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Abstract
Software agents that autonomously act and interact t.o adiieve their design
ol)jcct ives are increasingly being (leveloped Ibr a range of electronic commerce
applications (i.e. conimercial activity conducted via electronic media). Also.
within an agent-oriented view of computation, it is readily apparent that most.
problems require or involve multiple agents which have to interact. In this
context, automated negotiation is a central concern since it is the de facto
nieans of establishing contracts for goods or services between agents.

In iiianv of these cases, these contracts consist of multiple issues (e.g. price.
inie of deliver, quantity, quality) which makes the negotiation more complex

than when dealing with just price. In particular, effective and efficient multi-
issue negotiation requires an agent t.o have some indication of its opponent's
preferences over these issues.

However, in coinpet it.ive domains, such as e-commerce. an agent will not
reveal this information and SO the best that can be achieved is to learn some
approximation of it. through the negotiation exchanges. To this end. the use
of a statistical method, kernel density estimation, was explored and evaluated.
Specifically, the work is couched in the context of making negotiation trade-
offs: Giving in on one issue, while simultaneously demanding more on another.
This approach proved to make the negotiation outcome more efficient for hot.h
participants.
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Chapter 1

Introduction

Automated negotiation is becoming more and more important in several fields of
artificial intelligence and business1. In multi-agent systems for example, where
inter-dependencies between the agents are inevitable, it. is a means for agents
to communicate and compromise to reach (mutually beneficial) agreements. In
such situations, the agents have a common interest in cooperating, but conflic-
ting interests on how to cooperate. Examples of such systems include intelligent
agents that negotiate over the meeting schedule of people for whom they work
(Bui et al.. 1996), bargaining systems that try to negotiate the best deal (Zeng
and Sycara, 1998) or (simulated) robotic system that have to complete a com-
mon objective (Rosenschein and Zlotkin, 1994).

On the other hand there is electronic commerce (e-commerce), which is in-
creasingly assumed to play a pivotal role in many organizations. "It offers
opportunities to significantly improve (make faster, cheaper, more personalized,
an/or more agile) the way that businesses interact with both their customers
arid their suppliers" (He et. al., 2003).2 \Vithir, this domain, automated negotia-
tion is the de facto means of establishing contracts for goods or services between
agents. Examples within this domain are for example the trading agent competi-
tion (TAC), in which "travel agents" have to assemble travel packages on behalf
or their user (He and Jennings, 2003) or models for agent-based supply chain
management, complex systems of business units that convert raw materials to
consumer products.

To this end. software agents that autonomously act and interact to achieve
their design objectives are increasingly being developed for a range of applica-
tions (see He et al. (2003) for a review of the applications in e-commerce). In
such agent-mediated applications, a key component of the solution is the way
in which the agents negotiate to establish contracts with one another to provide
particular services or goods under particular terms and conditions.

In many cases, it is important that the agents do not only bargain over the
price of a good, but also take into account aspects like delivery time, quality,
and payment method. We will call these multi-dimensional goods services. This

'see (Weiss, 1999, ch. 13) for an overview of applications.
2ln this thesis, many of the examples and applications wifl be from this latter domain.

However, it should be stressed that the application of the method proposed here is not limited
to this domain.

3see http://wwv.sics.se/tac/ for details of the competition.
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point of view on goods is in line wit.h the more economical consumer theory, in
which goods are viewed as consisting of properties from which utility for the
consumer is derived, as opposed to the approach that goods are the direct
object of utility (Lancaster. 1966).

Different parties will typically assign different relative importance to these
at tributes (issues) of a service. Therefore, in negotiation over such multi-issue
contracts it is often possible to reach an agreement that is mutually beneficial
for both parties Raiffa (1982). For example, when buying a flight-ticket, the
time of day of t.he flight might not be of great importance to the buyer, whereas
t.he travel agency selling the ticket might think this issue very important because
of the number of seats available in the airplane. This difference in importance
(weight) attached to the different issues by the different agents provides the
opportunity of joint improvement in negotiations over such a service. However,
an impediment to this win-win scenario occurs in many areas of application,
such as e-commerce, because the agents are unlikely to truthfully reveal their
preferences, utility functions or reservations values (i.e. the maximum (or mi-
nimum) value acceptable for the agent) for fear of being exploited. In such
circumstances, the best that can be achieved is to try and approximate these
preferences based upon past experience and the offers and counter-offers that
the opponent makes during the current negotiation encounter.

Against this background, the aim of this thesis is to report on the develop-
ment of a novel method for attempting to learn the negotiation pielvrences of
the opponent. First, however, we define exactly what we mean by the terms
"agent" and "electronic commerce" and lay out the requirements of our research,
as well as the method we propose.

1.1 Agents
An increasing number of computer systems are being viewed as autonomous
agents. The reasons for this are twofold. First, agents are advocated as the next
model for engineering complex, distributed systems (e.g. Wooldridge (1997)).
Secondly, agents could provide artificial intelligence with an overarching frame-
work, bringing the components of the different subdisciplines together to one
intelligent entity (Russell and Norvig, 2003). Although there is not one single
definition what an agent is, software that is considered to be an agent should
at least exhibit some properties (\\ooldridge, 1997):

• It needs to be autonomous: capable of execution without direct interven-
tion (human or other) and have control over their own state.

• It needs to be reactive: able to respond rational to events that occur by
maintaining an ongoing interaction with their environment.

• It needs to be proactive: besides simply responding to their environment,
they act to achieve their goals and by this means meet their owner's ob-
jectives.

Thus, for example, in the e-commere setting an agent might be instructed to
find a reasonably priced digital camera with some constraints on the technical
specifications, and that has to be delivered within three weeks. Therefore, it
should be autonomous since it should look for the product without intervention
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of the user, it should be reactive to cope with a dynamic environment (e.g.
the internet) and it should be proactive by fulfilling its goal of finding such a
product when it. is available.

1.2 Electronic Commerce
Electronic commerce, or c-commerce is defined by t lie Oxford English Dictio-
nary4 as:

Commercial activity conducted via electronic media, especially on
the Internet: the sector of the ecaiolliv engaged in such activity.

The field of electronic commerce is most applied to business-to-business (B2B)
and business-to-customer (B2C), where the former refers to transactions where
both the seller and the buyer are business corporations and the latter case
refer to shoppers buying products in an on-line store. Especially B2B business
is expected to be the predominant means of e-commerce, wit.h an expected
revenue in the range of 800 billion dollar in 2004 (as opposed t.o 1St) billion
dollars for B2C)5. By the means of electronic commerce, many commercially
interesting activities within this B2B activity, such as dynamic pricing, the
ability to easily compare many goods, and the ability to negotiate contracts
much more frequently are made possible (Rosenschein and Zlotkin, 1994). To
achieve such systems, agents will be more and more interact lug entities, and
negotiation is the de facto means of establishing contracts with other agents for
goods or services.

1.3 Requirements
The field of automated negotiation is vast and very inter-disciplinary. To get a
better focus within this field, the requirements of this work are laid out in this
section. The souir(( of these requirements is twofold. First, the domain of the
problem as a compel it lye, multi-issue negotiations implies that the opponent
will try to get the best. possible deal. Thus, it is possible the opponent changes
its strategy over time, requiring an adaptive system. This is extended by the
dynamic environment in which the agent will operate. Furthermore, since the
knowledge about the opponent will be limited the solution should not make
rigid assumptions or require an extensive knowledge of the opponent. Second,
a practical solution is sought. This implies limited computational power and
constraint.s on the sources. Also, a theoretical solution which can not be applied
to real scenarios does not suffice.

Following this line of reasoning, the requirements can be stated as follows:

i) The agents will be bounded in their computational power. While this may
not always lead to the optimal solution, it will provide a solution which is
useful in practice.

4Oxford English Dictionary, Draft entry September 2001, Oxford University Press
(http://www.oed.co.)

5according to eMarketer: http://wvv.eiiarketer.com.
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ii) The domain will be bounded in resourcs. This means in our experiments
most importantly that an agreement should be made within a reasonable
amount of time. However, it should also be possible to limit the use of
other resources.

iii) Ve will focus on the process of the negotiation, as opposed to merely the
best. solution. This is necessary to be applicable to real-world problems.

iv) The contracts are assumed to consist of multiple issues, since in most
domains this will be the case.

v) The solution should be as generic as possible. Thus, the implementation
of the method presented should he possible without an extent knowledge
within the domain of negotiation or game theory.

vi) The method should be adaptive to the environment or opponent.

Using these requirements, an evaluation of the related work within automa-
ted negotiation will be made possible, and a basis for a structural analysis is
provided.

1.4 Method
To make a further progression in the field of automated negotiation, this the-
sis reports on the development of a novel method for attempting to learn the
negotiation preferences of the opponent. Specifically, we try to learn this in-
formation with respect to the provision of a particular service (since an agent's
preferences may vary for different servkes). The particular approach we use is
kernel density estimation (KDE) which is a statistical method known to pro-
vide a simple way of finding structure in data sets without the imposition of a
parametric model (Wand and Jones, 1995). It works in the following way; any
data that. is available about previous negotiation enounters for the provision of
a particular service is processed offline (as described in section 3.2) to acquire
a probability density function over the opponent's likely weights for the various
issues. This function can then be augmented by online learning that reflects
new information emerging from the ongoing encounter.

The KDE-method was chosen for two main reasons. First, following the
requirements in section 1.3, the computational complexity of the model is im-
portant because agents are bounded in their computational power. It is shown
in section 3.2 that learning a KDE can be done in n log n complexity. When it
is learned, the lookup of a prediction is constant. Thus, the method can indeed
be applied in computatiorially bounded agents.

Second, we want to use the method for a wide variety of opponents with
varying strategies without having to fundamentally alter the model. Hereto,
we want to make as few explicit assumptions about the relation between the
negotiation history and the importance of the negotiation issue as possible. One
of the properties of KDE is that it is a non-parametric method, meaning that
no assumptions about the underlying function has to be made; for example
that the relation sought for is linear or gaussian. More specifically, the rela-
tion between time, negotiation history and issue-weight does not have to be
specified a priori. In contrast, when using parametric regression methods such
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as linear regression or the expectation-maximization algorithm an assumption
must be made about the underlying distribution function (respectively linear
and Gaussian). Similarly, in Bayesian learning, an often used paradigm within
automated negotiation. an a priori distribution must be given for the weights
of the opponent. (see se(tiOn 2.4.3 for more detail). wherea.s in KDE the initial
distribution is based solely on the training data. This, the method complies
with the requirement that the solution should be generic.

\Ve choose t.o evaluate t.he efficacy of KDE in the context of making neg
tiation trade-offs in bilateral encounters. We focus on I rade-offs because t.hey
are a key feature of bargaining behaviour and cannot be achieved without a
reasonable degree of information about an opponent. In making a trade-off an
agent. concedes on one issue and demands more on another. Overall, the aim is
for the agent to keep a constant. utility compared to its previous offer for itself,
but. to increase the utility of the opponent. Hence this makes the trade-off more
likely t.o be accepted by the opponent. For the actual computation of the trade-
offs, we use Faratin's algorithm (Faratin et al.. 2002) which evaluates possible

based on fuzzy similarity. Thus while this algorithm makes use of the
f't that different negotiation issues are of different degrees of importance to
the agent, it does not actually provide a method for learning these weights.

Against this background, t.his research advances the state of the art in the
following ways. First, KDE has never been used to learn the preferences of a
negotiation opponent. Moreover, although we demonstrate it in the context of
making negotiation the method can be applied to other aspects of
negotiation where more accurate knowledge about an opponent's preferences
('an lead to better negotiation outcomes. Second, we extend Faratin's
algorithm by incorporating a learning model, thereby making it more effective
in finding in a wider variety of circumstances.

1.5 Structure of Thesis
The remainder of the thesis is structured as follows. Chapter 2 discusses related
work in the area of negotiation and learning in negotiation. Several methods
for coordination and negotiation models are introduced and critically evaluated
against the requirements of our research. After that, we describe the theoreti-
cal models that underpin this work; namely, the negotiation model, the KDE-
method and the algorithm (chapter 3). The empirical evaluation of the
developed model is presented in chapter 4. Finally, in chapter 5.1 we present
the conclusions and outline avenues for future work.
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Chapter 2

Related Work

To place this research in the history of Artificial Intelligence (At), we have to
start looking at distributed artificial intelligence (DAt), which evolved and di-
versified rapidly since the mid to late 1970s. Due to the interdisciplinary nature
of the field, including Al, computer science, sociology, economics, organization
and management science, and philosophy, a precise definition is hard to get.
Here, the definition of Weiss (1999) is used:

DAt is the study, construction, and application of multiagent sys-
tems, that is, systems in which several interacting, intelligent agents
pursue some set of goals or perform some set of tasks.

An agent is here defined as a computational entity (e.g. a software program or
a robot) that can be viewed as perceiving and acting upon its environment and
that is autonomous in that its behavior at least partially depends on its own
(xperlenc( (zbzd.). This field of research later resulted in other forms of inter-
actions, with perhaps negotiation as the most fundamental one for cooperative
u.s well as competitive domains:

[...] perhaps the most fundamental and powerful mechanism for
managing inter-agent dependencies at run-time is negotiation [...j.
Negotiation underpins attempts to cooperate and coordinate (both
between artificial and human agents) and is required both when
the agents are self-interested and when the are cooperative. It is
so central precisely because the agents are autonomous. (Jennings
et al., 2001)

For a more specific definition, Walton and Krabbe (1995) look at negotiation
using the approach of formal dialogue games from a more philosophical stance.
They focus on competitive domains, stating that negotiation is self-interested
bargaining: Each participant aims to maximise his share of some goods or
services which are in short supply." (Walton and Krabbe, 1995, p. 72). This
implies the aim for the agent is to get the best deal out of the negotiation for
itself. However. besides this strictly competitive stance, the agents do have the
need to cooperate, and therefore the deal should be mutually acceptable.

Against this background, this work focuses on bilateral encounters (encoun-
ters between two agents) in which both parties want to reach a mutually accep-

7
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table agreement on some matter. The means of achieving this state are to make
proposals. trade options and offer concessions.

Given its ubiquity and importance within many different contexts, many
different approaches (e.g. from game theory, A!, and social psychology) have
been used in negotiation theory. Vhen looking in more detail at this research,
however, automated negotiation can be considered to deal with three broad
topics according to Jennings et al. (2001):

• Negotiation protocols: The set of rules that govern the interaction. These
cover for example the number of participants, the level of knowledge of
these participants and the valid actions in particular states.

• Negotiation contracts: The range of issues over which agreement must be
reached. This can be at the one extreme just one issue (such as price).
while on the other extreme this can cover hundreds of issues (price, quality.
quantity, delivery time, penalties. etc.).

• Reasoning models: Covers the decision making model which is employed
by the participant to act in line with the protocol in order to achieve their
objective.

In this section relevant work in the areas of automated negotiation (in ge-
neral) and learning in negotiation (in particular) is reviewed. We will discuss
the most relevant works within the above given topics against the requirements
of this work (respectively section 2.2, 2.3 and 2.4). First, however, section 2.1
looks at some basic terminology of game theory, a branch of economics which
studies interactions between self-interested agents, and which therefore provides
a very useful tool to evaluate the results of automated negotiation.

2.1 Game Theoretic Approach to Bargaining
The central focus of economic models is to find an optimal allocation of scarce
resources through cooperation and coordination mechanisms and bargaining
(Binmore and Dasgupta, 1989). Thus, how to achieve a common objective by
working together and how to arrange actions to be performed in a coherent
manner. As in the definition by Jennings given above, the attempt to cooperate
and coordinate is stressed. On the other hand, an optimal allocation indicates
an allotment of the issues which is acceptable for both agents and as good
as possible for the individual agents, stressing the fact that agents are self-
interested, but a need for cooperation exists (as implied by the above mentioned
definition of (Walton and Krabbe, 1995)). Therefore, the close relation between
this field and automated negotiation makes a study of these models worthwhile.

More specifically, a subclass of these economical models are the micro-
economic models derived from game theory1. In these models, which have their
origins in the seminal work of von Neumann and Morgenstern (1944), the en-
counters between agents are viewed as games. In fact, every interaction between
two agents is considered to be a game when the agents are conscious of the fact

'The standard game theory terms are explained in any of the classic textbooks, such as
(Binmore, 1992). A more micro-economical book is (Mas-Colell et al., 1995). Both were used
extensively during the writing of this section.
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that their actions affect each other (Rasmussen, 1989). For example, when dri-
viiig a car in a busy street, you play a game with the drivers of the other cars.
When a company wants to decide whether it should enter a market or not, it is
playing a game with the current incumbents. Also, a buyer is playing a game
when negotiating the price of a digital camera on the internet.

This setion will discuss the aims and motivations of game theory (2.1.1).
Also. a measure of efficiency of the possible deals provided by this field of re-
search is discussed (2.1.2).

2.1.1 Aims and Motivation of Game Theory
To look at the aims and motivations of game theory it is important to give a
clear definition first.. As said before, game theory analyses what happens in
games between agents. We therefore define a game to consist of its players,
and a set of rules of the game. The players of the game are described by their
preferences, represented by a payoff or utility function defined on the set of
possible outcomes2, and by their beliefs, formally represented by a probabilit.y
distribution function over a set of possible states of the world. A player then
formulates a priori a strategy given the rules.

The rules define what a player can do. and when he can do this. It also
contains the information available to the agent at each possible decision point.
Finally, it defines the payoffs for the players when the game is over.

For example, consider the following situation. Suppose a house is for sale.
It is worth £2m for its owner, and £3m for the potential buyer. Hence a deal
is possible. When the parties come together, the only thing they have to do
is to divide the "surplus" of Lim. An abstraction of this problem leads to a
standard bargaining game known as "dividing the dollar" (see e.g. Binmore
(1992)): suppose A and B have to divide a dollar. If they reach an agreement
on this matter, they each get the agreed amount. If they don't. come to an
agreement. each gets nothing. Formally, this game can be defined as follows:

Example 1 Dividing the dollar
Players: There are two players A and B.
Rules: The players have to decide how to divide the dollar by a sequence

of offers and counter-offers. Player A bids first. Both player
observe all choices previously made.
When the players come to an agreement they each get the agreed
amount. When no agreement is made they don't get anything.

Outcome: The outcome space of pairs m = (mA,mB), where mA, mB is
the amount player A respectively B gets, is defined as the set
M = (in : + ma � 1}.

Payoff: The payoff function of both players is assumed to be equal to
the amount of money they get. .

2Note that this payoff function may be, as Rasmussen (1989) points out carefully: i) the
payoff the player receives after all players have picked their strategy and the game has been
played out; or ii) the expected utility he receives as a function of the strategies chosen by
himself and the other players. Although these definitions are distinct, the term "payoff" wilt
be used for both, as is usual in the literature
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More formally, a game is described in normal form as follows (Mas-Colell
et al., 1995):

Definition 2.1 (Normal form representation) For a game with I players,
the Normal form representation 1'N specifies for each player i a set of strategies
S, (with s, E S,) and a payoff function u2(si,.. , sj) giving utility levels asso-
ciated with the (possibly random) outcome arising from strategies (s'.. . . , s,).
Forinaib,, we write I' = [I, {S,}, {u2(.)}I.

Given this formal definitions of a game, the aim of game theory is to analyse
the players' best choices. This is motivated by the reductionistic nature of an
agent: as Binmore (1990) defines, an agent is an optimiser of some function,
be it genetic prosperity or maximisation of profit. In the field of game theory,
this function is the utility function; a function that maps the preferences of the
agent over all possible contracts to a 'score'. In turn, the preferences of an agent
are defined by a preference relationship defined on the set of outcomes ft We
assume such a preference relationship to be complete and transitive; thus, for
all a, b, c:

a b V b a completeness (2.1)

a -< bAb -< c=t' a -< c transitivity (2.2)

The former ensures that an agent is always able to express a preference between
any two outcomes. The latter is slightly less intuitive, but illustrated by an
example of Binmore (1992): Suppose transitivity does not hold. In that case,
it is possible an agent holds the following preferences over three outcomes a, b
and C:

a-<b-<c-<a (2.3)

Now suppose these outcomes can be traded. The agent likes b at least as much
as a, so he should be willing to trade a for b. The same holds for b and c.
However, the agent strictly prefers a over c, hence he should be willing to pay
a small amount of money to trade c for a. After this trade, the agent is in the
same state as before the trades, however with less money. This can be repeated
ad infinitum, resulting in a money leak.

(;iv(n such a preference relationship, the utility function can now be defined
formally, where a more preferable contract gets a higher utility. This results in
the following definition (Mas-Colell et al., 1995):

Definition 2.2 (Utility function) A function u: —+ R is a utility function
representing the preference relationship -'< if and only if for all a, b E f:

u(a)<u(b).t*a-<b

Note that this function representing the preference relationship -< is not unique.
It is only the ranking of the contracts that matter. To illustrate this, suppose
a function f : R — R is a strictly increasing function. Now, if u(x) is a utility
function of the preference relation , then v(x) = f(u(x)) also represents ,
This property of a utility function is called ordinality. By applying such trans-
formations it is possible to define a utility funtion that maps the preference
relation to the domain [0,1]. Throughout this work, such a transformation will
be applied for simplicity.
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Figure 2.1: Pareto-optimal set, feasible set, utopia and conflict point

2.1.2 Pareto Optimality
Now we have a measure of individual performance, defined by the utility, we can
define efficiency more concretely. To do this, we use the utility space represen-
tation as given in figure 2.1. In this figure, the utility of a buyer (b) is plotted
against the utility of the seller (s), using a linear utility function U1 : Il — 10, 11,
where 1 is the set of possible contracts or allocations and i E I = {b, s}. In this
figure, utopia is the situation where both agents achieve their highest possible
utility. The conflict point is the utility the agents get when there is no deal
made: Throughout this thesis we define this to be the origin3. The set of pos-
sible outcomes, or feasible allocations, is every possible combination of utilities,
the whole graph in this case.

Of course, not every outcome of the possible outcome space can be achieved.
To define the constraints on this set, we will first define what is rational for an
agent:

Definition 2.3 (Individual rationality) An agreement is said to be indivi-
dually rational if it assigns each agent a utility that is at least as large as the
agent can guarantee for itself from the conflict point.

Applying this to figure 2.1 ensures only contracts in the plotted quadrant will
be individually rational for both agents.

On the other hand, the set of possible outcomes is constrained by the Pareto
efficient set. This is a widely used efficiency measure which defines the points
in which an improvement of utility for one agent necessarily means a decrease
in utility for the other agent. To get a formal definition, we define contracts to

3Note that, since the utility function is ordinal, this does not imply a loss of genericness.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
utility buyer u,



12 ('IJAPTER 2. RELATED WORK

consist of the issue-set. J = (1,. . . , rn), and the set of agents to be I = (1, . . , n).
An allocation for issue j E J is denoted as x3. Pareto optimality is then defined
as:

Definition 2.4 (Pareto optimal) An outcome (xi, . . . ,x) is Pareto opti-
mal if there is no other feasible allocation (xi,. . . , x) such that Uj (x) > u2 (x,)
for all agents i e I and all contract-issues j J and u,(x) > u(x1) for some
i. 3.

An example of a Pareto optimal line is plotted in the graph, assuming both
agents have linear utility functions and different weights over the issues. This
line can be calculated by the weighted method (Raiffa, 1982). However, this
requires the preferences of the agents to be public.

2.2 Negotiation Protocols
When looking in more detail to the related work on automated negotiation, we
will start by discussing the work on negotiation protocols. Since we defined
negotiation in this work as being bilateral encounters, in this section we will
not focus on large scale society protocols, such as voting, auctions and market
mechanisms. For a comprehensive review of these mechanisms, see (Sandholm,
1999).

The bilateral protocols we will discuss in this section involve two parties (for
example a service supplier and a service consumer) and, generally speaking,
an alternating offers protocol. This protocol is inspired by (Rubinstein, 1982),
where the following bargaining situation is presented: two players have to divide
a pie of size 1. Each has to make, in turn, a proposal how to divide it. After one
party has subniitted its offer, the other party has to decide whether to accept it,
or to reject it and continue bargaining. This process is repeated until the parties
come to a mutually acceptable agreement over the terms and conditions of a
trade or one of the parties withdraws (typically because its negotiation deadline
has passed). The protocol we use will be presented in more detail in section 3.1.

2.2.1 Cooperative Versus Non-Cooperative Models
A important distinction between the several models proposed is whether the
agents are cooperative or non-cooperative. A cooperative situation is one in
which the player can make binding agreements, as opposed to a non-cooperative
game, in which they cannot. To make this clear, I will use the Prisoner's
dilemma, one of the most common examples used in game theory, first analysed
in 1953 at the Rand Corporation by Melvin Dresher and Al Thcker.

The story is as follows: There are two suspects of a crime. However, the
evidence is not very convincing. Therefore, the prisoners are interrogated se-
parately. If both confess, they each get 8 years in prison. If both hold out,
however, they can only get punished for a lighter crime, for which the sentence
is 1 year in prison. Finally, if one of the two confesses, while the other holds
out, the confessor gets released, while the other gets the maximum punishment
of ten years. For the normal form of this game see table 2.1.

The difference between cooperative and non-cooperative games is the diffe-
rence between whether the two prisoners can talk to each other before making
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B
Confess Hold out

A
Confess (-8,-8) (-10,0)
Hold out (0,-b) (-1,-i)

Table 2.1: The prisoner's dilemma: Shown are the payoffs for (A, B)

their decision. The environment, is called cooperative when t.he agent.s can make
binding agreements. In non-cooperative environment, such agreements will not
be possible, or will not. be binding (in which cases the two prisoners might for
example agree to confess, hut. when the time comes don't confess after all).

These two approaches to game theory are bot.h interesting in their own right.
Cooperative game theory frequently appeals to efficiency (the pareto-efficiency
measure discussed earlier is an example of this) and fairness. Also, a lot of
research has been done oil bargaining games, e.g. by Nash (1950) and Shapley
(1w3). Non-cooperative games take a more fundamental stance, focusing on
equilibrium strategies given a complete (lescription of the rules.

2.2.2 Cooperative Models
Cooperative models are also known as axiomatic models. Axioms in this case
refer to desirable properties of the solutions, where a solution consists of a set
of strategies which are in equilibrium. This solution focuses on the desired pro-
perties of the outcome alternatives instead of process of the negotiation. Thus,
the strategy used is not of great importance, it is the preference structure of
the game that determines which contracts are feasible (Binmore, 1992). In this
section, one of the most influential protocols derived from a cooperative bargai-
ning situation is presented. After that, t.wo models derived from the cooperative
methodological stance are derived. First, the pioneering work of Rosenschein
arid Zlotkin (1994) is discussed, which applied cooperative game theoretic mo-
dels and mechanism design to the design of different negotiation protocols for
different domains. Second, a classic example of a concrete implementation is the
contract net protocol, which can be used for the distribution phase of cooperative
problem solving.

Alternating Offers Protocol

An influential body of work in the development of negotiation protocols, emer-
ged from the field of cooperative game theory, is the work of Rubinstein (1982).
He describes the baryjaining problem as follows:

Two individuals have before them several possible contractual agree-
ments. Both have interests in reaching agreement but their interests
are not entirely identical. What "will be" the agreed contract, assu-
ming that both parties behave rationally? (Rubinstein, 1982)

In this work, a strategic approach is adopted. Two players have to reach
an agreement on the partition of a good. Each player has to make a proposal
in turn as to how it should be divided. Proposals can be either accepted or
rejected, after which the negotiation continues. Further it is assumed that time
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is valuable (e.g. there is a bargaining cost per time step of the form y — ci)
and that a player needs a compensation for a delay of each time step (e.g. there
is a discounting factor of the form y ö). The analysis which follows assumes
complete information: the players have a correct and full knowledge of the
preferences of the opponent. Since this is not applicable to the domain we are
interested in, we will not review this analysis. However, the protocol itself is
used in much of the work on automated negotiation, and will be used in adapted
form in this thesis as well (see section 3.1 for details).

Domain Theory of Negotiation

The interest of the domain theory of negotiation lies in t lie engineering of pro-
tocols which are self-enforcing. In other words, agent designers should use these
protocols since deviating from such a protocol would be irrational. The proper-
ties of such protocols, like efficiency, stability and symmetry, are then analysed,
leading to three different domains of the negotiation problem:

i) Task oriented domain: The activity of the agents can be defined in terms
of a set of tasks that it has to achieve. In principle, the task can be
performed by the agent itself. However, cooperation may relieve the task.

ii) State ortented domain: Each agent wants to move the world from an
initial state to a goal state. Due to limited resources, this may give rise
to conflicts, which have to be resolved through negotiation.

iii) Worth oriented domain: The agents assign a worth to each potential state,
which captures its desirability for the agent. This function allows agents
to compromise on their goal, sometimes increasing the overall efficiency of
the agreement.

For all these domains protocols are designed which are self-enforcing.
Within the scope of this thesis, all agents will have a utility function which

maps their preferences to a value. Since this preference relation is complete
(as per definition 2.1), the utility function also will be complete. Thus, each
possible state (e.g. contract) has its own worth (e.g. its utility). Hence the work
in this thesis falls into the worth oriented domain.

The model of Rosenschein and Zlotkin applied cooperative game theoretic
models towards the design of models and mechanism design to computational
agents. It made a first step in developing a general theory of negotiation. ho-
wever, the model has a few drawbacks. First, it makes the assumption that
agents have symmetric abilities, meaning that all agents are capable of perfor-
ming all the necessary tasks at the same costs. In most domains however, this is
not very realistic. Generally, costs do differ for certain actions between agents,
especially when other variables, like demand, are not necessarily the same. Fur-
thermore, most negotiation exist because an agent can not perform the service
under negotiation itself, whereas the negotiation partner can. Thus, the agents
will generally not have the same abilities.

Second drawback of this method is that the negotiation is assumed to be
over one issue (worth in the case of the worth domain). As argued before, in
most real cases, the object under negotiation will consist of multiple issues, and
the protocol described will therefore not be applicable in most cases.
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Finally, the agents have to be fully cooperative in showing their incentives
belore the negotiation starts. In this phase, the optimal strategy is implemented
by the protocol designer. This can be difficult to achieve, because the agents
are afraid of being exploited, even in a pre-negotiation phase, as argued before.

Contract Net Protocol

In a slightly different setting as this work, the Contract Net Protocol (CNP) has
been developed for decentralised task allocation (Smith, 1988). Its significance
lies in that it was the first work that uses negotiation processes and thereby
uses mutual cooperation to solve a problem.

The method described a network consisting of nodes: the contract net. These
nodes dynamically appoint a manager and a contractor, where the former is
responsible for monitoring the execution of processing the results of a task and
the latter is responsible for performing the task itself. Whenever a task has
to be allocated, the node which generated this task announces it., and becomes
the manager of this task. All other nodes evaluate their interest in this task,
and propose a bid for the performance of it. The manager selects t he node
with the most interesting bid and assigns the task to this node (e.g. assigns the
contractor). By this means, the procedure of the negotiation is made explicit.
Furthermore, commitments are made explicit by the agreement between the
manager and the contractor. Since the final manager-contractor commitment is
a mutual selection process, cooperation after the deal is assured.

It must be noted that the original work of Smith consists only of the theore-
tical system architecture. However, (Sandholm, 1993) extends this with a for-
malisation of the bidding and awarding decision process. In this work, agents
locally calculate their marginal costs for performing a set of tasks. The choice of
a contractor is then solely based on these costs. Furthermore, some extensions
on practical limitations are solved, like the clustering of several tasks.

Although the protocol has been used successfully in several domains, like job
dispatching among computers and scheduling of appointments between agents,
the protocol has a number of limitations when regarding the domain described
in this work. First of all, full cooperation between the agents is needed when
setting up the network. Second, the negotiation phase consists of just a single
offer of all parties. In non-cooperative settings, negotiation often consists of an
iterative process of offers and counteroffers to reach more efficient outcomes.

2.2.3 Non-Cooperative Models

Instead of looking at the solution, non-cooperative models is a field within game
theory which is more interested in the processes during the game. The aim is to
find a suitable pair of equilibrium strategies. It is often used to model bargaining
situations (set e.g. (Binmore, 1992)), in which the process of the negotiation
is analysed. An important issue in this work is the amount of information
available about the opponent. When this information is complete, the seminal
work of Nash (1950) provides a solution for the problem. However, the agents
are assumed to be highly rational.

When looking at incomplete information settings, much work has been done
in the field of optimal strategies. Theoretical solutions have been provided for
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incomplete information about deadlines (Sandholm and Vulkan, 1999), reserva-
tion prices (Fudenberg, 1985) and discounting factors (Rubinstein, 1985). Ho-
wever, all this work assumes that the beliefs of an agent regarding the strategy
the other player is following are common knowledge, and agents are in principle
computationally unbounded. It is this set of assumptions which makes this work
hard to use in practise.

Non-Cooperative Task Allocation

A more practical solution is given by Kraus (1997), which recommends the ap-
plication of game-theoretic techniques as a basis for the agents' interaction pro-
tocols. More specifically, an extension of Rubinstein's alternating offers protocol
(see section 2.2.2) is presented, in which the world state and formal definitions
are modified to provide a solution to task- and resource-allocation. Also, the
need for searching appropriate strategies by the automated negotiators as oppo-
sed to defining these within the protocol explicitly, is acknowledged, specifically
pointing out the need for low complexity since the agents are bounded in their
computational power.

Furthermore, the utility-function, which is in the game-theory literature al-
ways assumed to be provided, is made concrete. These utility functions should
comply with the following assumptions:

i) Disagreement is the worst outcome

ii) The resource is valuable

iii) Time is valuable

iv) Stationary: the preference relation between two goods is independent of
time

v) Increasing loss: the loss associated with the time of agreement is an in-
creasing function with regard to the utility of the contract (i.e. when the
utility of a given contract. s is greater than the utility of r, the loss over
time associated with these contracts will be greater for s than for r)

These assumptions imply that the discount associated with time or resource will
be embedded within the utility function. Finally, the alternating offers protocol
is extended with the option for the agents to opt-out.

Although this work offers a very useful extension to the theoretical back-
ground of non-cooperative game theory, it does not meet the requirements of
this work. The utility functions will be very domain-specific and necessarily
complex due to the explicit inclusion of all the assumptions given above. The-
refore, to design such a utility function is not an easy task for someone who is
not an expert in utility theory. Instead, in this work we are looking for a more
generic utility function, independent of time and resources. This dependence of
time or resources can later be built in by separate discount functions.

2.2.4 Persuasion Protocols
Another class of negotiation protocols extends the communication with argu-
mentation. In this form of negotiation, agents generate and exchange arguments
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to back up or justify their negotiation stance. By this means, information about
the opponent is acquired by the feedback this opponent gives on previous propo-
sals. This feedback can take the form of counter-proposals, in which the agent
offers an alternative contract, or a critique, which comment.s on parts of the
proposal the agent likes or dislikes (Parsons et al., 1998). Generally speaking,
the initial situation in a persuasion dialogue is a conflict of points of view. To
this end, persuasion deals with a set of questions at issue (propositions) toward
which the parties have different points of view. This could for example be whe-
ther an issue should be included in the contract or not. The main goal for the
agent is a resolution of the conflict by persuading the opponent's to take over
its own point of view (Walton and Krabbe. 1995).

As can be seen, this technique will be used mainly in cases where agents
have to achieve a goal which they cannot or prefer not to achieve on their own.
These goals may for example be in conflict, in which case the agents have to
bargain about which agent may achieve which goals. Successful persuasion of
the opponent. could prove useful within this scenario to convince the opponent
of your point of view. Another example is a scenario in which the agents need
the help of each other to achieve certain goals (e.g. Parsons et. al. (1998)).
Persuading each other to a certain plan could in this case improve efficiency.
However, it is also applied to design systems for automated electronic purchase.
For example, as a result of persuasion the preferences of an agent might change
(think of a smooth-talking car-salesman which stresses convincingly the im-
portance of an air-conditioning). Within this field, recent work had sought to
define precisely the protocols specific to such argumentation-based interaction
(e.g. Amgoud et al. (2000)). By using such protocols, participating agents can
assert arguments in the dialogue.

However, the definition of such a protocol only presents an agent with the
framework for an argumentation based negotiations. To supply a concrete im-
plementatioti of agents using this protocol, McBurney et al. (2002) couple such
a protocol to a model of consumer purchase decision making taken from marke-
ting theory. This model is coupled with a more simple model for the seller. An
entirely syntactical interaction protocol is then defined, ensuring the protocol
and its rules are verifiable on the basis of the actions of the participating agents.

The protocol fulfills several of the requirements of this work. It assumes
for example that the services under negotiation consist of multiple issues. Fur-
thermore, the process of the negotiation is central in this work. Also, the fact
that resources are bounded is not made impossible. However, there are a few
major drawbacks to this method. The first problem is implied by the nature of
persuasion. Persuasion operates primary over goals. In many domains however,
for example the commercial domain, the goals do not have to be similar at the
end of the negotiations; a buyer conceding on the price does not change its goal
to minimise expenditure. Thus, although it might be of secondary importance
to negotiation in some cases, it is not the goal of negotiation per se, and in some
cases even irrelevant. As Walton and Krabbe (1995, p. 72) put it: "It would be
a mistake to think, however, that persuading the other party that your point of
view is right (true, based on logical reasoning or good evidence) is the primary
goal of negotiation."

A second problem with the method is that, because of the inverifiability
of semantic elements, no participants to a dialogue can know with certainty
what. another participants really believes. Therefore, McBuriiev et al. (2002)
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assume that the agents are completely honest in their statements. However. in
a competitive domain this is not tenable.

2.3 Negotiation Objects
The second broad topic for research are the negotiation contracts which specify
the range of issues over which agreement must be reached. Within this area, the
number of issues over which agreement must be reached is an important topic
(see section 2.3.1). The work we will review here is the influential work of Fatima
et al. (e.g. Fatima et al. (2002, 2003a,b)), which provides a formal analysis of
the optimal outcomes of single-issue as well as multi-issue negotiations (section
2.3.2).

2.3.1 Number of Issues
In the simplest case, agents are negotiating over one issue, for example the price
of a house, and will have strictly opposing interests. Think in this case of a
negotiation about the buying/selling of a commodity, where the buyer wants
the price to be as low as possible. whereas the seller wants to sell it for the
highest price possible. Given these extreme values for all agent, known as the
reservation prices, the zone of agreement (or bargaining surplus), is defined by
the zone between these values; e.g., the zone between the maximum price of the
buyer and the minimum price the seller is willing to accept. Now, the goal of
the negotiations is to divide this bargaining "surplus". Hence the negotiations
are distributive or competitive: A gain for one party always creates a loss for
the other party. Such situations are called zero-sum games within game theory.

Negotiation becomes especially interesting when a conflict must be resolved
over multiple issues. In this case, when the one party gets more this does not
necessarily mean the other party gets less. Hence, the parties are not strictly
competitive. hut they can enlarge the pie that they eventually will have to divide
(Raiffa, 1982). Since several issues, possibly with different importance attached
to these issues by the players, are involved, trade-offs become an option. In this
case, a player concedes on one issue, while demanding more on another issue.
While the utility of the player remains the same, the utility of the opponent
might increase. This point is illustrated in more detail in section 3.3.1. The
possibility for such a mutual gain, thus in fact enlarging the pie that has to
be divided instead of dividing it as in distributive bargaining, is why this sort
of negotiation is called integrative, or even side-by-side problem solving (Fisher
et al., 1991).

2.3.2 Optimal Outcomes
'\Iost influential work within this area analyses the optimal outcomes of single-
issue negotiations and multi-issue negotiations (in which the issues are negotia-
ted sequentially).

Single-Issue

First, a competitive negotiation between a buyer and a seller over the price of
the good or service is considered. Each agent has time constraints in the form
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of a deadline and a discounting factor. Fatima et al. (2003b) exaniine a range of
negotiation scenarios in which the amount of information that agents have about
their opponents parameters is systematically varied, both symmetric, in which
case both agents are uncertain about. the same parameters, and asymmetric,
where the uncertainty on a certain parameter is one-sided. For each scenario
t.he equilibrium solution is determined and its properties studied. This shows
that for each possible scenario, a unique solution is given by the optimal strate'.

However, Fatima et al. (2003b) consider only single-issue negotiations. Thus,
since in this work it is assumed that the service under negotiation has multiple
issues, it can not be directly applied here.

Multi-Issue

In other work, multi-issue negotiations are considered in which the issues are
negotiated one by one. A key question that arises in this case is the order in
which the issues are negotiated or the agenda. Vhen the agenda is endogenonsly
defined, i.e. the agents are allowed to decide which issue they will negotiate next
during the process of negotiation, a unique equilibrium exists (Fatima et al.,
2002). Whereas Fatima does not define how this agenda is agreed upon, Walton
and Krabbe (1995) note that persuasion might be involved in setting up such
an agenda for negotiation (Walton and Krabbe, 1995).

In Fatima et al. (2003a) the agenda is defined partly endogenously and partly
exogenously (i.e. before the negotiations). However, this scenario requires a
niediator to identify the optimal scenario, and is therefore not compatible with
our requirements.

Given this, we consider agendas that are set entirely exogenously and in
which all the issues are considered simultaneously. The optimal solutions in the
work mentioned above can thus not be used.

2.4 Reasoning Models
Finally, the most important topic for this research is the reasoning mode! which
provides the decision making methods the agents employ to compute their ne-
gotiation moves. Within this area, the importance of learning from past nego-
tiation experiences was first recognised in Sycara's work on the PERSUADER
system (Sycara, 1989) which modeled an iterative process of multi-issue nego-
tiation (see section 2.4.1).

After this, a variety of learning techniques have been used to try and improve
the effectiveness of the agents' negotiation capabilities. For example, genetic
algorithms have been used to discover effective negotiation strategies (see section
2.4.2 for an overview). Probably the most widely used paradigm is Bayesian
learning. The models derived from this technique are described in section 2.4.3.

Probably the work that is most closely related to ours is that of Soo and Hung
(2002). In this work, a reinforcement learning algorithm is presented that learns
to propose a solution that is more likely to be accepted by the opponent than the
previous offer. Specifically, offers that are rejected by its opponent are treated
as negative instances for the learning algorithm, while counter-proposals from
its opponents give a positive reward. However, their model does not combine
the learning model with a reasoning model that models the properties of the
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problem domain as the fuzzy similarity method of Faratin does (see section 3.3
for details). This means their model is less robust when the prediction about
the preference weights is not completely precise.

2.4.1 Persuader
The PERSUADER system was developed to resolve adversarial conflicts in the
domain of labour relations (Sycara, 1989), which can be multi-agent, multiple-
issue and single or repeated encounters. It uses past agreements between si-
milarly situated parties to suggest proposals that might succeed in the current
negotiations. A mediator engages in parallel negotiations with the parties, ei-
ther to change the proposal to something that is acceptable, or to attempt to
change the belief of the disagreeing parties using persuasive argumentation. To
this end, it uses case-based reasoning together with an analytical method called
preference analysis.

In this context, negotiation is viewed as an iterative process of diminishing
the distance between the goals of the agents. Furthermore, agents must have
the capacity to receive feedback on the quality of their plans as well as predict
and evaluate the quality of their own plans. In addition to this deliberative
component, the agent should be reactive to cope with a changing environment.
Finally, since agents are not willing to abandon their own goals, persuasion
should be used to convince them to do so.

The system models both the process of negotiation as well as the multi-issue
requirement. However, in our domain, mediation is undesirable because of the
competitive nature of the encounter and the desire to keep information private.
Furthermore, persuasion can not be used in all cases and is not a primary goal
of negotiation, as argued in section 2.2.4, and will therefore not supply a generic
solution to the problem presented in this work.

2.4.2 Genetic Algorithms
An often used paradigm for the analysis of negotiation strategies are genetic
algorithms (e.g. Gerding and van Bragt (2003); Oliver (1997)). In this research,
agents are modelled as chromosomes and the parameters of the negotiation
model are genes in the chromosome. By evolving these agents, the benefits and
drawbacks of a number of negotiation strategies are assessed.

For example, in the work of (Gerding and van Bragt, 2003), a system is
described for bilateral negotiations in which the agents are generated by such
an evolutionary algorithm. More specifically, the model of the agent consists
of the absolute offers and thresholds (i.e. determines whether an offer of the
opponent is accepted or not) for each round in the negotiation process. These
agents start a bargaining process against all other agents. The fittest agents are
subsequently selected to form a new generation by using mutations and crossover
in their genotypes. The protocol used in the negotiations is the alternating offers
protocol. Furthermore, the fairness of the payoffs is taken into account, and in
another extension, a competitive market with multiple bargaining opportunities.

However, this method typically focuses on finding the optimal strategy for
choosing the offers and counter-offers, whereas we want an explicit reasoning
model about the opponent.
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2.4.3 Bayesian Learning

There is a vast amount of research in using Bayesian learning within the rea-
soning model of a negotiation agent (e.g. Bui ct a!. (1995): Zeng and Sycara
(1998)). In this line of work, the estimates of the probability of a set of hy-
potlI(s(5 about the opponent's preferences or reservation prices are produced.
given the previous negotiation encounters. As a simple example, consider the
problem that there are two possible hypotheses about the preference function
of a negotiation opponent, say A and B. The Bayesian method, rather than
choosing between A and B, gives some weight to each ba.sed on their likelihood.
This likelihood will depend on how much the known data supports each of the
two preference functions.

More specifically, suppose that we have a set of samples, D = {d,), and a
series of classes C = {c,}. Given a sample d3. the probability of that sample
belonging to class c2 can directly be derived from Bayes' rule:

P(e,d) = P(djlc,)P(ci)
(2.4)

Thus, the probability of class Cj (one of the hypotheses) given the observation
equals the probability of the sample given that the hypothesis of being in class
c is correct, times the probability of encountering class cj, divided by the pro-
bability of encountering this sample. It can be seen from this equation that the
agent has to have a priori knowledge about the probability distribution of the
likely outcome of the negotiation (P(cj)).

In more detail, the method of (Zeng and Sycara, 1998) tries to learn in-
formation about the opponent's reservation prices RP3. The buyer needs a
partial belief about. the possible RJ', represented by a finite set of hypotheses
H = Il (where for instance H1 = 100, H2 = 90, et.). Furthermore, it needs a
priori knowledge about the probability of these hypotheses (e.g. P(H1) = 0.2,
P(H2) = 0.34, ...). Along with domain knowledge, new offers of the opponent
can enable the l)laver to acquire new information about RP3 in the form of pos-
terior subjective evaluation over H, (see equation 2.4). Thus, an offer combined
with domain knowledge such as "in our business people will offer a price which is
above their reservation price by 17%" will lead to an enforcenwnt of the correct
hypothesis.

This example shows some significant drawbacks of Bayesian learning. First,
the a priori probability evaluation of the hypotheses is, due to the private nature
of the information needed to compute this, difficult to provide. Also, the domain
knowledge will be hard to acquire as precisely as indicated here. Often, a party
will have "but an imprecise feel for their own reservation price" (Raiffa, 1982,
p. 16). and, even more, the strategies and domain knowledge used are not at
all clear to the parties themselves (Raiffa, 1982). Even if assigning such an a
priori distribution was practically possible, the number of negotiations needed
to get a more precise probability distribution might be too much in a domain
in which encounters are not necessarily frequent. This is a problem emerging
from the fact that individual opponents are modelled. However, in the KDE-
method presented in this work, the information is completely acquired out of
the data available. Therefore, such an a priori probability over hypotheses is
not needed.Furthermore. as opposed to modelling a specific opponent, this work
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models the strate' (dependent of the agent's preferences) with respect to the
provision of a particular service (see section 3.2 for more details). By this means,
the method is more generic, and thus less computationally complex.



Chapter 3

Theoretical Models

In this chapter the theoretical models that underpin this work will be described.
To this end, we distinguish three theoretical models. 1'irst the negotiation
model used will be described (see section 3.1). Most importantly, this model
captures the negotiation protocol which will be used. Also, the formal definitions
of the used parameters are given.

The second model described is the kernel density estimation paradigm (see
section 3.2). This statistical method is used to learn and approximate the prefe-
rences of the opponent. Within this model lies the novelty of this research, since
it has never been used for learning the preferences of a negotiation opponent.
We will explain the method in section 3.2.

To evaluate the efficacy of the KDE-method, we couch it in the context
of making Giving in on one issue, while simultaneously demanding
more on another issue. This strategy is specifically suited for testing our method
because it can profit ext ensivelv of knowledge about the opponent's preferences.
More concretely, we use the algorithm described by Faratin (2000) which eva-
luates possible based on fuzzy similarity. This algorithm is presented
in section 3.3.

3.1 The Negotiation Model
Before evaluating the negotiation model, let us first start with defining some of
the necessary parameters: If I is a pair of (self-interested) negotiating agents
(I = {a,b}), let i (i E I) represent a specific negotiating agent, and J (J =
{ I n }) be the issues under negotiation in a given encounter. For each issue
.j (j E i), every agent has a lower and an upper reservation price, respectively
mm3 and max3. These values represent respectively the value which is the best
reasonable value expected and the worst value still acceptable for the agent. To
illustrate this, suppose an agent wants to buy a house. His upper reservation
price will be the maximum price it can accept; any price that is higher than this
value represents a situation for the buyer that is worse than no agreement. The
lower reservation price is the price he thinks is the lowest reasonable price for
the house. This will often be his opening bid. Mutatis mutandis for the seller
of the house.

These values result in a domain for each particular issue and for each agent i:

23
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Figure 3.1: State diagram of the protocol used, adapted from (Faratin, 2000,
fig. 4.1).

= [min,max;J'. In all negotiation interchanges, every issue gets assigned
a value r, by agent i which is in the set D. Note that the issues are held
constant during the negotiation, and are assigned a fixed value (as opposed to
contingent contracts where e.g. the final prices are determined to ex-ante agreed
price-quality pairs).

To evaluate a value of an issue, each agent i has a scoring function over its
domain: V] : — [0, 1] which assigns a valuation to every possible value x1.
Finally, each agent has a weight vector over the issues, representing the relative
importance it attaches to the issues, where is the importance agent i attaches
to issue j. We assume these weights are normalized (i.e. Vi E I : >1<j< W =
1). Thus, the utility of agent i over a contract x, a set of values forall issues,
can be defined as:

u'(x) = u'V](x) (3.1)

Now, if all this information is known to both agents, the Pareto-optimal set
can be calculated by both of them (Raiffa, 1982). However, in e-commerce
settings, several of the assumptions needed for this calculation are not tenable.
First, an agent will not give out information about its reservation prices, the
weights over the issues and its utility function because doing so would enable
it to be exploited. Second, each agent will have distinctive reservation prices
(whereas in Raiffa (1982) these were defined to be equal for all agents). The
zone of possible agreements Z we will use is thus defined as the intersection of
the individual domains: Z, = fltEJ [rnin;,rnax}. Finally, the resources, and
especially the time available for the negotiations, will be bounded. Specifically,
we assume each agent has a (hard) deadline, denoted as taz, by when it must
have completed the negotiation.

The negotiation protocol is a two-agent variant of Rubinstein's model of
alternating offers (Rubinstein (1982), see also section 2.2.2). Specifically, let
Xb be the offer of agent a to b, at time t and xb[ij denote the value of issuej of this offer. Note that in this model time is discrete. The protocol used is
depicted in figure 3.1. The negotiation is set up by the pre-negotiation protocol,
which establishes a connection between the agents and defines the issues under

'Note that when these intervals for the negotiation participants do not overlap, the zone
of agreement (as described in 2.3.1) will be empty and thus an agreement will not be possible.

Initial slate

Final state



:. 1. THE NEGOTIATION MODEL 25

negotiation. The agent who has first turn is chosen randomly. After the first
offer, at. every timestep the agent who received the last offer decides whet her
to accept the offer, propose a counter-offer or trade-off, or withdraw from the
negotiation. This continues until the reaction is one of the communication
particles {accept, wit hdraw}.

The agents decide which of the alternatives to choose from the following
definition (taken from Faratin (2000)), where is the calculated counter-
offer:

Definition 3.1 Given an agent a and its associated scoring function V, the
interpretation by agent a at time t' of an offer Xa sent at time t < 1', zs

defined as:

Iwithdraw If t'>
ja (t'x..b) = accept If �

t X otherwise

The scoring function over the issues, as required by equation 3.1, is given
by the distance to the worst. hid acceptable to this agent, relative to it.s range
of acceptable values. Hence this scales the acceptable bids for the agent to the
domain [0,11:

( Xbfl if increasing
V.a(x ) =

— ,IIn (3.2)
i niax —x
I,, inac; — min , if decreasing

where increasing and decreasing refer to the direction of change in score with
increasing value of the issue.

To calculate the counter-offers used in definition 3.1, a range of different
strategies could be deployed. Given the time-constrained nature of our domain,
however, we use the family of polynomial strategies (as advocated by Faratin
et al. (2002)), which models the fact that agent will change their behaviour as
the deadline approaches. More specifically, the offer on issue ,j generated by

agent a at time t will be calculated with the following expression:

. = fmin +(1 — (t))(max7 — min) if increasing
(3 3)a—.b 3 lmin +a(t)(max' — min) if decreasing

where the function o is a polynomial function dependent on the time remai-
ning, and fi is the strategy parameter, defining the form of the function:

mintt°
= k7 + (1 — k7)

( a
max)) (3.4)

tmax

It can be seen from this function that j3 determines the degree of curvature of
the function (as can be seen in figure 3.2). The parameter k determines the
value of issue j to be offered in the first proposal by agent a. For simplicity,
within this we assume this parameter to be 0, resulting in the final equation:

= (min(ttax)) (35)
max

This family represents an infinite number of strategies. To make a better
classification possible, they are generally divided into three sets:



Figure 3.2: Polynomial strategies and their subfamilies illustrated. X-axis de-
picts the time relative to the deadline. Upper two lines are conceder, lower two
lines boulware strategy. The line in the middle (/3 = 1) is a linear strategy

Boulware2strategy When /3 < 1 the tactic generates offers close to the lower
reservation price. When the deadline comes near, it concedes quickly
towards the upper reservation price (see the lower two lines in figure 3.2.

Conceder strategy When /3> 1 the tactic quickly concedes towards reserva-
tion price, and stays firm to this during the rest of the negotiations (see
the upper two lines in figure 3.2)

Linear When /3 = 1, the tactic concedes an equal amount with every offer.

3.2 Kernel Density Estimation
The only information we can definitely assume to be available to the agent
is its negotiation history. This covers the offers and counter-offers of all its
previous negotiations for a particular service3. Therefore, our aim is to obtain an
estimate of the opponent's weights by only looking at this history. In particular,

2Lemuel Boulware was a vice-president of the General Electric company who rarely made
concessions in wage negotiations; his opening-offer was what he deemed to be a fair opening
offer and held firm.

3This history can be on a per agent basis or can cover all agents with which the modeller
has interacted for the particular service in question.

26 CHAPTER 3. THEORETICAL MODELS
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Figure 3.3: Kernel density estimation example. The dashed lines are the kernels
and the solid line the estimate. The individual observations are marked with a
cross and the predicted weight for the negotiation issue in question with a dot.

we consider the difference between the opponent's last two offers in a given
encounter and try to find a relation between this difference and the weight the
opponent places on various issues. For example, a relatively small change in
the bid on one issue at the beginning of the negotiation process might indicate
that it is more important to the opponent than the other issues. To give an
concrete example, think again of the agent that wants to buy a flight ticket.
\\'hen the price is the most important issue of this ticket for this agent relative
to issues like for example class and time of flight, he will first tr to concede
on these less important issues before giving in on the price to get a good deal
out of it for itself. Likewise, a relatively large concession towards the end of
the negotiation might indicate that this issue is important and the opponent is
performing a final concession on that issue to save the agreement. The buyer
might for example have conceded less on the price of the flight ticket at this
stage of negotiation, and will try to get the ticket by conceding relatively much
towards its reservation price.

The method we will use to find this relation is kernel density estimation (for
reasons outlined in section 1.4). In more detail, the basis of this method is the
kernel: a function K satisfying f K(X)dx = 1. Intuitively, these kernels can be
seen as representing a "probability mass" of size 1/n (where n is the number of
observations) associated with each data point, about its neighbourhood (Wand
and Jones, 1995). This is illustrated in figure 3.3, where a two-dimensional
estimate is based on five observations4. This example could be viewed as the

41t should be pointed out that we use just five observations here purely for clarity in
illustrating how the kernel method works. Practical density estimation usually involves a
much higher number of observations.

time =5.
change 7;
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Figure 3.4: Kernel density estimation example: Density (z-axis) given a change
between last two offers (on x-axis) and the weight of the issue (y-axis).

estimate of the opponent's weight for a particular negotiation issue, given a
specific time in the negotiation process and the relative difference of the two last
bids on an issue. In this case, as indicated in the top-right corner of the graph,
we see that these observations took place at the beginning of a negotiation
encounter (time = 5) and there was a relatively small change between two
consecutive offers (7 percent of the total change). Here, the dashed lines are the
kernels. It can be shown that the particular unimodal distribution used as a
kernel does not degrade performance (Wand and Jones, 1995) and so we choose
the N(0, 1) distribution for reasons of computational efficiency. The kernels are
formed by centering a kernel at each observation (e.g. the difference between
two consecutive offers and the believed weight of the issue). Note the kernels
are scaled by the total number of observations and thus the value of the kernel
estimate at point x is simply the sum of the scaled kernels. For example, in
figure 3.3 it can be seen that there are no observations for a very low weight
and therefore the density of 0.1 has a low value. On the contrary, there are
relatively many observations around a weight of 0.4 and hence the probability
estimate has a high value here. From this distribution the weight predicted for
the negotiation issue in question is the expected value, using the estimate as a
probability density function (indicated with a circle in the graph).

In this illustrative example we used two-dimensional kernels. However, the
kernels we use in this research are in fact three-dimensional (the difference of
two consecutive offers, the weight of the issue and the probability density of
this weight given this difference). Furthermore, since we assume the opponent
uses a time-dependent strategy, we expect the agents to behave differently over
time. Therefore, for each time t, we make such a density estimate to predict
the density of a certain weight given the relative difference between the last
two offers. This leads to an estimate as in figure 3.4 per time-step, where the
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fJ
(a) h = 0.075 (b) h = 0.040 (c) h = 0.175

Figure 3.5: The influence of bandwidth on the kernel density estimate. (a)
Shows the bimodal property of the data. In (h) the lower bandwidth results
in higher and smaller kernels, leading to an overfittitig of the data. (c) has a
higher bandwidth, resulting in an underfitt.ing: t lie dear bitnodality in the data
is smoothed away.

x-axis denotes t lie change between two consecutive offers, the y-axis denotes the
weight of the issue and the z—axis the density at this point.

One of the most. important issues in this work is the bandwidth or the amount.
of spread of the keriiels. denoted by h. Stat isticallv. this is t.he confidence in
he observations, or the standard deviation of the gaussians. The effect of this

parameter is illustrated in figure 3.5. In these graphs. the same observations
are shown as in figure 3.3. and kernel density estimates are formed with kernels
of varying bandwidth. Now suppose the estimate in graph 3.5(a) is indeed the
best estimate. When the bandwidth of the kernels is taken too low, as in graph
3.5(b), the kernels become smaller and higher, since the confidence that the
observations are correct is higher. This leads to an overfitting of the data, as
shown by the higher modes and lower troughs and the division of the first mode
into two separat.e modes. When the bandwidth of the kernels is taken too low,
so a low confidence is placed in the correctness oft lie data, the estimate becomes
oversmoothed, as seen in graph 3.5(c). This obscures the two modes completely.

To obtain the most optimal bandwidth, we use t he solve-the-equation (STE)
rule as suggested by \Viiid and Jones (1995) to calculate this bandwidth. This
method takes an initial guess of the bandwidth and calculates a new value,
using the error in the resulting density estimate, until the process convergences.
The reasons for choosing this method are its good performance on our domain
(due to the direct feedback from the results of previous values), and the ease of
computation.

Since the negotiating agents have bounded computational resources, it is
important to determine the computational complexity of KDE. To this end,
when the probability density estimate is learnt, the prediction of a weight is a
table hookup of constant time. The learning algorithm calculates this estimate
by using a fourier transformation of the kernels. The complexity is determined
by the use of a convolution, which can be performed in O(n log n) time (where n
is the sampling rate, taken to be 128) when using a fast-fourier transformation
to calculate it. (Kamen and Heck, 2000). This is also the complexity of the
bandwidth estimation, since the error of the estimate is used in the computation
and thus the estimate has to be formed, and the number of iterations proved to
be of constant ((nhil)Iexitv when tested in practiee.
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3.3 Trade-Offs Based on Similarity Criteria

The importance of a mutually acceptable agreement is generally acknowledge
within multi-issue negotiation, for example by (Walton and Krabbe, 199:5, p.72):

This aim [to maximise the share of some goods or services which
are short in supply] is carried out by a process of self-interested
bargaining where the strategy is directed to finding a compromise
that. will be attractive to both parties

To find such a compromise, tra.de-offs are considered as an import, strategy
(e.g. Raiffa (1982), Fisher et al. (1991)). However, S!II(v the preferences of the
opponent are private information in most domains, finding such a trade-off is
not trivial.

To solve this problem of finding a trade-off when agent.s have incomplete
information about their opponent we exploit Faratin's algorithm (Faratin et al.,
2002). This algorithm works by performing an iterated hill-climbing search in
the landscape of possible contracts. The search starts at the opponent's last
offered contract (where the opponent. is denoted as b) and proceeds by succes-
siv(ty generating contracts whose utility is progressively closer to the desired
threshold of the agent making the trade-off. Note, since the agent wants to
make a trade-off, he must have done a proposal before, of which the utility
wrves as this threshold. During this search the contract that maximizes the
similarity to the last offer of b is used as the starting point of the next iteration.
We will first present the rationale for using trade-offs. After that, the algorithm
is presented in more detail.

3.3.1 The Rationale for Making Trade-Offs

Consider a situation in which two agents are negotiating over a service5. Agent
a wants a high price and a long delivery time, whereas the prelerenos of agent
b are strictly opposite. These preferences are shown in figure 3.6. The values
of both issues of agent a are depicted on the lower x-axis and the left y-axis
respectively. The values of agent b are depicted on the opposite axes. \Vithin
this box (called an Edgeworth-box) the iso-curves are drawn (solid lines for agent
a, dashed lines for agent b): the sets of allocations with the same utility for this
agent. Hence, agent a wants to move the outcome northeasterly, whereas agent
b wants to move southwesterly. Thus, it can be seen that a is indifferent between
contract P. R and S, whereas agent b is indifferent between R, Q and S.

Now suppose agent a proposes contract P. After b proposes Q, a can now, by
conceding on issue 1 while demanding more on issue 2 or vice versa, respectively
propose contract R or S. Note that these contracts have the same utility for
it than P, as they all lie on the same (solid) iso-curve. However, since these
contracts lie on an iso-curve of b that is more south-west than the original iso-
curve, the utility for b increases, thereby making the contract more acceptable
to this agent than P. In fact, as acceptable as Q, the contract offered by b itself.

5Example adapted from RaitTa (1982).
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V ''

Figure 3.6: The concept. of a trade-off illustrated. Depicted are the iso-curves
for a (solid lines) and b (dashed lines), where a's preference is northeast, and
b's preferences southwest

3.3.2 The Trade-Off Algorithm
How the algorithm works is illustrated in figure 3.7. Here, two agents are re-
presented. The first agent, a offers contract x (which lays on iso-curve a). The
opponent. b reacts with contract y. Agent a wants to propose a trade-off now.
Hereto, it starts with the utility of contract y (according to its own utility func-
tion), and divides the difference with the utility of r in S steps. For each of these
steps, N contracts on the required iso-curve are generated. Of these contracts,
the one most. similar to contract y is selected and used in the following step to
generate new contracts.

More specifically, the algorithm thus consists of two steps, assuming that
agent a has to make a bid:

i) Find the iso-curve for a, that is, the set of contracts x.b which can
possibly be proposed at time f', that have the same utility for agent a as
its previous offer at time I (i.e. xb),

ii) Out of this set, take the contract that agent a believes is most preferable
to the opponent, and send this as the trade-off counter-offer.

Both steps will be dealt with in turn in the following sections.

3.3.3 Contract Generation
The first step, to find a contract on a given iso-curve, is given as an algorithm
in figure 3.8. In general, the algorithm generates a new contract by splitting
the stel) gain in utility. E, randomly among the set of issues under negotia-
tion. In more detail, the algorithm starts by initializing the domain of possible
improvements per issue j. denoted as E, in line 0. Hence since the maximal

IS-'I



32 CHAPTER 3. THEORETICAL MODELS

iso-curve a

-

.. T-•
/

step I

step 2

step 3

Figure 3.7: The trade-off algorithm

(unweighted) score on an issue is 1, this is the difference between I and the
actual score of the contract that is being modified. The sum of these maximal
gains weighted by the issue-weight determines the maximal utility-gain on the
contract (Em).

Next, because the "consumption" of this utility gain has a random element
(line 4), a small factor is included to guarantee convergence6 (line 2). The
while-loop that now begins, builds a matrix r in which per row the amount of
"consumptions" is determined until the desired utility-gain has been reached.
tlore specifically, this is done by letting each issue consume a random value
out of the domain E, calculated in line 0, further constrained by the remaining
gain needed (line 4). The variable of the current total amount consumed (En)
is then updated by the linearly weighted sum of the individual consumptions.
Also, the domain of possible improvements per issue is accordingly updated.

\Vlwn the total consumed utility is equal to E, the while-condition fails.
The total consumption for each issue is then calculated by summing the columns
(line 7). Finally, this new set of scores per issue is remapped to a contract by
the inverse of the scoring function V() (line 8). Note that when the desired
amount of improvement (E) is larger than the maximal improvement possible
(Emax) an error is raised (line 9).

As presented here, it is assumed that the issues are quantitative in nature
(e.g. price) with continuous domain values. This protocol can be easily extended
to deal with qualitative issues as well (e.g. color) which have discrete domain
values, as it is done by (Farat.in, 2000). Since this does not change the algorithm
structurally, in this work we only use quantitative issues.

It can be shown by a theoretical analysis that the average time the algorithm
takes to complete is linear with respect to the number of issues in the negotiation
(see (Faratin et al., 2000) for details of the proof). Given the aim of this research
to respect the computational limitations of the agents, this is a highly desirable
property.

6The convergence is asymptotic to the value V(y) + Em,. Hence, if we had E = Emax,
reaching the iso-curve could not be guaranteed.

1
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Inputs
Last best contract proposed at time I, consisting of the issue-values [9t

£ Step utility increase. { E >0)
() Value scoring function. { 0 0. I

w : Weight vector of j. { ti, = I

Outputs
Output contract.

{
V( ') = V(yt) + E

Begin
0. For allj E Jdo
I. , = [0,! —

2. End for
3. E,,, = W maxE,
4. t5 = 0.01 . E,rnx
5. If (Emax>E+t5) then
6. k:=0;E:=0:
7. While (E < E) do
8. k k + I: For all j C i : = 0
9. ForalljEJdo
10. If (E, < E) do
II. r =min(randoin(),L.a)
12. E=E0+w1r
13. E, = [0,max(E,) — r]
14. End if
15. End for
16. End while
17. ForalljEido
l's.

19. ;' =V,1(V,(y,)+E,)
20. End for
21. Else
22. Raise error: No step can be performed
23. End if
End

Figure 3.: Contract generation part of the algorithm

3.3.4 Contract Selection

In the second step, the selection of the best generated contract on the iso-curve,
fuzzy .szinilanty is used. The algorithm thus tries to find the deal that is most
"similar" to the previous offer. The rationale behind this is that a deal which
is similar to an acceptable offer of your opponent has a reasonable probability
of being acceptable itself.

In this context, the notion of similarity between two valuations of issue j,
.r3, y3 V, uses a criteria evaluation function h V —i [0, 11 which maps the
value of the issue to a valuation between zero and one7. When comparing two
values for a specific issue, the issue-similarity is defined by comparing the values
of the function h:

Sim,(x3,y,) = 1 — (h(x,) — h(y,)I (3.6)

The sirnilarit.y of two contracts is then defined by the sum of the issue-

7The function used here has the form of a sigmoid:
h(x)=.Ltan1[(211

.Im:fl::inI°_1)tan(7r(—E))]+
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similarities weighted by the opponent's weight of that issue:

Sim = w.Sim,(i,,y,) (3.7)
jE i

This results in the following formal definition of the algorithm:

Definition 3.2 Given an offer x from agent a to b, and a subsequent counter
offer y from agent b to a, and given that 0 = u(x), agent a defines its trade-off
proposal with respect to y as:

i) isoa(0) = {x I V°(x) = 0}.

zi) trade-off0(x,y) = argmaxZEI(o)(Sim(z,y)).

To increase the exploration of the space of possible deals, the algorithm starts
at the utility of the contract of the opponent (y), and takes S steps in increasing
t.he value of 0, until the utility of the previous proposal x is reached. The number
of elements generated in step i is defined by N.

3.3.5 Overview
The trade-off algorithm of Faratin is chosen because it has a number of desi-
rable properties: (i) its complexity is linearly proportional to the number of
issues under consideration and (ii) by using the notion of fuzzy similarity the
uncertainty of an agent's belief over the preferences of the other agents are mo-
delled as fuzzy relationships between values of the domain (and not the other
agent's actual preferences). Hence, the algorithm models the domain of the is-
sues under consideration (the problem domain), instead of the individual agents
(recall the discussion at the end of chapter 2).

While this trade-off algorithm has beeti shown to be effective in a number
of scenarios (Faratin, 2000), however, a major shortcoming is that the weights
the opponent used in calculating the similarity between two offers (see equation
3.7) are private information and thus unknown to agent a. Given this, the aim
of this thesis is to see if the KDE-method outlined in section 3.2 is effective at
learning this information using only the negotiation history.

Thus, by extending a solid basis with a separate learning model, as per
section 3.2, we obtain a hybrid algorithm which makes the trade-off algorithm
more adaptive and robust.



Chapter 4

Experiments

In order t.o employ a formal and systematic evaluation of the work in this thesis,
a set of experirlients has been designed 1.0 evaluate and measure the performance
of the proposed method. In particular. a variet.y of statistical inference methods
can be used to verify hypotheses from the samples of data gathered during
the experiments (including regression, analyis of variance (ANOVA) and path
analysis). For purposes of this work, we will extensively use ANOVA, which
tests the variance between groups. It is chosen because it is a general and robust
technique: "analysis of variance is very robust against violations of the normality
and equal variance assumptions, especially if the group sizes are equal." (Cohen,
1995).

We will start by laying out the methodology to be used in evaluating the
experiments in section .1.1. After that, we will evaluate the experiments. The
general aim of these experiments is to examine the effects of using a weight vector
as predicted by kernel density estimation, on the performance of the trade-off
algorithrii. Since the utility of this trade-off remains the same for the agent itself
(see definition 3.2), we measure performance in terms of the opponent's utility
of the proposed trade-off contract. Specifically, we start by looking at a single
offer to investigate how the prediction of the weights by KDE influences the
performance of the trade-off algorithm (section 4.2). After that, we investigate
the effects of the KDE-method on a complete negotiation process by analysing
agents which use the predictions in their negotiation strategy (section 4.2.4).

4.1 Evaluation Methodology

4.1.1 Experimental Methodology
To get the desired systematic evaluation of the experiments, the experimen-
tal framework proposed by Cohen (1995) will be used. In concrete terms, this
means that the variables of interest are identified and observed during or after
the application of a particular proresc These observations are then analysed
statistically against hypotheses formed a priori, resulting in accepting, rejecting
or revising these hypotheses. The experiments in this thesis can thus be classi-
fied as exploratory studies: "[studies thatJ yield causal hypotheses that are tested
in observations or manipulation experiments" (Cohen, 1995, p. 7). In this class,

:j5
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Dependent Variable Notation Value
Number of steps S 40
Number of children per step N 100
Location of optimal discrimination a 1

Spread of optimal discrimination 0.1
Number of simulation runs over 50
which the data is collected
\Veight. ve(:tor of buyer ub {0.5, 0.1,0.05,0.35)
Weight vector of seller w {0. 1,0.5,0.25,0.15)

Table 4.1: Dependent variables

designing an experiment is categorised by the following items, which are dealt
with in turn (Exceterit c-Toledo. 2003):

i) Experimental procedure,

ii) Dependent or environmental variables,

iii) Independent or experimental variables,

iv) Hypothesis formation.

Experimental procedure. This desribes the experimental procedure in
detail. By making this explicit, spurious effects can be determined more easily.
In the context of this thesis, the proedure captures the agent's knowledge
(e.g. whether he knows the parameters of the opponent fully or partly) and
the particular process (e.g. whether the experiments consider one single offer
or a complete negotiation process). In particular, the processes which model
the performance of the trade-off mechanism extended with the kernel density
estimation method are of interest in this thesis.

Dependent variables. These describe the attributes and properties of
the environment, in which the experiment is performed. These variables remain
static during the experiment. In our experiments, these variables consist in the
first place of the parameters used by the trade-off mechanism. As described in
section 3.2 these are the number of steps to take from the opponent's contract
to the trade-off contract to propose (S), and the number of children to calculate
each step (N). We will use the values of Faratin et al. (2002): 40 steps using
100 children per step. More steps or more children are shown not too improve
the performance of the algorithm.

The similarity function h(x) used in equation 3.6 is parametrized to be a
linear function. In particular, the a, which determines where the maximal dis-
crimination power lies, is set to 1, resulting in optimal discrimination power in
the middle of the domain. The amount of discriminability within the domain of
the reservation values (c), is set to 0.1, resulting in an optimal discrimination wi-
thin the reservation values, but almost no discrimination outside this domain.
The remaining variables consist of the variables needed by the environment.
Since there is a random factor in the trade-off algorithm, the proposals are cal-
culated 50 times (a significant sample size considering 0.95 confidence level, with
confidence interval of 15%). Finally, the weight used by respectively the buyer
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and seller are chosen in such a way that each agent. has different, preferences
over the issues. Table 4.1 summarizes these variables and their assigned values.
Unles.s stated otherwise these values are used in all the hypotheses tested in
hese experiments.

Independent variables. These describe the data of interest: that is, the
data that should be examined and measured from the experimental environment.
In the context of this thesis, this is the performance of the agent (defined in
different ways for the various experimental processes). \Ve will use the mean
performance over all simulation runs.

Hypothesis formation. This involves identifying a claim t.o direct the
experimentation. Specifically, a hypothesis is formulated based upon the expe-
rimental variables to test the execution of the experimental procedure given the
particular dependent variables (Excelente-Toledo, 2003).

4.1.2 Evaluating Hypotheses
After laying out an experiment, as described above, the hypothesis must be tested
on its correct hess. To this end, the experinwiit is performed and the values of the
experimental variables are collected. The general idea then consists of inferring
the probability that the hypothesis is correct. Formally. the procedure is the
following (Excelente-Toledo, 2003):

i) Formulate a hypothesis (the null hypothesis, represented by H0),

ii) Show that the probability of obtaining a given result given H0 is above a
certain threshold. This threshold is known as the significance level (the
confidence level is defined as 100 x (1 — significance level)),

iii) Conclude H0 under this level of confidence

In our experiments we will generally test the performance of various agent.s
in varying environments (as measured by the mean performance over all runs).
In this case, step 2 in the procedure described above consists of statistically
comparing these mean performances against each other. Analysis of variance is
used for this due to the method being general and robust. Specifically, it tests
the hypothesis that the means of several groups are equal, given the variation
within the groups. This is done by analysing all possible interactions among
them.

The method rests on some assumptions. First, the population distribution
from which the groups are drawn are assumed to be normal. Second, these dis-
tributions are assumed to have the same variance. Third, the error components
of the data in the groups are assumed to be independent. The method, however,
is very robust to violations of the first two assumptions, especially if the group
sizes are equal (Cohen, 1995). Although the third assumption is more stringent,
it is not a problem since the experimental design does not imply a dependency
between observations in the group, thereby also making the errors components
independent'.

However, since this only tests the hypothetical question (i.e. whether there is
a difference), further analysis is necessary to determine the specific relationship

'For a more formal revision of the analysis of' variance method, see e.g. Cohen (1995).
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among the groups (i.e. what are the exact differences between the groups. which
group is better than the others). For example, to test whether the performance
of groups A, B, C and D is similar, H0 is rejected if the ANOVA shows there is
no difference. However. t.his does not say anything about the performance of A
relative to B, A relative to C', and so on. The procedure for testing this consists
of running a post-test on a case by case basis. It forms clusters of groups which
have statistically homogeneous means with an associated value that indicates
the degree of confidence with which the group was built. The specific testing
method used in this thesis is Tukey's honestly significance difference (IISD)
method. This method was chosen because it lies in the middle of the spectrum
of alternatives; between the least significance difference method, which yields
more spurious differences, and the Scheffé tests, which can make it dith:ult to
demonstrate differences between means (Cohen, 1995; Excelente-Toledo, 2003).
To obtain the results from an ANOVA, we use the implementation of Matlab2
which performs the anova itself and compares the scenarios with a post-hoc test.

4.2 Single Offer Experiments
The aim of these experiments is to examine the effects of using a weight vector,
as predicted by kernel density estimation, on the performance of the trade-off
algorithm. Since the utility of this trade-off remains the same for the agent
itself (see definition 3.2), we measure performance in terms of the opponents
utility of the proposed trade-off contract. Specifically, in this section we start
by looking at a single offer to investigate how the prediction of the weights by
KDE influences the performance of the trade-off algorithm. The next section
investigates the effects of the KDE-method on a complete negotiation process
by analyzing agents which use the predictions in their negotiation strategy.

In these experiments a specific instance of a negotiation SPSSIOfl is considered,
resulting in a single offer — counter-offer pair. Due to the number of private and
thus unknown dependent variables, we do not expect the prediction of the KDE
to be completely precise. Therefore, we analyse the results when a random
perturbation is added to the real weight of the opponent (section 4.2.1). After
that, we explore to what extent a priori knowledge of the opponent is necessary
for good performance of the trade-off algorithm. We do this by looking at the
concrete effects of using KDE's formed under different levels of knowledge about
the opponent (section 4.2.2). Finally, to test. whether using KDE increases the
performance with respect to the method proposed by Faratin, we compare the
performance to a situation in which uniform weights are used (section 4.2.3).
All experiments described here follow the settings as described in 4.1 unless
stated otherwise.

4.2.1 Random Perturbation of Real Weights
For this experiment a negotiation between two agents (that generate their offers
according to equation 3.3) was undertaken to get a range of plausible contracts
(using the model described in section 3.1). Specifically, the contracts consist
of four issues of unequal weight that remain fixed throughout the negotiations
(with the weights as described in 4.1). For simplicity it is assumed for all issues

2Matlab v.6.5, release 13, The MathWorks Inc.
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that an increase of value results in a utility gain for one agent ("the seller", or
agent s), and a utility decrease for the other agent ("the buyer", or agent b).

From this negotiation, we take two consecutive proposals: a bid x of b and
a counterproposal y of s. Using these two proposals, a trade-off for the buyer is
calculated (as per definition 3.2). Specifically, we consider two environments (A,
in the beginning of the negotiations. and B, later in the negotiations) in which
the utility of b varies. In environment A, the utility of agent b is high (because
it has not conceded much with its time-dependent strategy), hence there will
be fewer contracts on its iso-curve. In environment B, however, the utility of
b is much lower (because time has passed and it has conceded utility). This
results in more contracts on the iso-curve, and, consequently, more opportunity
to improve the utility of agent s.

The experimental variable in t.his experiment is the correctness of the weights
used for the opponent (as used in equation 3.7). In the first scenario, the agent
has perfect knowledge (scenario full). The econd scenario involves a small
perturbation of the opponent's real weight vector to evaluate the effect of a small
error in the prediction of the weights. This perturbation is chosen uniformly
out of the domain [-0.O. 0.051 (scenario S = 0.05) and [-0.1, 0.1] (sceiiirio S
= 0.1). For reference purposes, the results of two benchmark situations are
added. First, to check what happens if the prediction is completely arbitrary,
a randomized weight vector (satisfying = 1) is used in the scenario ran.
In the second situation, we do not use any prediction about the opponent at
all, hut just choose a child randomly in each step of the trade-off algorithm to
recurse into (scenario no sim). This gives us a means of comparing our results
to the case in which similarity criteria are not used at all.

Since the change of the bid for the opponent depends on multiple unknown
variables (as can be seen in equation 3.3), we cannot expect the prediction to
be completely precise. The objective of this experiment is therefore to analyse
the effects of using such inaccurate information. It is important to note that
here, in contrast to Faratin et al. (2002), we do not make the assumption about
the preservation of ordinality in the opponent's weights. Thus, we will evaluate
the following hypotheses:

HYPOTHESIS 1. A small error in the prediction of the opponent's weights
will not significantly degrade the performance when compared with the perfect
infonnation case.

HYPOTHESIS 2. The prediction of the weight vector does not have to be
ordinolly perfect to improve performance compared with the case of using no
knowledge about the opponent.

The results of this experiment are presented in figure 4.1, where the utilities
of the agents are plotted against each other. The line joining (0,1) to (1,0) is
the Pareto-optimal line, calculated using the weighted method (Raiffa, 1982)
(see 2.1). In this case an ideal trade-off would be on the Pareto-optimal line.
Therefore, the closer our trade-offs are to this, the better they are. Since en-
vironments A and B are reached using non-optimal methods, however, we will
just look at the order of the contracts, and not the concrete utility reached.

In more detail, the figure illustrates a part of a negotiation process. To
evaluate the performance of the KDE-method, the following setting was used.
Consider two agents, a service consumer (the buyer) and a service supplier
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Figure 4.1: The mean utility of the proposed trade-offs using perturbed weights.

(the seller), who want to reach an agreement on the terms of a contract by
negotiation. After a few proposals and counter-proposals, the buyer again makes
a proposal and receives a counter-proposal from the seller. It now decides to
make a trade-off. It is the performance of this trade-off that is evaluated.

In the figure, this process is depicted as follows: the filled squares are the
contracts proposed by the buyer in preparation of the trade-off, plotted for both
environments A and B. As indicated by the arrows, the counter-offers of the
seller are plotted as filled circles. After receiving this counter-offer, the buyer
calculates a trade-off response (for the different, scenarios mentioned above)
which are plotted within the different environment ellipses.

As can be seen, for both environments, the performance of using weights that
are perturbed does not decrease the performance of the trade-off algorithm. This
is shown by an analysis of variance (ANOVA) extended with a HSD test as post-
hoc test, which indeed shows that in both environments there is no significant
difference between the proposed contracts3 when using full knowledge of the
weights of the opponent or a perturbed weight. In more detail, the ANOVA
shows that the probability of the 5 classes as coming all from the same class
is zero for both environments. When looking at the post-hoc test, it can be
seen that in environment A there are three classes. The worst performing class
is formed by the no sim scenario. The scenario random performs significantly
better. The highest mean utility, however, is a third class, in which the scenarios
full, S = 0.05 and S = 0.1 perform all the same with a mean utility of 0.3. In

3Using a confidence level of 0.05.
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environment B, the same pattern is observed for the latter three scenarios.
However, the performance of scenario ran and no sim do not differ significantly
now.

This outcome can be explained by the combination of the KDE-method wit.h
the similarity-based method. Specifically, the resulting algorithm uses both the
prediction of the weights by the KDE-method and the fuzzy similarity as a
basis for computing trade-offs. This combination leads to a robust overall per-
iormane because errors in the prediction are compensated for by the fuzzy
similarity method, and the fuzzy similarity method is enhanced by better infor-
ruation about the opponent.

The contracts produced by the control methods are significantly worse than
the performance of the full knowledge (as expected). If we look at the no
sim case, the contract to use in the next iteration is selected randomly from
the children generated, which leads to poor performance because no attempt
is made to maximize the opponent's utility. In the ran case, the weights of
the opponent are randomized which means that although the algorithm does
perform a maximization, it maximizes the situation in which the weights are
different from their actual values.

Note that given the weight vectors used, the ordinalitv of the weights (an
change in both environments due to the perturbation. However, in the Ô = 0.05
scenario, only the order of the first and fourth issue (an change, whereas in
scenario ö = 0.1 also the third issue can be at different places in the ordering.
In either case, however, t.he absence of a significant difference between these
scenarios indicates that this does not make a significant difference.

Overall, these results indicate that both hypotheses can be accepted. The
algorithm is robust enough to achieve similar performance to the full informa-
tion setting when the information is less than perfect. Moreover, this result is
independent of the preservation of ordinality of the weights. When taken toge-
ther, these results show that the prediction by the KDE does not have to be
completely accurate to improve the performance of the trade-off algorithm.

4.2.2 Kernel Density Estimates of Weights
After having shown that approximate values for negotiation preferences (an he
used to produce effective the next step is to verify that the KDE-
method can indeed give a prediction that is sufficiently accurate to use in the

algorithm. Thus, instead of the real weights with a random perturba-
tion, we now use the prediction of the opponent's weights under different levels
of knowledge (which are represented by different kernel density estimates). The
key difference between these estimates is the information about the opponent
that is known to the agent. Since the opponent's bidding strategy is influenced
by the deadline of the negotiation, the reservation prices, RP, and the
strategy parameter f3 (as can be seen in equation 3.3), these are the parameters
varied in the different scenarios presented below. By this means we analyse the
effect of the amount of knowledge, and therefore the precision of the prediction,
on the efficiency of the algorithm.

In most domains, for example in e-commerce. the strategy parameter will
be most difficult to obtain information about. It is hard to deduce from past
experiences and may change for each individual encounter. Therefore, we start
in the scenarios strat2O and strat 100 with the strategy as a private parameter
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/3 t3max RP

strat20 ((0.1,0.3]001, (4,6101] 65 fixed
stratl00 65 fixed
bdl 130,100] fixed
all [(0.1, i]°°1,(1, 10]°'] (30,100] normal

Table 4.2: Variable initialisation when learning the kernel density estimates.

and the reservation price and the deadline as public information. In this case, a

KDE is used which has learnt from opponents with varying /3s, chosen uniformly
out of the domain. The difference between the two is that the size of this domain
for stratlOO is much bigger (two times one hundred possible values versus two
times t.wenty possible values with the same stepsize). This means the buyer is
much less sure about the opponent's strategy in stratWO than in strat2O.

In the next. scenario /3-and-deadline, or bdl, again the strategy parameter is
varied, but now the deadlines are uncertain as well. This reflects the fact that
agents will have deadlines which change over time, depending on the starting
time of the negotiation. This is particurly the case in an e-commerce setting,
but. shall be applicable to most domains. Therefore, a probability distribution
based on past experiemm may not be particularly useful and it will be hard to
get. Finally, in all, all the parameters are uncertain. It should be noted however,
that in all cases the reservation prices are known to be in a normal distribution
(scaled to a lower rp of 10, an upper of 20, and a standard deviation of 1.5).
See table 4.2 for the specific values of all the scenarios. Note that the domains
of the uniform (list ributions are made discrete and the stepsize, if it is not equal
to one, is stated as a superscript.

Given this, the particular hypotheses we sought to evaluate here are as fol-
lows:

HYPOTHESIS 3. Using kernel density estimates will result in a higher utility
than not using any knowledge about the opponent.

HYPOThESIS 4. The more knowledge about the opponent that is used in
the kernel density estimation, the higher the achieved utility will be.

The first hypothesis captures the expectation that when using KDE to pre-
dkt tile weights of the opponent, the performance of the proposed trade-offs
will improve. If this were true, it would justify the use of KDE as a learning
method that can be added to the trade-off algorithm. The second hypothesis
reflects the expectation that KDE should perform better when there is more
information about t.he opponent. In particular, we expect the performance of
the trade-off algorithm to improve when the predictions are more precise, and
thus we expect a higher utility when the agent has more a priori knowledge
about its opponent.

The results are presented in figure 4.2, in the same manner as described
in section 4.2.1. Thus, the buyer proposes a contract (depicted with a filled
square) and gets a counterproposal of the seller (the filled circle indicated with
the arrow marked ounter-offer response'. The buyer now calculates a trade-off

4This standard deviation is based on the price-distribution of products often sold on
the internet — like digital cameras and laptops — on price comparison sites (e.g. kelkoo:
www.kelkoo.co.uk) and auction-sites (e.g. eBay: www.ebay.co.uk).

.12
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using the settings of the various retIarios. resulting in trade-off options within
the dashed ellipses. Since some of the mean utilities of these trade-off options
lie close to each other, t.he results are also presented in the accompanying table.
As can be seen, especially in environment A, all values are close to each other.
This can be explained by the fact that there are fewer contracts on the iso-curve
compared to environment B. Using an ANOVA shows that the probability of
these results to show when there would be one class is zero. The post-hoc test
shows that with a mean utility of 0.05, the contracts reached when not using
similarity criteria performs far worse than the rest. The next class is formed the
by random scenario, stratl0O and alL In fact, the random strategy performs
surprisingly well in this environment; the results of the ANOVA show that it
overlaps with both this class as by the next., in which the other KDE-strategies
(bdl and strat2O) lie. Having full knowledge of the parameters of the opponent
is the best performing scenario, significantly improving the utility compared to
the other scenarios. These results can be explained by the fact that the space of
improvements is small due to the comparatively small number of points on the
iso-curve, and, in turn, the error when using incorrect information is smaller.

In the second environment, the differences are more visible. Again, the
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performance using the correct weights of the opponents performs best. This
time, however, the prediction of the KDE using strut2O is good enough to result
in the absence of a significant difference compared to the complete knowledge
scenario. The no .sim situation is, as before, worse than all the outcomes using
a KDE, although it. outperforms the random situation now. \\e believe the two
most likely scenarios in e-commerce are Ml and all (where the knowledge about
the opponent is minimal) and, as our results show, in these cases KDE performs
well, indeed nearly as well as the situation where full information is assumed.
This indicates that the predictions made by the NDE in such situations are
sufficiently precise to use in the trade-off algorithm.

In general. our results can be explained by the precision of the prediction of
the weights. When this information is completely correct (as in situation full)
the performance is best. When the knowledge about. the opponent degrades, the
prediction gets less accurate, and the performan(e of the algorithm gets worse.
We show that the kernel density method performs at least. as well as having no
knowledge at all when there are few contract.s on the iso-curve. However, the
results are far better when more possible trade-offs are available. This indicates
that hypothesis 3 can be accepted. Moreover, the amount of information used
while learning the KDE does not necessarily improve the performance (as is
the case in environment A). However using partial information does affect the
performance (as shown in environment B). This implies hypothesis 4 has t.o be
accepted, although the similarity basis of the trade-off algorithm ensures the
effect is not as strong as expected (because it makes the trade-off algorithm
more robust to errors in the prediction).

4.2.3 Uniform Weights
Now we have shown that KDE can be used effectively in combination with the
trade-off algorithm, we want to show that our method outperforms the main
method advocated by Faratin. Following his experiments on the performance of
the similarity-algorithm, he concluded that the best policy for computing trade-
offs is to assign uniform (equal) weights to all decision variables which can be
updated by some learning rule (which is unspecified) (Faratin et al., 2002). To
this end, we want to sue how this works compared to using a KDE. Note that
when the results are analysed, it must be taken into account that when the
real weight vector of the opponent is close to uniform, the results of using a
uniform weight vector are obviously going to be better than when the weight
vector of the opponent is far from uniform. To account for this, we consider
two environments; one with a uniform opponent and one with a strongly skewed
weight vector (i.e. the former uses w = {O.2, 0.3, 0.15, 0.35) as its weight vector,
whereas the latter uses the weight vector w = {0.85, 0.05, 0.05, 0.05}).

To make a better comparison between these two environments, we want the
utility of the starting contract to be similar. However, since the weight vectors
used for the seller differ, this results in different contracts.5 To achieve this we set
the weight vector for the buyer as before. Since we showed in the last experiment.
that the influence of the level of knowledge is limited, the results will only be
compared between the situations strat 100 and all, and to the performance when
having all knowledge (full). Specifically, we hypothesize that:

5Note that a different weight vector also results in a different Pareto-optimal set.
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HypoThEsis 5. Using kernel density estimation to predict the weights of
the opponent will result in a utility at least as good as using uniform weights.

The results of the experiment are shown in figure 4.3. In the upper graph,
the oppolient uses the skewed weight vector. In this case, an analysis of va-
riances shows that the four different groups are significantly different from one
another. In particular, assigning uniform weights performs significantly worse
than using the kernel density estimate for the group all. This is as expected
due to the discrepancy of the real weight vector and the uniform vector used
in the computations. When the weight vector of the opponent is near unifor-
mity. as plotted in figure 4.3(b), assigning uniform weights performs as well as
using the kernel density. This is as expected because the real weights and the
weight vector used do not differ from each other by much. Thus hypothesis 5 is
accepted.

4.2.4 Complete Negotiations
Having shown that using KDE in combination with Faratin's trade-off algorithm
improves the performance in the single-offer case, we will look at the results of
using KDEs in a complete negotiation encounter. Henceforth, we will use the
KDE-method in combination with a meta-strategy (i.e. a strategy of choosing
which offer-generation strategy to use) which depends extensively on the trade-
off algorithm. Our aim is to determine whether the more efficient individual
trade-off offers will also result in a better negotiation outcome over a complete
encounter.

The particular meta-strategy we will use is the smart-strategy (Faratin et aL,
2002), which is shown to have a good performance against a variety of other
strategies. The smart-strategy consists of deploying a trade-off mechanism (as
per section 3.3) until the agent observes a deadlock in the closeness of two
offers. Such a deadlock situation is observed when the similarity between these
two offers is smaller than ö (set to 0.05 in this experiment). If this occurs,
the algorithm starts looking for a contract with a value of the previous offered
contract Vb(x) reduced by a predetermined amount i. The average closeness is
measured by the similarity between the last two bids of the agent. This leads
to the following bidding strategy for agent a:

if (Isimb(xt_1) — simb(xt)I < t5)
choose (xt+ : E X A Ub(Xt+1) = Ub(Xt) — 11),

else
choose (Xt+I : E X A Ub(Xt+1) = Ub(xt)).

where , is the decrease in utility when a deadlock occurs (also set to 0.05 in
this experiment). Note that this method always uses the trade-off strategy, and
therefore makes extensive use of the prediction of the opponent's weights by the
KDE-method.

In the experiment, both agents use the above trade-off strategy, the seller
has full knowledge about the opponent, and the amount of knowledge the buyer
has about the seller is varied (in a similar way to section 4.2).

The performance of t he strategy is tested in two ways. First, the utility of
the deal is calculated by taking the product of the utilities of the agents, where a
higher product means a better performance. By looking at the product, we make
sure that the deal is symmetric: there is not one agent performing better at the

1
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Figure 4.4: Utility of the contract proposed at given time

cost of the other. By this means, we ensure the deal will be mutual acceptable,
an iniportant property of the final agreement as argued in chapter 2. This also
probably leads to the number of agreements being higher. Second, within this
experiments, both agents make use of the same trade-off strategy. This implies
that when the deal is not symmetric, the strategy will not be symmetric (i.e.
lead to a comparable outcome irrespective of the agent).

As a second measure of performance, we will look at the time at which
agreement is reached (if an agreement is reached at all). In the domain of e-
commerce, it is often desirable to reach an agreement as soon as possible (e.g. to
reduce the communication load or because the service is required urgently). We
will define this by the number of offers and counter-offers before an agreement
is reached.

In undertaking this experiment, we expect that more efficient trade-off offers
will lead to a more efficient eventual negotiation outcome. In the single-offer
experiments we showed that by having more knowledge, the performance in-
creased and we expect this to also be the case for the multi-offer situation.
Furthermore, since the single offers are more efficient, we expect an agreement
to be reached earlier:

FIYPOTHESIS 6. The more knowledge that is used in the KDE, the higher
the product of the utilities will be over a complete negotiation.

HYPOTHESIS 7. The more knowledge is used in the KDE, the lower the
communication load will be.
l'irst. we look at the utility. In figure 4.4, the Pareto-optimal solution which

maximizes the product of utilities is indicated by the dash-dotted line. As
expected, the strategy performs best when we assume [till knowledge of the
opponent, and worst when we do not use any knowledge at all (the no sim
scenario). The performance of stratlOO is not significantly better than the
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performance of all, implying that the quality of the prediction of the KDE is
comparable in both situations for the trade-off algorithm. As expected, the
scenario in which the buyer has full knowledge about its opponent performs
significantly better than the scenarios in which a KDE is used. Most important,
however, the performance of the KDE-method is far better than that of not
using any knowledge at all. We therefore accept hypothesis 6.

Second, we look at the mean time on which agreement is reached in figure
4.5. First, it proved that in all cases, an agreement was reached before one of
the agents reached its deadline. Thus, the trade-off strategy indeed leads to
mutually acceptable agreements. More specifically, when comparing the time of
agreement, the scenario in which the knowledge of the opponent is complete and
precise (scenario full), agreement is reached fastest (mean time of 21.2 steps).
Strat 100 does not perform significantly worse, indicating that the prediction of
the KDE-method is precise enough for the trade-off algorithm. Slightly worse is
all which needs significantly more steps to achieve an agreement. These results
can be explained by the lower performance of the single offers (as described
in section 4.2). Specifically, these individual offers have a lower utility to the
opponent, therefore they are less likely to be accepted. Not using the similarity
criteria performs, as expected, worst. Based on this results, we also accept
hypothesis 7.

Figure 4.5: Mean time of agreement



Chapter 5

Conclusion and Future work

5.1 Conclusions
In this thesis we showed that the preferences of a negotiation opponent in bi-
lateral multi-issue negotiations can he effectively learnt by using kernel density
estimation. Specifically, by applying it. t.o Faratin's trade-off model, we showed
that it can make negotiations more efficient (in terms of utility as well as time of
agreement). By choosing kernel density estimation as the learning paradigm, we
did not. have to iiiake any explicit assumptions about the relation between time,
negotiation history and the opponent's preferences (as many other learning me-
thods have to). Also, the method has reasonable computational complexity for
the bounded nature of e-commerce domains.

In more detail, our experiments showed that applying kernel density estima-
tion to a single-offer case improved the performance of the trade-off algorithm.
The resulting algorithm is robust when the prediction of the weights is imprecise
and is not dependent on the ordinality of the weights being kept.. Moreover, the
amount of knowledge used in the KDEs does not have a major influence on the
performance, which means it can work effectively in competitive environments
in which minimal information is made available. Furthermore, we showed that
using the KDE-method outperformed the uniform weight strategy for the op-
ponent when it has a skewed weight vector and performed at least as well when
it. uses a near uniform weight vector (showed in section 4.2. Finally, we showed
that using the KDE-method in a complete negotiation encounter which uses the
predictions extensively also leads to a better performance (as showed in section
4.2.4. Specifically, the more knowledge is used in the KDEs, the higher the
utility and the lower the communication load.

When we look in more detail at the requirements, as laid out in section 1.3,
we can conclude that these are all (at least partly) met. The first, that the
agents are computationally bounded, we fulfilled by showing that learning the
kernel density estimation can be done with a complexity of O(n log n) (section
3.2). The algorithm has a complexity that is linear with respect to the
number of issues (section 3.3.3).

The second requirement, bounded resources in the domain, is partly met.
By construction, time is bounded. However, when other resources are bounded,
it is probable the agent will adapt its strategy to a resource-dependent one (as
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opposed to a time-dependent strategy). However, whereas the time is publicly
available and the deadline for an agent assumed t.o be static, the amount of
resource available to the opponent might or might not be available to the agent
and can be dynamic (e.g. when the resource is also used in other negotiations
or activities).

By construction, the third and fourth requirement are met. By testing
concrete strategies, we focussed on the process off the negotiation, not me-
rely at the efficiency of the out come. Furthermore, our domain tested contracts
consisting of multiple issues.

Kernel density estimation is a niethod that does not need a priori knowledge
about the domain: it learns the statistical properties of the domain without
explicit assumptions since it is non-parametric (see section 3.2). Furthermore,
it does not assume the opponent is completely rational, as is common within
game theoretic models of bargaining. Therefore, the solution is very generic, as
required by the fifth requirement.

Finally, the method should be adaptive to the environment or opponent. In
principle this is possible, since kernel density estimation can learn online as well
as offline. However, in the experiments we only implemented the offline learning
component. Therefore, this requirement is partly accepted.

5.2 Future Work
Emerging from the previous section, we can see that the current method needs
extension in two ways. First, the method should be used against other strategies
than the broad range of time-dependent tactics we used here. Second, an on-
line learning component should be implemented to test the adaptiveness of the
domain. In general, the method should be applied to some real-case domains
to test its usability.

Besides these two direct implications, for the future, there are two main ways
in which this research can be extended. Firstly, we would like to consider the
performane of our method against additional meta-strategies. In this work, we
only consider an opponent that uses the smart meta-strategy and other meta-
strategies may also be adopted in pratt ice. Secondly, our method for predicting
the relative weight of the opponent's preferences for its various negotiation issues
could be applied to a variety of other negotiation models where it is important
to have approximations of these values. Thus, for example, it could be used in
purely competitive encounters in incomplete information settings or situations in
which an agent engages in multiple concurrent negotiations in order to procure
a particular service. Also, the set of issues could be made more flexible, by
allowing an issue set protocol (in which issues can be added or deleted from
the contract under negotiation) or contingent contracts (where the values of
the issues are conditional statements with respect to posterior properties of the
service, like quality). To take it another step further, it would be interesting to
apply the KDE-method within a richer negotiation dialogue, for example the one
proposed by McBurney et al. (2002) (as discussed in 2.2.4). This model uses an
argumentation formalism with strong influences from philosophy and marketing
theory, supplementing a standard negotiation protocol. When improving the
knowledge of an opponent, the arguments used could be better adapted to the
opponent, for example by focussing on the more important issues.
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Thus, having a better knowledge of t.he opponent's preferences could improve
the performance of these mechanisms. In general, for all cases mentioned above
it will hold, the better the approximation, the more acceptable the deal will be,
most importantly for the agent itself, but also for its opponent, thereby leading
to more efficient negotiations.

A final interesting field would be the application of the KDE-method to real
human-to-human negotiation as a decision support system, although the current
system is probably too coarse for this, since it is only tested on time-dependent
opponents. However, in the future this method could help with designing and
deepening the knowledge on formal analysis of negotiations. That this can
be of great help during real negotiations is indicated by one of the analysts
working on the Panama Canal treaty, Ken Bleakely: "It. can be used to explore
alternative packages of issues and can help in the making of arguments for
and against various proposed sets (Raiffa, 1982). As Bleakely also points out,
using formalisations of the assumptions and trade-offs, a certain creativity was
generated: "It gets people to think about. the integrative aspects of bargaining,
not. only the distributive ones." (Raiffa, 1982)
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Appendix A

Proof of Correctness
Trade-Off Algorithm

In this proof. the lines of the program are indicated by a line number. Parts
of the proof are between curly brackets ({ ... }). \Vitliiri these lines, a logical
term can he defined by a letter within parentheses followed by the term (e.g.
(A) : term. After such a definition, the term is used by this letter (e.g. (A)).
The letter P is used for preconditions, Q for post-conditions, B for the guard
of a loop and J for the invariant of the loop. Other terms are denoted by A
followed by a number. Finally, comments on the proof or program lines are put
between parentheses combined with an asterisk (e.g. (*.. . s)).

Inputs
Last best contract,

E : Step utility increase. E > 0 }

V() Value scoring function. { V() ya — [0, 1])
w Weight vector of i. { j w3 = I }

Outputs
Output contract. { V(y') = V(y) + E }

Begin
0. For alijEido
1. = 10,1 —

2. End for
(* is the set of possible amounts of improvement on i.ssue i *)

{ (P): E >OA (A1):Vj E J: E, = [0,1—V3(y)] where0< V,(y) 1 }

{(A1) =Ec[0,1}}

3. Emax>jwjmaxEj
(* Em is the maximal improvement possible on contract y *)
(* From (Al) follows max() = 1— V3(y3) *)

{ (P) A (Al) A Enax = >J w(i — V3(y,t)) }

4. = 0.01 Emax
5. If (E111 > E + ö) then
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(* needed to guarantee convergence if E is close to Em (see
3.3) *)

{(P) A (Al) AE+ö<EmaxAEmax=jwj(1Vj(y,'t))}
(*A+u3< CAfl>0=. A <Ct)

{ (P) A (Al) A (J): E < Ema,( }
(* Thus, there exists a valid contract x with the desired utility:
Stated formally: *)

{ Conclusion: x: V(x) = V(yt)+ EA (Vj E J : x1 ED1) }
6. k:=0;E:=0;

(* Write out (P) *)
{ (Al) A (A2) A (J) A(E>0AE=O=.E<E)}
{ (Al) A (A2) A (J) A (B): E < E }

7. While (E <E) do
{[...]A (B):E<E}

(* Initialize new row in r-matrix to 0 *)
k := k + I: For all j E J : r = 0;

9. ForalljEido
10. If (E < E) do

{ [...jA (B) }

(* There is still space for improvement *)
11. r = min(random(j),.z1)

(* (i) zs the set of possible improvements; hence the cho-
sen improvement is necessarily achievable. (ii) The second
term is the amount of consumption which still has to be dis-
tributed, scaled by the issue weight; hence the consumption
by this issue is maximal equal to the remaining improve-
ment on the contract necessary. *)
(* E < EAw2 >= IL >0*)

{ [...J A (B) A0< r< ma c(E,) AO< r< }

12. E=E+w1•r
(* Utility nnprovement on issue j weighted by the issue
weight is new achieved utility E *)

{[...]A(B)AO<r<max(Tj)AO<rk<u.AEtU=
E + w2 r }
{f...JA (B) AE<E' <E+w1E}

(* There is a positive probability that E increases, with
a mainnum value equal to E, the total needed improve-

— ment
13. E3 = [0, max(E3) — rj

(* The maximal needed value of E, is adapted to the change
induced by r,C *)

{ ...J A (B) A 0< r <max(Tj) max(,) — r,c >0 A E'
E2+l<E} —

{ (Al) A (A2) A (J) A (B) AE <Er' EAEJ çIo,fl}
(* Hence the achieved utility has a positive probability of
increasing, while none of the preconditions has changed *)

14. End if
15. End for
16. End while
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(* Since E has a positive probability of increasing for every issue,
the term (E — E)/w3 can decrease urith every issue. E, only
decreases with issue j. thereby guaranteeing that finally r2 (E—
E)/w1 < E3. *)

{ (-'B):E>EA (Al) A (A2) A (J) AE<E=E=E}
17. ForalljEido
18.

(* (P) guarantees existence of this sum.
(* For all k: r,' < max(E) — w2 where r30 = 0. *)

— —OA1{EmaxE = (l—V3(y,))}
(* The total improvement on this issue is achievable *)

19. y1 = V(V(y) + E3)
(* '(V(o)) =

{ y' = VcV(y) + E,) = '(V3(y')) = VJ1(V,(y) +
E,)}
{ Vj(y')=Vj(y)+E

}

20. End for
21. Else

Einax <E+ó Emax <E}
(* So, there does not exist a valid contract fulfilling the require-
ment of having a utility of the contract y plus E: Again, stated
formally: *)

{ Gonclusion : —x: V(x) = V(yt) + E A (Vj E J : .r E Vi)) }
22. Raise error: No step can be performed
23. End if
End

{ x: Vt(x)= EA(Vj E J :x3 ED))= V(y'') = l'(y)+ E, }
{ -ox: V'(x)= EA(Vj E J :x3 E V3)) = error}
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