initial claim vy, there are two possibilities since
dp(vo,v1) = {ve,v4}. P can choose to extend va or vh to an admissible
interpretation. Here both choices are successful, and each leads to a dialogue
won by P. That is, in this game, P has winning dialogues corresponding to
these two admissible interpretations.

In Example 7.10, it holds that prf(F) = {tttt, ttff}, that is, b is skeptically
acceptable under preferred semantics of F'. As we see in this example,
there is more than one winning dialogue for P. In Theorem 7.13, we show
that if an argument is credulously acceptable (deniable), as it is presented
in Definition 2.76, under preferred semantics in F', then there is a winning
dialogue for P with the initial claim of accepting (denying) of the given
argument. The examples above illustrate that P only has to consider the
arguments that have been recently presented in the directly preceding
move.

209



Let F' be an ADF and let [vp,...,v,] be a dialogue of a preferred
discussion game of an initial claim of F'. The length of the dialogue is the
length of the sequence [v, ..., v,]|, namely, the number of elements of the
sequence, in this case n + 1.

Proposition 7.11 Let F' = (A, L,C) be an ADF and let |A| =n. Then
the length of each dialogue in a preferred discussion game of F' is at most
n+ 2.

Proof Remember that for every i < n, the dialogue [vp,...,v;] is
continued in v; iff v;_1 <; v;. Checking whether v;_1 <; v; can be done
by indicating the truth value of an argument in v; that is not indicated
before, i.e., in v;_1, i.e., Ay, ;. Since the number of arguments of F is
n and vy = vy, the longest dialogue contains interpretations such that
vg < -+ < vy, and in the next step, the parents of arguments of A,, | .,
will be evaluated. That is, the longest dialogue can be a sequence of n + 2
interpretations. Thus, the length of each dialogue cannot be more that
n+ 2. O

Since we assumed in Remark 2.40.1 that each ADF is finite, the immediate
result of Proposition 7.11 is that a dialogue is finite.

Theorem 7.12 (Soundness) Let an ADF F = (A,L,C) be given. If
there exists a winning dialogue for P in a preferred discussion game with
initial claim of accepting (denying) an argument a, then a is credulously
acceptable (deniable) under preferred semantics in F.

Proof Assume that there is winning dialogue [vg,...,vy] for P in a
preferred discussion game, for accepting (denying) of an argument a. To
show soundness, it is enough to show that v,, is an admissible interpretation.
Towards a contradiction, assume that v,, is not an admissible interpretation,
that is, vy, % I'p(vy). Thus, there exists an argument b such that
vm(b) € {t,f}, however, the valuation of the acceptance condition of b
under vy, is not the same as vy, (b); we prove the case that vy, (b) = t. The
proof method for the case in which v,,(b) = f is analogous.

Assume that v,,(b) = t, but I'p(vp,)(b) € {f,u}. v, (b) =t means that
there exists ¢ with 0 < ¢ < m such that v;(b) = t and v;_1(b) = u, i.e.,
be A, v, Furthermore, v;41 contains the truth values of some of the
parents of b, where v 11 € d4,, such that I'p(v;41)(b) = t. Since P
wins this dialogue, v;,—1 = v,,. That is, Lpgm = T, since v,, contains the

—1,v5
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truth values of par(b) presented in v; 1. Thus, I'p(v,,)(b) = t. Therefore,
the assumption that v, is not an admissible interpretation is rejected.
O

In the following, the update of an interpretation v with a truth value
x € {t,f,u} for an argument b, as it is presented in Definition 2.60, is
denoted by v|2, where,

v|b(a) _ )= for a = b,
‘ v(a) for a # b.

In addition, v|p is equal to v(p) for any p € P; however, it assigns all other
arguments that do not belong to P to u, i.e., v|p = vu|i(€p§).

Theorem 7.13 (Completeness) Let an ADF F = (A, L,C) be given.
If an argument a is credulously acceptable (resp. deniable) under preferred
semantics in I, then there is a winning dialogue for P in the preferred
discussion game with the initial claim of accepting (resp. denying) of a.

Proof Assume that an argument a is credulously accepted under pre-
ferred semantics in F' (the proof method in case a is credulously denied is
analogous). Then there is a preferred interpretation v of F' in which a is
accepted. We show that there exists a winning dialogue [vo, ..., v,] for P
in the preferred discussion game that is based on v. That is, we show that
based on v we can construct a dialogue D = [vy, ..., v,] that satisfies the
five conditions of Definition 7.6.

To construct the dialogue D = [vy,...,v,], we construct v; for i with
0 < i <n as follows.

Let vg = vy. Let vy, the initial claim, be an interpretation in which
a is assigned to t and all other arguments of A are assigned to u. Let
D = [vg,v1], and let Ay, = v§ N}, as it is presented in Definition 7.2.
Note that for i > 1, we extend dialogue D = [vp, ..., v;] if v;_1 < v;. Since
vy <; v1, we continue to extend dialogue D by constructing ve. Based on
the method of constructing v;41, presented in the following, it holds that
v; < vi+1. We stop to extend D if v;—1 = v;.

We construct v;+1 based on v; and v;—1, when v;_1 <; v;, for ¢ with
1 <4, to this end first we construct t;4.1 as follows:

v(b) b € par(a), where a € Ay, | v,
ti+1(b) = < v(b) beuv;,

u otherwise.
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Note that by the way of constructing of ¢;11, it holds that for each b € A,
if b € v}, then t;41(b) = v;(b) = v(b). Thus, it holds that v; <; t;1;. We
evaluate d4, . (vi) and we check whether t;11 € 64, . (vi).

o If tit1 €64, ., (vi), then let v;1q = t;y1 and extend D to D =

[voy ..., Vit1]. Since vi4q € 5‘4"1'—17”1' (vi), and v; <; vi41, by Defi-
nition 7.6, D is a dialogue. If v; = v;41, then we stop to extend
D.

o Iftit1 & 9da, . (vi): pick an element of 64, . (vi), namely k, such
that v; <; k < t;3+1 and let v;4; = k and let D = [vg,...,vi41]. If
v; = v;j+1, then we stop to extend D. Since v;41 € 5,4%717% (vi), and
v; <; v;11, by Definition 7.6, D is a dialogue. We present this step
formally in the following, that is, we show that there exists a k such
that k € 5,41)1,_17%_ (v;) and v; <; k < t;11. We show how we choose
such a k.

let K ={k|ke€da, . (i), vi<;k<;tip1}. First we show that
K # 0.

Since v € prf(F'), for each a € A,, , ., there exists a subset P, C
par(a) such that v|p, € Wi, For each a € A,, , 4, let wg, = v|p,.
Let d(vj,w) = v; ® (QaeAvi,l,Ui wy), where w, = v|p,. By the
construction of é(v;, w) and by Definition 7.4, it holds that d(v;, w) €
0a (’Ul) We show that v; <; (5(1)1',10) <; tit1.

Vi1,
First, we show that 0(v;,w) <; tit1. For each a € A,, | 4, Po C
par(a) and par(a) C t7, ;. Thus by the definition of d(v;, w), for
each a € Ay, , 4, it holds that w, <; t;11. Thus, 6(v;, w) <; tjq1. If
d(vi, w) = tiy1, then this is a contradiction by the assumption that
tiv1 & 514%_17%_ (Uz) Thus, 5(vi,w) <; tit1-

Now, we show that v; <; d(v;,w). For i > 1, for each b € A, if
v;(b) € {t,f}, then v;(b) = v(b). For each a € A,, ,.,, for each
be A, if b € par(a) N P,, then w,(b) = v(b). For each a € A,, | 4,
for each b € A, if b & par(a)N P,, then w,(b) = u. Thus, for each b if
v;(b) € {t,f}, then for each a € A,, , 4,, it holds that we(b) <; v;(b).
That is, for each b € A, if v;(b) € {t,f}, then v;(b) = 0(vi, w)(b).
If there exits a € Ay, , ., and b € A such that w,(b) € {t,f} and
v;(b) = u, then §(v;,w)(b) € {t,f}. This is because v is a preferred
interpretation, thus, there exist no a,d’,€ A, ,,, and b € A such
that wy(b) =t and wy (b) = f. Hence, v; <; d(v;, w).
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Since §(v;,w) € 0Au, |, (v;) and v; <; (v, w) <; viy1, it holds
that §(v;,w) € K, i.e., K # (. Note that K may contain more
than one interpretation. For each k € K, let v;41 = k, and let

D = [vo,...,vit1]. That is, if |K| > 1, then we would have more
than one sequence of interpretations, namely dialogues for the initial
claim.

Since the number of arguments is finite, this procedure will stop.
That is, there exists a D = [vy, ..., vy,] such that v; <; v;y; for ¢ with
0<i<n,v,.1=uv, and v; € 5Avi_2,vi_1(vi—1) for i > 2. Thus, by
Definition 7.7, D is a winning dialogue for P.

By the construction of D, it holds that v; <; v;41, for ¢ with 0 < 4.

0

We illustrate the above completeness proof by an example. Consider
again Example 7.1, i.e., F' = ({a,b,c,d},{¢a : T, pp : (cV —d) Aa, . :
dV =b, ¢4 : ¢V —b}), shown in Figure 7.1. Argument d is credulously
acceptable in F' under preferred semantics. Furthermore, v = tttt is a
preferred interpretation of F' in which d is accepted. We follow the method
presented in the proof of Theorem 7.13 to construct a winning dialogue
for P.

Let vg = vy, let v1 = uuut and let D = [vg,v1]. Since Ay, =
{d} and par(d) = {b, c}, by the method of constructing t2, presented in
Theorem 7.13, it holds that t; = uttt. We check whether ¢ € 04, ., (v1)-
As we see, t2 € da, ,, (v1) = {uutt,ufut}. Let Py = {c} C par(d), as
we see wg = v|p, = uutu € W;'. It holds that 6(vi,wq) = uutt and
K={k|ke O Aug 0, (v1),v1 <; k <; to} = {uutt}. Now, let vy = uutt
and let D = [vg, uuut, uutt]. In this step, Ay, », = {c}, par(c) = {d,b}.
Thus, t3 = uttt. We check whether t3 € d4,, ,, = {uutt, uftt}. Sincet3 ¢
Oy, 0y We construct K = {k | v1 <; k <; t3, k € da,,,,(v1)} = {uutt}.
Hence, we pick v3 = uutt and we let D = [vg, v1, v, v3]. Since vy = vg, it
holds that D is a winning dialogue for the initial claim of P.

7.3 Conclusion

In this chapter, preferred discussion games have been considered as a proof
method to investigate credulous acceptance (denial) of arguments in an
ADF under preferred semantics. Notable results are as follows:

1. The method is sound and complete.
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2. Winning one dialogue of the game by P is sufficient to show that there
exists a preferred interpretation in which the argument in question
is assigned to the truth value which is claimed. Similar proposals
for AFs have been studied by (Modgil and Caminada, 2009; Thang
et al., 2009; Verheij, 2007).

3. In each move, the proponent has to study the truth value of arguments
that were presented in the directly preceding move. In contrast,
in (Caminada, 2018), O has to check all past moves of P to find a
contradiction.

4. To investigate the credulous decision problem of ADFs under pre-
ferred semantics, there is no need to enumerate all preferred inter-
pretations of an ADF.

5. In (Diller et al., 2018) it is shown that in the class of acyclic ADF's, all
semantics coincide. Thus, in acyclic ADF's, the presented game can
be used to decide the credulous problem for other types of semantics.

As future work, we could investigate structural discussion games for other
semantics of ADFs. In addition, we could study discussion games for other
decision problems of ADFs. Furthermore, we could investigate whether
the presented method is more effective than the methods used in current
ADF-solvers, for example (Brewka et al., 2017a; Ellmauthaler and Strass,
2014). This study may lead to new ADF-solvers that work locally on an
argument to answer decision problems.
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Y9 = uuuu

v1 = uuuf

S(v,wyt) =
d(ve, Wp2) = ttuf §(vg, W'2) = ttff

blocked by contradiction!, ‘
6 (v, Wie™?) >4 d(va, w,?)

5(7./ 3, W ) = ttff

P wins, o
(v, Wh2) = 5(v', we's)

Figure 7.3: Associated tree of the game in Example 7.8

Y9 = uuuu

v1 = ufuu
d(vi,wy') = ufft d(vy, w,") = ffuu
d(vo,wyg) =uufu  (ve,w,;) = uuuu (5(1}5,11125) — ufuu
P loses, P loses, P loses,

6(”17 wbvl) > 6(7)27 w:;) 6(7)17wa1) > 6(U27 wgfl) 5(1)1, wbvl) >; (5(1)5, wglz)

Figure 7.4: Associated tree of the game in Example 7.9
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Yp = uuuu

v1 = utuu

m__///// \\\\\
AN

S(vy,w,") = ttuf

5(vg, W2) = tttt S(vh, W'3) = ttfF

8(vs, wy?) = tttt 5(vh, wi) = ttfF
P wins, P wins, ,
8(va, W,2) = (v, wly) 5(v51wj;)——5(v$quc)

Figure 7.5: Associated tree of the game in Example 7.10
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Chapter 8

Investigating Subclasses of
ADFs

The additional expressiveness of ADFs, which can formalize arbitrary
relationships among arguments, comes at the price of higher computational
complexity. Thus, an understanding of potentially easier subclasses is
relevant. Compared to Dung’s abstract argumentation frameworks, where
several subclasses such as acyclic and symmetric frameworks are well
understood, there has been no in-depth analysis for ADFs in such direction
yet (with the notable exception of bipolar ADFs). In this chapter, we
introduce certain subclasses of ADFs and investigate their properties.
In particular, we show that for acyclic ADFs, the different semantics
coincide. On the other hand, we show that the concept of symmetry is
less powerful for ADFs than for AFs, and that further restrictions are
required to achieve results that are similar to the known ones for Dung’s
frameworks. A particular such subclass, namely, support-free symmetric
ADFs, turns out to be closely related to argumentation frameworks with
collective attacks, also known as SETAFSs; we investigate this relation in
detail and obtain as a by-product that even for SETAFs, symmetry is less
powerful than for AFs. We also discuss the role of odd-length cycles in
the subclasses we have introduced. Finally, we analyse the expressiveness
of the ADF subclasses that we introduce in terms of signatures.

8.1 Introduction

Since the landmark paper by Dung (1995) has been published in 1995,
abstract argumentation frameworks (AFs) have gained more and more
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significance in the AI domain. First of all, AFs have proven useful to
capture the essence of different nonmonotonic formalisms. Moreover, AFs
are nowadays an integral concept in several advanced argumentation-
based formalisms in the sense that their semantics are defined based on
a translation (typically called an instantiation) to Dung AFs. Finally,
the relevance of AFs is witnessed by the International Competition on
Computational Models of Argumentation (ICCMA), where systems for
solving different problems on AFs compete on different tracks!.

The fundamental of Dung is to abstract away from the content of
particular arguments and to focus only on conflicts among arguments,
where each argument is viewed as an atomic item. Therefore, the only
information AFs take into account is whether an argument attacks another
one or not. Semantics single out coherent subsets of arguments which “fit”
together, according to specific criteria (Baroni et al., 2011). More formally,
an AF semantics takes an argumentation framework as input and produces
as output a collection of sets of arguments, called extensions. Complexity
of the reasoning problems that can be defined for the several semantics
for AFs is well understood (Dvofdk and Dunne, 2018) and ranges from
tractability up to the second level of the polynomial hierarchy. To this
end, the analysis of restricted classes of AFs is of importance. In his
chapter, Dung already showed that the class of acyclic (also known as
well-founded) AF's leads to a collapse of the different semantics. Further
studies include symmetric AFs (Coste-Marquis et al., 2005) and AFs under
other graph-driven restrictions (Dunne, 2007). Symmetric AFs have been
proven to satisfy the property of coherence (preferred and stable semantics
coincide) and relatively-groundedness (the grounded extension is given by
the intersection of the preferred extensions). Moreover, these restrictions
make decision problems often easier from a complexity perspective. A
fact that is particularly useful in connection with backdoor approaches
(Dvorak et al., 2012) that utilize the distance to an easier fragment. This
approach has, for instance, been realised in practice with the cegartix
system (Dvofék et al., 2014).

Abstract dialectical frameworks (ADF's) are generalizations of Dung
argumentation frameworks where arbitrary relationships among arguments
can be formalized via propositional formulas which are attached to the
arguments (Brewka and Woltran, 2010; Brewka et al., 2017b). This allows
to express notions of support, collective attacks, and even more compli-
cated relations. Due to their flexibility in formalizing relations between

'http://argumentationcompetition.org
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arguments, ADF's have recently been used in several applications (Cabrio
and Villata, 2016; Piihrer, 2017; Al-Abdulkarim et al., 2016; Neugebauer,
2017). However, this additional expressibility comes with the price of
higher computational complexity (Strass and Wallner, 2015). Specifically,
reasoning in ADF's spans the first three (rather than the first two, as for
AFs) levels of the polynomial hierarchy.

It is thus natural to investigate subclasses of ADFs. Compared to Dung
argumentation frameworks, where subclasses like acyclic and symmetric
AFs have been thoroughly studied, there has not been a systematic inves-
tigation of subclasses of ADFs yet. An exception is the class of bipolar
ADFs (Brewka and Woltran, 2010) where the links between arguments are
restricted to have either supporting or attacking nature. However, results
about structural restrictions on ADFs where different semantics coincide
are still lacking.

In this work, we aim to define several subclasses of ADFs and investigate
how the restrictions we define influence the semantic evaluation of such
ADFs. As a first class, we consider acyclic ADFs (i.e., the link-structure
forms an acyclic graph) and show that—analogous to well-founded AFs—
the main semantics, namely grounded, complete, preferred, and two-valued
model/stable semantics, coincide for this class. We further investigate the
concept of symmetric ADFs. In contrast to the case of AFs, we will see
that properties as coherence and relatively-groundedness do not carry over
and require further restrictions which leads us to the classes of acyclic
support symmetric ADFs (ASSADFs) and support-free symmetric ADF's
(SFSADFs). For both classes we show that they satisfy a weaker form of
coherence. We also show that these two classes differ in the sense that
odd-cycle free SFSADF's are coherent while odd-cycle free ASSADF's are
not. As a second contribution, following the work of Dunne et al. (2015), we
investigate the expressiveness of our ADF subclasses in terms of signatures,
i.e. the set of possible outcomes which can be achieved by ADFs (of a
particular class) under the different semantics. We thus complement here
results which have been obtained for general (Piihrer, 2015; Strass, 2015)
and bipolar ADFs (Linsbichler et al., 2016) and also compare our ADF
subclasses to abstract argumentation frameworks in terms of expressibility.

Our results lead to the following implications. Firstly, studying sub-
classes of ADF's provides us with a better understanding of which structures
are required to reveal particular behaviors of the different semantics. We
thus further advance the theory of ADFs. Secondly, since other generaliza-
tions of Dung AFs can be seen as special case of ADF's, results on ADFs
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carry over to these special cases. We exemplify this aspect in the paper, by
deriving new results for argumentation frameworks with collective attacks
(SETAFs) (Nielsen and Parsons, 2006) which have received increasing
interest recently (Dvordk et al., 2019; Flouris and Bikakis, 2019). To the
best of our knowledge concepts like symmetric SETAFs have not been
investigated yet, and we provide first results in this direction.

The chapter is structured as follows: In Section 8.2 we introduce
subclasses of ADFs and we investigate whether these subclasses fulfill
the same properties of the similar subclasses in AFs. We discuss how
our results can be related to SETAF's and investigate some properties for
symmetric SETAFs. Also the role of odd-length cycles is addressed. In
Section 8.3, expressiveness of the subclasses of ADFs introduced in the
current work is studied. In particular, we show that the expressiveness of
SFSADFs, ASSADFs and bipolar ADFs is equal for some of the semantics,
but different for admissibility-based semantics.

A preliminary version of this chapter appeared in (Diller et al., 2018).
This extended version contains new technical results including investiga-
tions concerning coherence and relatively-groundedness for SFSADFs and
symmetric SETAFs (Theorems 8.16 and 8.30); and results on the role of
odd-cycles on coherence for subclasses of ADFs (Section 8.2.4). Also, the
results on expressibility for SETAFs and SFSADFs (as well as for a further
superclass of SFSADFs we introduce, that of SFADF's) in Section 8.3 are
new.

8.2 Properties of ADF Subclasses

We start our investigation of ADF subclasses in terms of their semantics
by first introducing the class of acyclic ADFs and showing that, just as is
the case for acyclic AFs (Dung, 1995), the different semantics coincide on
such ADFs. Then, we consider symmetric ADF's, where we will explore
further restrictions that are needed in order to obtain results similar to the
ones known for symmetric AFs. In Section 8.2.3 we discuss implications of
our results for SETAFs. We conclude this section with a brief overview on
semantic properties of odd-cycle free subclasses of ADF's.

8.2.1 Acyclic ADFs

In this section we show that, as has already been indicated and is the case
for acyclic AF's, also for acyclic ADFs several semantics coincide (Theorem
8.3). We start by defining acyclic ADFs.
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Definition 8.1 An ADF D = (S,L,C) is acyclic if its corresponding
directed graph (S, L) is acyclic.

In order to prove that the different semantics coincide on acyclic ADF's
we need the concepts of level and maximum level of arguments. The level
of an argument s of an ADF D is the number of links on the longest path
from an initial argument to s plus 1. The mazimum level of an (acyclic)
ADF D then is the level of an argument of D that is at least as large as
the level of any other argument of D. It is clear that every acyclic ADF
has a maximum level. This is a crucial observation needed for our proof
of Proposition 8.2, which in turn provides the basis to show that most
semantics defined for ADFs are indistinguishable when evaluating acyclic
ADFs.

Proposition 8.2 In every acyclic ADF D the <;-least fixed point of I'p
s a model of D.

Proof Let D = (S,L,C) be an acyclic ADF and let m be its maximum
level. Moreover, let vy := vy and v; := I'p(v;—1) for 1 <7 < m. We claim
that for all ¢ with 1 <7 < m, and every argument s; with level j <7 it
holds that either v;(s;) =t or v;(s;) = f. We show this claim by induction
on i:

e Base case: Suppose 7 is an arbitrary argument of level one (an acyclic
ADF always includes an initial argument). Since s; is an initial
argument, either g5, = T or pg, = L. Hence vi(s1) = I'p(vo)(s1) is
either true or false.

e Inductive step: Assuming this property holds for all k£ with 1 <
k < i < m, we show it holds for ¢ + 1. We know that ¢fi =
@s;[8k/ T + vi(sk) = t][sk/L : vi(sg) = f]. For all s; that occur
in s, it holds that k < j < i+ 1, with k being the level of sj.
Therefore, by the inductive hypothesis, for each sy, either v;(sg) =t
or vi(sk) = f. Hence either i =T or ¢! = 1 and, consequently,
either Ui+1(8j) =t or Vi+1 (Sj) =f.

Since m is the maximum level of any argument in D, we now get
that vy, (s) is either true or false for all s € S, i.e. it is a two-valued
interpretation. Moreover, it holds that v,, = T'p(vy,), i.e. vy, is a fixed
point.

To show that v, is the least fixed point of I'p, assume, towards
a contradiction, that there exists an interpretation v <; v, such that
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v =Tp(v). Then there exists an argument s such that either v,,(s) =t or
vm(s) = f, but v(s) = u. Assume s has level i. Since D is an acyclic ADF
all arguments sy that occur in ¢4 have a level less than ¢. Therefore, there
exists at least an argument s; of level j < i in ¢, such that v(s;) = u. By
iterating this method after at most ¢ — 1 times we reach an argument s;
of level 1 for which v(s;) = u. This is a contradiction, since at level 1 all
arguments are initial, it must be the case that either g, =T or @5, = L,
and therefore I'p(v)(s1) # u. Thus, interpretation vy, is the least fixed
point of I'p. O

Theorem 8.3 In every acyclic ADF D the sets of grounded interpreta-
tions, complete interpretations, preferred interpretations, two-valued models,
and stable models coincide.

Proof First, the grounded interpretation v of D is also complete in D.
Moreover, Proposition 8.2 implies that v is a two-valued model of D. Since
w = w® = v* in which w = grd(D?), v is a stable model. It remains to
show that there is no further complete interpretation v’ of D. Since v
is two-valued it must hold that v <; v/. However, since v is grounded
and therefore the least complete interpretation, such a v’ cannot exist.
Therefore, v is the unique complete interpretation of D which is grounded,
stable, two-valued, and preferred. O

An immediate consequence of Theorem 8.3 is that any acyclic ADF D
possesses a non-trivial preferred interpretation, which is also a complete
interpretation, grounded interpretation, stable interpretation, and a model.
We conclude by noting that, on the other hand, if all semantics of an ADF
coincide, there is no guarantee that the ADF in question is acyclic. This
is shown via Example 8.4.

Example 8.4 Consider the ADF D = ({a,b,c},{pa = T,0p = —a A
¢, . = —b}). This ADF possesses the unique complete interpretation
v={a— t,b— f c— t}, which is also preferred, stable, grounded, as
well as a model of D. That is, all semantics of D coincide; however, D is
not acyclic.

The ADF of Example 8.4 in fact represents an AF. Therefore, there is also

no guarantee that an AF is acyclic, whenever all semantics yield the same
extensions.
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8.2.2 Symmetric ADFs

We turn now to our study of symmetric ADFs. We consider the properties
of coherence (stable and preferred semantics coincide) and relatively-
groundedness (grounded extension is the intersection of all preferred exten-
sions) which have been shown to hold for symmetric AFs (Coste-Marquis
et al., 2005). Since both the two-valued and stable model semantics for
ADFs are proper generalisations of the stable semantics for AFs (Brewka
et al., 2013), we consider further forms of coherence (weak coherence and
semi-coherence; defined in Definition 8.6) that are possible in the realm of
ADFs.

We will show that, contrary to symmetric AFs, symmetric ADF's do
not satisfy any of the forms of coherence for ADFs we define, nor are they
relatively-grounded (Theorem 8.8). We then define a further restricted form
of symmetric ADFs, acyclic support symmetric ADF's, or ASSADFs for
short (Definition 8.9), which we show do satisfy a weak form of coherence
(each two-valued model is a stable model) (Theorem 8.12). Nevertheless,
we conclude (Theorem 8.13) by showing that in ASSADFs it is still not
the case that every preferred interpretation is a two-valued-model (semi-
coherence). We also show that ASSADFs are not relatively-grounded
(again, Theorem 8.13).

We start by giving the definition of symmetric ADFs.

Definition 8.5 An ADF D = (S,L,C) is symmetric if L is irreflexive
and symmetric and L does not contain any redundant links.

The reason why we have to exclude redundant links is that otherwise
we are able to add arbitrary links without changing the semantics of the
ADF at hand: informally speaking, given an ADF D = (S, L, C), take any
link (a,b) € L such that (b,a) ¢ L and do the following: add (b, a) to L and
change the acceptance condition ¢, to ¢4 A (=bV b). From the definition
of the semantics, it follows that such a modification cannot change the set
of o-interpretations of ADF. Now, applying this modification exhaustively
turns L into a symmetric relation. The added links are clearly redundant
since the newly introduced parent has no semantic effect on the altered
acceptance condition.

Next we provide several notions of coherence which are possible for
ADFs.

Definition 8.6 An ADF D is called

e coherent if each preferred interpretation of D is a stable model of D;
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—d (b/\d)\/—'a cV —b

Figure 8.1: A symmetric ADF which is neither semi-coherent, weakly coherent
nor relatively grounded.

e weakly coherent if each two-valued model of D is a stable model of

D .

7

e semi-coherent if each preferred interpretation of D is a two-valued
model of D.

We now turn to define the notion of relatively-groundedness for ADFs.

Definition 8.7 An ADF D is called relatively grounded if grd(D) =
|—|Z‘ prf(D).

In what follows, we occasionally say that a class % of ADFs is coherent
(resp. semi-coherent, weakly coherent, relatively grounded) if each of its
elements satisfies the respective property.

It turns out that neither of the properties analogous to those holding
for symmetric AFs hold for symmetric ADFs.

Theorem 8.8 The class of symmetric ADFs is neither semi-coherent, nor
weakly coherent, nor relatively grounded.

Proof Let D be the symmetric ADF depicted in Figure 8.1. Tt holds
that prf(D) = {v1,v2} with v; = {a — t,b — t,c— t,d— t,e — f} and
vo={a—t,b—f c— f,d— u,e— u}. Since v; is a two-valued model
of D which is not stable (since D' = D and grd(D) = {v4}), D is not
weakly coherent. Also, D is not semi-coherent since vy is not two-valued.
In addition, [, prf(D) = va = {a — t,b— u,c = u,d — u,e — u}, but
grd(D) = {vy}. Therefore, D is not relatively grounded. O

Note that the ADF D used as counter-example in the proof of Theorem 8.8

(Figure 8.1), is actually a symmetric BADF since D is a symmetric ADF
in which there are no dependent links and all links are either attacking or
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supporting. This raises the question whether there is a particular subclass
of symmetric BADFs which fulfills the properties considered in Theorem
8.8. One natural candidate is that of acyclic support symmetric ADFs,
which we present in Definition 8.9.

Definition 8.9 Given an ADF D = (S,L,C), let L be the set of all
supporting links in D. An ADF D is an acyclic support symmetric ADF
(ASSADF for short) if it is symmetric, bipolar and (S, L") is acyclic.

The method of determining whether a given ADF is an ASSADF is clarified
in Example 8.10.

Example 8.10 Let D = (S,L,C) be the symmetric BADF depicted in
Figure 8.1. Since (S, L™) as shown in Figure 8.2 contains a cycle, namely
the sequence [d, c,d], D is not an ASSADEF.

Figure 8.2: The support-links of the ADF D from Theorem 8.8 (Figure 8.1).

We now show that ASSADFs are weakly coherent, using the following
technical lemma.

Lemma 8.11 Let D be an ADF, v a two-valued model of D, and s € S
an argument such that all parents of s are attackers. ¢ is irrefutable if
and only if ps[si/L : v(s;) = f] is irrefutable.

Theorem 8.12 Every acyclic support symmetric ADF (ASSADF) is
weakly coherent.

Proof Let D = (S,L,C) be an acyclic support symmetric ADF. We have
to show that each two-valued model of D is also a stable model of D. Let v
be a two-valued model of D, DV = (S¥, LY, C") be the stb-reduct of D, w be
the unique grounded interpretation of DV, and ¢/, the acceptance condition
of sin DY, i.e. ¢, = ps[si/L : v(s;) = f]. We show that v* = w*. Suppose
to the contrary that there exists an argument s, such that v(s) =t and
w(s) # t. That is, ¢, is not irrefutable. This means, by Lemma 8.11, that
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s contains an argument s; supporting s such that v(s;) = t, otherwise ¢
cannot be irrefutable. Thus, ¢/, also contains s1. Since supports are acyclic
in ASSADFs, for the same reasons ¢}, = ¢, [si/ L : v(s;) = f] contains
an argument so which is different from s and s; and which supports s;.
Thus there exists an infinite sequence of arguments s, s2,... such that
$;+1 supports s;. This is a contradiction to D being an ASSADF. O

We conclude this section by showing, on the other hand, that there are
ASSADFs which are neither semi-coherent nor relatively grounded.

Theorem 8.13 The class of ASSADFs is neither semi-coherent nor rela-
tively grounded.

Proof Consider the ASSADF D depicted in Figure 8.3. D has 4 preferred
interpretations, namely v; = {a — £, — f, c— t, d — t, e — f},
vv={a—=f, b=t c—f dot, e—sfhuyy={a—=t b=f c—
f,d—t, e—~flandvyy={a—u, b—u, c—u, d—f et} As
every two-valued interpretation of D (that is vy, vy and v3) is also a stable
model, D is weakly coherent, confirming Theorem 8.12. However, v, is a
preferred interpretation which is not a two-valued model. Hence, D is not
semi-coherent.

-d —eA(—aV bV -c) —a A (=dV —c)

—c A (—d V —b) —b A (—dV —a)

Figure 8.3: An ASSADF without supporting links that is not semi-coherent.

We show now that ASSADFs are not relatively grounded in general.
Consider the ASSADF D = (S,L,C), depicted in Figure 8.4. Here
D = ({a,b,c}{ va : "bA—c, pp : ma A —e, and @ @ aV —b}). D
has the preferred interpretations v; = {a — f,b — f ¢ — t} and
vy ={aw £,b—t,c— f}. We obtain v; M; v2 = {a — £,b — u,c— u}.
However, the grounded interpretation of D is the trivial interpretation v,,.
That is, D is not relatively grounded. O
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-b A —e aV —b

Figure 8.4: An ASSADF which is not relatively grounded.

8.2.3 Implications for SETAF's

The ASSADF used in the proof of Theorem 8.13 to show that ASSADFs
are not semi-coherent does not have any supporting links. That is, even
ASSADFs without supporting links are not semi-coherent. This leads
us, in this section, to consider whether ASSADF's having only attacking
links, which we call support-free symmetric ADFs or SFSADF's for short
(Definition 8.14), satisfy the other properties considered in Section 8.2.2:
being weakly coherent and relatively grounded. We show that SFSADF's
are weakly coherent, but neither semi-coherent nor relatively grounded in
Theorem 8.16.

Moreover, we derive from Theorem 8.16 that symmetric SETAFs are
neither coherent nor relatively grounded (Theorem 8.30). The reason is
that the SFSADFs we have used in the proof of Theorem 8.16 correspond
to SETAFs. More concretely, the SETAFs in question correspond to a
specific class of SEFSADFs: those in which the acceptance condition of none
of the arguments is unsatisfiable. On the way of proving Theorem 8.30
we show that, in fact, such SFSADFs exactly correspond to symmetric
SETAFs (Theorem 8.18, Corollary 8.19, and Theorem 8.22; Lemmas 8.25
and 8.26). Thus, we obtain as a consequence of our investigations of se-
mantic properties in the general settings of ADF's, results that complement
those of (Nielsen and Parsons, 2006) for SETAFS, where the authors show
that the standard semantics are indistinguishable on acyclic SETAFs (a
result that is confirmed by our study in Section 8.2.1).

We start by defining SFSADFs:

Definition 8.14 Given an ADF D = (S,L,C), let L™ be the set of all
attacking links in D. A bipolar ADF D = (S,L,C) is a support free
symmetric ADF (SFSADF for short) if it is symmetric and does not have
any supporting links, that vs, L = L.
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Note that since SFSADFs are BADFs by Definition 8.14, this means that
SFSADFs do not have dependent links. Also, SFSADFs are symmetric
by the same definition, which means that they do not have redundant
links. Further, since SFSADFs do not have supporting links, they also do
not have a support cycle. Thus, the class of SFSADFs is indeed a strict
subclass of ASSADFs.

We next show that also SFSADF's, while being weakly coherent, are
neither semi-coherent nor relatively grounded. Before doing so, we report
a simple observation concerning the grounded interpretation.

Lemma 8.15 Let D be an SFSADF with no isolated argument. The
unique grounded interpretation of D is the trivial interpretation, vy.

Proof We show that for any SFSADF D = (S, L,C) with no isolated
argument, I'p(vy) = vy. Let s be an argument. Let v; be an interpretation
in which all parents of s are assigned to t and let vo be an interpretation
in which all par(s) are assigned to f. Since D is an SFSADF, the former
interpretation shows that 2" is not irrefutable, since ¢?' = L and the
latter interpretation says that " is not unsatisfiable, since ¢¥> = T.
Therefore, for each argument s, I'p(vy)(s) = u. O

Theorem 8.16 The following properties hold for SEFSADFs:
o cvery SFSADEF is weakly coherent,
o the class of SESADFs is not semi-coherent,

o the class of SFSADFs is not relatively grounded.

Proof By Theorem 8.12, every ASSADF is weakly coherent, and since
each SFSADF is an ASSADF, also SFSADFs are weakly coherent.

The ASSADF D, depicted in Figure 8.3 to show that the class of
ASSADFs is not semi-coherent, does not have any supporting links. That
is, D is a SFSADF. Thus, the class of SFSADFs is not semi-coherent
either.

It remains to show that the class of SFSADFs is not relatively grounded.
Let D be the ADF depicted in Figure 8.5. The unique preferred interpre-
tation of D is v = {a — t,b— f,c— f,d — t}. However, since D does
not possess an isolated argument, Lemma 8.15 shows that the grounded
interpretation of D is the trivial interpretation. That is, the meet of the
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Figure 8.5: A SFSADF that is not relatively grounded.

preferred interpretations of D is not equal to the grounded interpretation
of D. Hence, D is not relatively grounded. O

It is relatively easy to see that the ADFs used to show that SFSADFs are
neither semi-coherent nor relatively grounded in the proof of Theorem 8.16
(ADFs from Figures 8.3 and 8.5) correspond to SETAF's (see Definitions 2.37
and 2.67). In fact, we proceed to show now that symmetric SETAFs are
captured exactly by a subclass of SFSADFs: those in which the acceptance
condition of none of the arguments is unsatisfiable. As already hinted at,
apart from showing the link between SETAFs and SFSADFs this will allow
us to also formally translate the content of Theorem 8.16 to the context of
SETAFs.
We start by defining symmetric SETAF's.

Definition 8.17 A SETAF F = (A, R), in which R C (24\ {0} x A), is
a symmetric SETAF if the following properties hold:

e for all (S,t) € R and for all s € S, there exists (T, s) € R such that
teT,

e for each argument s and for each (S,s) € R, the set S does not
include s.

e for each (S,s) € R there is no (S',s) € R with 8" C S.
In Definition 8.17, the first item indicates that in the symmetric SETAFs

all links are symmetric. The second item further means that there are also
no reflexive links. Finally, the third item excludes redundant links.
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From Definition 2.67 it follows that each SETAF can be represented
as an ADF. Thus, also symmetric SETAFs can be encoded as ADFs. We
now show that in fact symmetric SETAFs correspond to SFSADFs.

Theorem 8.18 The ADF associated to a given symmetric SETAF is a
SFSADEF.

Proof Let F = (A, R) be a symmetric SETAF. We show that the ADF
Dr = (S,L,C) associated to F' is a SFSADF. By Definition 2.67, Dp
does not contain any supporting link. It remains to show that Dpg is a
symmetric ADF. It is clear that L does not have any redundant links. We
hence show that L is symmetric and irreflexive. Towards a contradiction,
thus assume that either L is not symmetric or not irreflexive.

e Assume that L is not symmetric. This means that there is an
argument s which is a parent of ¢ but not visa versa. That is, s
appears in the acceptance condition of ¢ but ¢ does not appear in the
acceptance condition of s. Since s is a parent of ¢, by Definition 2.67
there is (S,t) € R such that s € S. Since F is a symmetric SETAF,
there is a (T, s) € R such that ¢ € T'. Then, again via Definition 2.67,
the argument ¢ appears in the acceptance condition of s. Thus, ¢ is a
parent of s. This shows that the assumption that L is not symmetric
is false.

e Assume now that L is not irreflexive. Therefore, there is an argument
s which is contained in par(s). By Definition 2.67 there is (S,s) € R
such that s € S which is in contradiction to F' being symmetric, cf.
Definition 8.17.

Thus, if F is a symmetric SETAF, then the associated ADF Dp is a
SFSADF. 0O

Let F' = (A, R) be a SETAF and let a be an argument on which there
is no attack in F', that is, there is no (B, a) € R. By Definition 2.67, in
the ADF corresponding to the SETAF F the acceptance condition of a
has the form ¢, = A (g o)er Vwep 7@ = T. On the other hand, if there
exists (B,a) € R, it holds that po = A (g o)cr Varep 7@’ # L. These facts
together with Theorem 8.18 lead to the following corollary.

Corollary 8.19 The SFSADF associated to a given symmetric SETAF
does not contain any argument with an unsatisfiable acceptance condition.
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Next, we detail how the special group of SFSADF's that do not have any
argument with an unsatisfiable acceptance condition can be represented
as SETAFs. For this we make use of a fact from (Wallner, 2020), namely
that ADFs for which the acceptance condition of each argument is either
tautological or in CNF having only negative literals can be represented as
SETAFs. Note that in symmetric ADFs each initial argument needs to be
isolated and thus might have acceptance condition T or _L; the latter is
problematic in representing SFSADFs as symmetric AFs and thus needs
special treatment.

Lemma 8.20 Let D = (S,L,C) be a SFSADF and let s € S be an argu-
ment that is not isolated. Then the acceptance condition of the argument s
can be written in conjunctive normal form and having only negative literals.

Proof Since the acceptance condition of each argument in an ADF is
indicated by a propositional formula, it can be transformed to CNF. It
remains to show that each of the resulting formulas can be written as a
CNF consisting of only negative literals. Toward a contradiction, assume
that s is the acceptance condition of an argument s in CNF that is not
isolated, but (s cannot be written in CNF with only negative literals. That
is, there is no ¢, such that ps = ¢, and ¢/, is in CNF with no negative
literals, that is, s contains positive literals.

Assume that t is the only argument that appears in , as a positive
literal. The following method can be adapted for the case that ¢g contains
more than one positive literal. Let {ci}i<;<, be the set of all clauses ¢! in
which ¢ occurs (n > 1). Also, let v be a two-valued interpretation which
assigns the truth value f to ¢; all other arguments in each ¢} are assigned
to t. Also v assigns f to all other arguments of par(s), which means that
v(ps) = f. However, vt (ps) = t. Thus, by the definition of attacking links,
(t,s) is not an attacking link in D. This is a contradiction with D being
a SFSADF. Note that if there exists 7 with 1 <7 < n such that ci = —t,
then ¢, can be written in CNF with only negative literals. If in a ci, the
argument ¢ appears as a negative literal but it is not the only literal in ¢,
the above method can be extended to show that (¢, s) is not an attacking
link in D. O

We now provide the construction associating a SETAF to every SFSADF
for which no argument has an unsatisfiable acceptance condition.

Definition 8.21 Let D = (S,L,C) be a SFSADF in which there is no
argument having an unsatisfiable acceptance condition. D can be written

235



as a SETAF Fp = (A, R) such that A =S and R is as follows. Let ¢, be
a CNF having only negative literals, let ¢ be a clause of @, and let R, be
the set of all arguments in the clause c. Then, (R.,a) represents a joint
attack to a. The set R, = {(R¢,a) | ¢ is a clause in @, } is the set of all
joint attacks to an argument a. Let R = |J,cq Ra, be the set of all joint
attacks in Fp. We call Fp the SETAF associated to D.

Analogously to Theorem 8.18, we show in Theorem 8.22 that SFSADFs in
which none of the acceptance conditions of the arguments is unsatisfiable
can be mapped to symmetric SETAFSs.

Theorem 8.22 Let D = (S,L,C) be a SFSADF in which the acceptance
condition of none of the arguments is unsatisfiable. The SETAF Fp
associated to D is a symmetric SETAF.

Proof Assume that D is a SFSADF in which there is no argument
with an unsatisfiable acceptance condition. Thus, via Definition 8.21, D
can be written as a SETAF Fp = (A, R). It remains to show that Fp
is a symmetric SETAF. Towards a contradiction, assume that Fp is not
symmetric. Then, there are two possibilities to consider:

e There exists (5,t) € R and there exists s € S such that for all
(T, s) € R, T does not include t. Therefore, the acceptance condition
of t in D includes s, however, the acceptance condition of s in D
does not include ¢. That is, L in D is not symmetric.

e There exists (S,t) € R such that t € S. That is, t appears in the
acceptance condition of ¢ in D. That is, L in D contains a reflexive
link.

Both possibilities are in contradiction with the assumption that D is a
SFSADF. Therefore, the assumption that Fp is not symmetric is not true.
Then, the SETAF associated to a SFSADF is a symmetric SETAF. [

The SFSADF D = ({a,b,c,d},{pa = ~b A —c,0p = ma A —c A —d, oo =
—aA=bA—d, pg = —bV—c}), depicted in Figure 8.5, corresponds to the sym-
metric SETAF Fp = ({a,b,c,d}, R) with R = {({a},b), ({b},a), ({a}, ),
({c},a), ({b},0), ({c},b), ({b,c},d), ({d},b), ({d}, c)}) depicted in Figure 8.6.
As can be seen in the figure, in this SETAF there is a joint attack from b
and c¢ to d. This joint attack is symmetric in the sense of Definition 8.17,
because of ({d},b) € R and ({d},c) € R.
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Figure 8.6: A symmetric SETAF that is not relatively grounded.

Now, in order to be able to relate SFSADFs and symmetric SETAF's
on the semantic level, we first make precise the relation between extension-
based semantics of AFs and interpretation-based semantics of ADFs. To
do so, we start by introducing some terminology. Given a formalism
F, the set of all extensions of F' are denoted by & and the set of all
possible interpretations of F' are denoted by #". The function Ext2Intp,
in Definition 8.23, is a modification of the function (associating labellings
to extensions) given in Definition 5.1. of (Flouris and Bikakis, 2019).

Definition 8.23 Let F' = (A, R) be a SETAF, and let e be an extension
of F (e € &). The truth value assigned to each argument a € A by
the three-valued interpretation v, associated to e is given by the function
Ext2Intp : & — ¥V as follows.

t ace,
Ezt2Intr(e)(a) = f 3B € 24 such that (B,a) € R and Vb € B,b € e,
u

otherwise.

An ADF interpretation, on the other hand, can be represented as an
extension via the following mapping.

Definition 8.24 Let D = (S,L,C) be an ADF and v an interpretation
of D, that is, v € V. The associated extension e, of v is obtained via
application of the function Int2FExtp : V' — & on v, as follows:

Int2Extp(v) ={s€ S| s—teuv}
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The two subsequent lemmas are adopted from (Flouris and Bikakis, 2019).

Lemma 8.25 Let F be a SETAF, and o € {prf, stb, mod, com, grd}. More-
over, let D be the ADF associated to F'. Then, o(Dp) = { Ext2Intr(e) |
eco(F)}.

Lemma 8.26 Let D be a SFSADF in which the acceptance condition of
none of the arquments is unsatisfiable, o € {adm, prf, stb, mod, com, grd}
and Fp the SETAF associated to D. Then, o(Fp) = {Int2Eztp(v) | v €

o(D)}.

Note that Lemma 8.25 does not mention admissible semantics, while
Lemma 8.26 does. The reason is that for a given SETAF F' the associated
three-valued interpretations obtained via Fxt2Intr usually do not cover
all admissible interpretations of the ADF Dp. This is illustrated next.

Example 8.27 Let F' = ({a,b,c},{{a,b},c}) be a SETAF. By Defini-
tion 2.67, the associated ADF to F is Dp = ({a,b,c},{pa = T,0p =
T,p. = —aV —b}). It is clear that e = {a,b} € adm(F). Applying
Ext2Intp(e) of Definition 8.23 to e leads to the three-valued interpretation
ve = {a — t,b— t,c— f}. However, {a — t,b— t,c — u} is also an
admissible interpretation of Dp which is not obtained from any admissible
extension e of F via Ext2Intr(e).

One can overcome this problem by mapping each admissible set e of a
SETAF F = (A, R) to several interpretations in a way that Ezt2Intr(e)(a)
yields either u or f in case there exists (B, a) € R such that B C e, and
for all (B’,¢) with a € B" and ¢ € e there exists (b # a) € B’ such that
Ext2Intp(e)(b) = f. That is, Ext2Intr(e)(a) can be either f or u, if a
is attacked by some arguments of e but the truth value of a does not
play any role for the truth value of elements of e. However, since the
forthcoming results do not involve admissible semantics, we leave a more
formal investigation on this issue as topic for future work.
The next lemma rephrases Lemma 8.15 in terms of SETAFs.

Lemma 8.28 Let F be a symmetric SETAF with no isolated argument.
The unique grounded extension of F' is the empty set.

Proof Let F' = (A, R) be a symmetric SETAF with no isolated argument,
and let D = (S, L, C) be the associated ADF of F'. Toward a contradiction
assume that the unique grounded extension e (in F') is not the empty
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set, that is, there exists argument a such that a € e. First, we show that
Dp does not contain any isolated argument. To this end, let b be an
argument. Since F' does not contain any isolated argument, there exists
B C A such that (B,b) € R. The associated acceptance condition of b in
Dp, namely op = A\ (g p)er Viyep 70 shows that par(b) # {} in Dp. Thus,
the associated Dr does not contain any isolated argument, as well. By
Lemma 8.25 and Definition 8.23, a is assigned to t in grd(Dp). Further by
Theorem 8.18, Dp is an SFSADF. This is a contradiction by Lemma 8.15.
Therefore, the unique grounded extension of F' is the empty set. O

The following corollary is a direct result of Lemma 8.28.

Corollary 8.29 A symmetric SETAF F with no isolated argument is
relatively grounded if and only if the intersection of all preferred extensions
of F' is the empty set.

We are now in position to derive that symmetric SETAFs are neither
coherent nor relatively grounded from our proof of Theorem 8.16.

Theorem 8.30 The class of symmetric SETAF's is neither coherent nor
relatively grounded.

Proof The ADFs which are used in the proof of Theorem 8.16, to
show that the class of SFSADFs is neither semi-coherent (and thus not
coherent) nor relatively grounded, do not consist of any argument with an
unsatisfiable acceptance condition. Then, by Theorem 8.22, the associated
AF's to those SFSADF's are symmetric SETAFs.

Now, let D be such an SFSADF that does not satisfy coherence. We
show that the SETAF Fp associated to D cannot be coherent either.
Let w be a preferred interpretation of D that is not a stable model
of D. By Lemma 8.26, prf(Fp) = {Int2Eztp(v) | v € prf(D)} and
stb(Fp) = {Int2Eztp(v) | v € stb(D)}. Towards a contradiction, suppose
prf(Fp) = stb(Fp). It follows that there is an interpretation u € prf(D)
with u* = wt, such that u € stb(D), and hence u # w. Hence, either
uf ¢ wf or wf ¢ «f. In the first case u <; w and hence u cannot be
preferred; in the second case w <; u and hence w cannot be preferred. In
both cases we have a contradiction.

For relatively groundedness, we already have provided a symmetric
SETAF that violates this property in Figure 8.6. For that SETAF it can be
checked that its complete sets are () and {a,d}. Corollary 8.29 immediately
implies that this SETAF cannot be relatively grounded. O
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8.2.4 The Role of Odd-Length Cycles

In (Dunne and Bench-Capon, 2002) it is proven that if an AF is not
coherent then it contains a cycle of odd length. This means, on the
other hand, that if an AF does not contain any odd-length cycle it is
coherent. It is easy to show that this property does not generalise to
ADFs because of the possibility of support links. Indeed, consider the ADF
D = ({a,b,c,d},{vqs = d,op = a, . = b,pq = c}). The interpretation
v={a—t,b— t,c— t,d— t} is a two-valued (and, hence, preferred)
model of D, however it is not a stable model. That is, D is not weakly
coherent and, therefore, also not coherent.

In this section we study whether the property of having only odd-
length-cycles implying coherence carries over to any subclasses of ADF's
we introduced in our work so far. In Section 8.2.2 we had shown that
ASSADFs are weakly coherent but not semi-coherent. We here show that
also ASSADF's not containing any odd-length-cycle are not semi-coherent
and, thus, that such ASSADFs are not coherent (Theorem 8.31). On
the other hand, we are able to show that SFSADFs not containing any
odd-length-cycle are coherent (Theorem 8.32). In fact we prove a more
general result: bipolar ADFs without supporting links, which we dub
SFADF's (Definition 8.33; note the difference with SFSADF's which have
an “S” after the first “F”), that also do not have any odd-length-cycle are
coherent (Corollary 8.34). Moreover, given that SETAFs correspond to
a special class of SFSADF's (see Section 8.2.3), the result also applies to
SETAFs.

Theorem 8.31 The subclass of ASSADFs not containing any odd-length
cycle is not coherent.

Proof Consider the ADF D = ({a,b}, {vqs = b, = —a}). D is an AS-
SADF in which there is no odd cycle. The unique preferred interpretation
of D is v = {a — u,b+— u}, however, v is not a two-valued model. Then,
D is not semi-coherent and D is not coherent either. ]

Contrarily, we show next that the subclass of SFSADFs in which each
ADF does not contain any odd cycle is coherent.

Theorem 8.32 The class of SESADFs that do not contain any odd-length
cycle is coherent.

Proof Let D= (S,L,C) be a SFSADF that does not contain any odd
cycle. Since we showed in Theorem 8.16 that the class of SFSADFs is
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weakly coherent, D is weakly coherent, as well. To complete the proof of
the theorem it is enough to show that D is semi-coherent, i.e. prf(D) =
mod(D). Since each two-valued model is a preferred interpretation of
ADFs, it is trivial that prf(D) 2 mod(D). Thus, it is enough to show
that prf(D) C mod(D). Toward a contradiction, assume that there exist a
preferred interpretation v of D that is not a two-valued model. That is,
there must exist an argument a such that v(a) = u.

Let S be the set of all arguments which are assigned the truth value
u by v. Since D is a SFSADF that does not contain any odd cycle, the
arguments of S have to be in even cycles in the associated graph. Assume
that the associated graph of D contains only one such even cycle. Note
that the following method can be adapted for the case that the associated
graph of D contains more than one even cycle. Then one can construct a
bipartite graph of nodes of this cycle with partitions S7 and S3. Assign
all arguments in S7 to t, and all arguments of Ss to f. Construct the
interpretation v’ as follows.

v(a) if v(a)=t/f,
v(a) =<t if a€ 5,
f if beSy.

It is clear that v <; v". We now show that v’ is a two-valued model.
First, there is no argument in v’ assigned to u. To show that v’ is a
two-valued model it remains to show that I'p(v') = v/, Assume that a is
assigned to t in v/, we show that I'p(v’)(a) = t. (The method for proving
the case that a is assigned to f is analogous). If a + t in v’ either v(a) =t
or a € 5.

e If v(a) = t, since v is a preferred interpretation, I'p(v)(a) = t. In
addition, the characteristic operator is a monotonic operator, that is,
I'p(v)(a) =t.

e If a € 51, then par(a) # {}. Let ¢, be in CNF having only negative
literals, this is possible by Lemma 8.20.

— If Tp(v')(a) = f, since p, contains only negative literals, then
there exists a clause ¢ in ¢, all arguments of which are assigned
to t in v/. By the construction of S, par(a) € S;. Therefore, all
arguments of ¢ are assigned to t in v, since ¢ has only negative
literals, (note that all arguments in S are assigned to f by the
definition of v’). That is, I'p(v)(a) = £, which is a contradiction
with the assumption that v(a) = u. Thus, I'p(v')(a) # f.
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— If Tp(v')(a) = u, then there exists a parent of a the truth value
of which is not indicated in v’. This is also a contradiction,
since all parents of a are either in Sy that are assigned to f in
v or assigned to t/f by v. Therefore, I'p(v')(a) # u.

Thus, if a € Sy, then T'p(v')(a) = t.

Therefore, v’ is a two-valued model of D and hence a preferred interpre-
tation of D. Moreover v <; v/, which is a contradiction to the assumption
that v is a preferred interpretation. Therefore, each preferred interpretation
of a SFSADF that does not contain any odd cycle is a two-valued model.
Thus, if a SFSADF does not contain any odd cycle, then it is coherent. [

As it turns out, the proof of Theorem 8.32 is independent from the notion
of symmetry. Hence, we obtain as a final observation (Corollary 8.34) in
this section that the general class of support-free ADFs which we define
next is coherent.

Definition 8.33 Given an ADF D = (S,L,C), let L~ be the set of all
attacking links in D. A bipolar ADF D = (S, L,C) is called a support-free
ADF (SFADF) if it does not have any supporting links, that is, L = L™ .

Corollary 8.34 SFADFs and SETAFs without odd-length cycles are co-
herent.

8.3 Expressiveness of ADF Subclasses

Following the work of (Dunne et al., 2015) in this section we consider the
expressiveness, i.e. the set of possible outcomes which can be achieved
under the different semantics, of ASSADFs and SFSADFs. We thus
complement here results that have been obtained for general (Strass, 2015;
Piihrer, 2015) and bipolar ADFs (Linsbichler et al., 2016) and also compare
the ADF subclasses we introduced in this work to abstract argumentation
frameworks in terms of their expressivity.

Formally, the study of expressivity of a formalism w.r.t. a semantics can
be done by considering the outcomes that can be realised by the formalism
under the semantics of interest.

Definition 8.35 Let .7 be a formalism (e.g. AFs or (subclasses of)
ADFs), i.e. the set of structures available in F (e.g. all possible AFs and
ADFs) and o a semantics for F. Moreover, let V be an interpretation-set
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or extension-set. V is said to be o-realizable in % , if there exists an element

kb (“knowledge base”) of F such that o(kb) = V.

The signature of a formalism w.r.t. a semantics is then the set of possible
outcomes that can be realised by the formalism under the semantics, this
is encoded in Definition 8.36.

Definition 8.36 The signature X% of a formalism % w.r.t. a semantics
o is defined as:
% ={o(kb) | kbe Z}.

Formalisms can now be compared for expressivity by considering their
signatures. Specifically, given two formalisms F1, Fo as well as a semantics
o, we say that F1 is strictly more expressive than Fo for o, whenever
X%, & X7, F1 and Fo are, on the other hand, incomparable under a
semantics o if neither E"% - Zf% nor E"% - E;l. This is denoted as
Y%, XX,

In what follows we concentrate on studying ASSADFs and SFSADFs
from the perspective of realisability. We compare these novel subclasses of
ADFs to that of AFs, BADFs, and general ADFs. We build on studies
comparing the expressivity of AFs, BADFs and (general) ADFs reported
on in (Strass, 2015; Linsbichler et al., 2016).

We begin by showing that BADF's are strictly more expressive than
ASSADFs for the admissible, preferred, complete, and model semantics.

Theorem 8.37 For o € {adm, prf, com, mod} it holds that X% ¢s1pr &
X BADF-

Proof Since every ASSADF is, by definition, a BADF, X% ¢sapr € XZApF
is clear. To show that X%, pp is a strict superset of X4 gqqapp it is enough
to find an interpretation-set V which is o-realizable in BADF's, but not
o-realizable in ASSADFs, for o € {adm, prf, com, mod}.

For o € {prf,mod}, let V = {{a — t},{a — f}}, and for o’ €
{com, adm}, let V' = {{a — u},{a — t},{a — f}}. The BADF D =
(S,L,C) with S = {a} and ¢, = a realizes V under o and V' under o’.
On the other hand, it is easy to check that there is no ASSADF with
one argument which realizes V under o, and respectively, V' under ¢’. To
complete the proof toward a contradiction assume that there exists an
ASSADF D' = (5, L/,C") such that o(D’) =V and ¢/(D") = V'. Since
V contains an assignment to only one argument, D’ has to have just one
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argument. Since D’ is an ASSADF, the argument a is an isolated argument
in D’. That is, either ¢, = T or ¢, = L. Thus, it can realize neither V
under o nor V/ under o’. O

Next, we show that ASSADF's are strictly more expressive than SFSADF's
for the admissible, preferred, and complete semantics. In a certain sense,
this complements our observation in Section 8.2.4 that ASSADFs and
SFSADFs differ in terms of coherence on odd-cycle free frameworks.

Theorem 8.38 Foro € {adm, prf, com}, it holds that X%ps 4 pr © X% ssapp-

Proof Since each support-free symmetric ADF is an acyclic support
symmetric ADF, it is clear that XZpqapr € X%ggapp- Lo show that
Yssapr is a strict superset of ¥&pgapp, for o € {adm, prf, com}, we
give an interpretation-set V, which is o-realizable in ASSADFs, but not
o-realizable in SFSADFs.

Let V.= {{a — u,b — u}}. The ASSADF D = (S,L,C) with
S ={a,b}, ¢4 = b, and ¢, = —a realizes V under o € {adm, prf, com}.
However, it is easy to check that there is no SFSADF that can realize V.
Assume to the contrary that there exists a SFSADF D’ = (S’, L', C") that
can realize V under o, for o € {adm, prf, com}. The set of arguments of

D’ is {a, b} as these are the only ones appearing in the o interpretations
of D'.

e If any of the arguments of S’ is an isolated argument, then its
acceptance condition is either equivalent to T or L. That is, o(D’) #
V. Thus, none of the arguments could be an isolated argument in
D'

e If there is a symmetric attack relation between a and b, then the
interpretation {a — t,b — f} is a preferred interpretation of D’
and therefore it is a complete and admissible interpretation of D’.
Therefore, o(D’) # V, for o € {adm, prf, com}.

Thus, V is not o-realizable in SFSADF's under o € {adm, prf, com}. O

The forthcoming result shows why, on the other hand, AFs and SFSADFs
are incomparable, and also AFs and ASSADFs are incomparable, in terms
of their expressivity for the admissible, preferred, and complete semantics.

Theorem 8.39 For o € {adm, prf, com}, it holds that X% >0 Xqpeapp
and X5 p > XY g4 pp-
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Proof To obtain our theorem we show that X9y € XQgqapp and
YSrsapr € X4p- Since, via Theorem 8.38, Xqggapp 18 a strict superset
of X8pgapr for o € {adm, prf, com}, we can then conclude that ¥4 €

g g o
Y8rsapr and X3 ssapr € Tip-

e To show X9 € X%gsapp consider V = {{a — u}}. A witness of
o-realizability in AFs is F' = ({a},{(a,a)}). However, there is no
ASSADF to realize V under o.

e To verify that Xqpcapr € X4p for o € {adm, prf, com} we first
show that E]Snl;fSADF Z 2T Let V = {v1,v2,v3} with v; = {a —
£, — t,c— tie— th, vo ={a— t,b = fc— te— f}, and
vs={ar—t,b—t,c— f e f}. A witness of prfrealizability of V
in SFSADFsis D = (S, L,C) with S = {a, b, ¢, e}, pg, = 7eA(—bV—c),
wp = 1a V e, p. = —a V —b, and . = —a. However, there is no
AF with V as its preferred interpretations. If there is an AF F’
such that o(F’) =V then the structure of v1,v2 and v implies that
there is no attack between a,b and ¢ in F’. Thus, if there is an
attack from any of a,b and ¢ to e then {a — t,b— t,c+— t,e— f}
is a preferred interpretation of F’. If there is no attack from any
of a,b and ¢ to e then {a — t,b +— t,c+— t,e — t} is a preferred
interpretation of F’. In both cases o(F’) # V. For ¢ = com let
V =VU{{a+— u,b+— u,c+— u,e— u}}. It is easy to check that
V' is com-realizable by the SFSADF D defined above. If there is an
AF F’ that realizes V' under com then each of the elements of V
would be a preferred interpretation of F’. Thus, prf(F’) = V would
be the case, which it is easy to see is actually false. Finally, we get
yadm, o € 299 by observing that from adm(D) being realizable
under adm in AFs it would follow that prf(D) is realizable under prf
in AFs. But we already showed that the latter is not the case.

0

Our final result on the admissibility-based semantics concerns the class of
support-free ADFs (SFADFs). Recall that support-free symmetric ADF's
(SFSADFs) have been defined in Section 8.2.3 in order to investigate
subclasses of symmetric ADFs that satisfy certain properties.

Theorem 8.40 For o € {prf, adm, com}, the following hold:

o (o2
® X%psapr & Xpapr
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® X3rapr ™ 2554k
* Xr & XSrapr
* X%rapr & XBapr
Proof We separately prove the four relations provided in the theorem.

e Bach SFSADF is a SFADF, that is, Xgpqapp € 2&papp- To show that
Y&eanr € E&psaprs let V.= {{a — u}}. A witness of o-realizability
of Vin SFADFs is D = ({a},{ps = —a}}), for o € {prf, adm, com}.
In contrast V & YZpqapp-

e To show Xgpapr € X%ssaprs let V. = {{a — u}}, which is o-
realizable in SFADFs but not in ASSADFs. To show X%¢qapr &
Yerapr, let V.= {{a — u,b — u}}. V can be realized by D =
({a,b}, {pa = 7, pp = a}) in ASSADF under o but not in SFADF.

® X%r C X%papr is clear. To show that X¢p pr € X9p, let V =
{{a — f£}} for o € {prf,com}, and respectively let V' = {{a —
u},{a — f}} for o = adm. Both interpretation-sets are realizable by
D = ({a},{¢a = 1}) in SFADF under o. In contrast V ¢ X% .

e Fach SFADF does not contain any dependent link; hence it is a BADF.
The interpretations that are given in the proof of Theorem 8.37 work
here to show that X% \pp € XSpapr-

g

Our results comparing the expressivity of ASSADFs, SFSADFs, SFADFs,
AFs, BADFs, and general ADFs w.r.t. the admissible, complete, and
preferred semantics are summarised in Figure 8.7. To complete the picture
here we also incorporate results about the relative expressivity of AF's,
BADFs, and general ADFs from (Linsbichler et al., 2016).

The general picture for the stable semantics, which we proceed to
investigate now, deviates somewhat from that of the admissibility based
semantics. To start we remind the reader that stable models v, w of any
ADF are always incomparable, i.e. w® C v* implies w® = v*, see (Strass,
2013b). Now, in order to complete previous results from (Strass, 2015)
comparing AFs, BADFs and general ADFs in terms of their expressivity
w.r.t. the stable semantics, we make use of this fact and the forthcoming
lemma, in order to prove that EﬁngF C Egt}?S ADF-
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Figure 8.7: Expressiveness of subclasses of ADFs for o € {adm, prf, com}.

Lemma 8.41 Any incomparable set of two-valued interpretations V is
stb-realizable in SFSADFs.

Proof (sketch) To show that any incomparable set of two-valued inter-
pretations is stb-realizable by some SFSADF, let V be an incomparable set
over arguments S (that is, each v € V assigns t or f to every s € S) and
consider a SFSADF D = (S, L, C) with the following acceptance conditions
for s € S:2

o If v(s) =t for every v € V then ¢ = T.

o If v(s) =f for every v € V then @5 = L.

o Otherwise, 95 = Vyev po)=t  Not)=tr3wev:(uw(s)=frw(t)=t) 7t
We show that D is a SFSADF and stb(D) = V.

e By the definition of the acceptance condition of argument s in D,
s & par(s). Therefore, L is irreflexive. Further, ¢t € par(s) iff
s € par(t), that is, L is symmetric. In addition, all links in D are
attacking. Thus, D is a SFSADF.

e To prove that stb(D) = V, we show that stb(D) C V and also
V C sth(D).

— To show V C stb(D), let v € V. We show that v € mod(D)
and since SFSADFs are weakly coherent by Theorem 8.16,

2This construction is a slight adaption of a result from (Strass, 2015).

247



v € stb(D). Let v(s) = t, we show that s is acceptable in v. (The
proof for the case that v(s) = f is analogous). If s is assigned t
by each element of V there is nothing to prove. Otherwise, there
exists a w € V s.t. w(s) = f. Since V is incomparable, there
exists ¢ such that v(¢) = f and w(t) = t.Therefore, t € par(s).
The set of all arguments like t make a conjunctive clause of ¢,
which guarantees that s is accepted in v.

— To show that stb(D) C V, toward a contradiction, assume
that there exists v € stb(D) such that v € V. Since stb(D) is
incomparable, there exists s € S such that v(s) =t and @5 #
T. Further, the acceptance condition of s is not unsatisfiable,
otherwise s has to be assigned to f in v. Thus, there exists
v' € V in which s is assigned to t. Let K be the set of all v’ in
which s is assigned to t. Since v € V and stb(D) is incomparable,
in each v € K there exists ¢ such that v(¢) = t and v'(t) = f.
Let T be a set of all arguments like £. It can be shown that
either each conjunctive clause of ¢, contains a t € T', or there
exists a t € T such that each conjunctive clause of (; consists
of an argument of 7. The former means that s is deniable
with respect to v, and the latter means that ¢ is deniable in v.
That is, v is not a two-valued model of D and since SFSADF's
are weakly coherent, v is not a stable model of D. This is in
contradiction with our assumption that there exists v € stb(D)
such that v ¢ V. Therefore, stb(D) C V.

g

Note that the incomparability condition for the set of two valued inter-
pretations V in the statement of Lemma 8.41 is necessary. For instance,
V= {{aw t},{a— f}} is a set of two-valued interpretations, which are
not incomparable, that is not stb-realizable in SFSADFs.

stb stb __ \stb __ ystd __ \stb
Theorem 8.42 X5} C Xipoapr = X§rapr = YASsADF = ZBADF-

Proof X4 C NiA,p is shown in (Strass, 2015), and Sgpgapp C
a g g a ag 3
Yissapr & Zpapr and Xdpsapr S Xgpapr S Xpaprs for each semantics
o, are clear. If we can show Z%thF C Z%’%’S Apr We are thus done. Let
Ve ZggDF. Since V is a set of incomparable two-valued interpretations,

by Lemma 8.41, V is stb-realizable in SFSADF's. O

In Example 8.43 we give an example of an interpretation-set that is stb-
realizable in SFSADFs but not stb-realizable in AFs.
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Example 8.43 Let V = {{a — t,b — t,c — f},{a — £,b — t,c —
th, {a — t,b — f,c— t}} be an interpretation-set. A witness of stb-
realizability of V in SFSADFs is D = (S, L,C) for which S = {a,b,c} and
the acceptance conditions are p, = —bV —c, pp = —aV-c and p. = —aV —b.
We show that V is not stb-realizable in AFs. Towards a contradiction
assume that there exists an AF F = (A, R) such that stb(F) =V. The set
of arguments of F' is S as these are the arguments occurring in stb(F).
The interpretations in V imply that there is no link between a, b and ¢ in F.
Then, by the definition of the stable semantics for AFs, the interpretation
{a — t,b— t,c — t} is also a stable interpretation of F. Therefore,
stb(F') # V. Thus, the interpretation-set V is not stb-realizable in AFs and

stb sth
ESFSADF Z z:AF

The final semantics to investigate is the model-semantics. We only need
one technical lemma.

Lemma 8.44 For any SFADF D = (S, L,C), mod(D) is incomparable.

Proof Toward a contradiction assume that there are v,w € mod(D)
such that v* C wt. Let B C S be the set of argument which are assigned
to t in w, but are assigned to f by v. Moreover, let a be an argument
which is denied in v and accepted in w. At least a parent of a has to be in
B, otherwise, pf = ¢¥. Assume par(a) N B = {b1,...,by}. Since D is a
SFADF, all links are attacking. Then, by the definition of attacking links
v|lt)1(<pa) = f. That is, a is denied with respect to v; = v|lt“. Following the
same method construct v; = U\ff, for 1 < ¢ < n. It is obvious that a is
denied in each v;, in particular, a is denied in v,,, which is equal to w. This
is a contradiction to the assumption that a is accepted in w. Therefore,
mod(D) is a set of incomparable interpretations. g

mod mod __ y'mod
Theorem 8.45 Y700 C X408, o = S48 pp = X0, pr C XHADr-

Proof We first argue that ¥7%°¢ = $3% for .# € {SFSADF, SFADF,

ASSADF}. This follows 1mmed1ately for 7 € {SFSADF, ASSADF} since
both ASSADFs and SFSADFs are weakly coherent (cf. Theorem 8.12 and
Theorem 8.16). To show the relation for .# = SFADF we need to show
E%XDF C thlflADF (the other inclusion follows by standard properties of
semantics). Let V € Eg”F?gDF By Lemma 8.44, V is incomparable and
by Lemma 8.41, any incomparable set of two-valued interpretations is
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stb mod mod

for # € {SFSADF, SFADF, ASSADF, BADF, ADF} for .# € {SFSADF, SFADF, ASSADF}

Figure 8.8: Expressiveness of AFs, SFSADFs, SFADFs, ASSADFs, BADFs,
ADFs for o € {stb, mod}.

stb-realizable in SFSADF. Therefore, there is a SFSADF D’ such that
stb(D') = V. Since each SFSADF is also an SFADF, V € S8, .

Using these relations and observing that stb and mod are equivalent
for AFs it follows from Theorem 8.42 that EmOd - ESFS ADF = ZSF"KDF =
X7 ASS Apr holds. Finally, A§S ADF & EB ADF 18 by Theorem 8.37. g

Figure 8.8 summarises the results regarding expressivity w.r.t. the model
and stable semantics expressed in Theorem 8.42 and Theorem 8.45. Again,
to complete the picture we make use of results from (Strass, 2015) (234 yp =
Sibr and SERGE € BRRL).

We conclude this section by pointing out that the realisability relation-
ships depicted in Figure 8.8 change when we restrict the cardinality of the
interpretation sets. As it turns out, any set of interpretations of size 2
obtained from an ADF when evaluated using the stable semantics is also

realizable in AFs.

Proposition 8.46 Suppose that |[V| =2 and V is stb-realizable in ADFs.
Then V is stb-realizable in AFs.

Proof Let V= {vj,v2} be a set of interpretations that is stb-realizable
in ADFs, i.e. there exists an ADF D = (S, L, C) such that stb(D) = V.
Construct an AF F = (A, R) by setting A =S and R = {(a,b) | vi(a) =
t,vi(b) = f,vj(a) = f,1 < i # j < 2}. To prove that stb(F) =V, take
v; € V. First, there is no attack between arguments with v;(a) = t.
Moreover, if v;(b) = f then, since neither v; <; vy nor vy <; vy, there must
be some a € A with v;(a) =t and v;(a) = f, hence (a,b) € R. Therefore
v; is a stable interpretation of F'. That is, V is stb-realizable in AFs. [
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8.4 Conclusion

Motivated by related results on the semantic properties of acyclic (Dung,
1995), symmetric (Coste-Marquis et al., 2005), and odd-length-cycle-
free (Dunne and Bench-Capon, 2002) AFs, in this chapter we investigated
analogous classes for ADFs and their properties. We showed that for
acyclic ADF's, just as is the case for acyclic AFs, the different semantics
coincide. On the other hand, we demonstrated that the properties of
coherence and relatively-groundedness that hold for symmetric AFs do not
carry over to symmetric ADFs. The latter impelled us to go on a quest
for an appropriate subclass of symmetric ADFs for which some form of
coherence holds. In the process we defined several subclasses, in particular
acyclic support symmetric ADFs (ASSADFs) and support-free symmetric
ADFs (SFSADF's) which we show satisfy a weaker form of coherence.

Also odd-length-cycle-free ADFs do not satisfy coherence (which is the
case for AFs), but here we were able to show that this property does hold
for SFSADFs. In fact this is the case for a superclass of SEFSADFs (which
also contains AF's with collective attacks), which we dubbed SFADFs. This
property also allowed us to distinguish ASSADFs from SFSADFs in that
odd-length-cycle-free ASSADF's are not coherent in general.

The motivation behind this line of investigation lies in the fact that
different semantics show different complexities (Strass and Wallner, 2015).
It is thus valuable to know under which circumstances higher complexities
can be avoided. Acyclicity is a positive example since the coincidence with
grounded semantics shows that, for instance, the more complex preferred
semantics becomes easier for this class of frameworks. The practical
implication is as follows: an ADF solver should check for acyclicity before
computing preferred interpretations, since in case the ADF to be treated
is acyclic, the easier procedure for grounded semantics suffices to do the
job. As we have shown, such a strategy does not carry over to symmetric
ADFs. This is in contrast to symmetric AFs where coherence holds, i.e.
the (more complex) preferred semantics coincides with the (easier) stable
semantics. Nonetheless, there is still a chance that symmetric ADF's are of
practical help. In contrast to acyclic ADFs where the complexity drop is
immediate, our results underline that dedicated complexity analyses for
symmetric ADFs should be considered as future work.

As a further contribution and also following in the footsteps of work
for AFs (Dunne et al., 2015), we considered the subclasses of ADFs
we introduced (ASSADFs, SFADFs, and SFSADFSs) in terms of their
expressivity as can be gleaned from their signatures. Here SFSADFs
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are a strict subset of ASSADF's for the admissibility-based semantics we
considered, while SFADFs are incomparable w.r.t. ASSADFs (and a strict
superset of SFSADFs). On the other hand the signatures of ASSADFs,
SFADFs, and SFSADFs coincide for the model and stable semantics.

We also complemented previous work on expressivity of AFs and
ADFs (Strass, 2015; Piihrer, 2015; Linsbichler et al., 2016) by comparing
the expressivity of ASSADFs, SFADFs, and SFSADFs with that of AF's,
bipolar ADFs (BADFs), and ADFs. Here ASSADFs and SFSADFs are
incomparable with AFs for the admissibility semantics, while SFADFs
are strictly more expressive. ASSADFs, SFADFs, and SFSADFs are
strictly more expressive for the model and stable semantics. On the other
hand, they are strictly less expressive than BADF's for the model and
admissibility based semantics, while they coincide in expressivity with
BADFs and general ADF's for the stable semantics.

This work is an elaboration on the more theoretical aspects of our work
presented in (Diller et al., 2018). There we had also included results on an
empirical evaluation of some of the main systems for ADFs (QADF (Diller
et al., 2014), YADF (Brewka et al., 2017a), and goDIAMOND (Strass and
Ellmauthaler, 2017)) on acyclic vs. non-acyclic ADFs. These show usually
only a slight improvement of these systems (which do not detect subclasses
of ADFs) on the acyclic instances despite the fact that the results we
present in this work indicate that even the most difficult of reasoning
problems become tractable for acyclic ADFs. Thus, our work offers further
guidelines for designing more efficient systems for ADFs. As a notable
example and as we suggested in the introduction, backdoor approaches
that utilize the distance to subclasses with easier complexity, such as the
systems cegartix (Dvofak et al., 2014) for AFs as well as the very recent
k++ADF (Linsbichler et al., 2018) for ADFs, can be devised on the basis of
our results.

Finally, also from a theoretical perspective our work leaves open several
further avenues to explore. In particular, we consider to extend our studies
to other ADF semantics (Gaggl et al., 2015; Polberg, 2016) as well as
generalizations of ADFs (Brewka et al., 2018b).
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Chapter 9

Expressiveness of SETAFs
and Support-Free ADF's
under 3-Valued Semantics

Generalizing the attack structure in argumentation frameworks (AFs)
has been studied in different ways. Most prominently, the binary attack
relation of Dung’s frameworks has been extended to the notion of collective
attacks. The resulting formalism is often termed SETAFs. Another
approach is provided via abstract dialectical frameworks (ADFs), where
acceptance conditions specify the relation between arguments; restricting
these conditions naturally allows for so-called support-free ADFs. The aim
of this chapter is to shed light on the relation between these two different
approaches. To this end, we investigate and compare the expressiveness
of SETAFs and support-free ADFs under the lens of 3-valued semantics.
Our results show that it is only the presence of unsatisfiable acceptance
conditions in support-free ADF's that discriminates the two approaches.

9.1 Introduction

Abstract argumentation frameworks (AFs) as introduced by Dung (1995)
are a core formalism in formal argumentation. A popular line of research
investigates extensions of Dung AF's that allow for a richer syntax (see,
e.g. (Brewka et al., 2014)). In this chapter we investigate two generalisations
of Dung AF's that allow for a more flexible attack structure (but do not
consider support between arguments).

The first formalism we consider are SETAFs as introduced by Nielsen
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and Parsons (2006). SETAFs extend Dung AFs by allowing for collec-
tive attacks such that a set of arguments B attacks another argument a
but no proper subset of B attacks a. Argumentation frameworks with
collective attacks have received increasing interest in the last years. For
instance, semi-stable, stage, ideal, and eager semantics have been adapted
to SETAFs in (Dvoidk et al., 2019; Flouris and Bikakis, 2019); translations
between SETAFs and other abstract argumentation formalisms are studied
in (Polberg, 2017); (Yun et al., 2018) observed that for particular instanti-
ations, SETAFs provide a more convenient target formalism than Dung
AFs. The expressiveness of SETAFs with two-valued semantics has been
investigated in (Dvordk et al., 2019) in terms of signatures. Signatures
have been introduced in (Dunne et al., 2015) for AFs. In general terms, a
signature for a formalism and a semantics captures all possible outcomes
that can be obtained by the instances of the formalism under the considered
semantics. Besides that, signatures are recognized as crucial for operators
in dynamics of argumentation (cf. (Baumann and Brewka, 2019)).

The second formalism we consider are support-free abstract dialecti-
cal frameworks (SFADFs), a subclass of abstract dialectical frameworks
(ADFs) (Brewka et al., 2018a) which are known as an advanced abstract
formalism for argumentation, that is able to cover several generalizations
of AFs (Brewka et al., 2014; Polberg, 2017). This is accomplished by
acceptance conditions which specify, for each argument, its relation to
its neighbour arguments via propositional formulas. These conditions
determine the links between the arguments which can be, in particular,
attacking or supporting. SFADFs are ADFs where each link between
arguments is attacking; they have been introduced in a recent study on
different sub-classes of ADFs (Diller et al., 2020).

For comparison of the two formalisms, we need to focus on 3-valued
(labelling) semantics (Verheij, 1996; Caminada and Gabbay, 2009), which
are integral for ADF semantics (Brewka et al., 2018a). In terms of SETAFs,
we can rely on the recently introduced labelling semantics in (Flouris and
Bikakis, 2019). We first define a new class of ADFs (SETADFs) where
the acceptance conditions strictly follow the nature of collective attacks
in SETAFs and show that SETAFs and SETADFSs coincide for the main
semantics, i.e. the o-labellings of a SETAF are equal to the o-interpretations
of the corresponding SETADF. We then provide exact characterisations of
the 3-valued signatures for SETAFs (and thus for SETADFSs) for most of
the semantics under consideration. While SETADFs are a syntactically
defined subclass of ADF's, the second formalism we study can be understood
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as semantical subclass of ADFs. In fact, for SFADF's it is not the syntactic
structure of acceptance conditions that is restricted but their semantic
behavior, in the sense that all links need to be attacking. The second
main contribution of this chapter is to determine the exact difference in
expressiveness between SETADFs and SFADFs.

We briefly discuss related work. The expressiveness of SETAFs has first
been investigated in (Linsbichler et al., 2016) where different sub-classes
of ADFs, i.e. AFs, SETAFs and Bipolar ADFs, are related w.r.t. their
signatures of 3-valued semantics. Moreover, they provide an algorithm
to decide realizability in one of the formalisms under different semantics.
However, no explicit characterisations of the signatures are given. Recently,
Pithrer (2020b) presented explicit characterisations of the signatures of
general ADFs (but not for the sub-classes discussed above). In contrast,
(Dvorak et al., 2019) provides explicit characterisations of the two-valued
signatures of SETAFs and shows that SETAFs are more expressive than
AFs. In both works all arguments are relevant for the signature, while
in (Flouris and Bikakis, 2019) it is shown that when allowing to add extra
arguments to an AF which are not relevant for the signature, i.e. the
extensions/labellings are projected on common arguments, then SETAF's
and AFs are of equivalent expressiveness. Other recent work (Wallner,
2020) already implicitly showed that SFADF's with satisfiable acceptance
conditions can be equivalently represented as SETAFs. This provides
a sufficient condition for rewriting an ADF as SETAF and raises the
question whether it is also a necessary condition. In fact, we will show that
a SFADF has an equivalent SETAF if and only if all acceptance conditions
are satisfiable. Different sub-classes of ADF's (including SFADFs) have
been compared in (Diller et al., 2020), but no exact characterisations of
signatures as we provide here are given in that work.

To summarize, the main contributions of this chapter are as follows:

e We embed SETAFs under 3-valued labeling based semantics (Flouris
and Bikakis, 2019) in the more general framework of ADFs. That is,
we show 3-valued labeling based SETAF semantics to be equivalent
to the corresponding ADF semantics. As a side result, this also shows
the equivalence of the 3-valued SETAF semantics in (Linsbichler
et al., 2016) and (Flouris and Bikakis, 2019).

e We investigate the expressiveness of SETAFs under 3-valued se-
mantics by providing exact characterizations of the signatures for
preferred, stable, grounded and conflict-free semantics, thus com-

255



plementing the investigations on expressiveness of SETAFs (Dvorak
et al., 2019) in terms of extension-based semantics.

e We study the relations between SETAFs and support-free ADFs
(SFADFSs). In particular we give the exact difference in expressive-
ness between SETAFs and SFADF's under conflict-free, admissible,
preferred, grounded, complete, stable and two-valued model seman-
tics.

9.2 Embedding SETAFs in ADF's

As observed by Polberg (2016) and Linsbichler et.al (2016), the notion
of collective attacks can also be represented in ADF's by using the right
acceptance conditions. We next introduce the class SETADFs of ADF's for
this purpose.

Definition 9.1 An ADF D = (S,L,C) is called SETAF-like (SETADF)
if each of the acceptance conditions in C is given by a formula (with € a

set of non-empty clauses)
A Ve

€ a€cl

That is, in a SETADF each acceptance condition is either T (if € is empty)
or a proper CNF formula over negative literals. SETADFs and SETAFs
can be embedded in each other as follows.

Definition 9.2 Let F = (A, R) be a SETAF. The ADF associated to F
is a tuple Dp = (S, L,C) in which S = A, L ={(a,b) | (B,b) € R,a € B}
and C = {@a}aes is the collection of acceptance conditions defined, for

each a € S, as
pa= \ Vo
(B,a)eRa’€B

Let D = (S,L,C) be a SETADF. We construct the SETAF Fp = (A, R)
in which, A =S, and R is constructed as follows. For each argument s € S

with acceptance formula N ey \ geq ~0 we add the attacks {(cl,s) | cl €
¢} to R.

Clearly the ADF Dpr associated to a SETAF F'is a SETADF and D is the
ADF associated to the constructed SETAF Fp. We next deal with the
fact that SETAF semantics are defined as three-valued labellings while
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semantics for ADF's are defined as three valued interpretations. In order
to compare these semantics we associate the in label with ¢, the out label
with f, and the undec label with u.

Theorem 9.3 For o € {cf, adm, com, prf, grd, stb}, a SETAF F and its
associated SETADF D, we have that o¢(F) and o(D) are in one-to-
one correspondence with each labelling . € o (F') corresponding to an
interpretation v € o(D) such that v(s) = t iff A(s) = in, v(s) = £ iff
A(s) = out, and v(s) = u iff A(s) = undec.

Notice that by the above theorem we have that the 3-valued SETAF
semantics introduced in (Linsbichler et al., 2016) coincide with the 3-
valued labelling based SETAF semantics of (Flouris and Bikakis, 2019)
and the model semantics of (Linsbichler et al., 2016) corresponds to the
stable semantics of (Flouris and Bikakis, 2019).

9.3 3-valued Signatures of SETAFs

We adapt the concept of signatures (Dunne et al., 2015) towards our needs
first.

Definition 9.4 The signature of SETAFs under a labelling-based seman-
tics 0.4 is defined as X5y p = {09 (F)|F € SETAF}. The signature of
an ADF-subclass € under a semantics o is defined as £ = {c(D) | D €

By Theorem 9.3 we can use labellings of SETAFs and interpretations
of the SETADF class of ADFs interchangeably, yielding that X3%, ,p =
X% prapps i-e. the 3-valued signatures of SETAFs and SETADFs only
differ in the naming of the labels. For convenience, we will use the SETAF
terminology in this section.

Proposition 9.5 The signature E?%%‘AF 1s given by all sets I of labellings
such that

1. all A € L have the same domain ARGSL; A(s) # undec for all A € L,
s € ARGSL..

2. If X € L assigns one argument to out then it also assigns an argument
to in.
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3. For arbitrary A1, Ao € L with A1 # Ao there is an argument a such
that A1(a) = in and A2(a) = out.

Proof We first show that for each SETAF F' the set sty (F) satisfies
the conditions of the proposition. First clearly all A € stho(F') have the
same domain and by the definition of stable semantics do not assign undec
to any argument. That is the first condition is satisfied. For Condition
(2), towards a contradiction assume that the domain is non-empty and
A € stby(F) assigns all arguments to out. Consider an arbitrary argument
a. By definition of stable semantics a is only labeled out if there is an
attack (B, a) such that all arguments in B are labeled in in, a contradiction.
Thus we obtain that there is at least one argument a with A\(a) = in. For
Condition (3), towards a contradiction assume that for all arguments a
with A\j(a) = in also Aa(a) = in holds. As A; # \g there is an a with
A2(a) = in and Aj(a) = out. That is, there is an attack (B,a) such that
A1(b) = in for all b € B. But then also A2(b) = in for all b € B and by
A2(a) = in we obtain that A2 & ¢f»(F'), a contradiction.

Now assume that IL satisfies all the conditions. We give a SETAF
F, = (A]L, R]L) with A]L = ARGS]L and Ry, = {()\ina (I) | A E L, )\(a) = out}.
We show that stbe(Fp) = L.

To this end we first show sthy(F1.) D L. Consider an arbitrary A € L:
By Condition (1) there is no a € ARGS, with A(a) = undec and it only
remains to show A € ¢fy(F1). First, if A(a) = out for some argument a
then by construction of Ry, and Condition (2) we have an attack (Ain,a)
and thus a is legally labeled out. Now towards a contradiction assume
there is a conflict (B, a) such that B U {a} C Ajp. Then, by construction
of Ry, there is a X' € L with A}, = B and A\i, # B (as a € A\iy). That
is, A{, C Ain, a contradiction to Condition (3). Thus, A € c¢f4(F1) and
therefore \ € stbo(F1).

To show stb(F,) C L, consider A € stb(FL). If A maps all arguments
to in then there is no attack in Ry, which means that L contains only the
labelling A\. Thus, we assume that there is a with A(a) = out and there
is (B,a) € Ry, with B C \j,. By construction there is A’ € L such that
A,, = B. Then by construction we have (B, ¢) € Ry, for all ¢ ¢ B and thus
A, = B = A\ip and moreover A, . = Aoyt and thus A = \. O

We now turn to the signature for preferred semantics. Compared to
the conditions for stable semantics, labelling may now assign undec to
arguments. Note that stable is the only semantics allowing for an empty
labelling set.
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Proposition 9.6 The signature Eg%%AF 1s given by all non-empty sets

L of labellings s.t.

1. all labellings X € I have the same domain ARGSL.

2. If X € L assigns one argument to out then it also assigns an argument
to in.

3. For arbitrary A1, Ao € L with A1 # Ao there is an argument a such
A1(a) = in and A2(a) = out.

Proof [Proof sketch] We first show that for each SETAF F' the set
prfe(F) satisfies the conditions of the proposition. The first condition is
satisfied as all A € prfe(F') have the same domain. The second condition
is satisfied by the definition of conflict-free labellings. Condition (3) is by
the C-maximality of A\iy which implies that there is a conflict between
each two preferred extensions.

Now assume that L satisfies all the conditions. We give a SETAF
Fr, = (A]L,R]L) with A, = ARGS, and Ry, = {()\in,a) ‘ A E ]L,)\(a) =
out} U{(AinU{a},a) | A € L, A\(a) = undec}. It remains to show that
prfe(FL) = L. To show prfy(Fr) 2 L, consider an arbitrary A € L.
A € c¢fy(FL) can be seen by construction, and A € admg(FL) since
argument labelled out is attacked by A; finally A € prf,(F1) is guaranteed
since the arguments a with A(a) = undec are involved in self-attacks. To
show prfe(FL) C L consider A € prfe(FL). It can be checked that A
satisfies all the conditions of the proposition. O

Proposition 9.7 The signature EE%'TAF 1s given by all non-empty sets
L of labellings s.t.
1. all A € L have the same domain ARGSL,.

2. If X € L assigns one argument to out then it also assigns an argument
to in.

For A € L and C C \iy also (C,0, AraGsy, \ C) € L.

For A € L and C C Aout also (Ain, Aout \ C, Aundec UC) € L.

For \, N € L with Ain C N, also (N, Aout UAL 4t Adundec M Apgec) € L.

For \, N € L and C C Aout (s.t. C #0) we have iy, UC € N, .

S S Ce

Proof [Proof sketch] Let F' be an arbitrary SETAF we show that c¢fe(F)
satisfies the conditions of the proposition. The first two conditions are
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clearly satisfied by the definition of conflict-free labelling. For Condition
(3), towards a contradiction assume that (C, 0, ArGsy, \ C) is not conflict-
free. Then there is an attack (B, a) such that BU {a} C C C \ip, and
thus A € cfy(F), a contradiction. Condition (4) is satisfied as in the
definition of conflict-free labellings there are no conditions for labeling an
argument undec. Further, the conditions that allow to label an argument
out solely depend on the in labeled arguments. For Condition (5), consider
AN € efp(F) with A\ip € N, and A* = (N, Aout U Aty Adundec N Nipgec)-
Since A\, € L, it is easy to check that \* is a well-founded labelling
and \* € ¢f4(F). For Condition (6), consider A\, \' € ¢f,(F) and a set
C' C Aoyt containing an argument a such that A(a) = out. That is, there is
an attack (B,a) with B C Ay and thus A\i, UC € \,. That is, Condition
(6) is satisfied.

Now assume that IL satisfies all the conditions. We give a SETAF
F, = (A]L,R]L) with A, = ARGS, and Ry, = {()\in,a) | A€ ]L,)\(a) =
out} U {(B,b) | b € B,BX € L : \;y = B}. To complete the proof it
remains to show that ¢fe(F) = L. O

Finally, we give an exact characterisation of the signature of grounded
semantics.

Proposition 9.8 The signature Eg%i%)AF 1s given by sets L of labellings
such that |L| = 1, and if X\ € L assigns one argument to out then \i, # (.

Notice that Proposition 9.8 basically exploits that grounded semantics
is a unique status semantics based on admissibility. The result thus
immediately extends to other semantics satisfying these two properties,
e.g. to ideal or eager semantics (Flouris and Bikakis, 2019).

So far, we have provided characterisations for the signatures Egﬁg% AR
Egg%AF, EéfEZTAF’ Eggl%AF. By Theorem 9.3 we get analogous characteriza-
tions of X&ppapp for the corresponding ADF semantics.

We have not yet touched admissible and complete semantics. Here,
the exact characterisations seem to be more cumbersome and are left for
future work. However, for admissible semantics the following proposition
provides necessary conditions for an labelling-set to be adm-realizable, but
it remains open whether they are also sufficient.

Proposition 9.9 For each L € Eg‘g}ﬂF we have:

1. all A € . have the same domain ARGSL,.

260



2. If X € L assigns one argument to out then it also assigns an argument
to in.

3. For \ N € L and C C Aoy (s.t. C #0) we have \in UC € N,,.
4. For arbitrary \,\' € L either (a) (Ain U Ny, Aout U Aoye, Aundec N

in’ out>
Mindec) € L or (b) there is an argument a such A a) = in and
N (a) = out.

5. For A, N €L with Aouwt € Ayue, and C C Ain \ Upeer, ax —x Abur we
have (N, U Cy AL i, A \C) e L.

out’ “‘undec
6. For \, N € L with A\in C N, and C C Aoyt we have (N,
C, \, \C) e L.

» “‘undec
7. For \,\' € L with Ain C Nip, and Aowr 2 N,y we have (Ain, Asye, ARGSL\
(Ain UX ) € L.

out

8. (0,0,Arcsy) € L.

Proof We show that for each SETAF F the set admy(F) satisfies the
conditions of the proposition. Conditions (1)—(3) are by the fact that
admy(F) C ¢fy(F). For Condition (4), let A\, N € admg(F) with Ajp N
N {} (since each admissible labelling defends itself, X}, N Aour = {}).

out —
Thus, A* = (Ain UM, Aout U ALyt Mundec N Aipgec) 18 @ well-defined labelling.
Further, since A\, \" € admg(F) it is easy to check that \* € admy(F).

For Condition (5), let A* = (N, UC, X, ¢, Mingec \ C). First, A* is a
well-defined labelling. Notice that the set C' contains arguments defended
by A and not attacked by \,,. Now, it is easy to check that \* meets
the condition for being an admissible labelling. For Condition (6), let
A = (N, ALye U Co N 4o \ ©). Notice that the set C' contains only
arguments attacked by Aj, and thus are also attacked by M\,,. Thus,
starting from the admissible labelling A’ we can relabel arguments in C' to
out and obtain that A\* is also an admissible labelling.

For Condition (7), let \* = (Ain, Al ARGSL \ (Ain U ALy;)). First, \*
is a well-defined labelling. We have that setting A, to out is sufficient
to make all the in labels for arguments in A}, valid and thus are also
sufficient to make the in labels for arguments \i, C A}, valid. Moreover,
as Aout 2 ALy, also labelling arguments Aj, with in is sufficient to make
the out labels for A/ . valid. Hence, \* is admissible.

For Condition (8), the conditions of admissible labelling for arguments
labelled in or out in (), ), ARGSL) are clearly met, since there are no such

arguments.

)‘/out U

g
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9.4 On the Relation between SETAF's and Support-
Free ADFs

In order to compare SETAFs with SFADF's, we can rely on SETADF's (recall
Theorem 9.3). In particular, we will compare the signatures XZprapp

and X¢p 4 pp, cf. Definition 9.4. We start with the observation that each
SETADF can be rewritten as an equivalent SETADF that is also a SFADF.!

Lemma 9.10 For each SETADF D = (S,L,C) there is an equivalent
SETADF D' = (S,L',C") that is also a SFADF, i.e. for each s € S,
s € C, ¢l € C" we have ps = ¢l,.

Proof Given a SETADF D, by Definition 9.1, each acceptance condition
is a CNF over negative literals and thus does not have any support link
which is not redundant. We can thus obtain L’ by removing the redundant
links from L and C’ by, in each acceptance condition, deleting the clauses
that are super-sets of other clauses. O

By the above we have that X¢prapp € X8papp- Now consider the interpre-
tation v = {a — f}. We have that for all considered semantics o, v is a o-
interpretation of the SFADF D = ({a}, {¢, = L}) but there is no SETADF
with v being a o-interpretation. We thus obtain Xgprapr € X3papr-

Theorem 9.11 X1 pr © XSpapr, for o € {cf, adm, stb, mod, com,
prf, grd}.

In the remainder of this section we aim to characterise the difference be-
tween Xqprapp and XGp 4 pp- To this end we first recall a characterisation
of the acceptance conditions of SFADF that can be rewritten as collective
attacks.

Lemma 9.12 (Wallner, 2020) Let D = (S, L,C) be a SFADF. If s € S
has at least one incoming link then the acceptance condition ps can be
written in CNF containing only negative literals.

It remains to consider those arguments in an SFADF with no incoming links.
Such arguments allow for only two acceptance conditions T and 1. While
condition T is unproblematic (it refers to an initial argument in a SETAF),

! As discussed in (Polberg, 2017), in general, SETAFs translate to bipolar ADFs
that contain attacking and redundant links. However, when we first remove redundant
attacks from the SETAF we obtain a SFADF.
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an argument with unsatisfiable acceptance condition cannot be modeled in
a SETADF. In fact, the different expressiveness of SETADFs and SFADFs
is solely rooted in the capability of SFADFs to set an argument to f via a
1 acceptance condition.

We next give a generic characterisations of the difference between

g g
28prapr and Xgppp-

Theorem 9.13 For o € {cf, adm, stb, mod, com, prf, grd}, we have A, =
E%papr \ Xggrapr with

Ay ={V e X%upr| eV st Va:v(a) € {f,u} Ada:v(a) =1}.

Proof [Proof sketch] If a SFADF has a o-interpretation v that assigns
some arguments to f without assigning an argument to t then we have that
the arguments assigned to f are exactly the arguments with acceptance
condition L. For stb and mod semantics this means all arguments have
acceptance condition L and the result follows. Each preferred interpretation
assigns arguments with acceptance condition L to f and thus the existence
of another preferred interpretation would violate the <;-maximality of v.
O

In other words each interpretation-set which is o-realizable in SFADFs
and contains at least two interpretations can be realized in SETADFs, for
o € {stb, prf, mod}. We close this section with an example illustrating that
the above characterisation thus not hold for c¢f, adm, and com.

Example 9.14 Let D = ({a,b,c},{¢vs = L, pp = —¢c,p. = —b}). We have
com(D) = {{a — f,b — u,c— u},{a— £,b— t,c— f},{a— 0~
f.c— t}}. By Theorem 9.13, com(D) cannot be realized as SETADEF.
Moreover, as com(D) C adm(D) C c¢f(D) for every ADF D, we have that,

despite all three contain more than one interpretation, none of them can
be realized via a SETADF.

9.5 Conclusion

In this chapter, we have characterised the expressiveness of SETAFs under
3-valued signatures. The more fine-grained notion of 3-valued signatures
reveals subtle differences of the expressiveness of stable and preferred
semantics which are not present in the 2-valued setting (Dvorak et al., 2019)
and enabled us to compare the expressive power of SETAFs and SFADFs,
a subclass of ADFs that allows only for attacking links. In particular,
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we have exactly characterized the difference for conflict-free, admissible,
complete, stable, preferred, and grounded semantics; this difference is
rooted in the capability of SFADF's to set an initial argument to false.
Together with our exact characterisations on signatures of SETAFs for
stable, preferred, grounded, and conflict-free semantics, this also yields the
corresponding results for SFADFs. Exact characterisations for admissible
and complete semantics can be investigated as future work. Another
aspect to be investigated is to which extent our insights on labelling-based
semantics for SETAFs and SFADFs can help improve the performance of
reasoning systems.
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Chapter 10

Embedding Probabilities,
Utilities and Decisions in a
Generalization of ADF's

Life is made up of a long list of decisions. In each of them, there exists
quite a number of choices and most decisions are affected by uncertain-
ties and preferences, from choosing a healthy lunch and nice clothes to
choosing a profession and a field of study. Uncertainties can be modeled
by probabilities and preferences can be modeled by utilities. A rational
decision maker prefers to make a decision with the least regret or the most
satisfaction. The principle of maximum expected utility can be helpful in
this issue. Expected utility deals with problems in which agents make a
decision under conditions in which probabilities of states play a role in the
choice, as well as the utilities of outcomes.

Argumentation formalisms could be an option to model these problems
and to pick one or several alternatives. In this chapter, a new argument-
based framework, numerical abstract dialectical frameworks (nADFs for
short), is introduced to do so. This framework is a generalization of
abstract dialectical frameworks (ADF's for short). First, the semantics
based on many-valued interpretations are introduced, including preferred,
grounded, complete, and model-based semantics. Second, it is shown how
nADFs are expressive enough to formalize standard decision problems. It
is shown that the different types of semantics of an nADF that is associated
with a decision problem all coincide and have the standard meaning. In
this way, it is shown how the nADF semantics can be used to choose the
best set of decisions.
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10.1 Introduction

During life, people are faced with a long series of decisions. A good decision
may lead to a cure for a disease, to an investment in a proper project by
a business person, to a judgment in a crime case, and to a fair debate.
Definitely, different decisions that are made by an agent yield different
consequences. At the moment of decision making, we are usually not
certain of what is the consequence of our decision, but we may know the
set of possible consequences that our decision can lead to. That is, we
usually make decisions under uncertainty. The uncertainty mostly arises
because of external factors that are out of control of agents, which are
called state, such as needing to undergo emergency surgery.

Assume that Maryam wants to travel abroad. She wants to decide
whether or not to buy an international health insurance by spending 100
euros. The decision depends on some factors. Here, the external factor
is the probability of having to undergo emergency surgery abroad. For
example, if Maryam had a heart attack recently, the need for health
insurance abroad is higher than for healthy people. Maryam’s decision
leads to either: 1) buying an international insurance for 100 euros and
needing it when she is abroad; 2) losing 100 euros because of buying an
international health insurance and not needing it; 3) needing an emergency
surgery without any insurance, that is, she has to spend at least 10, 000
euros; 4) not buying international health insurance and not needing it, that
is, spending nothing. Another factor with crucial importance in making
decisions is the preferences that Maryam has on different consequences,
which are called outcomes. Maryam prefers not to spend any money for
an insurance and not to undergo emergency surgery to other outcomes,
however, in the case that she needs emergency surgery abroad, she prefers
to spend 100 euros rather than at least 10,000 euros.

Maryam can choose among actions (buying an international health
insurance or not), but she does not have any control over the states (having
to undergo emergency surgery abroad or not). However, the probability of
occurrence of each state has an effect on her decision. Actually, if a state
of the world can be affected by an agent, it is not a state in the sense of
decision theory. An agent has control but not belief over actions, however,
over states she/he has belief but no control.

A theory concerned with making the best decision under uncertainty
is called expected utility theory (Von Neumann and Morgenstern, 1947;
von Neumann and Morgenstern, 2007; Savage, 1954; Briggs, 2019; Gilboa,
2009; Mongin, 1998; Russell and Norvig, 2009). The expected utility of
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each decision or action is the weighted average of utilities of the possible
outcomes, where utility is a numerical measure of preference of outcomes
from an agent point of view, representing the agent’s desire. These utilities
are weighted by the probability of the state that leads to that outcome for
a specific action.

Although there exist many formalisms, solvers and automated methods
in decision theory such as influence diagrams (Howard and Matheson, 2005;
Olmsted, 1985; Shachter, 1986), because of the importance of decision
making in human life and the wide variety of decision problems, new
approaches of modeling and evaluating them are required.

Argumentation is a reasoning model that can help to select one or
several alternative actions, or explain an already adopted decision. Several
efforts have been put into the study and definition of argumentation
formalisms within which the values or preferences of agents are of crucial
importance for everyday reasoning (Amgoud and Prade, 2009; Atkinson
and Bench-Capon, 2007, 2018; Bench-Capon, 2003; Dung and Thang,
2010; Hunter and Thimm, 2014; Verheij, 2016a; Vlek et al., 2016). One
might wonder whether an argumentation formalism can be considered for
modeling and solving decision problems. Motivated by this question, we will
here introduce an argumentation formalism to represent problems in which
both the probability of states and utility over outcomes play a role in making
decisions. Then in future work, abstract dialectical framework (ADF)
solvers can be generalized to numerical abstract dialectical frameworks
(nADFs) to make a decision automatically.

The main goal of this chapter is to investigate how an argumentation
formalism can accommodate a decision problem. We model scenarios
with utility, using a formalism of argumentation that will allow us to
compute the maximum expected utility of a problem with the help of
semantics of that argumentation framework. To this end, we introduce
numerical Abstract Dialectical Frameworks (nADFs for short), which are
a generalization of abstract dialectical frameworks, introduced first in
(Brewka and Woltran, 2010) and then revised in (Brewka et al., 2013, 2018a),
as a generalization of Dung’s argumentation frameworks (AFs) (Dung,
1995). An nADF shows how the structure of arguments can be constructed
from a given knowledge base and how arguments interact with each other.
In argumentation formalisms like AFs and ADFSs, the area that deals with
evaluating arguments is called semantics. Semantics are criteria used to
select subsets of available arguments that satisfy desirable properties. We
follow the same way in our work to choose the best action in the nADF
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that is constructed based on a decision problem. We do not claim that
our results will make decision theory computationally more efficient. The
reasons why we combined decision theory with ADFs are as follows:

e Argumentation theory can shed light on the process of decision
making, from modeling to evaluating a problem. ADFs are expressive
formalisms in that area.

e Decision theory uses the well-known tools of probabilities and utilities,
of which the relation with argumentation theory are still to be well-
understood.

In nADFs as well as ADF's, each argument is associated with an acceptance
condition. However, in contrast with ADFs, the language used to define
acceptance conditions of nADFs is a variation of propositional logic allowing
numerical calculation.

This chapter is organized as follows. In Section 10.2, we summarize
the relevant background. In particular, we provide a short reminder on
decision problems, expected utility theory and ADFs. In Section 10.3,
the structures of numerical abstract argumentation frameworks, which
are generalization of ADFs, are introduced. Semantics of nADFs are
defined based on many-valued interpretation on rational numbers of the
unit interval. In Section 10.4, we investigate how nADF's can be used to
model decision problems, that is, how an nADF can be constructed from
a given decision problem. Then, we show that in the constructed nADF
all semantics collapse to the same set of interpretations. Moreover, it is
shown how this unique set of interpretations can be used to choose the
best action. Finally, in Section 10.5 we will summarize and conclude the
presented results and refer to the open questions we would like to address
next. Moreover, we compare nADFs with ADF's and their generalization
called weighted ADFs (Brewka et al., 2018b).

10.2 Background

In this section, we summarize decision problems, expected utility theory,
and abstract dialectical frameworks.

10.2.1 Decision Problems

Decision making under uncertainty infuses the life of every decision maker,
which can be an individual, an organization or a society. To say that a
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Figure 10.1: The table of a decision-making problem

decision is made by a decision maker, called an agent, means that an action
among the set of actions A is chosen to be done. Uncertainty in decision
making means that an available action may lead to the set of outcomes
O. The outcome of each decision is also influenced by some external
factors which are called states S. Following the example introduced in
the introduction, Maryam can choose whether to buy a health insurance.
The consequences of her decision depend on whether she gets emergency
surgery abroad. That is, Maryam’s decision depends on the probability of
getting an emergency surgery. Beyond the probability of states, Maryam’s
decision depends on her preferences on the consequences. For instance,
she prefers not to buy a health insurance and not to get a surgery to other
consequences. However, she prefers to spend 100 euros to buy a health
insurance rather than to spend at least 10,000 euros to get emergency
surgery. The basic model of decision under uncertainty is a table or matrix
in which the columns are labeled with states and the rows are labeled
with actions and the consequence of picking an action in each state is an
outcome, as depicted in Figure 10.1.

The notation o1 >, 02 means an agent strictly prefers o1 to 02, 01 ~p 02
means o1 and o9 are equally preferred by an agent or an agent is indifferent
between o1 and 02, and 01 =, 02 means o1 is preferred at least as much as is
02. The preference relation =, over the set of outcomes is called rational iff
it is transitive and complete. The technical name for the value of a possible
outcome is utility. In (Bentham, 1961; Sidgwick, 1981), utility is interpreted
as a measure of pleasure or happiness. Contemporary decision theorists
typically interpret utility as a measure of preference (Von Neumann and
Morgenstern, 1947; von Neumann and Morgenstern, 2007; Sen, 1977). That
is, it is not the case that an agent prefers outcome o1 over oo because o1
generates a higher utility than os. But for an agent, o1 has a higher utility
than oo because she/he prefers 01 to 0s.

269



Definition 10.1 Given =, a rational order over the finite set of outcomes
O. A function u : O — R is called a utility function that represents =, if,
for every two outcomes o1 and o2, u(o1) > u(oz2) iff 01 = 02.

In Cantor’s result characterizing dense order, dating from around 1895, it
is shown that a binary relation =, over a finite set can be represented by
a real-valued function u if and only if =, is a rational order. Note that
in the current chapter, utility functions are defined over Q, in which Q
denotes the set of rational numbers. A decision problem is formally defined
in Definition 10.2.

Definition 10.2 A decision problem is a tuple (A, S, O,p,u) where:
e A is a finite set of actions that can be chosen by an agent;
e S is a finite set of states;
e O is a finite set of outcomes;

e p is a probability function on states, namely, p : S — [0,1] such that
ESGS p(s) - 1;

e u is a utility function on outcomes, namely, u: O — Q.

The criterion that deals with the analysis of situations where individuals
must make a decision without knowing which outcomes may result from
that decision (act) is called expected utility, which was first introduced by
Daniel Bernoulli in his work on a paradox of probability (Arrow, 1974).
Expected utility theory (EUT) states that a decision maker chooses among
actions A under uncertainty by comparing the expected utility (Gilboa,
2009; Mongin, 1998; von Neumann and Morgenstern, 2007) of each action
computed as the sum of the utilities of outcomes which are weighted by
states respective probability. EUT is a standard theory of individual
choice under uncertainty. Expected utility theory says that the higher the
expected utility of an action is, the better it is to be chosen. The expected
utility of each action a € A depends on two features of the problem: The
value of each outcome o € O forms an agent’s standpoint, the utility of
an outcome, u(0); and the probability of each outcome conditional on a,
represented by p(0).

In expected utility theory, probability can be interpreted as a subjec-
tive estimate by the individual or as objectively obtained from relevant
(past) data. The former is a measure of individual degrees of belief as
described in (Ramsey, 2016; Savage, 1954). However, probability can be
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interpreted as an objective chance as in (von Neumann and Morgenstern,
2007; Von Neumann and Morgenstern, 1947). In the current work, the
interpretation of probability introduced by (Savage, 1954) is used, in which
pa(0) is calculated by summing the probabilities of states that, when com-
bined by the action a, lead to the outcome o. To present p,(0) formally,
let Xq,s(0) be a function on O defined as follows:

Xa,s(o) =

1 if o results from performing action of a in state s,
0 otherwise

Then pg(0) = ses p(s)Xxa,s(0), where p(s) is the probability of occur-
ring of state s.

Definition 10.3 Let A be a set of actions that could be chosen by an
agent, S a set of states, and O a set of outcomes. The expected utility of
a € A is defined as:

EU(a) = Zoco pal(0)u(0)

The principle of maximum expected utility (MEU) says that a rational
agent should choose the action that belongs to the set of actions with
maximum expected utility. An action a belongs to the set of maximum
expected utility if for each o’ € A, EU(a) > EU(d’).

10.3 Numerical Abstract Dialectical Frameworks

In many argumentation situations, it is natural to assume n-valued ac-
ceptance degrees of arguments, for n > 3. For instance, if one wants to
investigate in a given semantics (preferred, complete, ...) whether the
probability of a state is below or above some threshold in an interpretation.

In this section, we introduce a modification of ADF's called numeri-
cal abstract dialectical frameworks (nADFs). nADF's enhance ADFs by
allowing numerical acceptance conditions of arguments and arithmetical
computations among them. The logic used to define the acceptance condi-
tions of arguments in nADFs is a variation of propositional logic, defined
in Definition 10.4.

Definition 10.4 This logic contains:

e a countably infinite number of propositional variables: x1,xa,...;
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a countably infinite number of constants which are called propositional
atoms: a,b,s,...;

e truth constants: T and L;
e the connectives of propositional logic: A,V,—;
e binary function symbols: & and ®;

e a binary predicate symbol = that takes entities in the domain of
discourse as input while outputs are either 1 (True), 0 (False), or u
(unknown or undecided).

o the truth-functional operator of/\ with the output of either 1 (True)
or 0 (False).

The set of terms {t1,ta,...} is inductively defined by the following rules:

e any variable and any propositional atom is a term;

e applying of each binary function of the language on two terms t1 and
to also results in a term, for instance, t1 ® tsy;

e nothing else is a term.
The set of formulas is inductively defined by the following rules:

e any formula of propositional logic is also a formula;
o for arbitrary terms t1 and ta, t1 = to is a formula;
e nothing else is a formula.

Note that interpretations of the connectives and function symbols of
Definition 10.4 are given below in Section 10.3.1. An nADF is introduced
in Definition 10.5.

Definition 10.5 Let V be Q. An nADF is a tuple U = (N,L,C,i) in
which the following hold:

e N is a finite set of nodes;
o L. C N x N is a set of links;

o C = {Cyhlnen is a collection of total functions called acceptance
conditions over V , that is, Cy, : (par(n) — V) — V', where par(n) =
{a | (a,n) € L};
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e i is a function called input function, namely, i : N' — V where
N’ C N.

Note that this definition is a generalization of Definition 2.40 of ADFs. In
the current work, the C), correspond to formulas of the language introduced
in Definition 10.4 indicated by ¢,. Note that the set of links L is also
implicitly determined by the acceptance conditions.

An nADF, just like an ADF, is a directed graph in which nodes indicate
arguments or statements and links represent relations between statements.
Each node n has an attached formula, denoted by ¢,, of the logical
language introduced in Definition 10.4, which is a language of propositional
logic with new binary functions: & used for the plus function and ® used
for the times function, plus a binary relation > used for the preference
relation.

In Definition 10.5, ¢ is a partial function on nodes; however, i(n) does
not appear in the acceptance conditions. It is used to indicate the input
value of n and i(n) is called input value of n. Input function ¢ is used in
the computation of semantics of nADFs. In our setting, i(n) will be used
to represent the probabilities of states and the utilities of outcomes. In
general, if i(n) is defined in an nADF, this does not mean that the degree
of acceptance of ¢, is i(n) or the initial value of n is i(n), but the input
value that is considered for n is i(n). For instance, an atom n can be
used to represent the number of heart-beats per minute and i(n) indicates
the normal number of heart-beats per minute. The input value of normal
heart-beats i(n) can be compared with a person’s number of heart-beats n
or can be used in an equation to decide whether a person’s heart beats
normally, but it does not mean that n is assigned the value i(n).

Example 10.6 is an abstract nADF with three arguments. Their values
in an interpretation are computed in Example 10.15. In Section 10.4, we
give a concrete example in terms of decision making.

Example 10.6 LetU = ({a,b,c}, L, {®a, pp, ©c}, {i(b) = 1/5,i(c) = 4/5})
be an nADF in which ¢, = a, v, = bV a, p. = (a®c) = b, depicted
i Figure 10.2. In this nADF, function i is defined on b and ¢ and this
means that the input value of b is 1/5 and the input value of ¢ is 4/5. The
acceptance condition of a says that the degree of acceptance of a depends
only on a. The acceptance condition of b says the degree of acceptance of b
depends on the degree of acceptance of b and a. The acceptance condition
of ¢ is composed from the predicate = on the terms a ® ¢ and b.

nADFs are also used to answer queries, for instance, in Example 10.6,
an nADF can be used to clarify for which amount of a the acceptance
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a bV —a

(a®c)=b

Figure 10.2: nADF of Examplel0.6

condition of ¢ has truth value 1 (true). The computation of acceptance
degrees of nodes is introduced in Section 10.3.1.

10.3.1 Semantics of nADF's

Semantics of nADFs indicate the degree of acceptance of each argument
and they are introduced based on many-valued interpretations given below.

Definition 10.7 A many-valued interpretation v for an nADF U is a
function mapping each argument to a rational number or to undecided (u),
namely, v: N — Vg, where Vy = QU {u}.

The definition is a generalization of three-valued interpretations of ADFs
(Definition 2.1). That is, an interpretation assigns a rational number or
u to the nodes of an nADF. The intuition of u is that an argument is
unknown (undecided). Any rational number assigned to an argument
shows the degree of acceptance. Interpretations can be extended to assign
a degree of acceptance to each acceptance condition. The evaluation of the
acceptance condition of each argument n under a given interpretation v is a
partial evaluation of ¢,, under i-correction v introduced in Definition 10.8.

Definition 10.8 Let U = (N, L,C,i) be an nADF and let v be a many-
valued interpretation. The i-correction of v under U denoted by v is defined
as v(n) =i(n) if i is defined onn € N in U and v(n) = v(n) otherwise.

The evaluation of non-standard connectives, functions and the predicate
>~ under the i-correction of a given interpretation v in a given nADF U is
as follows.

Definition 10.9 Given an nADF U = (N, L,C, 1), let v be a many-valued
interpretation. The partial evaluation of acceptance conditions under v is
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defined inductively as follows, in which v is the i-correction of v under U,
lowercase a, b are propositional atoms, uppercase A, B are formulas, and
t1, to, t; are terms and I is a finite set of natural numbers.

v(A A B) := min{v(A),v(B)},
v(AV B) := mazx{v(A),v(B)},
v(a®b) = v(a) x v(b),
Vo) i=via) +v0),
(/\1e1t {1 if for each i v(t;) =1,

V .
0 otherwise.

L ifv(t1),v(tz) € Q and v(t1) > v(t2),
v(ty = t2) =<0 if v(t1),v(t2) € Q and v(t1) < v(t2),
u if either v(t1) or v(t2) is undecided.

Here, multiplication x on rational numbers is the standard multiplication.
Moreover, ux 0 =0xu=0anduxn=nxu=ufor n # 0. Also,
+ and — on rational numbers are the standard addition and subtraction,
respectively, such that n —u=u—-—n=u+n=n+u=uforn e Q.
Finally, v(A V B) and v(A A B) are u if either v(A) or v(B) is u.

The set of all many-valued interpretations over N is denoted by 7, i.e.,
¥ ={v|v: N — Vu}. Interpretations can be ordered by the ordering <;
which assigns a greater value to the rational numbers than to u, that is,
u <; = for x € Q. The reflexive closure of <; is <;,i.e., u <;uand z <; x
for each x € Q. Now we can define:

v) <; vg iff for each n € N, vi(n) <; va(n).

Note that in the current work, we assume that all rational numbers are
incomparable via <;. That is, for each z,y € Q, if z # y, then neither
T <; ynory <;x,

Definition 10.10 Let ¥ be the set of all many-valued interpretations and
let v1 and vy be two interpretations of V. Interpretation vy is called an ex-
tension of vy if v1 <; va. Interpretations vy and ve are called incomparable,
denoted by vy X1 vy, if neither v <; vo nor vo <; V1.

The least interpretation, which is called trivial interpretation, is the one
that maps all arguments to undecided, which is denoted by v, : N — {u}.

Example 10.11 Let v = {a — u,s — u,0 — 1/3},v1 = {a — u,s —
1/10,0 — 1/3} and v = {a — u,s — 1/10,0 +— 1/2} be three interpreta-
tions of V. Since v and vy are equivalent on an argument which is assigned
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to a rational number by v and v(s) <; vi(s), v1 is an extension of v.
However, vy and v are incomparable v < vy, because neither v(o) <; va(0)
nor ve(0) <; v(0).

Definition 10.12 Let v € ¥ be a many-valued interpretation. Then an
extension w of v is called total if, for each n € N, it holds that w(n) € Q.
The set of total extensions of v is denoted by [v].

The semantics of nADFSs, similarly to the semantics of ADFs defined in
Section 2.5.1, are defined based on a characteristic operator I'y on many-
valued interpretations that are ordered by ordering <;. This shows that
nADFs form an appropriate generalization of ADFs. The meet operator M
for nADFs! is a generalization of the meet operator for ADFs, presented
in Section 2.2, defined on rational numbers plus u such that for each
z,y € QU{u}, zMNy =z if z = y, and it returns u, otherwise. The meet of
two interpretations v and w is then defined as (vMw)(n) = v(n) Tw(n) for
n € N. The operator I'yy transforms interpretations of nADFs into others.
Specifically, I'yy : ¥ — 7; the operator takes a many-valued interpretation
v as an input and returns a many-valued interpretation I'yy(v). For a given
nADF U = (N, L,C, 1), the characteristic operator I';; on an argument n
for the given interpretation v is the meet of all total extensions of v on n,
as defined below.

Definition 10.13 Let U = (N, L,C,i) be an nADF, let v be an interpre-
tation, and let @, be an acceptance condition of n. The operator T'y(v)
yields a new interpretation:

F'y(w): N =V  with nw~ |_|{w(g0n) | w € [v].}.

Some of the different types of semantics of nADF's are given below. These
are the same as the types of semantics of standard ADFs when interpreta-
tions are three-valued and input function 4 is not defined on any argument.
The intuition of defining semantics of nADFs is the same as the intuition
of semantics of ADFs, presented in Section 2.5.1.

Definition 10.14 Let U = (N, L,C,i) be an nADF, let v be an interpre-
tation and let v be the i-correction of v under U. An interpretation v is:

e admissible in U iff v <; Ty(v);

!Note that the meet operator in this chapter has a different meaning (taking input
from QU {u}) than the one presented in Section 2.2 (taking three values as input).
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complete in U iff v=Ty(v);

grounded in U iff v is the <;-least fixed point of 'y ;

preferred in U iff v is <;-mazimal admissible;

model in U iff v=Ty(v) and Vn € N, v(n) # u;

Note that in this definition, U'y is applied to v, the i-correction of v under
U. The sets of adm(U), com(U), grd(U), prfiU) and mod(U) denote
the sets of all admissible interpretations, complete interpretations, the
unique grounded interpretation, preferred interpretations and models of U,
respectively.

Example 10.15 Continuing Example 10.6, let v = {a — 0,b — u,c
u}. The i-correction of v under U is v.= {a — 0,b — 1/5,¢ — 4/5}
since i is defined on b and c. Since none of the arguments of v assign
to u, [v]. = {v}. Therefore, v(pp) = v(bV a) = maz{v(b),v(a)} =
max{i(b),v(a)} = max{1/5,0} = 1/5. That is, Ty(v)(b) = 1/5. In the
same way, since v(a®c) = v(a) xi(c) =0 and v(b) = 1/5, v(a®c) < v(b)
and Ty (v)(c) = v(pe) = 0. Since I'y(v) = {a— 0,b— 1/5,c— 0} and
v <; I'y(v), v is an admissible interpretation of U. In addition, I'y(v) is
a preferred interpretation, a complete interpretation, and a model of U.
To compute the grounded interpretation of U, we evaluate the <;-
least fixed point of I'yy. The i-correction of the trivial interpretation vy,
that assigns all arguments to u, is v/ = {a — u,b — 1/5,¢c — 4/5}.
Since a is assigned to u in V', it holds that [v']. has infinitely many
elements. For instance, w,w’ € [V'], where w = {a — 0,b — 1/5,¢ —
4/5} and w' = {a — 1,b — 1/5,c — 4/5}. Since w(pp) = w(bV a) =
maz{w(b),w(a)} = maz{i(b),w(a)} = maz{1/5,0} =1/5 and w'(vp) =
w'(bVa) = maz{w'(b),w'(a)} = max{i(b),w'(a)} = max{1/5,1} =1,
it holds that w(pp) Mw'(py) = 1/5M 1 = u. Thus, T'y(v')(b) = u. By
the same method we find that Ty (v')(a) = u and Ty (v')(c) = u. Thus,
Ty (v') = vy. That is, the revision of the trivial interpretation v, under I'y
is vy, that is, Ty (V') = vu, which is the unique grounded interpretation and
a complete interpretation of U as well but not a preferred interpretation.

10.4 Embedding of Decision Problems in nADF's

In this section, we investigate how the standard decision problems intro-
duced in Definition 10.2 can be embedded in nADFs. Since there are three
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main different types of arguments, namely action, state and outcome, in
a decision problem, different symbols are used for distinct types of them.
Circles are used to represent action nodes; diamonds represent state nodes;
and boxes represent outcome statements, depicted in Figure 10.3.

Definition 10.16 A decision problem D = (A,S,O,p,u), where A =
{ai,...;an}, S={s1,...,8m}, and O = {o11,...,0nm} can be modeled by
nADF Up = (N, L,C,1) as follows:

e N=AUSUO;
e p, =5 forses;

o =o0 for o€ O;

Pa; = /\k;éi,kgn(@1§jgm(3j ® 0j) = @1§j§m(5j ® okj)) for a; € A;
e i(s) =p(s) for s € S andi(o) = u(o) for o€ O.

Let us explain some of the elements of the above definition. Self-loops in
a graph of a decision problem can be utilized as a guess whether or not
to accept an argument or to which extent to accept an argument. For
instance, self-loops on state nodes are used to show that the degree of
acceptance of each state node depends on the probability of occurrence of
that state. This notion leads to name this type of links as self-dependent
links; the set of self-dependent links is denoted by Ry. Self-dependent links
are reflexive relations that can be defined on N. In nADFs, any other link
which is not self-dependent is called an event link; the set of event links is
denoted by R.. In the nADF depicted in Figure 10.3, (s1,s1) € Rq and
(s1,a1) € Re.

Since both the probability of occurrence of states and the utility of
outcomes play a role in choosing actions, there are event links from states
and outcomes to actions. The degree of acceptance of states only depends
on the probability of occurrence of that state. Therefore, the acceptance
condition of each state node s € S is s = s. Similarly, the degree of the
acceptance of outcomes only depends on the utility of that outcome from
an agent’s point of view, that is, ¢, = o for each o € O. Thus, in each
nADF there exists a self-dependent link on each state and outcome node.
The acceptance condition of each action is defined in a way that the best
action can be chosen via semantics. That is, for a; € A we have:

Pa; = /\k;éi,kgn( D G20y = D (5@ 01)).

1<j<m 1<j<m

This formula uses a comparison of the expected utilities of actions, in order
to express that action a; has maximal expected utility. To model decision
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problems by nADFs, function ¢ on each state node s is defined to be p(s)
and on each outcome node o is u(0). In the current work, we assume that
in a decision problem, an agent is aware of the probability of states and
her /his utility of each outcome. That is, the values of these functions are
part of an input of the decision problem.

Example 10.17 Continuing the example introduced in Section 10.1 in
which Maryam wants to decide whether to buy the international health in-
surance, the following propositional atoms are used to model this knowledge
base.

a1: Maryam buys the international health insurance.

az: Maryam does not buy the international health insurance.
s1: Maryam gets emergency surgery when she is abroad.

so: Maryam does not get emergency surgery when she is abroad.

o11: Maryam gets emergency surgery when she is abroad and it is
paid by the health insurance company.

012: Maryam buys the international health insurance but she does
not use it.

021: Maryam gets emergency surgery when she is abroad and she has
to pay by herself.

022: Maryam does not buy the international health insurance and she
does not need it.

We assume that p is a probability function on states, that is, p(s1) shows
the probability of Maryam getting emergency surgery when she is abroad
and p(s2) indicates the probability of Maryam does not get emergency
surgery when she is abroad. Assume that p(s1) = 1/10 and therefore
p(s2) =9/10. Maryam’s preference order on outcomes is as follow: o33 >
012 =p 011 =p 021. The utility function u which keeps the same order,
from Maryam’s point of view, is: u(o) = 7/8,u(012) = 5/8,u(011) =
1/2,u(021) = 3/8. Therefore, this problem is modeled by decision problem
D = ({a1, a2}, {51, 52}, {011,012, 021, 022}, {p(51), p(52) }

{u(o11), u(012), u(021)}).

The corresponding nADF of D, depicted in Figure 10.3, is Up = (N, L, C, 1)
where:
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Figure 10.3: nADF of whether to buy international health insurance, used in
Example 10.17

e N ={ai,az,s1, 52,011, 012,021,022}

® Yoy = @je{m}(sy‘ ®015) = @je{m}(sj ® 025);

* Ya, = Djcq1.0)(55 ® 025) = Dje,2y(s5 © 015);

® Py = S15

® Psy, = 525

® Yo, = 0115

® Pop = 0125

® Yoy = 0215

® Poyy = 0225

o i(s1) = p(s1), i(s2) = p(s2);

e i(011) = u(011), i(012) = u(012), i(021) = u(021), i(022) = u(022).
The notation X! is used to show the set of arguments of X which are
assigned to x by v such that x € QU {u} and X can be either A, S or

O. For instance, in Example 10.11 that v = {a — u,s — u,o0 — 1/3},

A} = {} and 07 5 = {o}.
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Example 10.18 Continuing Example 10.17, let v = {a; — 1l,ay —
u,s1 — u,82 — 1/5,011 = u,012 = 5/8,021 = u,092 = u}. Intuitively,
interpretation v wants to investigate whether it is rational for an agent
to pick action a; when she/he only knows the probability of sa occurring
and utility of output 012, as input values. Particularly, in the current
example, Maryam wants to decide whether it is rational for her to buy the
international health insurance when she assumed that the probability of not
getting emergency surgery is 1/5 and her utility of buying the international
health insurance and not using it is 5/8. To do so, we compute the revise
of vby Ty, vy =Ty(v) ={a1 — 0,a2 — 1,51 — 1/10, 89 — 9/10,011 =
1/2,012 = 5/8,021 = 3/8,022 = 7/8}.

Since v and vi are incomparable on a1 and sa, we have that v £L; v1.
That is, v is not an admissible interpretation of Up. That is, based on
this piece of information that is presented in v, it is not reasonable that
Maryam pick a1. However, vy is the unique complete interpretation of Up.
That is, if the information of Maryam increases to vi about the probabilities
of states and utilities of outcome, then choosing as is a feasible choice for
Maryam.

The proof of the uniqueness of the model in an nADF which is constructed
based on a decision problem is given in Proposition 10.19.

Proposition 10.19 Let D = (A, S,0,p,u) be a decision problem and
let Up = (N, L,C,i) be the corresponding nADF. Let v be an arbitrary
interpretation of Up and let v be the i-correction of v under Up. The least
fized point of I'tr,, on v is a model of Up.

Proof Let v be an arbitrary interpretation on Up and let v be the
i-correction of v under Up. By the definition of acceptance conditions of
states and outcome nodes and the definition of I'yy,, v1 = 'y, (v) assigns
each state node to its probability, each outcome node to its utility, and
after computation each action to either 1 or 0, because of the notion of
the truth operator /_\, presented in Definition 10.9. Moreover, the value
of actions, states and outcome nodes do not change by iteration of this
operator on v;. That is, v; is the least fixed point of I';y,,. If v <; vy, then
v1 is the least fixed point of I'yy,, and v is an admissible interpretation.
However, if v and v are incomparable, then vy is the least fixed point of
'y, and v is not an admissible interpretation. Therefore, in all cases vy is
the least fixed point of 'y, and we have v; = I'y, (v1). Since v1(n) # u
for each n € N, v1 is a model of Up. O
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Corollary 10.20 Assume that a decision problem D = (A, S,O,p,u) is
modeled by nADF Up = (N, L,C,i). Then all types of semantics of Up
coincide.

Proof Let v be an arbitrary interpretation and let v be the i-correction
of v under Up. By Proposition 10.19 the least fixed point of I'y;,, on v
is a model of Up and by the Definition 10.14 it is a preferred interpreta-
tion. By the Definition 10.14, each grounded interpretation is a complete
interpretation. It is enough to show that this complete interpretation is
unique. Thus, all semantics of Up are equivalent. Toward a contradiction,
assume that [com(Up)| > 1, then by the definition Mcom(Up) is the least
fixed point of I'y7,, that cannot be a model of Up. This is a contradiction
by the assumption that the least fixed point of I'y,, is a model of Up. [

Theorem 10.21 investigates how semantics of nADFs can be used to choose
the set of the best actions of decision problems of an agent.

Theorem 10.21 Let D = (A, S,0,p,u) be a decision problem, where
A =A{a,...,an}, S = {s1,...,8m}, and O = {o11,...,0nm}. Now let
Up = (N, L,C,i) be the corresponding nADF, and let v be the grounded
interpretation of Up, which is also the unique preferred interpretation,
complete interpretation, and model of Up. Then the set A} of actions
evaluated as 1 in the grounded interpretation v equals the set of actions
with maximal expected utility in the decision problem D.

Proof Let M be the set of actions with maximal expected utility in
the decision problem D. We show that AY = M. To this end, we show
that A7 € M and M C AY. Let a; € Aj. Since a; € A, it holds that
Pa; = Nisikan(D1<jcm (8 ® 0ij) = D1<j<m(8j ® og;)). Furthermore,
a; € A} means that I'y(v)(a;) = 1, that is, for each k it holds that
V(D1<j<m (8 ® 0ij) = D1<j<n(sj ® o)) = 1. That is, for each k, it
holds that V(€D <<, (8 ®045)) = V(D1 <j<;n (8 ®ox;)). That is, for each
k the expected utility of a; is not less than the expected utility of ay.
Hence, it holds that a; € M.

Assume that a; € M. Thus, a; is an action with the acceptance condi-
tion A2 p<n (B1<jcm (8190i) = Br<jcn(8j®0k;)) in Up. Since a; € M,
it holds that the expected utility of a; is greater than or equal with the
excepted utility of each ay,. That is, for each k it holds that v(D <<, (s;®

0ij) = ®1§j§m<‘9j ® og;)) = 1. Thus, V(/\i;ék(@lgjgm(sj ® 0i5) =
D1<j<m(sji ® 0k;))) = 1. Thus, I'y(v)(a;) = 1. Hence, it holds that
a; 6_14_11}.
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10.5 Conclusion

In the chapter, argumentation is formally connected to decision making,
by developing a formal connection between argumentation formalisms
and EUT. This is significant for argumentation since the general issue
how argumentation relates to the standard setting of EUT is not fully
understood. This chapter provides a step in that understanding. The
result is significant for decision making since an argumentation perspec-
tive provides insight in how to defend different positions, which remains
unaddressed in theories of decision making. Generally, it is relevant to
study the bridging of qualitative and quantitative theories (here: ADF as
a theory of argumentation and EUT as a theory of decision making).

The chapter proposed an argumentation formalism, numerical abstract
dialectical frameworks (nADFs), that can model standard decision prob-
lems. In (Bondarenko et al., 1997; Dung et al., 2009; Fan and Toni, 2011;
Verheij, 2016b), other formalisms for modeling a decision problem are
presented. The ability of doing arithmetical calculation makes nADFs
an applicable formalism in decision-making problems, for example, in the
medical domain. Our proposal specifically generalizes abstract dialectical
frameworks ADFs to allow the modeling of standard decision problems.
ADF's are special cases of nADF's in which formulas are limited to the
standard language of propositional logic, ¢ is empty, and the semantics is
defined based on three-valued interpretations.

Semantics of nADFs are defined based on many-valued interpretations,
similarly to weighted abstract dialectical frameworks wADFs (Brewka
et al., 2018b), which are also generalizations of ADFs.

A weighted ADF is a tuple (N, L,C,V,<;) in which V indicates the
set of truth values of arguments and <; is an ordering on V. That is,
semantics of wADF's are also defined based on many-valued interpretation.
To do calculation in nADFs, the set of truth values is fixed to the rational
numbers plus u and the information ordering is a generalization of the
standard information ordering defined in ADFs. The language which is
used in the acceptance conditions of nADFs is a variation of the language of
propositional logic, with two new function symbols ® and & and and a truth
operator /_\ and a predicate =, and the partial function ¢ in nADFs. These
additions empower the formalism to represent arithmetical calculations.
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In general, nADFs are not a special case of wADFs. However, if in
an nADF the formulas are restricted to propositional logic and the input
function is empty, then it can also be viewed as a wADF in which the
set of truth values V is Q U {u} and <; is a standard generalization of
information ordering in ADFs.

It is constructively proven in (Diller et al., 2018) that in each acyclic
ADF, all semantics coincide. In the current work, it is shown that in
each nADF that formalizes a decision problem, all semantics coincide, as
well. In Section 10.4 it is shown how an nADF can be constructed for a
decision problem for a single-agent system to choose the best action. As
to future work, it can be investigated whether nADF's can be used for
modeling decision problems in multi-agent systems. In addition, it would
be interesting to investigate whether nADFs are powerful enough to answer
queries, for instance, “for which probabilities of needing an emergency
surgery Maryam will decide to buy an insurance?” where the answer can
be an interval of probabilities. Moreover, the computational complexity of
decision problems in nADFs can be studied. Finally, it can be interesting
to study simulation experiments that show the effectiveness of nADFs
modeling decision problems.
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Discussion and Conclusion
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Chapter 11

Discussion and Conclusion

In this final chapter, we recapitulate our main contributions, give an
overview of related work, and refer to possible future research directions
suggested by our work.

11.1  Summary

ADFs form one of the most comprehensive formalisms for abstract argu-
mentation, capturing several of the most important relations beyond that
of simple attacks underlying Dung’s AFs. We have in this thesis studied
ADFs from several different perspectives.

1. In Part II, we focused on the semantical evaluation of ADFs, pre-
senting two novel semantics.

e In Chapter 3, we developed strong admissibility semantics for
ADFs, based on the corresponding semantics for AFs.

e In Chapter 4, we analyzed the complexity of the reasoning tasks
of ADF's under the strong admissibility semantics.

e In Chapter 5, we introduced semi-stable semantics for ADFs.
This semantics approximates the stable semantics of ADFs
in the situations in which an ADF does not have any stable
extension.

2. In Part III, we considered reasoning for ADF's, presenting discussion
games that decide the credulous acceptance problem.

e In Chapter 6, we presented grounded discussion games for ADF's.
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e In Chapter 7, we presented preferred discussion games for ADF's.

3. In Part IV, we studied variations of ADFs, in particular in order to
further clarify the expressiveness of ADF's.

e In Chapter 8, we introduced subclasses of ADFs analogous to
known important subclasses of AFs and investigated to what
extent properties that these subclasses satisfy for AFs also hold
for ADFs.

e In Chapter 9, we considered another well-known generalization
of AFs, namely SETAFs, to clarify the relation between SETAFs
and (a subclass of) ADFs.

e In Chapter 10, we combine ADFs and decision theory, proposing
a generalization of ADF's to model expected utility problems.

We now give a more detailed summary of the above mentioned main
contributions of our work.

Part II: Semantics As already indicated, in Part II we first presented
and then investigated key properties of two novel semantics for ADFs.

Chapter 3: Strong Admissibility We first generalised the strong ad-
missibility semantics for AFs to ADFs. The strong admissibility semantics
is a refinement of the grounded semantics, which is often referred to as
the most skeptical of semantics in that it only assigns truth values to
arguments which are shared among all admissible and, hence, complete
interpretations.

The strongly admissible interpretations of an ADF form a lattice with
the trivial interpretation (assigning the truth value undecided to all state-
ments) being the unique minimal element and the grounded interpretation
being the unique maximal element. Strongly admissible interpretations
assign truth values that correspond to the grounded semantics, but may
leave some arguments as undecided.

Apart from showing that our definition of strongly admissible semantics
for ADF's is a proper generalization of the strongly admissible semantics of
AF's, in Chapter 3 we also present algorithms, first of all for the verification
problem for the strongly admissible semantics for ADFs. This is the
problem of deciding whether a given interpretation is strongly admissible.
Also, we present an algorithm to decide whether an argument is strongly
justifiable in a given interpretation of an ADF. Here the notion of strong
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justifiability is at the basis of the strongly admissible semantics in the
sense that all arguments that are given a truth value under the strongly
admissible semantics are strongly justifiable.

Chapter 4: Complexity of Strong Admissibility Studying the com-
plexity of reasoning tasks for a formalism sheds light on the expressivity
of the formalism and serves to guide implementation efforts. With this
motivation in mind, in Chapter 4, we investigated the computational prop-
erties of the strong admissibility semantics of ADF's that we defined in
Chapter 3. We have shown that decision problems for ADFs have higher
computational complexity under the strong admissibility semantics when
compared to AFs. This is also the case for several of the other semantics
that ADFs inherit from AFs.

Specifically, when comparing the complexity of grounded and strong
admissibility semantics, we find that for AFs the verification problems can
be (log-space) reduced to one another, while, in the case of ADF's, there is
a gap between the coNP-complete Very,gq, problem and the DP-complete
Vergrq problem. Table 11.1 shows our results regarding the complexity
of strong admissibility semantics of ADFs (highlighted in green) in the
context of the complexity of the other semantics for ADFs. Here %-c
denotes completeness for the complexity class €.

In Chapter 4 we elaborate on the complexity of the strong admissibility
semantics by first of all considering the complexity of the strong justification
problem, i.e., the problem whether an argument of interest is strongly
justified in a given interpretation. The interest in this problem results from
the fact that an argument can be strongly justified in an interpretation
that is not strongly admissible. We show that the strong justification
problem is coNP-complete.

We then considered the problem of finding a smallest witness for
strong justification of an argument, that is, the problem of determining
whether there exists a strongly admissible interpretation that assigns a
minimum number of arguments to t/f and satisfies an argument of interest.
We showed that this problem is ZS -complete for ADFs, while the same
reasoning task for AFs is NP-complete.

Chapter 5: Semi-Stable Semantics The second semantics for ADFs
that we introduce in this thesis is the semi-stable semantics, again general-
izing the homonymous semantics for AFs.

Note first of all that for ADFs there are two generalizations of the
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o Cred,  Skept, Ver,
cf NP-c trivial NP-c
adm | YF-c  trivial coNP-c
prf ¥P-c ne-c nb-c
com | ¥F-c  coNP-c DP-c
grd | coNP-c  coNP-c  DP-c

stb ¥Pc Nf-c  coNP-c
mod NP-c  coNP-c inP
sadm | coNP-c  trivial coNP-c

Table 11.1: Complexity of reasoning tasks with ADFs

stable semantics for AF's, the first being the two-valued model semantics
and the second the stable semantics. In fact, every stable interpretation is
also a two-valued model, but stable interpretations for ADFs also rule out
circular dependencies in the support relation of ADFs. The latter is not
an issue in AFs, because there is no support relation in AFs. Thus in fact
there may be no stable interpretation for an ADF because either there is
no two-valued model or each two-valued model contains a support cycle.

Our semi-stable semantics for ADF's keeps the mechanisms for detecting
circular supports among arguments, yet it builds on an alternative semi-
two-valued model rather than two-valued-model semantics for ADFs which
in turn is based on the semi-stable semantics for AFs.

We show that the notions of semi-two-valued semantics and semi-stable
semantics of ADFs presented in this thesis satisfy the following properties
that make them proper generalizations of the semi-stable semantics for
AFs:

1. If v is a semi-two-valued model or a semi-stable model of D, then
vt Uof is C-maximal among all complete interpretations of D.

2. Each semi-stable model and each semi-two-valued model is a preferred
interpretation.

3. Each stable model of an ADF is a semi-stable model and a semi-two-
valued model of that ADF.

4. Each ADF has at least one semi-two-valued model. However, there
is no guarantee that a semi-stable model exists.

5. If an ADF has a two-valued model, then the notions of semi-two-
valued semantics and two-valued semantics coincide for that ADF.
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| stable |—>| model |—>| preferred |—’| complete |—>| admissible |—>| conflict-free

| grounded [« - ,>, - 1 sadm |

Figure 11.1: Relations among semantics of ADFs. The black arrow from
semantics o to v indicates that o(D) C (D) for each ADF D. Here sadm,
semi-mod, and semi-stb represent strong admissibility, semi-two-valued, and semi-
stable semantics, respectively (with green boxes). The red dashed arrow indicates
that each strongly admissible interpretation has at most an amount of information
equal to the grounded interpretation, w.r.t. <;-ordering.

6. If an ADF has a stable model, then the sets of stable models and
semi-stable models coincide.

7. Semi-stable semantics and semi-two-valued semantics of ADFs are
proper generalizations of semi-stable semantics of AFs.

8. Semi-stable semantics and semi-two-valued semantics coincide in the
ADF associated to an AF, as is to be expected since in AFs there
are no support cycles.

The relations between the novel semantics presented in this thesis and
the existing semantics of ADFs are depicted in Figure 11.1. This figure
thus extends Figure 2.11 which shows relations between semantics defined
previous to our work.

In Figure 11.1, the novel semantics presented in this work, i.e., strong
admissibility, semi-two-valued, and semi-stable semantics are represented
as sadm, semi-mod, and semi-stb, respectively (with green boxes). The
red-dash line between the strong admissibility semantics and the grounded
semantics indicates that each strongly admissible interpretation has at
most an amount of information equal to the grounded interpretation, with
respect to <;-ordering.

Part III: Discussion Games In Part III we defined discussion games
to decide the credulous acceptance problems for the grounded and preferred
semantics of ADFs. The credulous acceptance problem is that of deciding
whether there exists an interpretation (grounded or preferred, respectively)
in which an argument of interest is true. Discussion games not only decide
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such problems, but also give a dialectical explanation of why an argument
is true in terms of a strategy that a proponent of the argument can use to
defend the argument against possible counter-arguments.

Chapter 6: Grounded Discussion Games In Chapter 6 we present
a grounded discussion game (GDG for short) between two agents, i.e.,
proponent and opponent, to answer the credulous decision problem of ADF's
under the grounded semantics. We show that such discussion games mostly
allow for avoiding having to construct the whole grounded interpretation
for deciding credulous acceptance of an argument of interest. We show
soundness and completeness of our discussion game for the grounded
semantics.

In Section 6.4 we study the relation between the notion of strong
admissibility semantics of ADFs and the grounded discussion games of
ADFs. Basically, the interpretations constructed at each step of a grounded
discussion game are strongly admissible. On the other hand, our discussion
games do not guarantee finding the least (with respect to the information
order) strong admissible interpretation in which the argument of interest
holds.

Chapter 7: Preferred Discussion Games Preferred interpretations
are maximally informative admissible interpretations. In Chapter 7 we
define discussion games for this semantics for ADFs. As before, discussion
games for the preferred semantics allow to decide credulous acceptance
of an argument without having to enumerate all preferred interpretations
of an ADF. We show soundness and completeness of the discussion game
that we propose for the preferred semantics.

Part IV: Variations In Part IV of the thesis we study several subclasses
of ADFs and also present a generalization of ADFs.

Chapter 8: Investigating Subclasses of ADFs In Chapter 8, we
defined several subclasses of ADFs based on specific subclasses of AFs and
investigated how the restrictions that we consider influence the semantic
evaluation of such ADFs. We list the main results of Chapter 8:

e First, we introduced acyclic ADFs (of which the link-structure

forms an acyclic graph) and showed that, analogous to well-founded
AFs (Dung, 1995), the main types of semantics, namely grounded,
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complete, preferred, and two-valued model and stable semantics,
coincide for this class of ADFs.

We also introduced and studied the concept of symmetric ADFs.
While the class of symmetric AF's is coherent and relatively-grounded,
these properties do not carry over to the class of symmetric ADFs.
This led us to propose subclasses of symmetric ADF's with further
restrictions.

We introduced acyclic support symmetric ADFs (ASSADFs) and
support-free symmetric ADFs (SFSADFs). We showed that both
classes satisfy a weaker form of coherence called weak coherence,
where each two-valued model is a stable model, yet none of them
satisfies the relatively-grounded property.

It has been proved in (Dunne and Bench-Capon, 2002) that the
reason that an AF is not coherent is that it contains an odd-cycle,
i.e., odd-cycle free AFs are coherent. We showed that odd-cycle free
SFSADFs are coherent while odd-cycle free ASSADFs are not. Thus,
these two classes differ in the aspect of being odd-cycle free.

Subsequently, we discussed the implication of our results for a gener-
alization of AFs (captured by ADFs), namely SETAFs. To this end,
we introduced symmetric SETAFs and we showed that this class
is captured by a subclass of SFSADF's, namely, those in which the
acceptance condition of none of the arguments is unsatisfiable.

Finally, we studied the relation between the class of symmetric
SETAFs and SFSADFs. Furthermore, we showed that the class of
symmetric SETAF's, unlike symmetric AFs, is neither coherent nor
relatively-grounded.

Another contribution of Chapter 8 is that we studied the expressiveness of
subclasses of ADFs in terms of signatures, i.e., the sets of possible outcomes
that can be achieved by ADFs (of a particular class) under the different
semantics, following the work of Dunne et al. (2015). We compared our
ADF subclasses to AF's in terms of expressiveness. Completing existing
results regarding the relative expressivity of AFs and ADF's (Strass, 2015;
Piihrer, 2015; Linsbichler et al., 2016), we compared the expressiveness of
the novel subclasses of ADFs, namely ASSADFs, SFADFs, and SFSADFs,
with that of AFs, bipolar ADFs (BADFs), and ADFs. We showed the
following results, depicted in Figures 8.7 and 8.8:
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e ASSADFs and SFSADFs are incomparable with AFs for the admis-
sibility semantics, while SFADFs are strictly more expressive.

e ASSADFs, SFADFs, and SFSADF's are strictly more expressive than
AFs for the model and stable semantics.

e ASSADFs, SFADFs, and SFSADFs are strictly less expressive than
BADFs for the model and admissibility based semantics.

e These classes, i.e., ASSADFs, SFADFs, and SFSADFs, coincide
in expressiveness with BADFs and general ADFs for the stable
semantics.

Chapter 9: Expressiveness of SETAFs and Support-Free ADFs
After studying the relation between symmetric SETAFs and SFSADFs, as
a subclass of ADFs in Chapter 8, we investigated further relations between
SETAFs and subclasses of ADF's in Chapter 9. Specifically, we considerd
two subclasses of ADFs, namely, SETADFs and SFADFs. In the first
subclass, the acceptance conditions of ADFs are restricted so that they
encode collective attacks as in SETAFs. In the second subclass, SFADF's,
links between arguments are restricted semantically to be attacking.

To compare the SETAFs, SETADFs, and SFADF's we focused on 3-
valued (labelling) semantics (Verheij, 1996; Caminada and Gabbay, 2009).
In particular for SETAFs, we relied on the labelling semantics, introduced
in (Flouris and Bikakis, 2019). Wallner (2020) already implicitly showed
that SFADF's with satisfiable acceptance conditions can be equivalently
represented as SETAFs. This provides a sufficient condition for encoding
ADFs as SETAFs and raises the question whether it is also a necessary
condition. In Chapter 9, we provided the following results:

e We showed that SETAFs and SETADFs coincide for the main
semantics, i.e., the o-labellings of a SETAF are equal to the o-
interpretations of the corresponding SETADF. That is, we showed
3-valued labeling based SETAF semantics to be equivalent to the
corresponding ADF semantics.

e We provided exact characterisations of the 3-valued signatures for
SETAFs (and thus for SETADFs) for most of the types of semantics.
To provide exact characterisations, we investigated the expressiveness
of SETAFs under 3-valued semantics. That is, we complemented the
investigations on expressiveness of SETAFs (Dvordk et al., 2019) in
terms of extension-based semantics.
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e Then we determined the exact difference in expressiveness between
SETADFs and SFADFs, from the perspective of realizability. In
particular, we gave the exact difference in expressiveness between
SETAFs and SFADFs under conflict-free, admissible, preferred,
grounded, complete, stable, and two-valued model semantics.

e We showed that a SFADF can be encoded as a SETAF if and only if
all acceptance conditions are satisfiable. Thus, what mainly distin-
guishes SETAFs and SFADFs is that in SFADFs initial arguments
can be set to false.

Chapter 10: Embedding Probabilities, Utilities and Decisions in
a Generalization of ADFs As a final contribution of this thesis in
Chapter 10 we investigated combining argumentation with decision theory
in the context of ADFs. Specifically we presented a generalization of ADFs,
numerical ADFs (nADF's for short), that enable to encode the practical
problem of computing expected utilities as an argumentation problem. We
showed that when an nADF encodes such a decision problem, all semantics
coincide. Thus, nADFs can be used to choose the best set of decisions (or
actions) that have the maximum expected utility for a problem of interest.

The main difference between ADFs and nADFs is first of all that the
language used to define acceptance conditions of nADF's is a variation
of propositional logic that also allows for basic arithmetic. Furthermore,
semantics of nADFs are defined based on many-valued interpretations
while semantics of ADFs give three-valued interpretations. In other words,
ADFs are a special case of nADFs in which formulas are limited to the
standard language of propositional logic and the semantics is defined
based on three-valued interpretations. Having arithmetic in the context
of nADFs as well allows applying them for decision making, e.g., in the
medical domain.

11.2 Related Work

As mentioned in the introduction to this thesis, the historical importance
of argumentation as well as the amount of research in and diversity of
argumentation formalisms and applications of argumentation in Al and in
other scientific fields illustrate the significance of argumentation. Formal
and computational argumentation methods underly a number of applica-
tions, for instance in law (Prakken and Sartor, 2015), medicine (Hunter
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and Williams, 2012; Fox and Das, 2000), health promotion (Grasso et al.,
2000), debating (Slonim et al., 2021), and dispute mediation (Janier et al.,
2016); see (Atkinson et al., 2017) for a survey.

Dung’s abstract argumentation frameworks (AFs) formalize argumenta-
tion by considering arguments as atomic entities whose acceptance status
is to be determined by considering only the relation of attack among
arguments. Then, semantics of AFs are criteria or methods proposed
to evaluate arguments, i.e. to determine which sets of arguments can
be accepted together. It has been proved in (Dung, 1995) that several
important non-monotonic reasoning formalisms developed in Al, such as
Pollock’s defeasible reasoning (Pollock, 1987), Reiter’s default logic (Reiter,
1980), and logic programming (Gabbay et al., 1998) can be reconstructed
using AF's thus giving an argumentation perspective on such formalisms.

Based on Google Scholar, Dung’s paper (Dung, 1995) has been cited
more than 4,000 times. Dung’s formalism has been widely used and
studied mainly because of the simple structure of AFs, which are nothing
more than directed graphs, and because of its intuitive and powerful
semantics for evaluation of arguments. There are two main approaches
for defining semantics of AFs, namely extension-based and labelling-based
(see (Dung, 1995; Baroni et al., 2011) for an overview). In the first,
semantics returns sets of arguments which can be accepted together. In
the second, labellings are provided; the most popular of these being a
three-valued labellings associating one of the values undecided, true, or
false to arguments; extension-based semantics can be seen as providing
two-valued labellings.

Semantics Several of the most important semantics for AFs have been
introduced in (Dung, 1995), namely conflict-free, admissible, complete,
preferred, and stable semantics. Further semantics for AFs have been
proposed later on, for instance, stage semantics (Verheij, 1996), semi-
stable semantics, first introduced in (Verheij, 1996) under a different name
and then further investigated in (Caminada, 2006), strong admissibility
semantics, first defined in the work of Baroni and Giacomin (2007), and
later in (Caminada, 2014) without referring to the notion of strong defence,
ideal semantics (Dung et al., 2007), and eager semantics (Caminada,
2007b). The relations among different semantics of AFs have been studied
in (Baroni et al., 2011; Baroni and Giacomin, 2005, 2008; Caminada, 2007b;
Caminada et al., 2012; Dung, 1995; Dung et al., 2007).

Much research has been devoted to AFs. For instance, AFs are used in

296



several diverse areas, such as multi-agent systems (McBurney et al., 2012),
multi-agent negotiation (Amgoud et al., 2007) and legal reasoning (Bench-
Capon and Dunne, 2005). Recently, the role of AFs in Al and Law has
been discussed in (Bench-Capon, 2020).

As we have already mentioned, among all admissibility-based semantics
of AFs, grounded semantics stands out for its important features. Thus,
an agent may be eager to know ‘why does an argument belong to the
grounded extension?’ There exist two approaches to answer this question.

e On the one hand, grounded discussion games have been introduced
to answer the credulous decision problem of AFs (Prakken and
Sartor, 1997; Caminada and Podlaszewski, 2012a,b) under grounded
semantics. Discussion procedures in these games explain why an
argument belongs to the grounded extension.

e On the other hand, the notion of strong admissibility semantics of
AFs answers the question why an argument belongs to the grounded
extension (Caminada and Dunne, 2019; Caminada, 2014). The notion
of strong admissibility of AFs characterizes the unique properties of
the grounded extension.

To target explaining why an argument is justified under the grounded
semantics in ADFs, in the current thesis we have proposed the notion of
strong admissibility semantics of ADFs in Chapter 3 and defined grounded
semantics games for ADFs in Chapter 6.

The complexity of the reasoning problems that can be defined for the
several semantics for AFs has been analyzed in (Dunne and Caminada,
2008; Dunne and Bench-Capon, 2002; Dvotak, 2012; Dvoidk and Dunne,
2018; Dvoidk and Wallner, 2020) and ranges from tractability up to the
second level of the polynomial hierarchy. Computational complexity of
reasoning tasks of AFs under strongly admissible semantics is studied in
(Dvorék and Wallner, 2020). Moreover, Caminada and Dunne (2020) study
the computational complexity of identifying strongly admissible labellings
with bounded or minimal size. We analyzed the complexity of the relevant
reasoning tasks for strong admissibility semantics of ADFs in Chapter 4.

Another semantics of AFs that has received increased attention and
support not only in argumentation frameworks but also in logic program-
ming (Gelfond and Lifschitz, 1988) and answer set programming (Gelfond
and Lifschitz, 1991) is the stable semantics. This semantics represents the
“black and white” perspective with a stable extension (or model) attacking
all the arguments that are outside of the set. Thus, whereas each AF has

297



at least an admissible, a preferred, a complete and a unique grounded
extension, it may have no stable extension. The notion of semi-stability
for AFs is introduced in (Verheij, 1996; Caminada, 2006), as a way of
approximating the stable semantics of AFs in situations where an AF has
no stable extension.

The advantages of semi-stable semantics compared to other semantics
of AFs are as follows.

1. First, in each AF, every stable extension is a semi-stable extension
and every semi-stable extension is a preferred extension. Thus, semi-
stable semantics are placed between stable semantics and preferred
semantics.

2. Moreover, each finite AF has at least one semi-stable extension.

3. Finally, if an AF has at least one stable extension, then the semi-
stable extensions are equal to the stable extensions, which is not
always the case for preferred and grounded semantics.

The complexity of reasoning tasks of AFs under semi-stable semantics has
been analyzed in (Dunne and Caminada, 2008; Dvorak and Woltran, 2010).
Algorithms for computing the semi-stable extensions of a given AF are
provided in (Caminada, 2007a; Wallner, 2014).

In Chapter 5 we have introduced the notion of semi-stable semantics
for ADFs, analogously to semi-stable semantics for AFs, as a way of
approximating stable semantics of ADFs.

In (Alcantara and S&, 2018) the authors have also considered the
semi-stable semantics for ADFs. To prevent confusion with the notion
of semi-stable semantics presented in the current work, we call their
notion semi-stable2 semantics, abbreviated SSS2. A key difference between
our notion and SSS2 is that ours is compatible with the standard ADF
definitions. In particular, in their discussion, the characteristic operator
I'p, together with the semantics of ADF's, and specifically the complete
semantics, are not presented in the way that was originally proposed by
Brewka and Woltran (2018a; 2010). Thus, the relation among semantics of
ADFs based on the definitions presented in (Alcantara and Sa, 2018) does
not coincide with the relation among the semantics of ADF's presented in
the main papers on ADFs, e.g., (Brewka et al., 2018a; Brewka and Woltran,
2010). Specifically, the set of complete models (interpretations) which is at
the base of the definition of SSS2, presented in (Alcantara and S&, 2018)
may not coincide with the set of complete interpretations introduced in
the central works on ADF's .
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Discussion Games AF semantics can be seen declaratively as providing
criteria that determine arguments that can be accepted together. A more
procedural view of AF semantics, in particular to decide acceptability of
arguments, underlies work on discussion games (Jakobovits and Vermeir,
1999; Prakken and Sartor, 1997; Modgil and Caminada, 2009; Caminada,
2018; Dung and Thang, 2007; van Eemeren et al., 2014). In such games
acceptance of an argument according to some semantics ¢ is determined
by showing that there is a strategy for defending such an argument from
arguments attacking it in an imagined dispute. Such a strategy can be
seen as providing an explanation of why the argument of interest is to be
accepted (according to o) and thus discussion games often are intuitive
means of determining acceptance of arguments accompanying the classical
definitions of the semantics to the AF at hand. The dialogue perspective
is also relevant for applications of argumentation.

Dialogical methods, can be traced back to the work of Hamblin (1971)
and Mackenzie (1979; 1990). As an example, Socratic forms of reasoning
(discussion games) are proposed in (Caminada et al., 2014) to answer the
credulous decision problem of AFs under the preferred semantics. In (Cay-
rol et al., 2003), games are presented to answer the credulous and skeptical
decision problems of AFs under the preferred semantics. A discussion
game is proposed in (Dung and Thang, 2007) to answer the skeptical
decision problem of AFs under the preferred semantics. It is proven that
this method is sound for any AFs, while it is complete for finitary AFs.
Next, Vreeswijk and Prakken (2000) present a discussion game to answer
the credulous decision problem under preferred semantics and a game to
answer the skeptical decision problem when an AF is coherent (i.e, when
the set of preferred extensions and the set of stable extensions coincide).
Furthermore, the Standard Grounded Game (Modgil and Caminada, 2009;
Prakken and Sartor, 1997) and the Grounded Persuasion Game (Caminada
and Podlaszewski, 2012a,b) have been presented to answer the credulous
decision problem of AFs under grounded semantics. Further dialectical
methods for AF's are presented in (Nofal et al., 2014; Modgil and Caminada,
2009).

In Chapters 6 and 7 we introduce, to the best of our knowledge, the
first discussion games for ADFs. Particularly we do so for the grounded
and preferred semantics. Thus, dialectical explanations for acceptance of
arguments as for AFs can be obtained also in the context of the clearly
more complex context of ADFs.

299



Variations There are various ways to determine the capabilities of knowl-
edge representation formalisms. One way is to study the computational
complexity of the reasoning tasks that are defined for such formalisms. An-
other approach is to study their expressivity: properties that characterise
the outcomes of evaluating the formalisms via their associated semantics.

As analyzed in (Dunne and Caminada, 2008; Dunne and Bench-Capon,
2002; Dvordk, 2012; Dvorék and Dunne, 2018; Dvoidk and Wallner, 2020),
and illustrated in Table 2.2, the complexity of the reasoning problems
that can be defined in the case of several of the most important semantics
for AFs range from tractability up to the second level of the polynomial
hierarchy. Thus the analysis of restricted classes of AFs is of importance,
since the restrictions may make decision problems easier. The class of
acyclic (also known as well-founded) AFs has been introduced by Dung
in (1995). In addition, the class of symmetric AFs has been introduced
in (Coste-Marquis et al., 2005). Further subclasses obtained via other
constraints on the graphical structure of AFs are defined in (Dunne, 2007).

Dung (1995) shows that for acyclic AFs all the semantics considered
in this work coincide. As presented in (Dvotrdk and Dunne, 2018) and
shown in Table 2.2, the main decision problems of AFs under the grounded
semantics are tractable. Thus, for the class of acyclic AFs, all the main
decision problems that we present in Table 2.2 are also tractable under
the preferred, complete, stable, semi-stable, and ideal semantics. On the
other hand, the complexity results for acyclic ADFs have been established
in (Linsbichler et al., 2018).

In (Coste-Marquis et al., 2005) it is shown that the class of symmetric
AFs is coherent (i.e., preferred and stable semantics coincide), thus, each
symmetric AF has at least one stable extension. Dvordk and Dunne (2018)
show (Table 2.2) that preferred semantics have the highest computational
complexity of the semantics we consider in this work. However, for sym-
metric AF's, the complexity of the decision problems under the preferred
semantics are easier than in the general case. Specifically, the verifi-
cation problem under the preferred semantics is coNP-complete, while
this problem under the stable semantics is in P. Furthermore, it is shown
in (Coste-Marquis et al., 2005) that the class of symmetric AFs is relatively-
grounded (i.e., the grounded extension is given by the intersection of the
preferred extensions). Thus, for the class of symmetric AFs, the skeptical
decision problem under preferred semantics coincides with the credulous
decision problem of AFs under grounded semantics. However, the credulous
decision problem of AFs under grounded semantics is tractable, while the
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skeptical decision problem under preferred semantics is on the second level
of the polynomial hierarchy, namely it is I_Ig -complete. More generally,
semantic and syntactic restrictions on AF's often make decision problems
easier from a complexity perspective. This fact has, for instance, been
made use of in practice in the cegartix system (Dvorak et al., 2014). But
studying subclasses of AFs also provides a better understanding of the
semantics, by revealing under which conditions one obtains different or
identical results.

Since coherence of AF's leads to a lower computational complexity of
reasoning tasks under preferred semantics, Dunne and Bench-Capon (2002)
study the reasons why an AF is not coherent. It is shown in (Dunne and
Bench-Capon, 2002) that, if an AF is not coherent, then it contains a
cycle of odd length. This means, by contraposition, that if an AF does
not contain any odd-length cycle, then it is coherent.

The added modeling capabilities of ADFs representing complex links
between arguments (beyond simple attacks) leads to higher computational
complexity in comparison to AFs (Strass and Wallner, 2015; Dvoidk and
Dunne, 2018; Gaggl et al., 2021), as is shown in Table 2.3. This has been
our motivation to define subclasses of ADFs analogous to those known for
AFs in Chapter 8, and to investigate whether similar properties of such
subclasses of AFs also hold for ADFs.

As argued in (Dunne et al., 2015), another approach to study and
compare the capabilities of different semantics of AFs is achieved via the
notion of expressiveness of formalisms from the perspective of realizability.
Realizability is the ability of a formalism under a semantics to express
specific desired sets of extensions. The so-called “signatures” capture the
exact expressiveness of a formalism under a semantics by characterising the
sets of extensions that can be obtained. Formally, the study of expressive-
ness of a formalism with respect to a semantics can be done by considering
the outcomes that can be realised by the formalism under the semantics of
interest. For instance, Dunne et al. (2015) show that preferred semantics
of AFs are strictly more expressive than stable semantics, from the per-
spective of realizability. In contrast, preferred and semi-stable semantics
of AFs have the same expressiveness. It is shown in (Linsbichler, 2017)
that preferred and semi-stable semantics are among the most expressive
semantics of AFs.

Furthermore, the notion of expressiveness can be used to compare the
capability of different formalisms of argumentation. For an overview of
generalizations of Dung’s AF's that allow for a richer syntax, see (Brewka
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et al., 2014). A generalization of AFs, namely argumentation frameworks
with collective attacks (SETAFs), has been introduced in (Nielsen and
Parsons, 2006) and they have received increasing attention recently (Dvorak
et al., 2019; Flouris and Bikakis, 2019). Translations between SETAFs and
other abstract argumentation formalisms have been studied in (Polberg,
2017). The expressiveness of SETAFs under two-valued semantics has
been investigated in (Dvofak et al., 2019) in terms of signatures. It has
been established in (Linsbichler et al., 2016; Linsbichler, 2017) that, for
a fixed semantics, the class of bipolar ADF's is strictly more expressive
than the class of SETAFSs, and the class of SETAF's is more expressive
than the class of AFs. In addition, (Dvordk et al., 2019) provides explicit
characterisations of the two-valued signatures of SETAFs and shows that
SETAF's are more expressive than AFs. Moreover, in (Linsbichler et al.,
2016), an algorithm is provided to decide realizability in AFs, SETAFs,
bipolar ADF's, and ADFs under the admissible, preferred, complete, model
and stable semantics. In contrast, (Flouris and Bikakis, 2019) show that
when allowing to add extra arguments to an AF that are not relevant
for the signature, i.e. when the extensions/labellings are projected on
common arguments, then SETAFs and AFs have equivalent expressivity.
Furthermore, Piithrer (2020b) presented explicit characterisations of the
signatures of general ADFs (but not for the sub-classes discussed above).

Regarding this approach to comparing formalisms of argumentation,
we complement previous work on expressiveness of AFs and ADFs (Strass,
2015; Piihrer, 2015; Linsbichler et al., 2016) by comparing the expressive-
ness of ASSADFs, SFADFs, and SFSADF's with that of AFs, bipolar ADF's
(BADFs), and ADFs, in Chapter 8. Furthermore, a sufficient condition for
rewriting an ADF as a SETAF has been implicitly presented in (Wallner,
2020): that SFADFs with satisfiable acceptance conditions can be equiva-
lently represented as SETAFs. This was a motivation for us to investigate
whether this is a necessary condition for rewriting an ADF as a SETAF,
as investigated in Chapter 9.

Argumentation theory can shed light on the process of decision making,
from modeling to evaluating a problem. The use of ADF's as a semantic
tool of modelling and evaluating of arguments in various scenarios has been
presented in (Brewka et al., 2018a). For instance, it has been shown how
graphical representations based on link types (supporting or attacking) can
be represented by ADFs. Furthermore, ADF's have also been generalized,
for example in weighted abstract dialectical frameworks (Brewka et al.,
2018b) (wADF's for short), to accommodate arbitrary acceptance degrees
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for the arguments.

All standard semantics of ADFs have been defined for weighted ADF's,
while the semantics of weighted ADF's are defined based on many-valued
interpretations, instead of three(two)-valued interpretations. A related
approach in a multi-valued setting is (Dondio, 2014, 2017). Also, it is
interesting to see (Alsinet et al., 2017) for an application of weighted
argumentation on the Twitter social network. In addition, the notion of
weights on links has been introduced by Brewka and Woltran in (2014) in
order to simplify the definition of acceptance conditions in the context of
GRAPPA frameworks.

Concerning a modeling example of a practical problem, we considered
expected utility theory (EUT for short), which is a theory concerned
with making the best decision under uncertainty (Von Neumann and
Morgenstern, 1947; von Neumann and Morgenstern, 2007; Savage, 1954;
Briggs, 2019; Gilboa, 2009; Mongin, 1998; Russell and Norvig, 2009). In
Chapter 10, we defined ADFs that formalize situations induced by the
probabilities and utilities and to evaluate EUT.

11.3 Future Work

Semantics As to future work, first of all, there are still a few noteworthy
semantics for AFs which are lacking a counterpart in the ADF world.
In particular, the ideal and eager semantics are unique-status semantics
(i.e. returning a single interpretation) that are more credulous than the
grounded semantics (which is often deemed too skeptical). Defining such
semantics for ADFs would thus be of immediate relevance. Of course then
establishing the relationship between these semantics for ADFs and the
semantics considered in this work would also be crucial.

Computational Complexity There are still some open questions re-
garding reasoning in ADF's that follow from this thesis. Specifically, we
studied the complexity of the main reasoning tasks that can be defined
for ADFs with respect to the strong admissibility semantics in Chapter 4.
However, the computational complexity of reasoning tasks for the semi-
stable semantics of ADF's, presented in Chapter 5, is still open. Some of
the reasoning tasks whose complexity require clarification are the following:

1. Whether a given interpretation is a semi-stable model or semi-two-
valued model, i.e., the verification problem under the semi-stable
semantics and semi-two-valued semantics;
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2. Whether a given argument is credulously acceptable/deniable under
the semi-stable/semi-two-valued semantics of a given ADFs, i.e., the
credulous decision problem;

3. Whether a given argument is skeptically acceptable/deniable under
the semi-stable/semi-two-valued semantics of a given ADF, i.e., the
skeptical decision problem;

4. The problem of finding a small witness for justifying an argument,
i.e, whether there exists a semi-stable model or a semi-two-valued
model that satisfies a queried argument and is smaller than a given
bound.

Furthermore, several subclasses of ADFs have been introduced (Brewka
and Woltran, 2010; Diller et al., 2020), and it would be interesting to clarify
the computational complexity of the reasoning tasks over subclasses of
ADFs under semantics presented in this work, i.e., strong admissibility and
semi-stable semantics of ADF's, in particular, for bipolar ADFs (Brewka
and Woltran, 2010) and acyclic ADFs (Diller et al., 2020).

Discussion Games In this thesis, we assumed all ADFs to be finite.
Thus, we presented our games, namely, preferred discussion games and
grounded discussion games, for finite ADFs. Furthermore, in these games
we assume that the acceptance conditions of arguments are represented
by propositional formulas in ADFs. As future work, we are interested
in investigating games for infinite ADFs and for ADFs for which the
acceptance conditions are not restricted to propositional formulas, for
example, for ADFs for which the language of the acceptance conditions are
first-order logic or modal logic. Moreover, we could investigate structural
discussion games for other semantics of ADF's. In addition, we could study
discussion games for other decision problems of ADFs. We could also
investigate whether the presented methods in the discussion games are
more effective than the methods used in current ADF-solvers (Brewka
et al., 2017a; Ellmauthaler and Strass, 2014). This study may lead to
new ADF-solvers that work locally on an argument to answer decision
problems.

Variations A further topic in this work was to verify whether properties
known for subclasses AFs also hold for the new semantics and analogous
subclasses of ADFs we considered in this work. For instance, we showed
that most of the semantics of ADFs coincide for acyclic ADFs. In the same
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vein, it would also be of interest to determine whether the semi-stable
semantics coincides with the preferred semantics, and whether the strong
admissibility semantics coincides with the admissible semantics in the
class of acyclic ADFs. Furthermore, since all reasoning problems become
coNP-complete for acyclic ADFs (cf. the complexity results presented
formally in (Linsbichler et al., 2018)) our work offers further guidelines for
designing more efficient systems for ADFs.

Also, the exact characterisation of admissible and complete semantics
of SETAFs, SFADFs, and SETADFs are an interesting topic for future
work. Another aspect to be investigated is to what extent our insights on
labelling-based semantics for SETAFs and SFADFs can help to improve
the performance of reasoning systems for such argumentation formalisms.

The last contribution of this thesis was to present a generalization of
ADFs, called nADFs. The formalism of nADFs are used to model and
evaluate the standard decision problem of expected utility in a single-
agent system. As to future work, it can be investigated whether nADFs
can be used for modeling decision problems in multi-agent systems. We
leave for future work to study whether nADFs are powerful enough not
only to find a set of best actions, but also to answer queries, such as for
which probabilities it is reasonable to perform an action. Finally, the
computational complexity of decision problems in nADFs can be studied.
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Summary

Argumentation is an essential part of our daily life both in our individual
and our social activities. Arguing is so natural for all of us that we do
it all the time, either with ourselves or with other people. One of the
strengths of the argumentation approach is that it turns out to be powerful
enough to model a wide range of formalisms for non-monotonic reasoning.
Argumentation is deeply rooted in human history, and the academic study
of argumentation goes back to ancient Greece in theoretical philosophy.
Reasoning via argumentation has been a specific topic in philosophy at
least since the time of Aristotle. The extensive trajectory of research on
argumentation from Aristotle to today’s computational argumentation in
artificial intelligence shows how far research in argumentation has come.

We argue for different reasons. For instance, when we have an important
decision to make, we may discuss it with other people in order to consider
their ideas, we deliberate about it in our mind several times, and we may
also use an automated system such as an argument-assistance system that
simulates human reasoning. In any event, a fruitful way of progress towards
a decision is through argumentation.

According to Leibniz, “the only way to rectify our reasonings is to
make them as tangible as those of the Mathematicians, so that we can
find our error at a glance, and when there are disputes among persons, we
can simply say: Let us calculate [calculemus], without further ado, to see
who is right”. Put differently, developing automated methods capturing
the human ability of reasoning is an old, ambitious, and ongoing research
goal. Big dreams bring extraordinary results. In modern terms, one would
rephrase Leibniz’ dream as the aim to design a formal system and a decision
procedure for making a decision without any doubt.

With the advent and development of technology, we see that different
forms of argumentation can occur between a human and an autonomous
system, for instance, when a person uses a chatbot, smartphone voice
assistant, or automated persuasion system. Recently, even an autonomous
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debating system has been developed that can perform a debate with a
human expert debater. A crucial question is: How should the process
of arguing occur among automated systems? To empower automated
systems to argue, solid formalisms are required for modeling and evaluating
argumentation.

Argumentation theory can shed light on the process of decision making,
from modeling to evaluating a problem. Models of argumentation reflect
how arguments relate to one another, and semantics of models of argu-
mentation reflect how to use argumentation for making a decision under
inconsistent, controversial, and incomplete information.

In this thesis we consider abstract dialectical frameworks (ADF's for
short), one of the powerful formalisms of argumentation that allow arbitrary
logical relationships among arguments to be expressed. An ADF can
be represented by a directed graph in which nodes indicate arguments
and links show the relation among arguments. Each argument in an ADF
is labeled by a propositional formula, called acceptance condition. The
acceptance condition of each argument expresses under which condition the
argument can be accepted. The semantics of ADFs are methods proposed
to evaluate the acceptance of the arguments.

We begin by focusing on the semantical evaluation of ADFs, presenting
two novel semantics. Among all admissibility-based semantics of ADF's,
grounded semantics stands out for its important features. To target
explaining why an argument is justified under the grounded semantics
in ADFs, in the current thesis we have proposed the notion of strong
admissibility semantics of ADFs. Furthermore, we analyzed the complexity
of the relevant reasoning tasks of ADFs under the strong admissibility
semantics.

For the cases in which a given ADF does not have any two-valued
model, we introduce semi-two-valued semantics and semi-stable semantics
of ADF's as new points of view on the acceptance of arguments. Both are
proper formal generalizations of the notion of the semi-stable semantics
of AFs to ADFs. In ADFs, the user can choose whether support cycles
should be accepted or rejected, by choosing semi-two-valued models or
semi-stable models as semantics.

A more procedural view of ADF semantics, in particular to decide
acceptability of arguments, underlies work on discussion games. Discussion
games can provide an explanation of why an argument of interest is to be
accepted or denied according to a given semantics. Therefore, discussion
games can be regarded as intuitive means of determining acceptance of
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arguments accompanying the formal definitions of the semantics to an
ADF at hand. This was our motivation to introduce the first discussion
games for ADF's in the next step of this thesis. Particularly we do so for
the grounded and preferred semantics.

The high computational complexity of reasoning tasks for ADFs was
our motivation to introduce subclasses of ADFs. We investigate how the
restrictions that we consider influence the semantic evaluation of such ADF's.
To determine the capabilities of knowledge representation formalisms, we
study their expressivity: properties that characterize the outcomes of
evaluating the formalisms via their associated semantics. Furthermore, we
study the sufficient and necessary conditions for rewriting an ADF as a
SETAF. We show that an ADF without any support link can be encoded
as a SETAF if and only if all acceptance conditions are satisfiable.

Next, we combine argumentation with decision theory in the context
of ADF's in order to model expected utility problems. We present a gener-
alization of ADF's, called numerical ADFs. The formalism of numerical
ADFs can be used to model and evaluate the standard decision problem
of expected utility theory, which is a theory concerned with making the
best decision under uncertainty in a single-agent system.

With this work, we hope that we have advanced the knowledge on
the field of formal argumentation and in particular that we have given
new insights into the semantics of abstract dialectical frameworks that
reflect how to use argumentation for making a decision under inconsistent,
controversial, and incomplete information.
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Samenvatting

Argumentatie maakt een essentieel deel uit van ons dagelijks leven, zowel in
onze individuele als in onze sociale bezigheden. Argumenteren is zo natuur-
lijk voor ieder van ons dat we er continu mee bezig zijn, hetzij met onszelf,
hetzij met andere mensen. Een van de sterke punten van de argumentatie-
benadering is dat deze benadering krachtig genoeg blijkt te zijn voor
het modelleren van een groot scala aan formalismen voor niet-monotoon
redeneren. Argumentatie is diep geworteld in de menselijke geschiedenis, en
de academische studie van argumentatieleer gaat in de theoretische filosofie
terug tot het oude Griekenland. Redeneren via argumentatie is ten minste
vanaf de tijd van Aristoteles een specifiek onderwerp in de filosofie geweest.
Het uitgebreide spoor van onderzoek over argumentatie, vanaf Aristoteles
tot aan de computationele argumentatie van vandaag in de kunstmatige
intelligentie, laat zien hoe ver het onderzoek in de argumentatieleer is
gekomen.

We argumenteren om verschillende redenen. Als we bijvoorbeeld een
belangrijke beslissing moeten nemen kunnen we die bespreken met anderen
om hun ideeén te overwegen, we kunnen die verschillende keren in gedachten
overwegen, en we kunnen zelfs een automatisch systeem gebruiken, zoals
een ‘argument-assistentie’-systeem dat menselijk redeneren simuleert. In al
deze gevallen is argumentatie een vruchtbare manier om tot een beslissing
te komen.

Zoals Leibniz zei: ‘De enige manier om onze redeneringen te recht-
vaardigen is om ze net zo tastbaar te maken als die van de wiskundigen,
zodat we onze fouten in een oogopslag kunnen vinden, en wanneer er
onenigheden zijn tussen personen we gewoon kunnen zeggen: “Laat ons
berekenen [calculemus], zonder verder gedoe, wie er gelijk heeft”. Met
andere woorden, het ontwikkelen van geautomatiseerde methoden om het
menselijke vermogen tot redeneren te vatten is een oud, ambitieus en voort-
durend onderzoeksdoel. Grote dromen leiden tot buitengewone resultaten.
In moderne bewoordingen zou men Leibniz’ droom omschrijven als het
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streven een formeel systeem en een besluitvormingsprocedure te ontwerpen
om zonder enige twijfel besluiten te nemen.

Met de komst en ontwikkeling van deze technologie zien we dat zich
verschillende vormen van argumentatie kunnen voordoen tussen een mens
en een autonoom systeem, bijvoorbeeld als iemand een chatbot gebruikt,
of een smartphone-spraakassistent of een geautomatiseerd overtuigingssys-
teem. Kort geleden is er zelfs een autonoom debatsysteem ontwikkeld
dat een debat kan voeren met een menselijke kampioendebatteerder. Een
cruciale vraag is hier: Hoe zou het argumentatieproces verlopen tussen
geautomatiseerde systemen? Om geautomatiseerde systemen in staat te
stellen te argumenteren zijn er degelijke formalismen nodig om argumen-
tatie te modelleren en te evalueren.

Argumentatietheorie kan licht werpen op het besluitvormingsproces,
vanaf het modelleren tot het evalueren van een probleem. Argumen-
tatiemodellen weerspiegelen hoe argumenten zich tot elkaar verhouden,
en semantiek van argumentatiemodellen laat zien hoe men argumentatie
zou moeten gebruiken om in het geval van inconsistente, controversiéle en
onvolledige informatie een beslissing te nemen.

In dit proefschrift kijken we naar abstracte dialectische raamwerken
(‘abstract dialectical frameworks’, of ADF’s), een krachtig formalisme van
de argumentatieleer dat het uitdrukken van willekeurige logische verbanden
tussen argumenten mogelijk maakt. Een ADF kan weergegeven worden
als een gerichte graaf waarin knopen argumenten voorstellen en pijlen het
verband tussen argumenten laten zien. Elk argument in een ADF is gelabeld
met een propositionele formule, die de acceptatieconditie wordt genoemd.
De acceptatieconditie van elk argument drukt uit onder welke voorwaarde
het argument geaccepteerd kan worden. Een semantiek voor ADF’s is
een methode die gebruikt wordt om de acceptatie van de argumenten te
evalueren.

Om te beginnen focussen we op de semantische evaluatie van ADF’s,
waarbij we twee nieuwe semantieken presenteren. Onder de op toelaat-
baarheid gebaseerde semantieken van ADF’s vallen gegronde semantieken
op vanwege hun belangrijke eigenschappen. Om uit te kunnen leggen
waarom een argument gerechtvaardigd is onder de gegronde semantiek in
ADEF’s hebben we in dit proefschrift de notie van sterke toelaatbaarheids-
semantiek van ADF’s voorgesteld. Verder hebben we de complexiteit van
de relevante redeneertaken van ADF’s onder de sterke toelaatbaarheidsse-
mantiek geanalyseerd.

Voor de gevallen waarin een gegeven ADF geen enkel tweewaardig model
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heeft introduceren we semi-tweewaardige semantiek en semi-stabiele se-
mantiek van ADF’s als nieuwe zienswijzen op de acceptatie van argumenten.
Beide zijn correcte formele generalisaties van het idee van semi-stabiele
uitbreidingen voor AF’s naar ADF’s. In ADF’s kan de gebruiker door
semi-tweewaardige modellen of semi-stabiele modellen als semantiek te
kiezen, besluiten of ondersteuningscycli geaccepteerd of afgewezen moeten
worden.

Een meer procedurele visie op ADF-semantiek, in het bijzonder om
de aanvaardbaarheid van argumenten te bepalen, ligt ten grondslag aan
onderzoek over discussiespellen. Discussiespellen kunnen uitleggen waarom
een belangrijk argument geaccepteerd of geweigerd moet worden volgens
een gegeven semantiek. Daarom kunnen discussiespellen beschouwd worden
als een intuitieve manier om de toelaatbaarheid van argumenten in een
ADF ten opzichte van een gegeven semantiek ADF te bepalen. Dit was
onze motivatie om in de volgende stap van dit proefschrift de eerste
discussiespellen voor ADF’s te introduceren. Dit doen we in het bijzonder
voor de gegronde en geprefereerde semantiek.

De hoge computationele complexiteit van de redeneertaken voor ADF’s
was onze motivatie om deelklassen van ADF’s te introduceren. We onder-
zoeken hoe de restricties die we beschouwen de semantische evaluatie van
zulke ADF’s beinvloeden. Om de mogelijkheden van kennisrepresentatie-
formalismen te bepalen bestuderen we hun expressiviteit. Verder bestud-
eren we de voldoende en noodzakelijke voorwaarden om een ADF als een
SETAF te herschrijven. We laten zien dat een ADF zonder enige onderste-
uningslink als een SETAF gecodeerd kan worden dan en slechts dan als
alle acceptatievoorwaarden vervulbaar zijn.

Vervolgens combineren we argumentatieleer met beslistheorie in de
context van ADF’s om verwachtenutsproblemen te modelleren. We stellen
numerieke ADF’s voor als een generalisatie van ADF’s. Het formalisme van
numerieke ADF’s kan gebruikt worden voor het modelleren en evalueren
van het standaard probleem uit de beslistheorie, een theorie die zich bezig
houdt met het maken van de beste beslissing in onzekere omstandigheden
in een systeem met één agent.

We hopen dat we met dit werk de kennis op het gebied van formele
argumentatie bevorderd hebben, en in het bijzonder dat we nieuwe inzichten
hebben gegeven in de semantiek van abstracte dialectische raamwerken
(ADF’s) die weerspiegelen hoe argumentatie gebruikt kan worden om
beslissingen te nemen onder inconsistente, controversi€le en onvolledige
informatie.
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