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Abstract

A translation of this abstract in Dutch starts on the next page.

Diplomacy is a strategic game for seven players. Each player represents a European empire
in the early years of the twentieth century with which he tries to conquer Europe. The players
have the disposal of armies and fleets (units) to achieve this goal. The game proceeds in rounds.
Each round all players simultaneously reveal orders for their units. All orders together deter-
mine which are actually carried out and which are not; orders may hinder or support other
orders. Usually, Diplomacy players have the opportunity to negotiate with each other. This
work focuses on a variant of Diplomacy, no-press, in which negotiation is not allowed.

Game theory is a research area in artificial intelligence that investigates the interaction be-
tween human beings. Party games provide an excellent domain for such research. Games with
large search spaces are particularly interesting. Diplomacy surpasses even Go in this regard, so
classic search algorithms do not stand a chance in Diplomacy. More intelligent techniques are
required to fathom Diplomacy.

This work aims at logic-based Diplomacy order processing and at evolutionary Diplomacy
strategy forming. To this length the goal is to develop a logic-based resolution model and
an evolutionary player model with the following specifications: the resolution model must
determine the correct board state, resulting from any set of orders, within insignificantly small
response times, compared to those of human players. The player model must perform better
than a random playing model, with response times of less than five minutes. A logic language
was designed to describe orders and other aspects of the game.

This thesis covers the development of the Diplomacy resolution model 'Atlas', that pro-
cesses Diplomacy orders by using logical deduction. This model passes through a number of
stages in which logic compounds of growing complexity are deduced, until the solution is ex-
plicitly kiiown. In this manner, more complex deduction techniques are only applied to more
complex cases. Ares allows for the simulation of Diplomacy games and enables player models
to foresee the consequences of orders.

The resolution model Atlas was tested on a set of 153 game situations that is assumed to
include cases of all complexities. Atlas produced the correct resolution in all cases, given the
restriction on orders to always be complete and correct. During 128 game simulations Atlas
resolved 13323 game situations in an average of 8.8 milliseconds per resolution. Simpler cases
were resolved faster than more complex cases.

Atlas is accurate and efficient, given the restrictions, and thereby complies with the stated
specifications. Logical deduction is a profound basis for Diplomacy resolution and possibly
also for logistics and management problems. Decisions would then need to be represented
with multiple options, instead of binary Future research should show the attainability of such
applications.

This thesis also describes the design of an artificially intelligent Diplomacy player model,
based on evolutionary computing on strategies. The model represents action alternatives for
the situations it is expected to meet. The genetic fitness of action series is determined by the
evaluations of the game situations that those series bring forth. The model repeatedly creates
new action alternatives by mutating actions in the fittest series. In this manner, the best action
series is gradually improved. A simultaneous process searches for actions of the opponents.
These counter-actions are mutated to yield game situations with low evaluations; the model
assumes that its opponents will continuously counter him.

The consistency of Ares' actions was investigated by repeatedly making this model generate
opening actions, playing 'Germany'. A relation with the most popular openings for the same
empire, as observed during internet games between human players was not found. Ares was



set up against a random playing model in 128 Diplomacy games. In each game a unique com-
bination was used to assign the two models to the seven empires. Each game was ended when
one of the players reached a victory (109 games) or after 218 rounds (19 games). In the case
of a victory, the winner takes one point and in pre-ended games, one point was split equally
between the survivors. Ares collected 123.0 points (%.l% of the available points) against 5.0
points (3.9%) for the random playing model. With the used parameter settings in the game
simulations (a produced strategy with depth two, of the tenth generation) Ares has response
times of approximately one minute.

Ares plays better than a random playing model, within five minutes per action and thereby
complies with the stated specifications. Evolutionary computing is a hopeful technique in au-
tomated strategy forming. Possibly, this technique is better applicable to games in which the
imperfectness of information is lower than in Diplomacy, like Stratego or Scotland Yard. The
application of strategy evolution to Diplomacy leaves many possibilities for improvement We
could try to combine the intentions for similar game situations. Also, we could investigate the
influence of trust and negotiations on strategy forming in standard Diplomacy, where players
are allowed to negotiate. Finally, it might be interesting to investigate combinations of evo-
lutionary computing with other promising A! Diplomacy playing techniques, like evaluation-
based and goal-based approaches. The former tries to move units towards highly evaluated
areas and the latter generates attainable goals and chooses the best possible combination of
goals to pursue.

Samenvatting

Diplomacy is een strategisch spel voor zeven spelers. Elke speler vertegenwoordigt een Eu-
ropees rijk aan het begin van de twintigste eeuw, waarmee hij Europa probeert te veroveren.
De spelers hebben legers en vloten (eenheden) tot hun beschikking om dit doe! te bereiken.
Het spel verloopt in ronden. Elke ronde onthullen alle spelers gelijktijdig welke zetten (orders)
ze met hun eenheden willen doen. Alle orders samen bepalen welke orders daadwerkelijk
worden uitgevoerd en wetke met; orders kunnen elkaar verhinderen of juist ondersteunen.
Doorgaans zijn Diplomacy-spelers in de gelegenheid met elkaar te overleggen. In dit werk ligt
de nadruk op een variant van Diplomacy, no-press, waarbij overleg geen rol speelt.

Speltheone is een onderzoeksgebied binnen de kunstmatige intelligentie dat zich bezig
houdt met de wisselwerking tussen mensen. Gezelschapsspellen vormen een perfect domein
voor dergelijk onderzoek. Spellen met grote zoekruimten zijn met name interessant. Diplo-
macy overtreft zelfs Go wat dit betreft, waardoor het klassieke zoekalgoritmen geen enkele
kans laat. Slimmere technieken zijn nodig om Diplomacy te doorgronden.

Dit werk richt zich op de verwerking van Diplomacy-orders op basis van logische deductie
en op de vorming van Diplomacy-strategieën op basis van genetische algoritmen. Hierbij is de
ontwikkeling van een logica-gebaseerd resolutiemodel en een evolutionair spelermodel met
de volgende eisen als doel gesteld: het resolutie-model moet voor elke combinatie van orders
de juiste resulterende bordsituatie bepalen, in een verwaarloosbaar korte tijd ten opzichte van
de denktijd van menselijke spelers. Het spelermodel moet Diplomacy beter spelen dan een
willekeurig spelende speler, met een responstijd van maximaal vijf minuten. Een logicataal is
ontwikkeld om orders en andere aspecten van het spel te beschrijven.

Deze scriptie behandelt de ontwikkeling van het resolutiemodel 'Atlas', dat Diplomacy or-
ders verwerkt door middel van logische deductie. Dit model volgt een aantal stadia waarin
steeds complexere logische constructies worden gededuceerd, totdat de oplossing expliciet
bekend is. Op deze manier worden complexere deductietechnieken alleen toegepast op corn-
plexere situaties. Ares maakt simulaties van Diplomacy-spellen mogelijk en stelt spelermodel-



len in staat gevolgen van orders te voorzien.
Het resolutiemodel Atlas is getest op een set van 153 spelsituaties, waarvan wordt aangeno-

men dat ze gevallen van elke complexiteit omvat. In alle gevallen gaf Atlas de juiste resolutie,
uitgaande van de eis dat orders altijd volledig en correct worden ingegeven. Gedurende 128
spelsimulaties bepaalde Atlas de resolutie van 13323 situaties in gemiddeld 8.8 milliseconden
per resolutie. Eenvoudigere situaties werden sneller opgelost dan complexere situaties.

Atlas is correct en efficient, onder de gestelde voorwaarden, en voldoet daarmee aan de
gestelde specificaties. Logische deductie is een gedegen basis voor Diplomacy resolutie en
wellicht ook voor logistieke en beleidsmatige problemen. Beslissingen zouden in dat geval
met meerdere keuzemogelijkheden moeten worden gerepresenteerd, in plaats van tweezijdig.
Toekomstig onderzoek zou de haalbaarheid van dergelijke toepassingen uit moeten wijzen.

Deze scriptie beschrijft tevens het ontwerp van een kunstmatig intelligent model van een
Diplomacy-speler, gebaseerd op een genetisch algoritme dat strategieen evolueert. Het model
representeert actie-altematieven voor de situaties die hij verwacht tegen te komen. De geneti-
sche fitheid van series van acties wordt bepaald door de evaluatie van de spelsituatie die uit die
series voortvloeit. Het model creëert herhaaldelijk nieuwe actie-altematieven door mutatie van
de acties in de fitste serie. Op deze manier wordt de beste serie van acties geleidelijk verbeterd.
Een gelijktijdig proces zoekt naar tegenwerkende acties van tegenstanders. Deze tegenacties
worden gemuteerd zodat ze spelsituaties met lage evaluaties opleveren; het model neemt aan
dat zijn tegenstanders hem voortdurend zullen proberen tegen te werken.

De consistentie van Ares' acties is onderzocht door dit model herhaaldelijk openingsacties
te laten genereren, spelend met 'Duitsland'. Een relatie met de meest populaire openingen
voor hetzelfde rijk, geobserveerd gedurende intemetspellen tussen menselijke spelers werd
niet gevonden. Verder is Ares in 128 Diplomacy spellen opgezet tegen een model van een
willekeurig spelende speler. In elk spel werd gebruik gemaakt van een unieke combinatie
van toewijzingen van de twee modellen aan de zeven rijken. Elk spel werd beeindigd zodra
één van de spelers een overwinning had behaald (109 spellen) of na 218 ronden (19 spellen).
Een overwinning leverde een punt op en bij een vroegtijdige beeindiging werd één punt gelijk
verdeeld onder de overlevenden. Ares behaalde een totale score van 123.0 (%.1% van de te
behalen punten) tegen 5.0 punten (3.9%) voor het willekeurig spelende model. Bij de gebruikte
parameterinstellingen voor de spelsimulaties (een opgeleverde strategie tot diepte twee, van
de tiende generatie) heeft Ares een responstijd van ongeveer één minuut.

Ares speelt beter dan een willekeurige model, brnnen vijf minuten per actie, en voldoet
daarmee aan de gestelde specificaties. Genetische algoritmen zijn een hoopvolle techniek in au-
tomatische strategievorming. Mogelijk is deze techniek beter toepasbaar op spellen waarbij de
informatieonzekerheid lager is, zoals Stratego of Scotland Yard. In de toepassing van strategie-
evolutie op Diplomacy zijn nog vele verbeteringen mogelijk. Men zou kunnen proberen om
intenties voor vergelijkbare spelsituaties met elkaar te combineren. Voorts zou men de invloed
van vertrouwen en onderhandelingen op strategievorming kunnen onderzoeken in standaard
Diplomacy, waarbij spelers wel mogen overleggen. Tot slot is het wellicht interessant corn-
binaties te onderzoeken van genetische algoritmen met andere veelbelovende technieken in
Al Diplomacy, zoals evaluatie-gebaseerde en doel-gebaseerde benaderingen. De eerste tracht
eenheden naar hooggewaardeerde gebieden te verplaatsen en de tweede genereert haalbare
doelen en kiest de beste combinatie van doelen om na te streven.
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I Introduction

Throughout the years, game playing has presented artificial intelligence with many challeng-
ing problems. In general, the aim has been to create an agent that can compete with human
players in a particular game. For some games a strategy has been found and proven competi-
tive. In Chess, for instance, artificial intelligence became world champion. A search algorithm
investigates possible continuations of the game and concludes sensible moves. Applying cur-
rent search techniques to games with a smaller search space, like Tic Tac Toe or Nim, has lead
to complete strategies that guarantee the best move in each game situation 141.

The way that artificial intelligence solves game problems need not necessarily be similar to
human approaches to those games. Both human and artificial players do what they do best and
are likely to win games that fit their way of thinking. In games with very few possible game
states, like Tic Tac Toe, an artificial agent might remember what to do in every possible case. It
will not needlessly lose since its algorithm suits the problem so well. Humans would still be
likely to apply reasoning to improve their chances, which is less promising in this case.

Today many aspects of game playing remain unmatched. Games that still frighten an arti-
ficial agent have one thing in common: the search space is huge. Examples are Go, Dots and
Boxes, and Diplomacy. There is no way that any computer in the near future could compare
all possible moves in a game situation and present an appropriate move fast enough to fit our
patience. Those games require a much more efficient approach to find solutions. In their quest
for artificial intelligence, researchers often crib from the pool of best examples available: na-
ture. For instance, in Go it has been proposed that humans try to recognize patterns when they
play the game. The extension of this approach to computer algorithms has produced promising
results. This thesis will stretch it just a little bit more.

1.1 Problems in artificially intelligent Diplomacy playing

Diplomacy is a game that holds some unconventional properties that impose the need for in-
teresting new roads in the game playing world. A few of these properties are described here,
to help the reader understand why Diplomacy is in fact a problem child.

Whereas in most games players take turns, Diplomacy involves the simultaneous moves of
all players. This makes the application of traditional search trees impossible, since there is no
way of choosing who should go first in the search tree.

Even if we would find a way to represent moves of different agents in one search tree, the
tree would be incredibly large. The game of Go has 361 opening possibilities, resulting in about
1020 nodes when looking four own moves ahead. Diplomacy has 4.430.690.040.914.420 possible
openings (for all seven players) 1181 and an estimate of at least 1062 nodes to plan four moves.
Knowing we cannot search a tree for Go, we should not try to do so for Diplomacy either.

Most games are competitive (Chess, Poker, Tic Tac Toe e.a.), meaning that agents need to
counter others to gain themselves. Some games are co-operative (Lord of the Rings), where
agents need to join forces to win together. Diplomacy is a game of co-opetition, meaning that
agents have conflicting goals, but need to co-operate to reach those goals [71. This property
inflicts another layer of strategy upon the game, involving negotiations, trust, and diplomacy.

Not only strategy forming is hard to formalize. The manner in which actions are processed
deserves some attention too. The success of an action in chess solely depends on how the
particular piece may move and the state of the field to which it tries to move. An agent can even
predict the outcome of his actions and always make successful (allowed) actions. In Diplomacy,
agents mostly do not know what their actions bring about since the success of an action also
depends on other actions at that time. In fact, the success of all agents' actions depends on
themselves other according to a complex web of rules, making their adjudication all but trivial.



12 1 INTRODUCTION

1.2 The game of Diplomacy

Diplomacy is a game of negotiations, alliances, promises kept and promises broken. To survive,
a player needs help from others and to win the game, a player must eventually stand alone.
Knowing whom to trust, when to trust them, what to promise and when to promise is the heart
of the game. The physical Diplomacy board game by Avalon Hill includes a booklet with the
game rules [81. A brief sketch is given below.

1.2.1 Diplomacy in a nut shell

Traditionally, Diplomacy is played by seven players on a game board (at a table, if you will).
Each player represents one of the leading European empires in the early years of the twentieth
century. The board is divided into 82 areas, some land and some sea. At the start of the game
most of the land areas belong to a certain empire, as shown in figure 1.

Color Empire

• Austria
D Germany
O Turkey
• Italy
• France
• England
• Russia

Every player must try to extend his empire using his armies and fleets. Some land areas
contain production centers (cities that provide food and weapons to maintain one army or fleet
each). The empire named 'Austria and Hungary' elsewhere is denoted by 'Austria' in this
work.

The game proceeds in fictional years as depicted in figure 2.

Figure 1: The initial game board
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Each year consists of two seasons, Spring and Fall. At the beginning of each season players
have the opportunity to negotiate with each other on their strategy. Next, each player secretly
issues an order for each of his units. One may for instance order a unit to stay in (hold) the
area it is in or attack another area (move). Alternative to a hold or a move, a unit may support
another unit's move or hold, increasing that unit's strength. In case of conflicting orders only the
strongest (most supported) orders are followed (obeyed).

A fleet in a sea may be issued to convoy an army's move, enabling that army to move via the
area of the convoying unit. A path of convoying fleets can move an army over the entire path.
Note that a convoy enables a unit to move over sea, it cannot force it.

Usually, players are expected to explicitly denote a particular move's use of convoy, distin-
guishing it from a possible alternative route over land. We do not demand such notation since
such ambiguity seldom occurs and even more rarely results in unintended results.

At the end of each season all orders are revealed simultaneously and resolved in the follow-
ing manner: one of the players calls the orders he issued, one by one. Each order is immediately
followed, unless another player believes that one or more of his orders conflicts with it. In that
case a solution to all dependent orders is sought. If a particular situation grows too complex,
the players might decide to adjudicate other orders first. When a player has called all of his
orders, the next player proceeds until all players have called their orders.

After resolution, players get a chance to retreat their dislodged units (if any). That is, if a
unit did not move and was successfully attacked, its owner may move it to a safe, adjacent
area. An area is safe if no unit tried to move to that area. At the end of each year (two seasons)
each empire is extended with the areas in which units of that empire are located. The extension
of one empire may cause another empire to shrink. The number of production centers each
empire then controls (lie within each empire) defines the number of units that empire may
own. If appropriate, players get a chance to build or disband units. A player may build units
only in production center areas he originally controlled and still controls. To win,one needs to
dominate Europe. Only when one empire controls more than half of the production centers, its
victory is declared.

Rather often a player needs the help of other players for his orders to succeed. Such co-
operation is established by means of binary or multi-sided negotiations at the start of each sea-
son. Players may reach an agreement over anything at all and may decide to break any promise
at any time. Players may have private meetings excluding other players from knowledge on
agreements. A good relationship with other players may greatly enhance one's chances, but
to gain personally one ultimately needs to disappoint others, break promises and violate trust.
Each player thus constantly needs to weigh strategic aspects against social aspects.

Figure 2: One year consists of two seasons with four and five phases respectively
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1.2.2 Terminology

Throughout this thesis, many technical, mostly game-specific concepts are used. For a good
understanding of the text a firm grasp of these concepts is recommended.

• Adjudication: The process to determine which orders in a given set are followed and which
are not.

• Agent: In general, an agent is a system that interacts with its world. Within the scope
of this thesis, an agent is a human being or a machine (model) that plays the game of
Diplomacy.

• Area: One of the 82 subsections of the board.

• Army: A piece (pawn), which an agent may move over land areas or via fleets to land
areas oversees.

• Board: A representation of Europe, divided into 82 areas, on which Diplomacy is played.
A board may also refer to a particular configuration of units and area ownership at a
particular moment.

• Build: The addition of a unit to the board.

• Coast: A land area next to a sea area. Some land areas meet with sea areas on two sides.
Those coasts are denoted by additional code names.

• Convoy: The order to allow an army move via a fleet's area.

• Cut: An unsuccessful support.

• Defrat: A move order defeats another order if it has more strength. In the case of mul-
tiple moves to the same area, a move should have more strength than any other move's
resistance, to defeat it.

• Disband: The removal of a unit from the board. This happens when the unit has been dis-
lodged and there is no area to retreat to or when the owning empire controls insufficient
supply centers.

• Dislodge: The failure of a unit to stay in or return to its home area.

• Disrupt: When a convoying fleet is dislodged, the convoy path it contributed to is dis-
rupted.

• Empire Each unit belongs to one of the empires Austria, Germany, Turkey, Italy, France,
England, and Russia. Each empire (and thus its set of units) is controlled by an individual
agent.

• Fail: An unsuccessful move.

• Fleet: A piece (pawn), which an agent may move over seas or coasts.

• Follow: An order is followed if it has been legally issued and no other orders or board
restrictions forbid it.

• Foreign: Belonging to different empires.

• Friendly: Belonging to the same empire.
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• Hold: The order for a particular unit to stay in its home area.

• Home area: The area a particular unit is in.

• Issue: The cornniltment of an order to an empire.

• Judge: A judge (or adjudicator) determines the obedience to a set of orders and deduces
the resulting board. He who adjudicates or resolves.

• Legal: The issue of an order is legal when the ordered unit exists, belongs to the issuing
empire and did not receive additional issues from the same empire.

• Move: The order for a particular unit to move to a particular area.

• Order: A unit's action. An order can be a hold, move, support or convoy. In this thesis
order is never used meaning sequence.

• Production center: A city that provides maintenance for one unit. The number of produc-
tion centers that lie within a particular empire define the number of units permitted to
that empire.

• Resistance: Each order has a resistance of one, increased by one for each support of that
order.

• Resolution: The process to determine the result of a given set of orders on a given board
state.

• Retreat: The obliged move of a unit to an adjacent, safe area (if any) after it has been
dislodged.

• Standoff Two or more moves to the same area with ejual strength.

• Strength: Each order has strength of one, increased by one for each support of that order,
excluding supports of the dislodgement of friendly units.

• Success: A followed order is successful.

• Support: The order for a particular unit to support another unit's hold or move. A valid
support describes the exact order of the unit it supports.

• Target area: The area a particular unit attempts to move to.

• Unit: An army or a fleet.

• Valid: The applicability of a support order. A support order is valid if the supported order
is legally issued.

In Diplomacy the difference between adjudication and resolution is trivial. Strictly, resolution
refers to the consequence of a given set of orders on a given board whereas adjudication means
the decision making on each individual order's success. In Diplomacy, adjudication thus in-
flicts resolution and resolution needs adjudication.

An automated order handling system is often said to perform adjudication since it focuses
on the success of orders, whereas game descriptions speak of resolution since we "just want to
know the next board state". Since adjudication and resolution ultimately mean the same thing
(some adjustments to some board) one should not worry too much about the difference be-
tween them.
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1.2.3 Resolution rules

Diplomacy demands the following rules on a correct resolution 181 (some rules were slightly
changed to reduce Avalon Hill's obscurity and to meet this work's definitions):

1. Without support all orders have the same strength.

2. There can only be one unit in an area at a time.

3. Equally supported moves to the same area cause all involved units to remain in theiroriginal area.

4. A standoff does not dislodge a unit already in the area where the standoff took place.

5. One unit not moving can stop a series of other units from moving.

6. Units cannot trade places without the use of a convoy.

7. Three or more units can rotate areas during a turn provided none directly trade places.

8. An order other than a move can be supported by a support order that only mentions the current
area of the unit that is involved in the supported order.

9. Amove can only be supported byasupport orderthat matches that move.

10. The order of a dislodged unit can still cause a standoff in an area different from the one that the

dislodging unit came from.

11. The order of a dislodged unit, even with support, has no ejfrct on the area that the dislodging unit
came from.

12. An empire cannot dislodge or support the dislodgement of one of its own units, even tf that dis-

lodgement is unexpected.

13. Support is cut f the unit giving support is attacked from any area except the one where support is

being given.

14. Support is cut f the supporting unit is dislodged.

15. A unit being dislodged by a unit in one area can still cut support in another.

16. An attack by an empire on one of its own units does not cut support.

17. A dislodgement of a fleet necessary to a convoy causes that convoy to fail.

18. A convoy that causes the convoyed army to standoff at its destination results in that army remain-
ing in its original area.

19. Two units can exchange places feither or both are convoyed. (This is the exception to rule 6.)

20. An army convoyed using alternate convoy orders reaches its destination as long as at least one
convoy route remains open.

21. A convoyed army does not cut the support of a unit supporting an attack against one ofthe fleets

necessary for the army to convoy. (This supersedes rule 13.)

22. An army with at least one successful convoy route will cut the support given by a unit in the
destination area that is supporting an attack on a fleet in an alternate route in that convoy. (This
supersedes rule 21.)
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1.2.4 Rule adjustments and extensions

As will be explained later, the above rules cannot adjudicate every set of orders. It also intro-
duces synonymous notations for some orders. As a result, the following modifications were
made:

Rule 8 is omitted since it introduces an alternative notation to the same order, which in our
opinion is more confusing than is it convenient.

Some rujes (like Kruijswijk's rules [17]) suggest to turn a blind eye to orders with unspec-
ified coast when only one coast is possible. It is suggested that an attempt is made to follow
the order as if it was issued with the correct coast specification. We are not that flexible since
it only causes uncertainty with human players and any agent can kindly be asked to complete
his orders.

Kruijswijk also suggests that a move via convoy should explicitly be issued to move 'via
convoy' if that same move is possible over land [17]. Now the debate arises over when exactly
the move order should fail. Consider an army move from Belgium to Holland. Although a
clear cut route over land exists, the army decides to attack Holland through the use of a fleet in
the North Sea. It should be no surprise that the move succeeds if the convoy succeeds. It also
seems to be agreed upon that if there is no fleet in the North Sea, the alternative route over land
is taken and the move still succeeds(!) (e.g. test case 6.G.8 [17]). However, if the convoying
fleet is attacked, the convoy fails and Kruijswijk suggests that the army does not move, not
even over land. We believe that this is a very farfetched distinction and it seems unreasonable
to always demand the 'via convoy' specification to make it. Besides, the described situation
virtually never occurs and when it does, it is very likely that the Belgian army too will take the
high road.

The game rules state that if a resolution to all orders exists, that resolution is carried out [81.
However, the game rules have been proven inconsistent in some cases [251. That is, situations
exist in which the game rules result in a paradox. In such cases there might be multiple possible
resolutions or no resolution at all.

The most commonly used rule to solve the very rare case of a paradox was proposed by
Simon Szykman [251 as an extension to the resolution rules described by Avalon Hill [81:

• If a situation arises in which an army's convoy order results in a paradoxical adjudication, the
turn is adjudicated as f the convoying army had been ordered to hold.

Szykman's rule favors the success of a support over the success of a move in paradoxical
convoy situations. To us it seems natural to assume a similar resolution in all paradoxical
situations. Thus, a support should always have priority over a move when only one of them
can succeed, as in the following example. Consider a real army, attempting an attack on some
target. Imagine that the army cannot reach the target because of some side attack. The only way
for the army to stop the side attack is to reach its target itself. The army should thus assume
that the side attack is not even there, reach its target (which would stop the side attack) and
then conclude that the assumption was right. This is not how real combat works.

Inspired by actual combat, we propose that the resolution rules are not extended by Szyk-
man's rule, but by our supports sustain rule:

23. Support is ne'er cut nor dislodged by a move whose attainability depends on the success of that
support (This supersedes rule 13).

As we will see later this rule accounts for the solution to most paradoxical situations. How-
ever, we are not there yet. Suppose we have two supports that both comply to rule 23. Ac-
cording to rule 23 we should decide both supports to succeed. If these two decisions have
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conflicting results on the outcome of one or more other orders we cannot make them without
violating logic. The alert reader might notice that Szykman's rule does eliminate this kind of
paradox, but not as it should. The change of the order of one paradoxical convoying army to a
hold might enable another army to make its paradoxical move by convoy anyway. The outcome
of resolution thus depends on where you start applying the rule. That is unacceptable.

Rule 23 states that support in these cases is never cut nor dislodged. In the described cases
with two supports whose success would indirectly cause the other to fail, those supports
should and will succeed, regardless of any other rule. We thus force success on the support
orders at hand, inflicting an inconsistency upon one or more other orders. Both success and
failure of those remaining orders would violate at least one rule.

Szykman was right about the fact that sooner or later we do need a rule that only applies
in paradoxical situations [25]. Rule 23 has merely narrowed the set of paradoxical cases to the
ones in which rule 23 contradicts itself. It has been suggested that when no other rule solves
the resolution, no move in a paradoxical convoy situation should succeed, as described in the
all hold rule:

• If a situation arises in which an army's convoy order results in a paradoxical adjudication, all the
moves part of the paradoxical situation fail ([17] e.a.).

At this point (for the remaining paradoxical cases), we should take this rule. Again, the
more general version is chosen over the one specialized to convoys:

24. Paradoxical moves fail.

Consequently, since the success of holds and convoys can only depend on the success of
moves, paradoxical holds and convoys succeed. The proposed rules (1 through 7 and 9 through
24) thus guarantee an adjudication of all orders, always.

1.2.5 Diplomacy on-line

These days many people play Diplomacy on the internet. Usually a server is used to host the
game, managing the orders and the game state. Each season the players may negotiate by
whatever means necessary and at a previously agreed upon deadline all orders are resolved.
In some cases the server performs the resolutions, in other cases human game masters are
assigned to serve this purpose. After each season each player may retreat his dislodged units
(if any) and after each year each player may build or disband units to match the number of
supply centers he occupies.

Usually an automated adjudicator is used to make the resolutions. An example is the jDip
adjudicator, which is said to be very fast, very accurate, and supports the latest (2000) rules
[15]. Most artificial agents make no use of the adjudicator to plan their moves (as we will see in
section 1.5). Adjudication times are then negligible, compared to the time agents need to write
orders. However, when an agent does rely on resolution predictions, adjudicator efficiency
becomes one of the most important factors in the agent's planning times.

Many variations exist on internet Diplomacy games. Some involve the restriction on ne-
gotiations, often excluding certain kinds of messages. The variant with no negotiation at all is
called no-press.

1.2.6 Scores

In Diplomacy, although the number of production centers one owns gives a good estimate of
the strength of one's empire, it should not be misconstrued with one's chances on victory. Even
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when a player owns 49 percent of the production centers, all other players could join forces
and still have a better chance on winning the game. Only when a player owns more than half
of the production centers he is considered the winner.

Usually the property of each player's score during the game is not so important, sincewe
only care about victory. The first player to own 18 production centers wins (gets one victory
point). However, sometimes it takes too long for the game to end. Even more, the players may
decide to play a fixed number of rounds beforehand. And let us not forget artificial agents who
are expected to play many games, but do not get enough time to finish them all. It would be
a shame if all pre-ended games were useless for ranking purposes. The common manner to
determine each player's score in pre-ended games is to split the victory point equally among
the survivors (e.g. [111).

1.3 Research goals

The goal of this work is to try to design an automated resolution model (judge) and an artifi-
cially intelligent agent model. Specifications of the two models are given below. Together they
should allow for many automatically played games.

1.3.1 Judge model specification and goals

The adjudication of orders should be made from the units' point of view. Each unit would
draw up the restrictions that keep it from following its order. The judge should at all times
bare those restrictions in mind and search for the solution that satisfies them all.

The application span of the automated resolution model should be as broad as possible.
The model should be able to cope with any game situation and order set that might occur
and provide the correct resolution. This has two main reasons. First, the resolution should
not favor any empire over any other. It is agreed upon that the proposed rules do not, but
any major derivation just might. Secondly, the quality of an artificial agent might depend on
the correctness of the judge it uses. A particularly complex set of orders could be illegal and
thus unthinkable for a human being, yet findable and thus playable for a computer program.
An artificial agent could systematically exploit this flaw and have an advantage in playing the
game. Of course a flaw in the adjudication model would also be highly unsettling for its creator.

The quality of the above described judge will be measured by facing it with a large test
set of game situations and orders for which the correct resolution is known. The set contains
situations with the most complex order combinations the Diplomacy community could think
of. Most of them were actually constructed to tackle automated resolution systems. If the judge
never fails in providing the correct resolution on the test set the research goal on its quality is
reached.

The judge should be very efficient, enabling an artificial agent to foresee the outcome of
many options fast. The easiest way to measure its efficiency seems to compare its resolution
times with those of existing resolution systems. Unfortunately, when this work came about,
there were hardly any automated adjudication systems available, let alone resolution times we
could compare with. However, the average resolution time of this model might be a good
estimate of its efficiency.

The efficiency of the judge will be measured by the average resolution times on boards in
actual game simulations. The judge would be sufficiently efficient if its resolution times are
an insignificant factor in the progress of the game and in an agent's action consideration. The
judge efficiency goal would then be reached.
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1.3.2 Agent model specification and goals

The agent model forms its strategies by means of evolutionary computing.
This work is mainly about the strategic aspect of the game. Since negotiations are beyond

that scope, no-press Diploniacy will suffice. This variant makes the game much faster to play
and thus easier to cover.

We will focus on the ordering at diplomatic phases only. Choices concerning retreats, dis-
bands and builds are excluded from this research. However, since the game cannot proceed
without them, they will be generated automatically and randomly for all agents. Since it is
assumed that the strategy of the game mainly lies in the order decision making, this should not
cause for major problems.

Convoy orders will not be among the options of the agent, since they hardly occur, but
require for relatively complex planning. Without convoy orders an agent should be able to
form strategies faster. When a proper agent model has been built, the imposed limitations
could become extensions to the research domain. Note that the specification of the judge does
include the ability to handle convoy orders.

The results of the agent model would be meaningful if they are reproducible. That is, if
there is a best move, the model should choose it significantly often (more often than any other
order). To validate the sensibility of results of the model, we will compare them to the frequen-
cies of according orders in games on the internet, between human players. If many people
made the same moves as the model does, the people and the model are more likely to be right.
Furthermore, we will set our model up against randomly playing models and against instances
of itself. Although it seems very hard to pin-point the absolute level of performance, the com-
parison to a random player should be a good start.

The agent model is good enough if it outperforms a random player. The agent quality
goal is reached if the average score of the agent in various set-ups of Diplomacy games is
significantly higher than the average score of the random player in those games.

The efficiency of the agent model should be at least competitive with human players, who
are obliged to write down their orders in 5 minutes. For simulation purposes, one would wish
for a much faster algorithm, but the goal of this research is set to just meet entertainment needs.
That is, the goal on the agent model's efficiency is to make it act within 5 minutes time.

1.4 Automated adjudicator types

In internet Diplomacy, an automated adjudicator (judge) is mostly welcomed; in research in
artificially intelligent playing it is almost indispensable. Agents do not know for sure what ac-
tions will be successful, so a judge should determine the consequences. Even more, an artificial
agent model might depend on the judge in trying to foresee the consequences of its actions.
Writing a Diplomacy adjudicator program may not seem to be more difficult than writing a
program that checks the moves of a chess game. However, the contrary is true.

Kruijswijk describes two properties of the adjudication process that should be considered
when writing the adjudication program [17]. The first property is that a set of orders leads to
a set of decisions to be made (on the success of each order). One order may lead to multiple
decisions. For instance, when a unit is ordered to move, and the move is decided to fail (because
it was insufficiently supported), another decision emerges. To determine the influence of the
unit on the area where it was ordered to move the success of the convoying unit needs to be
decided. That decision would be pointless otherwise.

The second property is that the decisions depend on each other. Certain decisions can only
be made when other decisions are made first. For instance, when the units are ordered to
follow each other in a move, then the decision whether the unit at the end moves depends on
the decision whether the unit at the front moves.
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Now, to make the decisions, Kruijswijk suggests two fundamentally different methods to
deal with its dependencies: a sequence-based algorithm and a decision-based algorithm. In this
work two alternative methods are proposed: a condition-based algorithm and a logic-based
algorithm. All four methods are discussed briefly in the next subsections.

1.4.1 Sequence-based

In a sequence-based algorithm, the program tackles the problem of dependencies in a fixed
sequence. At each step of the sequence, the decisions involved should have no undecided
dependencies. So, in the sequence, any decision making is preceded by the decision makings
it depends on. The algorithm needs to perform all steps to ensure a correct resolution to any
board. An example of a sequence-based algorithm is implemented by Black 151.

The main disadvantage of a sequence-based algorithm is that it needs to check for complex
combinations of orders in every situation it is presented with to ensure thatcommon resolution
rules apply. In [5] we see that of the 20 steps of the procedure, we find "fight ordinary battles"
at step 19, which does not imply high efficiency on the average cases.

1.4.2 Decision-based

In a decision-based algorithm, the program does not follow a predefined sequence of properties
to tackle. The program visits the decisions (also, in no particular sequence) and tries to make
them. If the decision is made, it is final. If not, the program proceeds to the next decision. This
process is repeated until all decisions have been made or no more decisions can be made. An
example of a decision-based algorithm is included in [171.

Compared to the sequence-based algorithm, the checks to be made when visiting a decision
are very simple. The program should only check if all dependant decisions have been made
and draw its conclusion, whereas the search for circular dependencies or convoy paths can be
a cumbersome task. Also, the algorithm allows for decision making on the base of incomplete
information when current knowledge is exhausting adjudication. That is, even when not all
premises of a decision are known, the logical combination might result in one possible adjudi-
cation. For instance, when one predicate in a conjunction is known to be fals, the conjunction
is fa1s( regardless of the truth value of the second predicate.

A disadvantage of the decision-based algorithm is that, as with the sequence-based algo-
rithm, each order is visited many times before it is adjudicated, probably lowering the model's
efficiency Also, it does not have a direct manner to solve paradoxical situations, or even cir-
cular dependencies. They are recognized by detecting that the algorithm has stopped. At that
point it is yet to be determined what caused the stop and how to proceed.

1.4.3 Condition-based

A condition-based algorithm tries to determine the outcome of a condition as soon as a decision
appears to depend on it (much like the programming language ProLog). The algorithm starts
at whatever decision and finds a condition it may depend on. Surely this too will be a decision
and the algorithm immediately tries to find that decisions success conditions. The algorithm
thus immediately penetrates to the depths at which the dependencies to a decision lie.

The main advantage of algorithms of this type is that it visits any decision just once. Again,
an important disadvantage is that complex dependencies cannot easily be solved. Whenever
the algorithm encounters a contradiction, it has no way of knowing what caused it, unless
it keeps track of the base to each decision it makes. Moreover, it might encounter a circular
dependency that is not even there. That is, a decision might depend on a combination of condi-
tions of which some can be determined and some cannot. If the algorithm bites into the second
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kind, it does not have an easy way of knowing whether it really has a problem. It should go
back and try other branches, which undermines the advantages of the algorithm.

1.4.4 Logic-based

The logic-based algorithm copes with the entire set of orders as a whole, but with constant
knowledge of the (remaining) dependencies of each decision to be made. As in the decision-
based algorithm, all conditions are specified first, but now we apply deduction to approach
resolution. The algorithm constantly copes with the set of orders as a whole and makes deduc-
tions as needed.

The algorithm recognizes the solution as soon as it is explicitly present in the decision con-
ditions. It need never check for any dependency more complex than the complexity evident
from the conditions at that point. Furthermore, the dependencies of a decision remain explicit
and possible restrictions to make that decision gradually become apparent as the algorithm
proceeds. Even in the most complex cases like the paradoxical ones, the impossible decision(s)
exactly state(s) what causes the problem.

1.5 Other approaches to Diplomacy A!

Some attempts were made to create an automated Diplomacy player before the model de-
scribed in this thesis was implemented, as described by Hâárd [11] and Huff et al [141:

The Israeli Diplomat (by S. Kraus, 1995 [16])

Primarily concerned with the diplomatic aspect of the game and was reported quite suc-
cessful. The Israeli Diplomat uses an agent based approach, and distributes tasks between
agents that are ordered in a hierarchical fashion 1161. Source and binaries for the Israeli
Diplomat seem to be lost [11].

We doubt the validity of Kraus' research methods. All games were played via and
as Kraus described herself some people definitely lost interest in playing the game 1161. Since
negotiation is the most important factor in a game in which it is allowed, the Israeli Diplomat
stood a better chance. Sometimes human players even forgot to write orders, making even a
random guess a better strategy.

• The Bordeaux Diplomat (by D.E. Loeb, 1996 [19])

Based on an optimized best-first search algorithm. It uses scripted "book openings" to
increase performance and an evaluation method that creates areas of varying importance
that the bot should try to control. The strategic and tactical planning seems to be done
through searching with heavy pruning to offset the huge search space [19]. Source and
binaries for the Bordeaux Diplomat seem to be lost as well [11].

• The Hasbro Diplomacy Game (by Microprose, 2000 [201)

Based on an Al which is commonly acknowledged to be extremely poor 114].

Today's most constructive project on Diplomacy Al is called Diplomacy Al Development Envi-
ronnwnt (DAIDE) [241. This project aims at the development of an artificially intelligent Diplo-
macy player and provides several tools to let different hots compete. It was set up at the time
this work came about and has become a very flourishing project.

• RandBot (by D. Norman, 2003 [22, 24])

Simply creates a random set of valid moves from the moves available to each unit and is
in the DAIDE tournament as a reference 111].
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• DumbBot (by D. Norman, 2003 [22, 24])

Evaluates areas and creates orders to reach the highest ranked areas. The chances at
moving towards an area is proportional to the evaluation of that area. Units that are
already occupying the best area reachable try to support moves of other units [111.

• DiploBot (by F. McNeil, 2003 [24])

Works much like DuznbBot in that it bases its tactical decisions on the evaluation of ar-
eas. However, in DiploBot the area weights proceed from a more sophisticated stepped-
iterative approach where a sequence of different modules modify the weights of each
province based on some criteria. Based on the final weights a list of routes is gener-
ated for each unit, sorted by priority. DiploBot chooses the best possible combinations of
routes for all units 1111.

• Man'Chi (by B. Roberts, 2004 [23, 24])

Based on a board analysis yielding goals on areas to conquer [141. According to its creator
its tactics are weak and its strategy horrible [23]. It seems to perform not too poorly
against HaAI, though [111.

• HaAI (by F. Hâârd, 2004 [11, 24])

HaAI is a multi-agent-system (MAS). One unit agent is created for each unit the bot con-
trols. The unit agents evaluate their surroundings and create goals of movements which
they submit to the MAS. The unit agents also declare their ability to support goals of
other unit agents. The MAS might request the unit agents for additional goals or sup-
ports and ultimately decides the best combination of goals that can be met. HaAI was
tested against other available bots (RandBot, DumbBot, DiploBot, and Man'Chi) in an
open competition of DAIDE and shows to outperform competitors in score while being
competitive in speed [111. HaAI was implemented around the same time as the models
conveyed in this work were.

• Project2OM (by A. Huff et al, 2005 [14, 24])

As DumbBot and DiploBot, order formation is based on area evaluations. Project2OM
uses two values of evaluation for each area: one for the bot having an army in that area
and one for having a fleet there. Several iterations of an evaluation combination process
produce a more general reflection of the map. Instead of praying that the search space is
continuous, it is created leading gradually towards local optima. Based on this landscape,
the best area each unit can conquer is chosen to move that unit to. No two units attack the
same area and units support each other where needed. The best combination realizable
is executed [14]. Project20M was presented right before delivery of this thesis.

Háârd and Huff et al made very promising attempts in designing an automated Diplomacy
player. One comment we do like to make is that it might be interesting to know how fast both
bots beat other bots, measured in game seasons. It might not always be possible to play off
the most eligible bots against each other, yet feasible to recreate another (RandBot, for instance,
serving as a simple, but reliable reference). The most serious attempts that always beat Rand-
Bot, when given enough time (game seasons), might differ in their time of victory.
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1.6 Scientific relevance for Al

Artificial Intelligence has been concerned with games for many years. Why games are so inter-
esting lies in its perfect combination of problem complexity and world simplicity. Games pro-
vide for problems on the edge of computer capabilities, in a well-defined, conceivable world.

The most apparent aim of research in games is creating an entertaining opponent. People
often tend to like playing against bots that mimic human properties. Also, solutions to game
problems might inspire to apply the responsible techniques to other fields as well. Good strate-
gic algorithms might for instance be extrapolated to skilled logistics systems. We might not
even be concerned with the best possible solution, as long as the solution fits given require-
ments.

Inspiration on designing artificially intelligent agents could very well come from naturally
intelligent systems like the human himself. Maybe even more interesting is the possible influ-
ence of an algorithm on how humans think they think.

In a way this work links up with a Master's thesis by Douma on the game of Happy Families
[10]. Douma formalized knowledge representation in this game and tried to deduct reasonable
decisions on what actions to take during the game.

1.7 Methodology

The adjudicator and the agent model are implemented in C++. The main reason for this is
that C++ is an object oriented programming language which allows for efficient interaction
between different objects. More specific: the agent would not be asked to resolve the board,
but it is expected to know what resolution does. An agent in the game world could inquire the
judge living in the same game world for resolution forecasts. Also, C++ programs execute very
fast.

To maintain all data needed for and resulting from the simulations, a database has been
set up in PostgreSQL. This allows for an organized, fast and reliable retrieval of the data, for
the running models as well as for researcher. Moreover, it functions as an excellent backup
system for the state of the program. Since the program continuously uses the latest data from
the database and submits its latest results, a restart with minimal loss of data is possible. With
simulation runs of several weeks the importance of this property should not be underestimated.
Also, this manner of data maintenance allows for visualization on the internet. The database
system can cope with simultaneous data streams from different processes.

The graphical user interface is implemented in PHP. It visualizes the simulated games and
allows for statistical data analysis. The interface also reduces the gap to a complete game portal
in which the agent could play against human players.

1.8 Overview

In chapter 2 the theoretical background of this work is described. The algorithms of both the
judge model and the agent model are explained in chapter 3, followed by an outline of the
simulations that were run with these models and their results in chapter 4. This thesis doses
with a discussion of the achievements in this work, the conclusions we drew from them and
some suggestions on future work on this subject in chapter 5.
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2 Theory

Automation of reasoning starts with the choice on how to represent things. Humans may think
in vague concepts and associations, machines cannot (yet). In this work, Diplomacy matters
will be represented in logic.

How an automated agent should approach a game largely depends on how the game is
made up. We need to know in what terms an agent should be thinking and producing. Again,
we would rather see a formal description than a general idea, leading us to game theory.

The actual progress of artificial thoughts should be brought about by some kind of mech-
anism that considers alternatives. With the enormous solution space of Diplomacy, simple
search mechanisms are not likely to accomplish much. As in most of these kinds of problems,
the choice was made for evolutionary computing.

Most of the theoretical background on logic, game theory, and evolutionary computing has been
borrowed from existing literature. However, some additions were made to build the bridge to
Diplomacy. The following sections describe these in detail.

2.1 Logic

Diplomacy employs a strict notation of orders. In this work an extended, formal fact notation
is required to make complex reasoning and deduction possible. Logic meets those needs per-
fectly. Also, the transcription of Diplomacy notation to logic can easily be made due to the
systematic structure of both. The used notation links up with predicate logic in Van Benthem
et al [3] and is specific to Diplomacy games.

2.1.1 Constants

Units are represented by the label army or fleet, depending on the unit's type. Units are denoted
by u, r or u.

Areas are represented by a three letter code, according to the rulebook of Diplomacy 181.
For instance, pru refers to 'Prussia', ber refers to 'Berlin', and sil refers to 'Silesia'. Areas are
denoted by a, b, c, or d.

Each of austria, germany, turkey, italy, france, england, and russia refers to its equally la-
beled empire. Since each player represents one empire and each empire is represented by one
player, the two are formally ambiguous. In this work an agent is always a Diplomacy player
and therefore often used in the same context too. Agents, players, and empires are denoted by
i orj.

2.1.2 Order objects

In this thesis, an order is represented as an object, consisting of a label referring to the type
of order and a few arguments. Four different classes of orders are distinguished: holds, moves,
supports, and convoys. The first argument of an order describes the type of the unit for which
the order is issued and the second refers to its current location. Depending on the type of order,
the third argument may be void, refer to an area or refer to an entire order itself. Orders are
denoted by X, Y or Z.

The order to hold the fleet in 'Prussia' is represented by: hold(fleet, pm-u). In general, the
order to hold unit n at area a:

hold(u, a)
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Similar to a hold order, one could order the army in 'Berlin' to move to 'Silesia' with

inove( army. ber. sit). In general, to move unit u from area a to area b:

move(u. a, b)

A support order can either support a hold order or a move order. For instance, the or-
der support(Jle't. pm. hold(ariny. sil)) denotes that the fleet in 'Prussia' supports the army in
'Silesia' to hold. Alternatively, support (fleet, pru. move ( army, ber, sit)) would represent that the
fleet in 'Prussia' supports an army move from 'Berlin' to 'Silesia'. One may support another sup-

port or convoy order to hold. That is, supports and convoys can only be supported to hold.

Let i' be some unit and b and e be some areas. Then, in general, to support the order X E

liold(t'. b). niovu( r. b. e)} with urtit u in area a:

support(u,a. X)

Convoy orders have a structure, similar to that of support orders. To convoy an army
from 'London' to 'Norway' with a fleet in the 'North Sea', one would issue convoy(fleet, nth,

in ore ( army. Ion. n u'y)). A convoy order thus refers to the order of the convoyed unit. Let order
V = mnove(v. h, e). Then, to convoy unit v from area b to area e with unit u in area a:

convoy(u,a, X)

2.1.3 Predicates

Properties of objects (represented by terms) are denoted by predicate symbols. Combining a
particular predicate with one or more objects, we get an expression stating a certain property
of those objects. Such a statement can be either true or faLse.

The fact that 'Germany' has an army in 'Berlin' would be noted as at (germany, army, ber).
In general, we could state that empire i has unit a in area a by writing

at(i, u,a)

Another kind of board facts concern area ownership. The fact 'Germany owns Berlin' makes

ou'n(germany, ber), and in general, empire i owns area a:

own(i. a)

In Fall seasons, area ownership might change. If an empire has a unit in a certain area, that
area becomes property of that empire. So, in every Fall:

at(i.u.a) —' own(i.a) (1)

The area 'Berlin' contains a production center, which we write as product wn(bcr). The fact

on a production center in any area a is denoted by:

production(a)

Now after every Fall the number of units each empire owns should not exceed the number
of production centers that lie in that empire. In other words: the number of areas where an em-
pire i has a unit should be at most the number of areas empire i owns that contain a production

center: U 0 fl P1 (2)

with area sets (Ti, 0 and P such that

a '—' u at(i.u.a)
a 0 —i own(i.a)

I' .—. production(a)
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The adjacency of any two areas depends not only on the location of both areas on the board,
but also on the type of unit that attempts to move from one area to the other. For instance,
armies cannot move to a sea area and fleets cannot move to some land areas. The adjacency of
areas a and b for unit u, is denoted by:

adjacent(u. a. b)

We also combine constants and objects to state a relation between them. To denote that 'Ger-
many' issues inove(arrny. ber. sil) we write: £ssue(germany, move(army. ber. sil)). In general,
the issue of order .Y by empire i:

issue(i ..Y)

Whether or not an issued order is followed depends on other issued orders. Non-issued
orders are never followed. The property whether an order X is followed or not is denoted by:

follow(.Y)

Convoyability is described with respect to an entire order. Let order .V be the move of unit
u from area a to area h, or X = move(u, a, b). Then the convoyabiity of unit u from area a to
area b is represented by the convoyability of X:

convoijable(X)

In some cases we might want to know if a unit is convoyable without using any path
through a certain area (for instance because the fleet in that area was disrupted). Again as-
suming X = inove(u. a, b), the convoyability of unit u from area a to area h without using a
path through area c is represented by:

convoyable_dis (X, c)

Now we might describe order attainability in terms of adjacency and convoyability. The
attainability of an order to move unit u from area a to area b is represented by:

attainable ( .Y) adJac at (a. a, h) V (Oil uoyablc(X) (3)

And attainability of such an order, without crossing area c

attaulabl(_d?s(X.e) adjacent(u,a,b) V convoyable_dis(X.(') (4)

Additionally, we define two orders to be opposing when they are moves to each other's
home area and both moves are feasible without convoy. Let X = rnove(u, a, b) and Y = move(v. b, a).
Then:

oppo.srng(.\. 1) = rnove(u,a,b) A Y = move(v,b,a)
5A adjacent (a, a, b) A adjacent (v. b. a)]

The predicate logic model of all objects, referring to terms in the language defined above is
denoted by:

M

If not all predicates in M are known, M is a partial model [21.
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2.1.4 Functions

The strength of a particular order is found by counting the followed supports for that order
and add one for the ordered unit itself. According to the rule book, if a unit u tries to dislodge
another unit r, the strength of the move order for u does not include support orders issued
by the same empire as the empire that unit v belongs to. Note that the omission of a support
may depend on the success of a move order for unit r. That is, if unit v moves, it cannot be
dislodged by u and thus no support should be omitted for contributing to own dislodgement
The strength of an order V is denoted by:

strength(X)

The resistance of a particular order is found in the same way as strength is, but now all
followed supports are included. The resistance of a move order may only prevent other move
orders to the same area. That is, for a move to some areas to be followed, the strength of that
move must exceed the resistance of any other move to the same area. The resistance of an order
X is denoted by:

resistanee( X)

Suppose we have a set of sentences of predicates and logical operators in model M. Then
the sum E of that set is defined as the number of sentences in the set that are known to be true
in M. Model M might thus very well be partial, leaving unknown sentences out of the sum.
In general, with logical sentences i. +

f i+E{1.2 ifM=+1E{i. } otherwise

The sum of a set with one element is also denoted as the sum of that element:

i itM
'r

() 1)1 herwisc

Now, there is a relation between the resistance of an order and the sum of the set of all
supports for that order. When the truth value of all sentences in M are known (M is complete),
the resistance of an order V is equal to the sum of the set of successful supports for that order

resi,stane4'(X) ER (6)

with set I? such that

, cR4— = follow(support(u.a,X))

If X is not a move or X is a move to a vacant area, its strength is equal to its resistance since
no unit could ever support X to dislodge anything. However, if X is a move to an area where
empire 1 has a unit, the strength of X is equal to the sum of the set of followed supports for X
from units belonging to empires other than empire i. Ergo, in the complete model M:

strength(X) ES (7)

with set S such that

— .1'
= follow(suppori(n, a .V)) if X = hold(v, b)

1 ; = follou'(support(u.u ..V)) A ai(i.a)A —at(i,c) if X = move(v,b,c)
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2.2 Game theory

As Bimnore put it, game theory is mostly about what happens when people interact in a ratio-
nal manner [41. We should not only think of the games we play in our living room, but also
of social matters like voting behavior, warfare, economics, and bargaining. Game theory finds
its ways to applications in any of these fields, but in this work the road will lead to a game wc
play just for fun.

2.2.1 Game properties

Games can be divided by some very important properties. For a particular game, those prop-
erties greatly determine the way that game should be played, both by humans and by artificial
agents [9].

Diplomacy is an infinite simultaneous multi-player zero-sum game with imperfect infor-
mation. These game properties and their consequences are discussed below.

Imperfect information

Players in Diplomacy do not have access to all information about the game. They do
see the current game state (the board), but they do not know what other players issue
until resolution starts. Consequently, players somehow need to assume the unknown
information. In Diplomacy one could figure that others issue orders that are likely to
improve their position.

A second kind of information Diplomacy players do not know regards negotiations. You
never know what keen plans others discuss. Fortunately in no-press Diplomacy this is not
a problem since no-one talks.

• Zero-sum

Assume we have an evaluation function, indicating how well each player is doing at any
time. The player's highest evaluation means an inevitable victory for that player (assum-
ing he will play his best moves) and the lowest evaluation indicates he cannot avoid to
lose. Since only one player can win a Diplomacy game, no two players' evaluations are
the maximum. Even more, the sum of all players' evaluations should be the same at all
times. If one player wins a certain amount, then the other players lose exactly the same
amount. Strictly, the evaluations in a zero-sum game should sum to zero, but often dif-
ferent, constant sums are used to fit the problem at hand better. In this work, the sum of
evaluations is always 1.

• Multi-player

Diplomacy is a multi-player game, since more than one player take part in it. In fact,
there are seven.

• Simultaneous

Diplomacy is not a standard multi-player game. Players do not take turns, they all act
simultaneously. This mainly accounts for the imperfectness of information described ear-
lier. Furthermore, it thwarts evaluating one's position and seeing through strategies of
others.

• Infinite

A game is said to be infinite if the rules of that game allow players to play on forever.
In Diplomacy, players could very well move their units to and fro or even not move
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anything at all. Such behavior would never end in one player's owning 18 production
centers. However, sometimes players beforehand agree upon a fixed number of rounds to
play. This would make Diplomacy a finite game and most likely influences onc's strategy
towards the end. This work does not involve a limit on the number of rounds, known to
the players, leaving Diplomacy an infinite game.

2.2.2 Game states

The game state describes the information that is available at a certain time. In some games (like
Poker) this information differs for different players. All players do not necessarily know the
same facts. What each individual player does know is called his local state.

A global state is the set of all available facts on what is known by whom [121. In Poker it
could describe that player 1 knows that the king of spades is in the hand of player 3 or that all
players know that the seven of hearts is missing.

In some games (like Chess) both players always know the same things (what the board
looks like and whose turn it is) and are therefore always in the same local state. The global
state at a certain time in those games is the same as any local state at that time.

Right before players write their orders, the global state of a no-press Diplomacy game is also
equal to any local state, since all information on the game at that time is available to anyone.
We will define those global game states at those times.

A global state in this work concerns two things: the game round and the board configura-
tion. Game rounds are represented by non-negative integers, referring to 'Spring 1901', 'Wmter
1901', 'Spring 1902', 'Winter 1902', etc. respectively. In other symbols, round r is:

r E N0

Formalizations of boards are conjunctions of -if and own predicates, one for each unit loca-
tion and area ownership, respectively. In general, if we have a board with in units on it and
owned areas, it would be represented by:

= a1(i. ui.ai ) A af(i2. 09.a21 A A at(i,.nn,am)A
own(i+i . a,,, i) A own(i+2, a, 2) A . . . otvn(i7+,, °,+)

Now, the global game state may be defined in terms of the game round and the configura-
tion of the board. if a game were in round r with board configuration , it's global state would
be the pair:

(r. 3)

2.2.3 Actions

A local action is the action of one agent. In Diplomacy, one local action of an agent would
include the issue of one order for each of that agent's units. For instance, if 'Germany' has a
fleet in 'Kiel' and armies in 'Berlin' and 'Munich', this empire may perform a local action:

.\gerrnany = ssue(qerinany, move(fleet, kie, den))
A issue(gerrnany, move(arrny, ber, kie))
A issne(gerrnany. move(ariny, inun, nih))

Or in general, for agent i with n units:

= J A zssue(i. X2) A ... A issue(i, X)
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In many games (like Chess, Poker, Tic Tac Toe) agents perform local actions in turns, prob-
ably changing one ore more local states and if so, also the global state. In Diplomacy local
actions have no effect unless all agents perform one at the same time. Although players do
think for themselves, their orders are resolved as one event, one global action:

a = )'austrta A )qrvnan, A Aturkey A Aitaiy A 'fnince A Aengland A )'r,JssIa

2.2.4 Search space

Let us assume that there are three possible board configurations 3o, i3, and and the game
lasts for three rounds. Figure 3 shows all twelve possible global states.

Figure 3: An example of a Diplomacy search space

In each global state there are a number of global actions that change the global state to an-
other, represented by the branches from that node. Notice that nodes with the same board con-
figuration 3 branch equally; the global action alternatives are independent of round r. Global
actions are therefore denoted with respect to the board configuration only: a. The gth branches
from all nodes (r. /3) with some r, represent global action a.

Ignore the different branch thickness for now: they will be explained in section 2.2.5.

2.2.5 Strategies

A pure local strategy describes the intention of one agent in all local game states he might
encounter. In a game of imperfect information, like Diplomacy they specify actions for each
information set that agent might meet [4]. An information set describes all facts that are known
by a certain agent.

If all possible game states would have a sequential number, pure strategies would be strings
of labels, in which the gth element states the branch to take in state g. In Diplomacy, game states
are defined in two-dimensional pairs. Although the alternatives to choose from are indepen-
dent of the round, a particular board configuration may yield different intended global actions
in different rounds. A pure Diplomacy strategy should specify the branch to pick for each
board state in each round.

A pure global strategy specifies the intention of all players in all information sets. Imagine
each player having a pure, local strategy of local actions for all game states he can think of.
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Then their joint, global actions in all global states constitute a pure, global strategy (which not

all players are necessarily aware of).
In the search space of the example in figure 3, all agents might come up with an action to

make in each of the nine global states. Assume their plans form the global actions indicated by
the thick branches in figure 3. Their global strategy would then be the 3 x 3 matrix:

I 2 0

0 1 0

I 1 2 0

Each number in the array determines the branch to pick in a particular global state. For
instance, the I on the bottom left of the array (at row 2, column 0) means that in global state

(2. ) players intend to pick the first branch, making global action a0.
In general, if ii board configurations exist and the game is known to last for in rounds. Then

a pure global strategy is an m x n matrix, such that the branch that represents the planned action

in global state (r. 1,,) is:

Sr.p

Diplomacy has an unpleasantly enormous search space with ii estimated over 5 1015 and

in infinite. Luckily, the aim of this work is not to find a pure, global strategy that covers each

node. The analysis is focused on the situations an agent is expected to meet, rather than trying

to foresee all and run out of time. A strategy that describes global actions for some global states

is called a partial global strategy.
For instance, if the current global state is (0, /io), we might choose not to worry about (0. i3),

and çu. .). If we also focus on the global states we expect to meet in the future, we might
construct a partial global strategy for nodes (0.3o), (1.31), and (2. 3i) only:

11
• 1

2

2.3 Evolutionary computing

Human's way of thinking is not the only aspect we should crib from nature. And we did not.
The sophisticated manner in which many forms of life were shaped to fit the properties of their

world has inspired scientists to develop evolutionary computing. In analogy to the search for
viable species by means of evolution, scientists search for solutions that fit problem properties

by means of genetic algorithms.
Mitchell 1211 explained that there are at least three (overlapping) meanings of search: search

for stored data, search for paths to goals and search for solutions. The idea of the latter class is
to efficiently find a solution to a problem in a large space of candidate solutions. These are the
kind of search problems for which genetic algorithms are used.

In contradiction to the search for stored data, in a search for solutions each candidate is
created while the search proceeds. A solution may be guessed or extensively adjusted over
time, as long as it is possible to evaluate it. We mold our collection of hay pieces until one of
them sufficiently looks like a needle.

Genetic algorithms work with a population of individuals. Metaphorically speaking, each
individual holds DNA, consisting of chromosomes to represent one candidate solution. After

the initiation of a population with individuals, two stages can be distinguished in the evolution

process. First the best available individuals are selected from the population, and possibly
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others are discarded. Second, the selected individuals are bred to create one or more new
individuals. These two stages are repeated until certain criteria are met.

Mitchell [211 describes four central factors in the success of a genetic algorithm, as explained
below.

2.3.1 Candidate encoding

Most genetic algorithm applications use fixed-length, fixed-order bit strings to encode candi-
date solutions. However, in recent years, there have been many experiments with other kinds
of encodings. The most common encoding schemes can be classified in three groups:

1. Binary encodings
Consisting of a fixed-length, fixed-ordered string of variables, each with two possible
values.

2. Many-character and real-valued encodings
As in binary encodings, the length and ordering of data in the encoding scheme is fixed.
However, each variable contains a value out of a large or infinite set of possible values.

3. Tree encodings
The length of the encoding is unlimited and the ordering represents tree structures.

Which encoding scheme to choose largely depends on the application at hand. Binary en-
codings allow for a higher degree of implicit parallelism [13] and heuristics about appropriate
parameter settings have generally been developed in the context of binary encodings. How-
ever, binary encodings are unnatural for many problems and are prone to rather arbitrary or-
derings. A binary mapping of a continuous quantity might put originally distant candidates
close together and vice versa. If solutions are likely to be found near the better individuals,
many-character or real-valued encodings might be the better choice. Tree encodings allow for
the representation of any tree, but could grow large in uncontrollable ways.

2.3.2 Selection methods

The second important factor in the success of genetic algorithms is the way individuals are
selected for reproduction. Usually a small group of individuals (possibly just one or two) may
reproduce the next generation whilst all others are discarded.

To push evolution forward it is wise to choose the good individuals over the bad ones. Of-
ten the top individuals are selected, but sometimes selection criteria are more subtle, including
random selection based on fitness-proportionate chances.

The fate of individuals that are not selected should be decided as well. Those individuals
could be expelled from the population to improve selection speed or kept alive to prevent
regeneration of the same individuals later on.

Various selection methods are described in 1211.

2.3.3 Genetic operators

Once individuals are selected, they reproduce. Two genetic operators are mostly used:

1. Crossover
Two DNA strings of the selected individuals are cut into pieces from which one or more
new individuals are constructed. Many varieties exist on where to cut and how often.
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2. Mutation
One or more chromosomes in the DNA of a selected individual are randomly changed to
form new DNA, a new individual.

Many other genetic operators exist, as well as combinations of several. The best choice again
depends on the application at hand. Crossover might be desirable when two partial solutions
are likely to form a better solution together. Crossovers allow for big jumps in the search space,
possibly breaking out of local optima in the search space. Mutations may do better when the
search space is continuous with few local optima.

2.3.4 Parameter settings

The fourth decision to make in implementing a genetic algorithm is how to set the values for
the various parameters, such as population size, crossover rate, and mutation rate. In literature,
there is too much discussion on setting and adapting parameters to survey here. In general, the
performance of the algorithm with various parameter settings is decisive in either manual or
automatic adaptation of parameters. The optimal parameter values are often not permanently
chosen, since they might be discarded on the grounds of inefficiency during simulation.
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3 Design

The model designs in this work came about by combining logic, game theory and evolution-
ary computing and were implemented in C++. They make use of a PostgreSQL data base to
manage all necessary data. The following sections elaborate on the detailed design choices.

3.1 Data structure

To maintain all necessary data for a game of Diplomacy, a data structure is set up in a Post-
greSQL database. One of the main reasons for this choice is the high flexibility of a query
language. Any selection and any ordering is easily feasible. A second important reason to use
PostgreSQL is its great accessibility: the database can be accessed by various kinds of processes,
written in different programming languages.

The database contains the following data classes:

1. User
The class User describes agents, either human or artificial. Most attributes of this class
describe personal data of the user. Other attributes keep track of statistical data on that
particular user. Instances of User are scientifically irrelevant.

2. Area
In the class Area all board specifications are stored in terms of area characteristics. Some
of the attributes hold information about physical aspects of areas (like their absolute po-
sition), which is used to generate a visual representation of those areas. Others describe
the limitations the board inflicts on the game, like area types or which areas are adjacent
for each unit. This information is needed to adjudicate game actions.

3. Game
Whenever a new game is started, an instance of Game is created, describing what type
of game it is, who plays which position, what phase it is in, how long each phase lasts,
when the next deadline is, and a few statistical values.

4. Board
Every resolution of every game produces an instance of the class Board, which, in addition
to the appropriate game name and phase, describes the board in terms of area ownership
and unit locations. This information is needed to generate a visual representation of the
board, to determine the possibilities an agent has and to resolve following boards.

5. Order
Instances of class Order hold logical representations of issued orders and information on
the game, phase, and empire they belongs to. Some order aspects (like the areas involved)
are redundantly included to improve information extraction speeds.

All information in the data base is dynamic in the sense that it may be changed byan agent
or a process while being read by another. Since the number of games may be high and the
processing time to resolve them long, it is desirable to allow new input from agents at the same
time. A full listing of all data dasses is given in appendix A.
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3.2 Automated adjudicator model

3 DESIGN

The first design of the adjudication model was condition-based. The model was built to decide

on the success of orders as soon as they emerged. If a decision depended on a condition, an
attempt was made to decide on the outcome of that condition first. Recursive dependency pro-
cessing led to the fixable conditions. In appendix B an example is described in which diagram
29 from the Diplomacy rulebook [8] is adjudicated.

The condition-based judge was able to solve some circular dependencies by assuming de-
cisions never to rely on themselves. Whenever a decision was processed, it was temporarily
assumed successful, so that it could never prevent its own success. However, with the growing
complexity of the test cases, the difficulty of recognizing the problem (if there was one) grew as

well. At some point, in particular when test cases became paradoxical, the manner in which to
approach the adjudication could not be recognized from the local condition structure. It might

have been possible to create a mechanism that would foreseeparadoxes by the structure of the
entire order set. Since such a mechanism would greatly slow the adjudication of the simpler

case it was not heartily welcomed.
The reader might remark that the problems with a condition-based design were largely

proclaimed in section 1.4.3. Unfortunately it was not until this design was implemented and
tested that those problems became apparent. The findings with the first judge have led to the

choice to re-design it in a logic-based manner.
The final design of the logic-based adjudication model is named the Automated Truthful

Logical Adjudication System (Atlas). When given a particular board state and a set of issued
orders, Atlas goes through a number of stages to determine whether or not each order is fol-

lowed, as shown in figure 4.

Figure 4: Schematic representation of the logic-based adjudication model 'Atlas'

Atlas starts at the top left with order verification, continuing along the arrows shown. Pos-
sibly, Atlas need not complete all stages to solve the problem. Whenever all decisions are made
(at the earliest after the decision conditioning stage) Atlas skips to the board resolution stage
and determines the new board state.

The next sections clarify how the design of each stage is filled in, including the simple ad-
judication example below (test case 6.G.1 from [17]).

Order verdIcaion
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Units on the board

• England: army Norway; fleet Skagerrak

• Russia: army Sweden

Formal representation of orders

• England:
i.ue(england. move(arrny. nu'y. swe))
isue( england. con t'oy(fleet . sa. move (army. nu'y. swe)))

• Russia:
ruza. nioi' ( army. su. nu'y)

A fairly complex adjudication example requiring Atlas to perform all stages can be found
in appendix C.

3.2.1 Order verification

First, Atlas filters out illegal and invalid order issues. An issue is illegal when the ordered unit
does not exist or does not belong to the issuing empire. Illegal order issues will be regarded as
if no empire ever issued them at all.

Invalid orders regard supports of orders that have not legally been issued. Those supports
are not removed from the set of issued orders, but marked invalid so that they are ignored in
the remaining process, forcing those orders to fail. This design detail is a direct result from
resolution rule 9 from section 1.2.3.

Note that an invalid order might be legal. Its support just serves no purpose.
Secondly, all units that have not (or illegally) been issued receive a hold order, according to

the game regulations, stating that holds need not explicitly be specified [81. Any added hold
order will be regarded as if it was actually issued by the owning empire. Now all remaining
orders are legal and issue(i .X) is true if and only if empire i legally issued order X.

The proposed example does not include wrong orders.

3.2.2 Decision conditioning

For each legally issued order a decision is to be made whether or not that order is followed.
In other words, we want to know the truth value of the predicate follow (X) for each order X
for which issue(i .X) is true for some i. Atlas tries to find the conditions that the success of
each issued order relies upon. Thus, for each issued order X, Atlas generates a sentence that
describes when that order is actually followed:

X [follow(X) .—+ i (issue(i..V) Ac)] (8)

where eisa conjunction of sentences, specific for the class of order X. For each order class a
distinct group of rules is used to determine the content of c. For supports there are two groups:
one for the support of a hold and one for the support of a move.

The resolution rules from the rulebook mostly describe what thwarts the success of orders
[8]. Atlas, on the other hand, bases its decisions on what is required for order successes. Its
condition rules are therefore no one-on-one mapping from the rules in sections 1.2.3 and 1.2.4.
They do agree with them, though.

Figure 5: Test case 6.G.1
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The italic numbers behind the condition rules below refer to the resolution rules they relate
to. In each condition rule, X is the order issued by empire i. Orders V and Y are never equal,
since the outcome of a decision never directly depends on itself.

• Hold

1. Any foreign move to the home area should not be followed (2, 4).

Assume V = hold(u.a). Then a equals:

1. Vr. b. Y. j [Y = mot'e( r. b.i) A j i A issue(j.
—fol1ou'('i')I

• Move

1. The move should be attainable.

2. There should not be a friendly unit staying in the target area (2, 5, 12).

3. A foreign unit staying in the target area should be defeated (2, 3, 5).

4. Any other move to the target area should be defeated, unattainable or dislodged by
a unit coming from the target area (2, 3, 10, 11, 18).

5. An opposite, friendly move should be avoided by convoy and should be followed
(2,5,6, 12, 19).

6. An opposite, foreign move should be defeated or avoided by convoy. In the latter
case the foreign move should be followed or defeated (2, 3, 5, 6, 19). Note that a
move order can never receive support to hold and thus has strength of I when it is
not followed.

7. A friendly move, away from the target area should be followed (2, 5, 7, 12).

8. A foreign move, away from the target area should be followed or defeated (2, 3, 5,
7). Again the strength of such a failing move is I.

Assume V = ,iiore( u. a. b). Then a is a conjunction of:

1. attainable(X)

2. Vr. 1. Z [Y E {hold(t'. b). support(i'. b. Z). convoy(t'.b. Z)} A issue(i. 1)

—i-I
3. Vt'. Y. Z. j Y e { /iold( t'. b). uppor1' ( t. b. Z). con t'oy( r. b. Z) } A,) i A issue(j. 1)

.,t, ngtb(.V) > .strength(Y)]

4. Vt'. u'.c. 'i'.j [c a A } = ,not'e(r.c. b) A ssae(j. 1)
— .t, nyth (X) > f.'il.stancL (Y) V —'attainable(Y) V fo11ow(mo'e(u'. 6. c))]

5. Vt'. 111 = ,no'e( r. b. a) A issue(i. Y) A opposrng(X. Y)
—. [rontoqahlf( X) V cont'oyable(Y)] A follow(Y)j

6. Vt'. Yj ['' = more(r.b.a) A issue( j. 1) Aj i A opposing(X. 1)
.strfngth(A') > .s!nngth(1')

v((cont'oyable(X) V ronrogublfO )) A (fo/low(Y) V strength(X) > 1))]

7. Vt'.c. 1 [1 = rnore(t'.b.c) A ,s,su(i. 1) A —opposzng(X. 1)
___ follau( Y

8. Vt'.c. Y.j [1 = Tnot'e(t'. bc) Aj i A issue(j. 1) A —'opposing(X. '')
—fo1low(Y)Vstrngth(X) >1]
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• Support of a hold

1. Any foreign move to the home area should be unattainable (2,13, 15).

Assume V = support (ii, o, hold(v, b)). Then a equals:

1. Vw,c, Y,j [Y = niove(u',c,a)Aj i A issue(j, Y)
—p —'allamabh(Y)]

• Support of a move

1. A foreign move from the target area of the supported move to the home area should
not be followed (2, 13, 14, 16).

2. Any foreign move to the home area should not be followed and not be attainable if
the target area of the supported move is to be avoided (2, 13, 14, 15, 16, 21, 22).

3. There should not be a friendly unit staying in the target area of the supported move
(2, 12).

4. A friendly move, away from the target area of the supported move should be fol-
lowed (2, 12).

Assume X = support(u, a. inovc(v, b, c)). Then a is a conjunction of:

1. Vu'. Y.j [1 = move(u.e.a) Aj i A issue( j. Y)
— —'follow(Y)]

2. Vw.d. Yj [d cAY = znove(w,d.a) Aj i A issue(j,Y)
—follow ( }') A —, at! aznable_dzs(1 , c)]

3. Vw. 1. Z [Y E {hold(u'. c), s'upport(u', . Z), convoy(w,c, Z)} A issue(i. Y)

4. Vw.d. Y [Y = move(w,e.d) A issue(i, ))
follou()j

Notice that the second condition to the success of a support of a move does not incorporate
rule 23. The support should be followed if its success would make the support impossible
to cut. Unfortunately, at the decision level it is impossible to foresee the consequences of a
decision before we make it. Rule 23 is to be applied at a later stage, when we know it fits. For
now it is important to see that supports that cannot be decided yet are preserved to be caught
in later stages.

• Convoy

1. Any foreign move to the home area should not be followed (2,4, 17).

Assume X = cozu'oy(u.a.move(r.h.c)). Thena equals:

1. Vu'.d. Y.j [Y = rnovc(u.d,o) Aj iA issuc(j.Y)
— -'follow(Y)]
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Each issued order is treated just once to determine its success conditions from the appro-
priate group. However, Atlas does not blindly add entire material conditionals ( /l) to the
conjunction a. All antecedents () contain issue predicates, so Atlas tries to match them with all
other issued orders. Whenever a match is found, the consequent (') is added to a, according to
equation 9; knowing that is true and —. y should be true, Atlas adds ' to a.

(9)

The conditions to the success of hold orders are not actually determined, since no other
order success could depend on them. Note that order successes might depend on the existence
of issued hold orders, though. It is far more efficient to determine hold order successes when
all more order successes are known. So for now, hold orders are ignored.

The conditions that predicates con voqable, attainable, attaznabledth, and opposing rely upon
are determined right away, leaving those predicates out of a. A move is attainable when the
involved areas are adjacent for the involved unit or when that move is convoyable, if required
without crossing a particular area (equations 3 and 4). Two orders are opposing when they are
moves to each other's home area and those areas are adjacent for both units involved (equation
5).

All remaining convo gable predicates are expressed in terms of successes of convoys that
form a path between the two areas: a move is convo gable if and only if all convoys in at least
one useful path are followed. The adjacent predicates Atlas is left with are known for any two
areas and unit types.

According to equations 6 and 7, strength and resistance functions should end up equal to
the sum of some set of sentences. For each function, Atlas keeps sucha set. Each time a support
decision is visited, its conditions form an additional element in the sets that belong to strength
and res?.stance functions that match that support. In the case of a strength, the entire condition
of the support is included in the new argument; in the case of a resistance, only conditions
generated by hold support rule I and move support rules 1 and 2 are included. Such wider
conditions include supports of own dislodgement, since move support rule 3 and 4 forbid
exactly that. Ultimately (when all predicates and sentences are known), the sum of each set of
sentences should determine the value of the function it belongs to.

Atlas treats all move orders before any support order because of two reasons. The first rea-
son is that support order conditions might contain attainability predicates of move orders (hold
support rule 1). Since the conditions of those predicates are already determined by move or-
der rule 1, Atlas can replace attainability(dis) predicates immediately with the corresponding
conditions.

The second reason involves the calculation of strength and resistance functions. Atlas could,
for each occurrence of a function, search the order list for matching supports to fill its set of
sentences. Alternatively, Atlas could, for each support, add the condition of its success to the
appropriate sets. Since the move rules imply an average of almost two functions per conflicting
order, whereas an average of no more than one support is expected for an order, the second
method is implemented for its presumably higher efficiency. Now, this distribution ofsupports
is only possible after the inclusion of all necessary functions in the success conditions of all
move orders.

In this manner, Atlas determines all order success conditions without occurrences of the
predicates convo gable, attainable, attainable _dis, and opposzng. Also, all strength and istance
variables are (conditionally) determined by sums of sentence sets. At this stage all order deci-
sion conditions are defined solely in terms of truth values and the successes ofmove and con-
voy orders (each a is a conjunction of tnis, falses, and follow predicates of move and convoy
orders). The structure of a condition may be rather complex, though, including conjunctions,
disjunctions, negations, and sentence set sum comparisons.
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For the orders of test case 6.G.1, the decision condition rules imply the sentences below. The
conditions to the success of both move orders are a result of move order decision conditioning
rules 1 and 6. No threat is found to the success of the convoy order.

1. follou'(moi'e(arrny, nwy, sue)) —* attainable(inove(army, nwy, .swe)) A
[strength ( move (army. ii wy. swe)) > strength ( rnove( army. swe, nwy)) V
((eontoyabk( rnove( army, nwy, swe)) V convoyable( Tnove( army, su,e, nwy))) A
(follow(move(arrny. swe. nwy)) V strength(move(army, nwy, swe)) > l))J

2. follou'(convoy(Jleet, ska, move(army. nwy, swe))) .—. true

3. follow(inove(army, swe. nwy)) f—. at tainable(move(arrny. swe. nury)) A
[strength(inove(an'ny. tiny, swe)) > strrngth( move( army. swe. nwy)) V
((convoyable(znove(arrny. swe, nwy)) V convoyable(rnove(arrny, nwy, swe))) A
(follow(movc(army, nwy, swe)) V strength(move(arrny, swe. nwy)) > 1))]

Ares determines the conditions to attainable predicates right away. In this case, they are
both true, since 'Norway' and 'Sweden' are adjacent from both units' respect (at this point
the opposition of the armies is irrelevant). The convo gable predicates rely on the success of
the convoy orders that form an appropriate path from the current to target area of the involved
move order. In this example the convoyability of the move from 'Norway' to 'Sweden' depends
on the success of the convoy order. The opposite move is not convoyable. Since no supports
are issued, all strength functions are noted zero. The result is below.

1. follow(move(army. nwy, swe)) —p true A

[0 > 0 V ((follow(onvoy(flcet .ska, rnove(army. nwy, swe))) V false) A
(foUow(znove(ariny, swe, nwy)) V 0 > 1))]

2. follow(convoy(fleet, ska, tnove(army, nwy, swe))) '—. true

3. follow(rnove(army. swe. nwy)) —. true A

[0 > 0 V ((false V follow(convoy(fleet, ska, move(army. nwy, swe)))) A
(follow(move(arrny. nwq.swe)) V 0> 1))]

3.2.3 Logical deduction

When all conditions have been set, Atlas will simplify them according to logical deduction
rules 10 through 19. Atlas visits each (sub)sentence in each condition a recursively; unknown
sub sentences are deduced before an entire sentence is. Whenever a sentence fits a term on the
left side of an equation, it is replaced by the term on the right side.

Greek symbols ; , and 'i 4'rn denote sentences. A sentence might be a pred-
icate, a conjunction of sentences, a disjunction of sentences or a comparison of sentence set
sums.

• Conjunctions
Any conjunction containing a false is replaced with the truth value false (equation 11)
and any triu is removed (equation 12). When all sentences but one are true and thus re-
moved, the remaining conjunction of just one sentence (it is still marked as a conjunction)
is replaced with that sentence (equation 10).

(10)

A •• A A false false (11)

(12)
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Disjunctions
Disjunctions are handled in much the same way as conjunctions are. Now the disjunction
is replaced with a true if one of the sentences in the conjunction is known to be true
(equation 14) and occurrences of false are removed (equation 15). Again, when only one
sentence remains, the disjunction is replaced with that sentence (equation 13).

(13)

V-•-VVtru $= trw (14)

j V- V V false V V (15)

Negations
Negations of truth values are replaced with their opposite truth values (equation 16, 17)
and double negations are removed (equation 18).

—'true <=> false (16)

'fals <z=> true (17)

(18)

• Set sums
Occurrences of false in a set do not influence the sum of that set, so we might as well
remove them (equation 19).

false} 4=. {' 'n} (19)

• Comparisons
Equal terms on each side of a comparison may be omitted. In this case, Atlas removes
trues when they appear on both sides of the comparison (equation 23). (Equation 19
already removes fal.ses on either side.) The sum of a set S gradually increases as more
sentences in S become known to be true while the number of sentences in that set might
decrease (due to equations 19 and 23). Notice that >.S' will never exceed SI and that they
become equal when all predicates have a definite truth value.

Sometimes it is possible to deduce the truth value of a comparison before all sentences
in both sets are known. Equations 20 through 22 describe the deduction rules for those
cases. If there are not enough sentences in the set on the left of the comparison to ever
exceed the current sum on the right, the comparison fails. Likewise, when the sum on
the left has outgrown the number of sentences in the set on the right, the comparison is
bound to succeed (equation 20). Whenever all sentences in the set on the right have been
eliminated, only one true on the left is enough to justify the comparison (equation 21).
Even so, could the sum of one true only exceed sets of falsfied sentences (equation 22).

false if ISI < ET
S> >T true if S> ITI (20)

S > >2T otherwise

(21)

(22). true) > { rn trw } n} > {,t'i m} (23)
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The structure of the condition rules in section 3.2.2 ensures that additional decisions are only
made when Atlas needs to. A conditional decision is encapsulated in the decision conditioning
rules and eliminated by deduction when paltry

By the described deduction, Atlas greatly reduces the conditions of each order success de-
cision. After deduction, if all successes are determined (all conditions are either true or false),
Atlas skips to the board resolution stage.

In the case of our example, the success sentences would get reduced to:

1. follow(7flove(army. nwy, swe))
follow (convoy (fleet .ska, move ( anny, nwy, swe))) A follow( move (army, swe, nwy))

2. follow(convoy(fleet. sk'a. move(army, nwy, swe))) true

3. follow(move(army. swe. nwy))
follow(convoy(Jleet. ska. rnove(ariny. nwy. sue))) A follow(move(anny. nwy, swe))

3.2.4 Predicate substitution

Some decisions must depend on others to reach this stage. Remember that the only unknown
terms in decision conditions are follow predicates. Resolving continues with a sequential sub-
stitution of those predicates with the conditions they rely upon (equation 24).

(24)

When a sentence depends on a conjunction of sentences of which one (?ifl+i) depends On

another conjunction of sentences A A '. m, Atlas replaces '+ i with i A••• A .
This way, the truth values of decisions that (indirectly) depend on known predicates are de-

termined. Each predicate is substituted just once, avoiding eternal loops when they indirectly
depend on themselves.

Again, logical deductions are applied wherever possible and Atlas checks if all conditions
are satisfied. If so, the model skips to board resolution.

Continuing our example, any predicate follow ( convoy(fleet , ska, move (army, nwy, swe))) on
the right side of the arrow is replaced by true. Thereafter is each follow(move(anny, swe, nwy))
predicate on the right replaced by true A follou'(move(army, nwy, swe)). After logical deduc-
tions the sentences below remain.

1. follow(move(arrny. nwy. swe)) 4—* follow(move(army, nwy, su'))

2. follow(convoy(fle I .ska. move(arrny. nwy. swe))) —. true

3. foltoi'(inove(ariny. s'we. nwy)) — follow(move(army, nwy, swt))

3.2.5 Predicate supposition

At this point circular dependencies must exist. One or more decisions must (indirectly) depend
on themselves.

To find the outcome of a self-dependent set of orders, Atlas assumes the first occurring
follow predicate to be trw± and deduces the remaining ones by substitution and deduction.
Then the same predicate is assumed false and again the successes of other orders are deter-
mined. Now, the predicate becomes that truth value that induces the success of supports that
would fail otherwise (in compliance with resolution rule 23 from section 1.2.4):
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( true if u, o..\ — follow(support(u. a, X)) A — —.follow(support(u, a, X))]
= false if au,a.X —. —'follow(support(u.a,X))A - —.follow(support(u.a,X))]

( true otherwise
(25)

If a support exists whose success depends on a particular truth value assignment to some
predicate, that assignment should be made. If no such support exists, the orders involve a
circular movement, which should succeed. In this case is the follow predicate of one of the
circular moves and should be true (resolution rule 7, section 1.2.3).

Logic fails when equation 25 suggests the assignment of both true and faLse to a predicate.
This happens when the success of one support requires a move to succeed, while the success of
another support requires the same move to fail. Atlas then applies paradox elimination to the
decisions involved.

If more circular dependencies exist (when the supposition did not make all decisions) Atlas
continues predicate supposition for yet unknown predicates.

This stage solves the adjudication of our example. The only unknown predicate on the right
of the arrow in any sentence is follow(inove(arrny. nwy. swe)). If we assume the predicate to be
true we get:

1. follow(rnove(arrny. nwy, swe)) .—. true

2. follow(convoy(fleet, ska. inove(ariny. nwy. swe))) '—. Iru

3. follow(inove(army,swe. nunj)) —. true

Assuming the same predicate to be false yields:

1. follow(rnove(army. nwy, swe)) .— false

2. follow(convoy(fleel. ska. inove(army, nwy. swe))) —. true

3. follow(move(army, swe, nwy)) 4—. false

Ares chooses the predicate follow (in ove( army, nwy. sue)) to be true since no support would
fail due to this assignment. All orders succeed.

3.2.6 Paradox elimination

The set of orders is paradoxical when the assignment of true to some predicate favors the
success of a support over another, whereas false produces the opposite. Applying rule 23 to
one support would violate the same rule for the other.

The solution is simple. Conform resolution rule 24 (section 1.2.4), all dependent move or-
ders fail and all dependent support and convoy orders succeed. Those support and convoy
orders have nonetheless become useless in this case since no unit actually succeeds in moving
and moves are the only orders that can actually change the board configuration.

If more circular dependencies exist, Atlas continues the supposition of truth values for un-
known predicates (possibly involving more paradox eliminations), if not, board resolution is
next.

Our example 6.G.1. does not involve a paradox, since it was solved by the predicate sup-
position stage. The adjudication example of test case 6.F.23 in appendix C does require paradox
elimination.
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3.2.7 Board resolution

The only thing that can actually change the board is a mozie. Atlas thus simply needs to move
those units that received a move order that was successfully followed. To avoid a unit to dis-
lodge a unit that was supposed to move itself, Atlas maps all units to a new, blank board. First
all successful moves are mapped to the appropriate areas on the new board and then all static
units are copied.

The resolution of test case 6.G.1 is that the units in 'Norway' and 'Sweden' exchange places.
If the current season is Fall (round r is even), all land areas containing a unit become prop-

erty of that unit's empire (equation 1). The ownership of areas with no unit remains the same.
As far as Diplomacy rules concern, the new board is now made and resolution is done. The

new global state is the pair of the previous round plus one and the new board configuration.
However, this research asks for a few operations more.

As will be explained in section 3.5, the path of convoys is needed to draw their graphical
representation. Atlas marks each convoy path with flags on each visited area, pointing to the
next area in that path.

Retreats, disbands, and builds form a favor Atlas does the agents. The specifications of
the agent model do not include these actions, but they are required for the progression of the
game. Atlas makes a very poor attempt to retreat the model does not. Dislodged units are
simply disbanded (removed from the board). If the season is Spring, Atlas stops. If the season
is Fall, units are randomly disbanded or built to fit the number of production centers each
empire owns (equation 2).
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3.3 The agent model

An agent model was created and named Agent of Rationally Evolving Strategies (Ares). When
presented with a board situation, Ares plans actions for the game states it is expected to meet
by means of genetic algorithms.

Although Ares is in control of its own actions only, it needs to be prepared for actions of
opponents. It does so by considering actions for all agents (global actions). The only agent
distinction Ares makes is between himself (agent 0) and its opponents (agents I through 6). A
global action n contains one own local action Ao and six local actions A1,.. . , ) for the oppo-
nents, we call the complement of A, or A0:

o=A0A A1AA2A•••AA6
A0

The planning of global actions makes up global strategies. The quest for a good strategy is
slightly more complicated than searching for a global strategy that suits Ares. Such a strategy
might involve actions of other agents that benefit Ares, which sounds more like wishful think-
ing than rational thinking. Optimization should not depend on these uncontrollable matters,
but they should not be ignored either. Ares assumes the worst-case scenario in which oppo-
nents gang up on him. For each own local action A0 in considered strategies, it tries to find
complementary actions A0 that suit the model worst.

Ares pursues a mechanism as shown in figure 6. A population of individuals (series of
global actions) is constantly evolved by reproducing new individuals from the best ones avail-
able. New individuals only differ in the local actions they contain for Ares (Ao). At the same
time recession of the best individuals available accounts for changes in the complementary local
actions for opponents ( Ao). Note that recession does not produce new individuals (as reproduc-
tion does); it worsens the existing individuals.

The reproduction and the recession algorithm work with one global action in an individual
(one limb) at a time, as explained further on. Evolution iteratively reproduces the selected limbs
that endure the recessions until all limbs in the selected individual have reached a certain age.
The number of recession cycles determines the age of a limb. In the end, the best individual
delivers one series of global actions from which Ares extracts its next local action.

The next section describes the exact internal representation Ares copes with, followed by a
detailed description of the mechanism components.

Figure 6: Schematic representation of the strategy evolution model 'Ares'
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3.3.1 Internal representation

Series of global actions are the key elements in Ares' reasoning algorithm. Each unique series
the algorithm can compose with the available global actions at a time is a unique individual. In-
ternal representations are not that concrete, though: global actions are distributed over several
stored lists. The text below explains how.

Given a particular board configuration /3, the global actions branching from nodes (r. /3)
are equal for all r. Therefore, for each board, Ares keeps track of global action alternatives, as
shown in the upper half of figure 7.

boord /30 /3 •..
actious o

1i30 c1

r = 0

r = 1

r = III

S00 50,n

si,o "1,1

Srn,0 Sm,! 5m,n

Figure 7: Internal data representation

The stored global actions form the body parts of the individuals in the population: each
individual is a series of global actions, starting with one for the current global state and con-
tinuing according to each action's resolution. The number of global actions in an individual is
determined by the depth set beforehand.

The bottom half of figure 7 shows a list of intended choices for each board per round. Each
element 5r.p refers to the branch number (global action alternative) to pick in global state (r, 1%),
implying an intended global action at". All intentions make up one growing (partial) global
strategy

Candidate solutions are encoded real-valued: the orders in global actions are entirely and
explicitly represented. This allows one mutation to change one order in an individual, which
is very desirable since actions with similar orders are expected to have similar evaluations.

3.3.2 Initiation

The initial population consists of one individual, involving global actions to always hold all
units. In fact, one global action is formed to hold all units in the current board configuration
and that global action is the intention for all subsequent rounds, starting from the present.

Behold the following initiation example for the initial game state (0. j), playing 'Germany',
and looking three rounds ahead. One global action is created, involving hold orders for all
units on board 3:

)'germany A Agerinany

with
'germari —- Is.sIw(gerrnany, hold(army, ber))

A issue(gerrnany, hold(fleet , kie))
A issue(gerrnany, hold(army. mun))

and 'qeafly a similar conjunction with issue predicates involving hold orders for all units
belonging to empires other than 'Germany'.



48 3 DESIGN
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Figure 8: Representation of population initiation

The initial strategy is to choose o, whenever board /3o comes up, as depicted on the bottom
left of figure 8: always choose branch 0. The search space in question is shown on the top, with
all nodes involving board up to depth 3 and their global action branches. In the next sections
we will get around the 0.14, the small table on the bottom right, and the cute little boxes.

3.3.3 Selection

The selection criterion on the individuals is based on the evaluation of the global states they
bring about, represented by the leaf nodes in the currently known search space. The individual
(series of global actions) that results in the best global state (leaf node) is sought by a depth-
first-search. When enough intentions are known (set earlier on), strategy s determines one
path from the current global state node to the best leaf node reachable, representing the global
actions that compose the best individual in the pool.

The evaluation function at the leaf nodes is fairly simple. It counts the areas with production
centers that Ares conquered so far. Ares' empire should either own the area or have a unit in it
(in the latter case, Ares is very likely to own the area in the next season). Normalization over
all conquered production centers (by anyone) yields the evaluations.

Just one individual is selected. A more complicated selection method seems unnecessary
and it would probably just slow down the evolution process. This is merely conjecture, though.

The imminent evolution causes the components of the best individual to constantly change.
Even more, changing just one intended global action might very well change subsequent global
states, subsequent global actions, and thus the selected individual. Ares therefore keeps track of
how many times each global action is evolved (its age), rather than counting evolution iterations.

Ares picks the youngest (least aged) global action in the selected individual to reproduce.
Let's say that the rth global action in the selected individual (for round r) is the youngest
and that the expected board configuration in that round is /3,,. Since Ares intends to choose
alternative .Sr.p at that point, it will use global action n for reproduction.



3.3 The agent model 49

Continuing the example from section 3.3.2, the only available individual consists of three
times global action ü. It results in global state (3. ii), which is evaluated at, say, 0.14 (this is
neutral, given there are seven players). We have no choice but to select this individual for the
moment, as written under 'sel.' (selection) on the bottom right of figure 8. On the right side
of each involved global action is its age. Obviously it is the same for each individual piece,
since those pieces are the same. It should also be no surprise that age starts with 0. Ares picks
the youngest global action in the selected individual, or the first if in doubt (for no particular
reason). That is what the boxes in the strategy and the selected individual mark.

None of the individuals (or their global action parts) are discarded, mainly because their
uselessness is hard to ground. A global action that cannot contribute to a good individual
now just might do so later. The downside of keeping all global actions in memory is that it
might slow down the selection algorithm dramatically when the pool gets bigger. This might
be something to look into later.

3.3.4 Reproduction

As described in section 3.3.3 just one global action (limb) from just one individual is chosen for
reproduction, possibly providing new limbs to create new individuals with.

Ares reproduces by means of mutation, for two main reasons. First, crossover (between
two selected parents) is not likely to produce very good children. A good plan is more likely
to improve by changing one or two steps, than to mix it with another. Plans are likely to be
good because of the specific combination. Secondly, mutation is faster to calculate. With a
task as complex as evolving Diplomacy strategies we might as well make the algorithm efficient
wherever possible.

Only orders issued by Ares' empire are mutated (for now), hopefully towards better global
actions for that empire. It produces a global action for global states with the same board con-
figuration its parent had, say %. If it is among the h + 1 existing global actions for that board
(o cx) the child is discarded. If not, it is named :ir 1

Consequences of global actions are resolved immediately. Whenever a new global action
joins the limb pool, Ares asks Atlas to generate the resulting board. if this board is new (not
currently stored), it is added to memory. Then it becomes an initial global action list with one
global action to hold all units and an initial intention list to always choose that global action. In
any case, the newly reproduced global action becomes a pointer to the board that results from
it.

One important remark needs to be made here. Each global action has one pointer to the
board its resolution brings about. In constructing individuals, these pointers will be used to
determine in which board global actions result, regardless of the round. However, the resolu-
tion of a global action need not necessarily be exactly the same in each round; area ownership
only changes at the end of Fall. We should have had two pointers, one to indicate the resulting
board in Spring and one in Fall. This flaw is responsible for a slightly incorrect forecast on what
intentions bring about. The brighter side is that Ares needs fewer resolution forecasts and that
the evaluation function nullifies the flaw by regarding owned and occupied areas equally.

The addition of global action represents a new branch from all nodes (r. 1,) (any r)
in the search space. The grounds for intentions .Sr.p have thereby become incomplete. There
might not be a direct need to reconsider them all, but if we do need one, we should reconsider
it. For now, Ares simply clears intentions .Sr.p for all r and with p according to board /17). This
clearance makes .s a partial strategy, even for the limited known part of the search space.

Due to the new options in the search space the selected individual might no longer be the
best one constructible: it needs to be revised. Ares repeats the selection procedure from section
3.3.3 to establish the series of global actions that now leads to the best leaf node possible. How-



Figure 9: Example of the evolution process, first cycle
a) after reproduction and b) after recession

ever, branches from a node are only investigated when the intention for that node is unknown.
Most of was probably set before, explicitly stating the best path from that node on. The repeti-
tion of selection is thus not nearly as cumbersome as the title of its algorithm (depth-first-search)
implies.

Mutating (l from the previously proposed example could for instance produce the unique
global action . The resulting board is yet unknown, thus added to memory with an
initial all-hold global action and an initial intention to use it whenever board /3 comes up
(so.1 = . = = 0). Since nodes (r, o) (for all r) suddenly got a new branch, 80.0 through
S2() are cleared, before re-selection starts.

The selection algorithm first needs to determine 80,0 again. To do so, it needs to choose
between a and The first yields the same choice in the next round, while the second
eventually yields node (3. 3i), which is evaluated at, say, 0.26. The choice depends on 8j,
which similarly depends on 2Q• For the latter, Ares will choose branch 1, since it leads to a
board with evaluation 0.26, while branch 0 would result in a board evaluation of 0.14. This
makes the choice on si,o indifferent: both branches lead to the better board. Ares does pick
one, for no particular reason, say branch 0. Likewise the model now chooses so,o = 1.

Figure 9a shows the resulting strategy s (bottom left) and the search space belonging to it
(at the top). The numbers in .s refer to the thickened branches in the search space. The chosen
individual is implied by strategy .s: it leads from (O,3o) via (1,j3) and (2. .i) to (3,1). The
involved intentions in s are bold and the involved global actions are under 'sel.' on the bottom
right.

New children do not necessarily lead to new global states. If we would continue the repro-
duction process for the next limb in figure 9b, we might end up with a child that leads
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Figure 10: Example of the evolution process, second cycle
a) after reproduction and b) after recession

to the same next global state as its parent does, (2, ii). Board 13t is then not stored again, as
figure lOa depicts.

3.3.5 Recession

Recession works in a similar way to reproduction in that it uses mutations. However, this time
the orders issued by the six opponents are mutated, aiming at a better global action for them. It
accounts for an appropriate counter ..\ to the involved orders for Ares' empire . The global
action at hand does not produce new global actions like in reproduction: recession changes
global actions.

The idea is to try to find the orders that best obstruct Ares' own intentions, assuming op-
ponents intend to do so. This should worsen (recede) global actions as much as possible, ac-
counting for plausible consequences to own intentions. Global actions should thus result in
the worst evaluated board, given the own orders involved. If a particular iteration of recession
did not actually lower the evaluation of the expected board configuration, the mutations are
declined, leaving the global action unaltered. Recession always ages the global action at hand:
an increment of one per iteration.

In figure 9a, the youngest limb of the best individual is In the first example, recession
might successfully change orders within this global action without changing its resolution. The
composition of the best individual remains in this case. Receding ( (from figure 9a) leaves
the strategy intact (figure 9b), whatever recession took place.

Let us assume that the second cycle does change a global action such that its resolution
changes. Recession on from figure lOa, for instance, makes it point to the worse board 1o
(figure lOb). Intentions si.i and .s2.l are revised; both become 1.
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3.3.6 Evolution

Together, reproduction and recession form the evolution mechanism that searches for the best
local action for Ares' empire. The goodness of considered local actions A is consolidated by
their endurance of opposition attempts A.

Evolution continues until the intended global actions for the expected global states have
reached a certain age. At that point, choosing the local actions as they appear in the selected
individual has made the inevitability of a desired global state plausible enough. The local
action in the first global action in the best, mature individual is carried out.

All parameters on the number of generations, the number of mutations, and depth were set
during simulation.

3.4 The game world

A game world was designed and implemented solely for the adjudicator model and the agent
model to run in. It takes care of the communication between the agent and the adjudicator and
with the database. It provides the structure of the game board and the script for the judge and
the agent to perform in game simulations. In this work the game world was used to guide the
simulations of numerous games.

In games against humans, the game world could be triggered by the interface when orders
need to be resolved or artificially intelligent agents need to wake up.

3.5 Graphical user interface

We designed an internet game portal at our website Diplomacy on-line 161. It was mainly used
to see what was going on during the simulations, since raw data from the database was not all
that intuitive.

The interface shows the orders given by each empire in each round and which of those
orders were followed. Board resolutions are presented with different symbols to distinguish
different order types. Clear arrows show the issued and followed moves and moving units
actually move. Convoy paths are drawn through all areas they pass, based on the flags set by
Atlas' board resolution stage (section 3.2.7). If necessary the website triggers the C++ game
world to let Ares think and Atlas adjudicate.

The website also allows human players to play against Ares or each other. Users may enter
their orders in the games they participate in and even communicate with others, if the game
variant allows that. Communication is not (yet) understood by Ares, though.
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4 Simulation and results

As stated in section 1.3 the goal of this work is to make Atlas provide perfect board resolutions
fast and to make Ares play fast and better than random. In other words, both models should
be accurate and efficient. The next section describes the simulations to estimate these quality
attributes and the results of those simulations.

4.1 Set up

The data for this work was gathered from three simulations of which a description is given
below. The simulations were run on a 64 bit Dual Core Processor AMD server with 2 GB
internal memory

1. Adjudicator test cases

Atlas was confronted with two sets of game situations to test its correctness. The first set
consists of the 32 diagrams in the rulebook of diplomacy [81. This makes up for a first
check to see whether the adjudicator is able to process all order types. This set is used to
explain Diplomacy resolution, but it does not cover all possible situations.

The second set of game situations, gathered by Kruijswijk [171 is entirely devoted to test-
ing automated adjudicators. It consists of 123 situations with any imaginable complexity.
Furthermore, it deals with resolutions that seem obvious to humans, but require aspects
of an adjudicator that are often overlooked. The set has been revised many times over the
years, resulting in a prominent adjudicator test bench.

2. German openings

We set up game openings with each empire in each game owning units at their starting
positions [81, as in figure 1. Each game lasted for just one round and Ares played 'Ger-
many' in each game. Ares repeatedly issued three orders for the three 'German' units at
their starting positions 'Berlin', 'Kiel', and 'Munchen'.

We used 13 different combinations of values for the parameters on solution age and
search depth. The opening orders Ares played were logged to allow an opening fre-
quency investigation. Additionally, Ares' average response time was determined per
parameter setting.

The opening frequencies were compared with the most common openings in 220 on-
line Diplomacy games, collected by Theije [26]. Theije's analysis mostly agrees with a
similar, earlier investigation by Agar on the most popular openings in 1913 games of
Postal Diplomacy (via postal mail, letters) among human beings [1].

Table 1: Simulation iterations for German openings for each
combination of parameters on solution age and search depth

_______

age 10 age 20 age 30 age 40
depthl 50 50 50 50
depth2 50 1 1 50
depth3 50 1 1

depth4 1 1

The number of iterations per parameter setting is shown in table 1. Seven runs involved
50 iterations of opening play, the other six entailed just one iteration. This is because the
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response time for higher ages and depths grew extremely large (see section 4.2). Mean-
while, the enormous variations of the played openings in the completed 50-iteration runs
did not suggest much importance to perform more of those (see section 4.3).

The significance of the response times in the single-iteration runs is much lower than
those with 50 iterations. They do contribute to an image of response time dependencies
and they help setting the parameters for longer simulations, like "Playing Diplomacy".

3. Playing Diplomacy
Ares was set up against an opponent model that randomly issues hold and move orders
for each unit it controls with equal chance on each alternative. The opponent model never
issues supports or convoys.
128 combinations exist to assign one of two models to each of seven players. To account
for fair, significant results, 128 games, each with one of those combinations, were run.
Equally represented, the two player models were on average 3.5 times present in a game,
448 instances per model in total.

Board resolutions that were made to propel the game were logged, including information
on the performed stages and response times. Board resolutions that were made to forecast
order considerations of players were not logged. Player statistics (like the course of each
player's score) were derived from resolution logs.

4.2 Efficiency

Atlas

The test cases in simulation I were resolved in times varying from 0.1 to 10 milliseconds, with
an average of approximately 1 millisecond. In general, however, these test cases contained
fewer orders than games usually bring forth.

During simulation 3, the response times of 13323 board resolutions were logged, together
with the last stage Atlas needed to decide on the success of all orders involved in each resolu-
tion (the conclusive stage). Appendix D shows the number of board resolutions that occurred
per resolution time interval of 0.05 milliseconds per unit, per conclusive stage. Table 2 shows
how the average resolution time per order was computed for the board resolutions with each

conclusive stage.

Table 2: Computing the average resolution times per conclusive stage

conclusive stage decision predicate predicate
conditioning substitution supposition

any stage

(a) total number of boards
(h) average resolution time (ms)
(e) average number of orders
(d) avg. res. time per order (ms)

2543 10518 262
2.1 10.3 14.3

32.8 32.1 32.2
0.06 0.32 0.44

13323
8.8
32.3
0.27

Per conclusive stage, the resolution times were averaged over the number of boards with
that conclusive stage (a). The resulting average resolution times (b) were divided by the av-
erage number of orders ) for each conclusive stage. This should remove a possible relation
between the number of orders and the conclusive stage and yields the average resolution times

per order per conclusive stage (d).
Atlas performed 13323 board resolutions in an average of 8.8 ms per board. Most order

decision sets (78.9 percent) were concluded after the predicate substitution stage. The simpler
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cases were resolved much faster than the more complex cases. None of the resolutions required
paradox elimination. It is assumed that convoy orders are required to create such complexity
(e.g. test case 6.F.23 [17J, resolved in appendix C). In this work, Ares was not able to issue
convoy orders.

Ares

We estimated Ares' efficiency using simulation 2. The processing times for each used parameter
setting is shown in table 3 and depicted in figure 11.

Table 3: Ares' German opening response times (in seconds) with various parameter settings

______

age 10 age 20 age3o age 40
depth 1 4.60 12.7 26.8 40.0
depth 2 54.1 225 503 3570
depth 3 482 15500 23700
depth 4 6830 39700

With 10 evolution cycles (for the final solution) and looking at direct consequences only
(depth 1), Ares opens within 5 seconds. Higher age or depths show an enormous increase in
processing time, reaching over 11 hours.

S
E

Figure 11: Ares' response time, opening for Germany related to age and depth

The approximate straightness of the plane in the logarithmic axes system of figure 11 sug-
gests an exponential relation between age and processing time and between depth and pro-
cessing time. Considering the significance of the six single-iteration runs, combined with sus-
pected variance in the available server processor power we cannot conclude anything at this
point. However, these findings do suggest to choose age and depth as low as possible in the
128 games of simulation 3; just to have the results within this life time.

number o( generations
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4.3 Accuracy

Atlas

In simulation I Atlas resolved all 155 test cases according to the specifications of this work.
Verifications were based on the game rules [81 (129 cases), clarifications from the Diplomacy
Players Technical Guide (DPTG) [5] (three cases), Szykman's paradox elimination criteria [251
(eleven cases), Kruijswijk's preference [171 (two cases) and the order clarity demands in this
work (section 1.2.4) (ten cases). Appendix E lists exactly which test case is correct according to
which author.

Ten cases deviate from what Kruijswijk calls "2000 rulebook / DATC compliant" [171. Ac-
cording to this standard, move orders with incomplete coast specifications are accepted in some
cases (test cases 6.B.2, 6.B.7, 6.B.8, 6.B.10, and 6.B.12). Also, impossible move orders are always
illegal, thus ignored, replaced by hold orders and capable of receiving hold support (test cases
6.D.28 through 6.D.32). This work always demands issues of complete orders and only regards
move orders as illegal when the target area does not exist. Hence, these cases only comply with
the specifications in this work. Since Ares is not even capable of issuing illegal orders of any
kind, the discussion on the correct resolution of illegal orders is not that important.

Ares

Ares used 127 different openings during the seven 50-iteration runs of simulation 2 (single-
iteration runs were solely used for response time measurements). Appendix F lists the occur-
rence of each opening with each used parameter setting. Table 4 shows how many times Ares
played the most popular openings according to literature [1, 261.

The area abbreviations under ber, k-ie, and mun refer to the target area of an issued move
order for the unit in 'Berlin', 'Kiel', and 'Munchen' respectively. An 'H' under ber, kie, and
inun denotes the issue of a hold order for the unit in 'Berlin', 'Kiel', and 'Munchen' respectively.

Ares did not issue popular openings significantly more often than less popular openings.
Vice versa, the openings Ares favors (by just around 2 percent) are mostly not among the highly
popular openings in literature, as table 5 shows.

Table 4: Most popular German openings in literature

Name ber kie mun literature Ares
Blitzkrieg, Danish Variation kie den ruh 36.8% 1.7%
Anschluf3, Burgundy Push kie den bur 23.2% 0.6%
Blitzkrieg, Dutch Variation kie ho! ruh 12.7% 1.4%
Anschlul4 kie den H 7.7% 1.4%
Burgundy Opening ku ho! bur 4.6% 1.4%
Bismarck, Dutch Grab kie ho! tyr 2.3% 0.6%
Polish Blitzkrieg sil den ruh 1.8% 0.9%
Anschlul3, Dutch Variation kie ho! H 1.4% 0.0%
Bismarck, Danish Grab kie den tyr 1.4% 0.9%
Blitzkrieg, Baltic Variation kie bal rub 1.4% 0.0%
Barbarossa pru den sil 1.4% 2.3%
Blitzkrieg, Heligoland Variation kie he! ru/i 0.9% 0.0%
Anschluf3, Ruhr Variation mun den ru/i 0.9% 0.9%
Anschlul3, Silesian Variation kie den sil 0.9% 0.6%
(other) 2.6% 87.4%



4.3 Accuracy 57

Table 5: Most popular German openings by Ares

Name ber kie mar, literature Ares
Barbarossa pra den sit 1.4% 2.3%
(no name) H den bur 0.0% 2.0%
Berlin defense, Ruhr Variation H den ruh 0.0% 1.7%
(no name) kze den kie 0.0% 1.7%
Blitzkrieg, Danish Variation kie den ruh 36.8% 1.7%
Dutch opening, Silesia variation kie hot sil 0.0% 1.7%
(no name) inun hot sit 0.0% 1.7%
(no name) mun hot t'qr 0.0% 1.7%
(no name) pru hot tyr 0.0Yo 1.7%
(no name) sit den kie 0.0% 1.7%
(other) 61.8% 82.0%

There are two ways to lose a game. A player might get eliminated by losing all of his units or
he might survive the game ordeals until someone else claims victory. Although there is neither
an award for elimination nor for suruival, the latter is preferred.

The only way to win a game is to conquer more than half of the production centers. When
none of the remaining players succeeds in reaching this goal, they may agree upon a draw, in
which they share victory.

The results of the 8% agents in the 128 games from simulation 3 are listed in appendix G.
The accomplishments of the two agent models are summarized in table 6.

Table 6: Results on Ares and the random agent in 128 games

agent win draw survival elimination score
Ares 105 75 226 42 123.0
random 4 4 119 321 5.0

All Ares agents and random playing agents were assigned scores as described in section
1.2.6 (1 point for a victory and 1 point split equally among participants of a draw). Ares won
105 games (points) and lost 4; the other 19 games were pre-ended in round 218, resulting in
a draw. Since, in the 19 draws, random players were eliminated much more often than Ares
players (17 draws were between Ares agents only), Ares claimed most of those points too. Note
that both agents received one victory point for free, since they both participated in one game
opposing themselves only.

The progress of each agent's victories was indicated by calculating his score for each round,
assuming all games would end right then. The sums of both agents' scores were normalized,
yielding the fractions of all games each agent had won so far. Since victory is usually pro-
claimed after a second round (a whole fictional year) scores were determined once a year. Ares'
participation in the overall victory in years 1901 through 2009 (rounds 0 through 216) is in table
7. A more graphical representation can be found in figure 12. The graph was cut off at 'ear
2000, since no score changes were reported after that.
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Table 7: Normalized scores for Ares per game year. The left column
refers to the last digit of each year in the decennia in the top row.

Figure 12: Normalized scores for Ares per game year

1900 j 1910 1920 J 1930 1940 1950 1960 1970 J 1980 1990 1 2000

0 .545 .684 .809 .872 .911 .944 .947 .953 .956 .%1
1 .500 .556 .698 .815 .880 .915 .944 .948 .953 .956 .961
2 .500 .569 .719 .822 .888 .923 .944 .948 .953 .958 .961
3 .500 .580 .744 .823 .893 .926 .944 .948 .953 .958 .961
4 .506 .589 .752 .829 .899 .932 .944 .948 .955 .961 .961
5 .508 .593 .764 .835 .899 .936 .946 .950 .957 .961 .961
6 .514 .611 .775 .846 .906 .943 .946 .948 .956 .961 .961
7 .523 .626 .779 .848 .907 .945 .946 .953 .956 .961 .961
8 .531 .642 .791 .853 .908 .945 .946 .953 .956 .961 .961
9 .537 .671 .797 .863 .909 .945 .946 .953 .956 .961 .961

1900 1910
year

1930 1940 1950 1960 1970 1980 1990 2000
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1920 1930 1940 1950 1960 1970 1980 1990 2000
year

Figure 13: Normalized scores for one through seven Ares agents per game year

The bottom line in figure 13 shows Ares' progress against six random players. On average,
one Ares wins almost half of the games against six random players. The second line from the
bottom shows the collective progress of two Ares agents against five random players, indicat-
ing an almost inevitable victory for one of the Ares agents. More instances of Ares in a game
leave random players even less chance.

The average progress per empire, regardless of the agent model that is playing it, is shown
in appendix H.
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5 Discussion, conclusions and future work

In the previous chapters, we showed how the resolution of Diplomacy orders can be modeled
by using logic. We designed an algorithm that determines the conditions to the success of
issued orders. Several stages of logical derivation eliminate conditions until a conclusion is
reached on the success of all orders. Simple cases are quickly deduced to a solution; the more
complex cases endure more complex deduction stages.

We also modeled strategy forming by using evolutionary computing. Our algorithm rep-
resents global action alternatives for several global states it expects to meet. The algorithm
distinguishes between its own local action in each global action and those of others. Evalua-
tions of global states that series of global actions (to a certain depth) bring forth, provide the
genetic fitness of those series. The algorithm repeatedly breeds new global action alternatives
from the fittest series by mutating (and improving) its own local actions. Meanwhile, a similar
process mutates the local actions of opponents, yielding a recession of the fittest global actions.
The resolution of each global action is assumed to be a plausible consequence to the involved
own local action, allowing a fair comparison of global action alternatives.

The next sections entail a contemplation of the obtained results from chapter 4.

5.1 Retrospection

In section 1.2.4 we explained the contradiction that adjudication according to the Avalon Hill
game rules 18] brings forth. Contradictory cases arise in which we are torn between two or
more resolutions that all either meet or violate these rules. In the latter case we must choose
between successful supports and successful moves. We believe that in actual combat an army
movement is not expected to reach its destination if the army is obstructed before it gets there.
More likely, supports will spasmodically fixate all current positions. Therefore, to solve many
paradoxical cases, we proposed the support sustain resolution rule that meets our intuition on a
natural course of war.

The support sustain rule removes the contradiction from most situations that would have
been contradictory otherwise. Also, it allows for a very basic elimination of remaining para-
doxes, failing all involved moves. Szykman [25] once proposed a rule that suggests to change
paradoxical convoy orders to hold orders. Although this rule imposes the same resolution on
paradoxical situations, it is much harder to incorporate in an algorithm than our solution. It
requires either an explicit, beforehand paradox detection mechanism, or specific paradox adju-
dication when simpler adjudication fails.

Kruijswijk [171 describes two approaches to automated adjudication. The first is sequence-
based in which order aspects are tackled in a pre-defined sequence. Each order success decision
is made in the last step, when no more uncertainties exist to prevent it. The second approach is
decision-based and continuously tries to make decisions that are free from impediments.

This work introduced the condition-based and the logic-based adjudication algorithm as alter-
natives to Kruijswijk's two approaches. The first determines decision dependencies as soon as
they emerge. Recursive condition processing ultimately leads to the known facts that order suc-
cesses rely upon. Logic-based adjudication builds on logical representations of the conditions
to the success of each order. Logic reasoning mechanisms sooner or later yield the solution to
all decisions; simpler cases sooner, more complex cases later.

Our logic-based adjudicator model 'Atlas' (section 3.2) provides correct resolutions to all
test cases the Diplomacy community has so far thought of (section 4.3). The average response
time of our adjudicator model is insignificant compared to that of our agent model Ares (section
4.2). So far, other artificially intelligent Diplomacy playing agents made no use of resolution
forecasts (section 1.5), while Ares does.
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Atlas' resolution times are related to the complexity of the cases at hand (section 4.2). We
believe that the logic-based structure of our model is partly responsible for this. Simple cases
are resolved quickly because complex operations are not applied. Unfortunately, existing ad-
judication niodels came without efficiency indications [5, 17], so an absolute comparison with
those could not be made.

Human adjudication is probably best mimicked by a condition-based algorithm that tries to
make the decision on the success of an order by investigating its dependencies. For simpler
cases humans might incline towards a decision-based approach and make decisions when in-
tuition says so. The more complex cases are left for puzzling later on, much like logic-based
algorithms. Usually humans do not seize explicit logic, since the solution is apparent. Our
algorithm always uses a logic-based approach, making it not very humanoid. This was not the
aim of this work and we now conclude it never should be. Although humans may think their
case-specific approach is very smart, the seamlessly self-evident pre-selection could become
harshly cumbersome when we put it in a model.

So far, significant Diplomacy player models have been agent-based (e.g. The Israeli Diplomat
[16]), tree-based (e.g. The Bordeaux Diplomat [191), evaluation-based (e.g. DumbBot 122, 24],
DiploBot [24], and Projed2OM [14, 241), or goal-based (e.g. HaAI [11,241). Literature presented
Project2OM and HaAI as the most prominent agent models at the moment. We demonstrated
a (new) way of approaching the enormous interaction problem of Diplomacy in an evolution-
based way with 'Ares' (section 3.3).

A relation between Ares' first orders, playing 'Germany', and the same orders by humans
could not be proven. The frequency of Ares' preferred openings did not significantly stand out.

Looking ahead through great depths does not seem very lucrative. We were unable to im-
prove the consistency of Ares' orders by increasing its search depth. Possibly this is due to the
explosive increase in uncertainty when assuming more opposing actions. The imperfectness of
Ares' information might build upon itself.

Although a comparison with any competent agent model could not be made, Ares plays
Diplomacy better than a random playing agent (section 4.3). Its actions are therefore sensible
and, to some degree, artificially intelligent.

In our game simulations Ares produced strategies with depth two, of the tenth generation.
Its response times were around one minute per action, much less than the time limit on order
writing for human players (section 4.2). Human players are normally obliged to write their
order within five minutes time. In battles against humans Ares' efficiency should suffice, but
for a computational agent it is quite low.

We believe that human's way of playing Diplomacy lies somewhere between evaluation-
based, goal-based, and evolution-based. On the basis of the most interesting areas (evaluations)
players come up with areas they would like to conquer (goals). They reconcile goals with each
other, yielding several strategies they might pursue. Players may repeatedly consider minor
strategy adjustments by trying to predict the consequence of each alternative (evolution). And
without communication possibilities they need some assumption on the plans of other players.
One might build an opponent model (see [9]) or simply assume the most unfortunate opposi-
tion.

In any unpredictable world artificial intelligence should reach for human experience to rem-
edy its lack of insight. Huff et al gave us evaluation, Haard brought goals, and this work may
have grabbed the third piece of the A! Diplomacy puzzle: evolution. Maybe future work could
create a hybrid trinity.
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5.2 Conclusions

From our results from chapter 4 and the retrospection of section 5.1 we draw the following
conclusions:

• Atlas is ultimately accurate, given the restrictions on order notation.

• Atlas is very efficient, allowing a firm base of many resolutions to artificially intelligent
Diplomacy playing.

• Logic-based resolution seems to be a good alternative to sequence-based and decision-
based resolution.

• Ares plays games of Diplomacy better than a random playing model.

• Ares generates orders faster than humans normally do.

• Evolutionary computing is a hopeful technique in automated strategy forming.

Looking back at the aim of this work (section 1.3) we may conclude that Atlas and Ares
comply with our specifications. Our goals on the quality of these models have thereby been
achieved.

5.3 Application

Most surprisingly, many Internet Diplomacy games make use of human game masters to ad-
judicate orders. In our opinion, automated adjudication would do a much quicker and more
reliable job, given the right algorithm.

We have high hopes for the application of logically deductive algorithms, similar to the one
used for Atlas, on planning problems like the making of school time tables. Given a number of
teachers, class rooms, students, and subjects, we want to put together consistent time tables. It
seems that the problem is usually too big to incorporate subordinate, butdesirable, aspects like
fair deals of free afternoons. If we could formalize all these aspects, logical deduction might
lead to a time table that does suit all demands or at least reduce the problem to one in which we
can easily choose one that does.

Similarly, logical deduction could smoothly and efficiently take care of unforeseen airport
schedule changes. A plane's departure delay is often caused by the inability to agree an earlier
departure with the existing, tight schedule. Even if an earlier departure is easily feasible with
minor schedule adjustments, the search space is too large to find the solution fast enough. With
formalizations of the demands and the decisions that make up the problem, logical deduction
might be the answer to logistics, policy-making, and corporate management.

Since Ares showed less sensible intentions for the more distant future, strategy evolution
algorithms might attain better results on strategic games (like Stratego, Scotland Yard) than
they did on Diplomacy. Stratego is played with just two players and Scotland Yard has much
less possibilities per turn than Diplomacy has. Both games thus have a much smaller search
space. Strategy forming with great depths is therefore much more feasible in these games than
it is in Diplomacy, for human players and for artificially intelligent models.
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5.4 Further research

In this work we focused on binary decisions: an order either succeeds or fails. The fields of lo-
gistics and management cope with many possibilities on who does what at which time solutions
to problems in these fields require lit multi-decisive logical deduction models. Continuous
variables (like time) might be incorporated by defining discrete time-slots.

Many aspects of our strategy evolution algorithm may be optimized. Limits on the number
of stored board situations or on the number of action alternatives per board situation might
improve Ares' efficiency. Basically, the used algorithm was too inefficient to allow many pa-
rameter adjustment iterations.

Our strategy evolution algorithm may improve by better combining the available know!-
edge. The algorithm could initiate intentions in new situations with intentions in situations it
already knows. Even more, the intentions for similar board situations could produce a more
abstract intention, literally bringing strategy forming to a higher level.

Normally, Diplomacy includes negotiation and is therefore mainly based on trust. We could
investigate the influence of trust on a proper Diplomacy agent algorithm. Extracting knowl-
edge from negotiations and utilizing it might be an interesting field as well. Another step could
be a research on the impact of negotiation itself. A player might act differently, just because he
knows he can negotiate. The logical internal representation of our algorithm would perfectly
allow for such extensions.

It would be very interesting to investigate the gained performance by combining techniques
that have proven to work separately. We could combine strategy evolution techniques with
area evaluation processing like in Project2OM [14,241 and/or with goal generation like in HaAI
[11, 241. The best artificially intelligent Diplomacy player might be a hybrid solution that gen-
erates goals that aim at the best evaluations and that evolves strategies to fit those goals.
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A PostgreSQL data structure

User Area Game Board Order
name code name name game
address name austriatype phase empire
postal code type gennanytype occupiedby phase
city uniLx turkeytype units fromnum
country uniLy italiatype resoIvetime tonum
email flood_fills francetype resolvestage via_num
avatar army.adjacent englandtype id action
birthday fleeLadjacent russiatype status
sex army..adjnums austriauser id
username fleet..adjnums germanyuser
password connections turkeyuser
registered city italia_user
code id franceuser
status england_user
logins russia_user
lastlogin phase
lastactivity dipIomatictime
game retreat_time
empire gainiosetime
won deadline
lost type
total status
points progress
id id
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B Condition-based adjudication example: Diagram 29.

Uniti on the board

• England: army London; fleet England; fleet North Sea

• France: fleet Brest; fleet Irish Sea

Formal representation of orders

• England:
issue(eng!ond. moi'e( army. ion, be!))
issue(engkind. conroyJbt. eng. rnore(army. Ion. be!))
1s,sue( fag/and. conroy(fleet. nth. move(a;-my. ion. b I)))

• France:
i.ssue(fronce. more(arrny. bre. eng))
/.ssue(frane. .upport(fleet. in. move(army. bre. eng))) Figure 14: E)iagram 29.

This diagram shows that an army convoyed using alternate convoy orders reaches its des-
tination as long as at least one convoy route remains open [8]. Figure 14 shows the board
configuration.

For each predicate the algorithm uses a specific function to determine the conditions the de-
cision (satisfaction) of that predicate depends on. Most of these predicates have similar mean-
ings to the algorithm as the' have to the logic based algorithm (see section 2.1). Additionally,
un(krattack( U. a) denotes if a move has been issued to area a, dislodge(u. a) denotes if unit u at
area a is unable to hold and path(a. b. e) denotes if a convoy path exists from area a to area b,
via area c.

The algorithm stores determined (truth) values. If more conditions turn out to depend on
them, the algorithm retrieves them from memory instead of processing them again. The exact
implementation is beyond the scope of this thesis; as described in section 3.2, the condition
based algorithm was discarded for its limited capabilities.

Table 8: Symbol explanation in the condition based adjudication

Below is a log dump of the condition-based adjudication algorithm resolving the orders
above. The used symbols are explained in table 8.

a the algorithm (re)starts with the order for the unit in area a
; .' predicate ; is processed

= l'(;) the algorithm satisfies predicate ; with truth value V(;)
1 (;) truth value U);) for predicate ; is re-used

; (a) an order for the unit in area a is ignored in determining %'(;)
function I is processed

f = a the algorithm satisfies function f with value n
j = a value a for function I is re-used



[eng]

follou'(conroy(fleet. eng. more(army. ion, be!)))?
attainable( moee(fleet. bre. eng)) ?

adjacent(fleet. bre. eng) ?
adyacent(fleet. bre. eng) = true

attwnabie(more(fleet. bre. eng)) = true
[strength(mot'e(fleet. bre. eng)) > resistance(hoid(fleet. eng))]

.trength(move(fieet. bre. eng)) ?
under_attack(fieet. in) (eng) ?

under_attack(fleet. in) (eng) = false
dis!odge(fleet. in) 7

dislodge(fieet. in) = false
strength(move(fleet. bre. eng)) = 2
resistance(hold(fleet. eng)) ?
resistance(hold(fleet. eng)) = 1

[strength(move(fleet. bre. eng)) > resistance(hold(fleet. eng))] = true
foliow(move(fleet. bre. eng)) 7

attainabie(mor (flet. bre. eng)) ?
attainabie(move(fleet. bre. eng)) = true
[strength( inoee(fleet. bre. eng)) > resistance(ho!d(fleet. eng))] 7

[strength(more(fleel. bre. eng)) > resstance(hoid(fleet. eng))] = true
foliow(rnove(fleet. bre. eng)) = true

foliou'(convoy(fleet. eng. mot'e( army. ion, be!))) = false
[nth]

follow(conuoy(fleet. nth. more(army. Ion, be!))) 7

follow(cone'oy(fleet. nth. moi'e(army. ion, be!))) = true
[ion]

fo!Iow(moee(ariny. Ion, be!)) ?

attainab!e( move( army. Ion, be!))
adjacent(army. lon. be!) 7
adjacent(army, ion, be!) = false
path(!on. be!. Ion)?

path(ion. be!. eng) 7
dislodge(fleet. eng) ?
dis!odge(fleet. eng) true

path(!on. be!. eng) = false
path(lon. be!. nth)?

dislodge (fleet. nth) 7
disiodge(fleet. nth) = false

path(lon. be!. nth) = true
path( Ion, be!. ion) = true

attainab!e(mot'e(army. Ion, be!)) = true
fo!low(more(arrny. Ion, be!)) = true

[in]
fol!ow(support(fleet. in. inore(fleet . bre. eng))) 7

uader_attack(fleet. in) (ng) 7
ander..attack(fleet. in) (eng) = false
dislodge(fleet. in) 7
dislodge(fleet. in) false

foiiow(support(fleet. in. move(fleet. bre. eng))) = true
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C Logic-based adjudication example: Test case 6.F.23

Test case 6.F.23 is one of Kruijswijk's most complex cases, involving a second order paradox
with two exclusive convoys [17]. The board configuration and the issued orders are written
below.

Units on the board

• England: fleet Edinburgh; fleet Yorkshire

• France: army Brest; fleet English Channel

• Germany: fleet Belgium; fleet London

• Italy: fleet Mid-Atlantic Ocean; fleet Irish Sea

• Russia: army Norway; fleet North Sea

Formal representation of orders

• England:
inore(Jhet. edi. nt/i
support (fleet yor. more (fleet. cdi. iith ))

• France:
more(army. bre. ion)
ron eoq(Jleet eng. more (army. bre. ion

• Germany:
support(fleet. bei. hoid(fleet. eng))
support (fleet. Ion. /iold(Jh I. nt/i))

• Italy:
!UOI, (Jh:t. ,ii,d. eng)
.support(fleet. in. moi'e(fleet. mid. eng)) Figure 15: Test case 6.F.23

• Russia:
niore(army. nay. be!)
con roy(fleet. nth. iiiore ( army. a wy. be!))

Applying the game rules only (without any paradox rule), there are two consistent resolu-
tions, but where the two convoys do not fail or succeed at the same time. In one resolution,
the convoy in the English Channel is dislodged by the fleet in the Mid-Atlantic Ocean, while
the convoy in the North Sea succeeds. In the other resolution, it is the other way around. The
convoy in the North Sea is dislodged by the fleet in Edinburgh, while the convoy in the English
Channel succeeds.

Applying Szykman's rule, the convoying armies fail to move and the supports are not cut.
Because of the failure to cut the support, no fleet succeeds to move. We will see that the addi-
tional rules proposed in this work (section 1.2.4) ensure the same resolution.
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The condition rules described in paragraph 3.2.2 imply the following success sentences for
the above orders:

1. follow(convoy(Jlect, eng, movc(army. bre, Ion)))
—'follow (move (fleet, mid, eng))

2. follow(eoneoy(flect, nth. move(arrny, nwy, bel)))
—'follow(inove(fleet. cdi, iith))

3. follow ( move ( army. bre, Ion))
altainable(rnove(arrny. bre. lon))A
[strength (move(army. bre, Ion)) > strength ( hold(Jlcet - Ion))]

4. follow(move(army, nwy, bcl)) 4—.

attainable(mnovc(army. nwy. bel))A
[strength(move(armny, nwy, bel)) > strength ( hvld(fIeel. bel ))[

5. follow(movc(flect, cdi. nth))
attaznablc( mnovc(flect, cdi. nth))A
[strength ( mnove(Jleet . cdi nth)) > strength ( hold(fleet , nth))[

6. follow (in ore (fleet in id. eng))
attainable(mov (flu!. mid. eng))A
[strength ( move (fled - in ?d. eng)) > strength (hold (fleet. eng))]

7. follow (support (f1e t - be!. h old(fleet . cng)))
-'attainable(move(armny. nwy, befl)

8. follow(support(fleet, in, mov (fleet. mid, eng))) true

9. follow ( support (fleet, Ion. h old(fiee! . nth)))
—, attainable (move ( army. bre. Ion

10. follow(support(flcet. yor. mnove(fleet. cdi, nth))) true
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Since Atlas replaces occurrences of attainable right away and distributes support conditions
over strength variables, the above set of sentences is never actually generated. It is presented
here to shed some light on how Atlas gets to the sentences below. What actually results from
the condition determination stage is written below. Notice that functions are no longer of any
importance now that their appropriate sentence sums represent them.

1. follow(convoy(fleet, eng, move(army, biv. Ion))) — 1. eng .—. —'mid
follow( inoie(flcet. niid, eng))

2. follow(eonvoy(fleet. nih, rnoi'e(arrnzJ. nwy. bel))) j— 2. nth #—. —'edi

—'follow ( m ove(Jleet . cdi, nth))

3. follow(inove(arrny. bre, Ion)) 3. bre ÷— engA
folIOil'((OflloiJ(fieet, eng. move(ariny, bre, Ion)))A [EO > Ø]
[:c> ø]

4. follow(move(army. nwy. bet)) #— 4. nwy nihA
follow(convoy(J1et, nih. move(ainy, nwy, bel)))A [0 > O}
[:ø > >ø]

5. follow( move(fleet. ed,. nih)) j—' 5. edi trueA
trueA [Etrue > >eng]
[Etrue > E—'follow(conroy(fleet. (Ii. inove(arrny. bre. Ion)))]

6. follow(move(fleet, mid. eng)) 6. mid trueA
true A [irue > —'nth]
[>true > >-'follow(convoy(fleet. nih, movc(army. nwy. bel)))]

7. follow(supporl (fleet. bet. hold(Jleet. eng))) 7. bel —÷ —'nih
--'follow(convoy(Jleet. nih. move(arrny, nwy, bet)))

8. fol!ou'(support (fleet. in. move(fleet. mid. eng))) true 8. iri true

9. follon'( suppoit (J1 it. Ion, hold(fleet. nih))) 9. Ion —'eng
—'follow( convoy (Jiel / - eng. moi'e ( aiiny. bre, Ion)))

10. follou(.suppai/ (Jlii I - yoi. inove(Jleet. edi. nib))) ÷—* true 10. yor — true

On the right is an abbreviation of the sentences on the left to make life a little easier. Each
area code resembles the Jo/lou' predicates of the order that has been committed to the unit in
that area.



The first deductions remove unnecessary predicates and variables.

1. follow(ronroy(Jieet, eng. move( a,ing. bre. Ion))) —. 1. rug — —mid
—follou (inove(Jleet, mid, eng))

2. follow(eonrmj(Jleet. u/h. Tnove(armg, nwy, bel))) 2. nIh i—i —'edi
-'folloii' (in (1 'r ( flee!. edi. n/h))

3. fotlow(moi'e(a,iny, her, Ion)) false 3. bre false

4. follou'(move(army, nwy. bel)) false 4. nwy false

5. follow( move (fleet. edi, n/h)) * 5. cdi — eng
follow(convoy(fleet, eng, rnove(arrny, bre, Ion)))

6. follow(move(fleet, mid. eng)) 6. mid 11th
fe/Inn' (eon req (fire! nih. move ( anny. nwy, bet)))

7. follow (support (fleet. bet. hold(Jlect . eng))) 7. bet —'u/h
—'follow( convog(fleet, nth, rnove( army, nwy. tel)))

8. follow(support(fleet. in, move(fleet, mid. eng))) true 8. in — true

9. follow(support(fleet. Ion. hold(fleet, nth))) 9. Ion -'eng
—folIo u' (roil log (fleet, eng. in ore (army. bre. Ion)))

10. follou'(sapport(fleet. yor, move(fleet, cdi. uith))) true 10. yor true

After substitution of predicates (and more deductions where possible):

1. foltow(ronvoy(fleel. euig. move(ar-my, bur. Ion))) —i 1. eng i— —'mid
-'fe/lou' (mo 'e (fleet. mid, eng)

2. folloii' (ron 'ey (fleet, 11th. move ( army. IItIIJ. bel))) 2. nth — mid
Jo/lou' ( move (fleet. mid, eng))

3. follow(inol'e(aniny. bir. Ion)) false 3. bre —i false

4. fol/ou'(unorr(army. nuy. bel)) faLse 4. nwy false

5. follow ( more (fleet. cdi, n/h)) 5. cdi i—i mid
-'follow(move(flect. mid, eng))

6. follow (wove (fleet. mid, eug)) 6. mid mid
follow (mole (fleet, mid. eng))

7. follow(support(fleet, bet. hold(fleet. eng))) 7. bet -'mid
-'follow (move (fleet. mid, eng))

8. follow( support (fleet. in • unoi'e (fleet. mid. eng))) i—i true 8. in —. true

9. follow(support(Jieet, Ion. hold(fleet. nt/i))) 4— 9. Ion i—i mid
follow (in ore (fleet. nod. en!J)

10. follow(support(fleet. yor. znoue(fleet, cdi, iith))) —i true io. yor i—-i true
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Assuming follow(rnove(fieet, mid, eng)) to be false results in (deducted):

No assumption for follow(move(fieet. mid, eng)) results in the success of all dependable
supports (orders 7 and 9), thus none is chosen.
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Apparently, one or more order successes depend on themselves. Atlas assumes the predi-
cate follow(move(fleet. mid. eng)) to be true, resulting in (deducted):

1. follow(eonuoy(fieet, eng. inove(arrny. bre, Ion))) .—. false

2. follow(eonvoy(Jleet. nth, move(army, nwy, bet))) .—. true

3. follow(moi'e(army. bre, Ion)) false

4. follow(move(army. nwy. bel)) —. false

5. follow(moce(fleet. cdi. n/h)) — false

6. follow(move(fleet. mid, eng)) true

7. follow(suppori (fleet, bel, hold(fieet. eng))) false

8. follow(suppori (fleet, in. move(fiect. mid. eng))) true

9. follow (support (fleet. Ion, hold (fleet. ii fit))) true

10. follou( support (fleet. yor, rn ove(fleet , cdi. nih))) — true

1. eng.—.faLse

2. nt/i '—* true

3. bre .— false

4. nwy—.false

5. cdi +—. false

6. mid true

7. bet .—. false

8. in — true

9. Ion —. true

10. yor true

1. eng .—. true

2. nth .—. false

3. bre .—.false

4. nury -+ false

5. edi true

6. mid .—. false

7. bet ÷—. true

8. in —. true

9. Ion +—. fals

10. yor 4—. true

1. follow(convoy(fleet. eng. moi'e(army, bre,lon))) '—' true

2. follow(eonvoy(Jleet, nih, move(artny. uwy, hel))) .—. false

3. follow(move(artny, bre, Ion)) .—. false

4. follon( move(army, nwy. bel)) . false

5. follow ( move (fleet. (dl, n/h)) true

6. follow(move(fleet, mid. eng)) — false

7. follow(suppor/(fleet, bel, hold(fleet. eng))) true

8. follow(support(fleet. in, rnove(fleet, mid, eng))) — true

9. follou(support(Jleet. Ion, hold(fleet, n/h))) false

10. follow(suppor/(Jleet. yor, move(Jleet. cdi, n/h))) .—. true
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Any depending mote fails (orders 5 and 6), any depending coi roy or support succeeds
(orders 1, 2, 7, and 9). The truth value of the other four orders (3, 4, 8, and 10) was already
determined.

1. follow(ronvoy(Jlcrt. eng, znove(arrny, bre,lon))) — true 1. eng 4—* true

2. follow(ronvoy(fleet, nih, move(anny, nwy. bet))) ÷—. true 2. nth +— true

3. follow(movc(arrnq. bre, Ion)) false 3. bre +—+ false

4. follow(rnove(urinq. nwy, bet)) false 4. nwg false

5. follow(mot'e(flcet. edi, nih)) false 5. cdi +— fats

6. follow(move(Jlect. mid, eng)) false 6. mid false

7. follow(support(fleei, bel, hold(Jleet, eng))) —. true 7. bet +— true

8. follow(support(fleet, in. move(fleet. mid. eng))) *—. true 8. u-i —. true

9. follow(support(fleet. Ion. hold(flect. nih))) true 9. Ion —* true

10. follow(support (fleet. yor. inovu(Jlect. cdi nih))) +— true 10. yor true

The application of these order successes to the board is relatively easy, to say the least.
No unit moves, so all units are simply mapped to the same areas on the new board. Area
ownership changes are not tested in this run, neither are retreats.
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D Resolution statistics

D RESOLUTION STATISTICS

resolution time
per unit (ms)

decision
conditioning

predicate
substitution

predicate
supposition

0.00-0.05 1355 0 0
0.05-0.10 685 185 0
0.10-0.15 266 649 0
0.15-0.20 126 1024 0
0.20-0.25 59 1341 12
0.25-0.30 29 1568 20
0.30-0.35 14 1586 21
0.35-0.40 4 1581 46
0.40-0.45 2 1122 35
0.45-0.50 2 705 50
0.50-0.55 0 401 34
0.55-0.60 0 192 22
0.60-0.65 1 90 12
0.65-0.70 0 41 4
0.70-0.75 0 23 4
0.75-0.80 0 3 2
0.80-0.85 0 3 0
0.85-0.90 0 1 0
0.90-0.95 0 2 0
0.95-1.00 0 0 0
1.00-1.05 0 0 0
1.05-1.10 0 0 0
1.10-1.15 0 1 0

total 2543 10518 262

40

ilTrh1±
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Figure 16: Resolutions per conclusive stage and time interval

Table 9: Number of board resolutions per conclusive stage, per time interval
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E Resolution test cases

Table 10: Response times and verifications of test case resolutions;

the fifth column states the author whose preference was met for each case.
title time (es) selutlon stage aulI
nslthook order dication

I

2

3
4

5
6
7
8
9
10
11

12

13
14

15
16
17
18
19

20
21

22
23
24
25
26
27
28
29
30
31

32

annymovrmmst
fleet movement from sea
fleet movement from roast
moves of equal *ength to the tame ales fail
cast unit not moving can stop other units from moving
WitIs Cannot Wade places without the san of convoy
three or more units con rotate arms provided ruse trade places
simple support by an army
ssmple support by a fleet
moveSupport in standoffs
hold support in sUnd
a dislodged unit con still cascara standoff
a dislodged unit has on effect on the arm that dislodged if (1)
a dislodged unit has on effect on the area that dislodged It (2)
support ii cutby an attack from an arm dlffecmst horn the cast whom support is givms
ruplxat is cutis the unit grving support iu dislodged (1)
mlpport is cut is the unit g.vrng support is dislodged (2)
a unit bring dislodged by one ares con still cut support in another
convoy order
convoying acrom several em areas
dsslodgemerst of a fleet ,n a convoy causes the convoy to fact
an empire cannot dislodge own units or support that (1)
an empire cannot dislodge own units or support that (2)
an mnpire c.rmot dislodge own suits as nupport that (3)
an empire cannot dislodge own smite or support that (4)
an empire carusot dislodge own units or support that(S)
self Standoff
eschanging places via convoy
more than yaw convoy route
a convoyed a.m.y does not cut the support of an attack on one of the fleets m tv convoy
a rucressfufly convoyed anny does cut the support of an attack on an alternate onsvoy route (1)
a successfully convoyed army does cut the support of an attack on an alternate convoy route (2)
basic thecka

366
434

SW
924

1136
836

1650
862
843

1635
1503
230
3429
5122
1346
1543
2926
1956

912
1640
2106

777
2696
1378
2842
1838

763
1163
1099
1287
17803

decision cosubtioning
decision cosubticasing
derision conditicmi.ng
decision usulitioning
poedicabe asbaittution
decision conditioning
predicate suppo.lion
decision conditioning
decisIon conditioning
decision conditioning
decision conditioning
decision conditioning
predicate substitution
predicate substitution
decision conditioning
predicate substitution
predicate ardistitutiern
decision ccasditicaiotg
peedtcate substitution
predIcate substitution
predIcate substitution
decision conditioning
predicate substitution
decision rusdilitming
predicate aubstitution
decision conditioning
dedsionussditmoning
predicate suppoartion
predicate substitution
predicate substitu,
predicate m.bstitution
predicate substitution

Caihamar, 2W)
CaThamar, 2W)
Calhamar, 2W)
Caihamar, 2W
Calhamar. 2050
Calhasnar 2W
Calhamar 2W
Calhamar. 2W
Caihamar, 2181)
C,slhamar, 2W
Calhamar, 2W
CaIhamae 2W
Calbamar, 2W
Calbamar. 2W
Caihamor, 2W
Calhansas 2W
Caihamoc 2W
Calhamar, 2W
Calhamao, 2W)
C.nthamar, 2151)
Calhomar. 2050
Calbamar. 2158)
Calhansar. 2W)
Clhansa,, 2W)
Calhamar 2W)
Caihamar, 2W)
Calbamax,2OZt)
Ca1hamai 2W
Ca1hamas 21St)
CaJbamat 30)
Calhamas 2W
Calhamar, 2W)

6.A.1
6.A.2
6.A.3
6.A.4
6.A.5
6.A6
6.&7
6.kS
6.A.9
6AJ0
6.A.11
6.A.12

moving to casarm that is nc* a rwig)sbor
move army to em
move fleet to land
move to own sectew
move to own sector with convoy
ordering a suit of snodwr country
only amsies can be convoyed
suppnat to hold yourself is not possible
fleets must follow coast ci not on sea
support on unresdsable destination not possible
simple bounce
bounce of three suits

190
186
189

327
1134

319
250
789
190
623
513

1500

decision conditioning
decision conditicming
decision conditioning
decision conditiorung
predicate substitution
decision conditicascng
decision condibvrsosg
predtcate substitution
decision condctconcssg
decision corsd,bvoso,g
decision conditioning
decision conditioning

Calbansar, 2W)
Calhamar. 2W)
Calhamar, 2W)
Cal}samar, 2W)
Calhamar. 2W)
Calhamar, 22W
Calhamar. 2188)
Calhancar, 2W)
Calhamar, 2W)
Calhamar. 2W)
Calhamar, 2188)
Callsamao, 2W

cosu mumT•
6.8.2
6.6.3
6.6.4
683
664
6.8.7
6.8.8
6.B.9
6.B.10
6.B.1 I
6.6.12
6.6.13

snovmg oath unspecsfled coast vs hen coast vs swvvsoarv
snovcng with unspev'thed roast when coast cv not neressarv
moving with wrong coast whms coast is rast rary
support to unreachable coast allowed
support from unreachable coast eel allowed
support can be cut with other mast
supporting oath orcspecsfsed coast
oppv.rtmgvscth cocprvcto'vf coast when only one coast is posuble
supporting with wrong coast
unct ordered with wrong coast
coast cannot be ordered to change
aomv nv.censevt vs tb coastal speviecatcons
coastal crawt rIot allowed

192

189
191

780
630
883

1117
1118
934
326
320
236
530

deciaron conditioning
dedacon cond,ticss.ng
decision conditisrscng
decssion ronditiomng
decision conditioning
decision conditioning
decision conditioning
decisioncusditioning
decision conditioning
decision conditioning
decision conditioning
decision rm.dibo'
decision conditioning

Calhamar. 2W)
Booi1ssk, 2158)
t(oucwqk, 2504
Calhamar, 2050
Calharnao, 2W
Calharnar. 2W
Doortink. 21118)
Dooiink. 2W
Kourtsw*. 2504
Dooiinlc. 2W
Calhamar. 2W)
Booqink. 2W
Calhamar, 2W

drcu6c movemrot
6.C1
6.C.2
6.C.3
6.C4
6.C3
6.C.6
6C7

three army csrrular movement
there army circular movement with support
a disrupted three army circular movement
a circular movemnerct with attacked convoy
a disrupted circular movement due to dislodged convoy
two armies with two convoys
dcsruptrd cmits.oap

661

894
889

2361
2488
1161

1899

predicate suppootsos
predIcate supposvtiors
predIcate ssdisittutsoo
predicate arapposcvcos
predicate tubstitufloo
predicate mapposvvco
predicate nubstituson

Calhansar, 2W)
Calhansar, 2)58)
Calhansar. 2W)
(..alhanvar. 2W)
Calhansar. 2W

a)hawar, 2)50)
Lalhansar, 2W
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76 E RESOLUTION TEST CASES

care StIr tune (em) J lotion stage author
sup to and dislodges

6.0.1
6.0.2
6.0.3
6.0.4
6.115
6.0.6
6.D.7
6.D.8
6.119
6.3110
6D11
D.12
6.0.13
6.0.14
6.0.15
6.1)16
6.D 37
6.0.38
6.0.19
6.3128
6.021
6.0.22
6.0.23
6.014
6.015
6.026
6.017
6.0.28
6D.29
61130
6.0.31
6.0.32
6.023

supported hold em prevent dislodgement
a move cuts support on hold

move cuts support on move
suppcat to hold on unit supporting a hold allowed
support to hold on unit supporting. move allowed
support to hold onconvoymg unit allowed
support to hold on moving unit not allowed
failed convoy camsol recerve hold support
support to move on holding unit not allowed
self dsslodgmest prohibited
on self ditlodgmerst of returning writ
supporting a foreign unit to dislodge own unit prohibited
supporting a foreign unit to dislodge a returning own unit probibsted
supporting a foeesgn unit is not enough to prevent dislodgement
defender cannot cot support for attack on itself
vosrvoy.ng a unit dislodging a unit of same power is allowed
dislodgement cuts supports
a surviving unit will sustain support
even when survivsng nin alternative way
unit cannot cut support of its own country
dislodging does not cancel a support cut
mpovvrbte fleet Steve cannot be o.pporteri

impossible coast move cannot be supported
impoedble army move cannot be supported
failinghold ssrpportcanbe supported
failing move support em be supported
failing convoy em be supported
impossible move and support
move to impossible coast and support
move without coast and support
a tncky rrnposarbte support
.smrsung fleet
unwanted support allowed

6W
876
766
696
913

1131
1195

778
539
333
980
435

1699
769
858
728

1984
3993
10%

593
1345
822
678
636
719
749
892
696
738
658
351
736

1222

dectrn onditioning
decision emditioning
decision conditioning
decision conditicming
decision conditioning
predicate substitution
decision conditioning
decision conditioning
decision conditioning
decision conditioning
predicate substitution
decision conditioning
pred.tate substitution
decision conditioning
pred.cale substitution
predicate substitution
predicate substitution
predicate substitution
predicate substitution
decision conditioning
decision conditioning
decision conditioning
decision conditioning
decision conditioning
decision conditioning
decision conditioning
predicate subelitution
decision conditioning
decision nosditioning
decision conditioning
decision conditioning
decision conditioning
predicate substitution

CaIh.mar 2155)
Calhansar. 2
Calhamar 2155)
Calhamar 2155)
Coihanur, 2015)
Calhamar, 255)
Calhamar. 2151)

Calhonrn, 2)01)
Calhamar, 2(51)
Caihamor. 2
Caihamor, 255
Caihomor, 2
Caihamar, 2(05)
Calhomar. 2015)
Colhansor, 2005
Cu)humur, 2005
Caihamar, 255)
Culhamur, 32(5)
Callomar, 20
Calhamar, 2
Clham, 2)2(5)
Calhamr, 2(55)
Cuthanssr, 2013)
Caihanvar, 2015)
Culhamor, 2
Culh.ssvsr, 2(55)
Calhamar 2(55
Booipnlc 2135
Booipisk. 2(51)
Booijrnk.
Booijink. 2
Bootjink. 2(51)
CaIhamar. 215(5

6.024 support targeting own arm not allowed
head to lwad battles seal beleaguered garrison

2434 predicate substitution Calhamae. 2(00)-i
6.E.2
6.0,3
6.0.4
6.0.5
6.0.6
6,0.7
6.E.8
6,0.9
6.0.10
6.0.31
6.0.12
6.0.53
6.E.14
6.El5

dis'odged unit has no eect on atteck. arm
tar self dislodgement in head to hr.d battle
no help in dislodging own unit

n-dislodged hoer has still effect
loser dislodged by another army has still effect
not dislodge because of own support has still effect
no self dislodgerstent with beleaguered garrison
no self dislodgement with beleaguered garrison and head to head battle
abstoat self dislodgement with beleaguered garrison
abnoat circular movernmst with on self dislodgmnrest with beleaguered garrison
on self dislodgement with beleaguered garrison, mat swap with adjacent aawoylrg mut two ts
support on attack on own unit em be used for other ssensw
three way beleaguered garrison
illegal head to head battle can still defend
the friendly head to tread battle

2296
676

1391
7242
8297
411)6

1738
3681
2180
27
46498
3021
462

7219

predicate subvtitobon
decimon vonditiceung
predicutr substitution
predicate substitution
predicate substitution
peedicate substitution
decision conditioning
predicate substitution
predicate substitution
predicate substitution
predicate supposition
predicate substitution
decision conditioning
predIcate substitution
predIcate substitution

Calhamae. 2(0)
Calhama,. 2(15)
Calhamar. 2(50)
C.lhamae.
Cslhamar 35(01
Caibamar, 201)
Calhama, 2103)
Calhamar. 2)01)
Calhamar,
Calhamar. 2(58)
Calhamas 3905
Ca1hsmar 200)
Caiharme. 255)
Calhamar. 2003
Calhamar. 2)2(03

convoys
6,F.1
6,F1
6.F3
6.034
6.035
6,036
6.PJ
6.08
6.09
6.0310
6.0311
6.0312
6,F,13
6,F.l4
6.F,15
6.016
6.0.17
6.0.18
6,F.19
6,028
6,021
6.022
6.F.23
6F24

no convoy in coastal areas
an ansy being convoyed em bounce as normal
an army being convoyed can receive support
an attacked convoy is not diwapted
a beleaguered convoy in not dlempted
dislodged convoy dom tart cut support
dislodged convoy does ont cause contested ares
dislodged convoy does tartcause a bounce
dislodgeof multi-route convoy
drslodgr of molts-route convoy wetls forrsgn fleet
dislodge of multi-route convoy weth only foenfin fleets
dislodged vonvoy.ng fleet 500 on route
tire unwanted alternative
simple nossup parades
simple convoy parades with addibonat convoy
Passdin's parades
Pandln's mOunded psradost
befrayal paradoss
multi-route convoy dissuption psrados
unwanted multi-route convoy paradtre
dad s army convoy
second order parades with two resolutions
second order paeados with two e,rchreive convoys
second order parades with tar resolution

'"T
1370
624

2582
2935

969
1567
1177l1
11631
1853
2449
2972
4456
2676
2(333

2575
2948
7274

22816
6392

decision condititaring
predicate substitution
predIcate substitution
predicate mthstitu&rn
predicate asthatitutlon
peedicate substitution
peedlcalr substitution
predicate substitution
predIcate substitution
predicate arrbatlts.
predicate substitution
predicate .graimutkrn
predicate ssibatits.t
peedlcate substitutims
p..dlcate substitution
predicate substitution
predicate supposition
predicate supposition
predIcate .ibatltutlon
predicate substitution
predicate subatits.tlon
predicate suppositicer
paradost slna.
predicate asççtat

Calhamae. 200)
Cailsama,. 2(05)
Calhamar, 2(00)
Calhamar 2(00
Calhamas 201)
Calhama,. 3505
Calhsnsar,
Calhamar. 3505
Calhamar, 21001
Calhassrar, 2(85)
C.lhamae,
Calitamar,
Calhamar, 200)
Saykman. 1999
Seykmav. 1999
Calhamar. 205)
Szyknsan. 1999
Szykman. 1999
SZykrnan. 1999
Seykman. 1999
Seykman. 3999
Szykman. t999
Saykman, 1999
Sayksmn, 1999

convoying to adjacent places
6.311
6.G.2
6.G3
6.G.4
6,G5
&G.6
6,G.7
6.315
6.G.9

6,G,l0
6.G.ll
6.G.l2
6.G.l3
6.G.14
6.G.15
6.G.l6
6.G,l7
6,Gl8

two rents em swap places by convoy
ksdnappsngananny
kidnapping with a disrupted convoy
kidnapping with a dicerspind convoy and opposete move
sw.ppsng wsth m66st
swapping with mths66stled intent
swapping with illegal intent
esplicit convoy that is not there
swapped or dislodged?
swapped or a head to head battle?
a convoy to ass adjacent place ama parades
swapping two unite with two convoys
support cut on attack on itself via convoy
bounce by convoy to adjacent place
bounce and dislodgewith doubteconvoy
the two unit in cew ares brr& movsng by convoy
the two unit in one area bug, moving over land
the two unit in one arm bug, with double convoy

1420
1399
925

2261
2325
3787
1895
639

1628
4760
1459
4171
1194
4848
2627
3595
3543
5056

predicate supposition
predIcate supposition
predIcate substitution
predIcate substitution
predicate supposition
predicate supposition
peedicate supposition
predicate substitution
predicate substitution
predicate substitution
predicate subststutron
predicate supposition
predicate substitution
predicate substitution
pred.cate substitution
pedte substitution
peed oatr substitution
prrdrvatr substitution

Calharnar, 20(0)
Calhamae,215t)
Calhamar.
Calhamat 351)
C.lharsiae. 355)
Calhamae. 352(1
Calhamar, 208)
Ca1ha,nar
Calhamar, 255)
0031G. 1998
Saykman. 1999
Calhamae, 2(35
Calhansao,
DP1t. 1999
0031G. 1998
Calhamar. 2)2(0)
Calhamar. 2132)
Calhamar. 205)



F Opening frequencies for Germany

Table 11: Occurrences of each opening play with each used parameter setting;
The first number in the pairs on top states the solution age, the second is search depth.

her kie mon 10, 1 10,2 10,3 20, 1 30,1 40,1 40,2
H her ruh I I
H den her 2 1 3
H den boh 1 1 I 3
H den bur 2 2 2 1 7
H den kie 1 1 2
H den ruh 1 2 2 1 6
H den sü 1 2 3
H den tyr 1 1 1 3
H den SherH 3 1 4
H ho! her I
H ho! boh 1 1 2

H ho! buy 1 2 1 1 5
H ho! tyr 1 1 1 3
kie H kie I I
kie ha! boh 1 1

kie her kie I I
kie den H 1 1 2 1 5
kie den her 1 1 1 3
kie den balm 1 1 2 1 5
kie den bor 2 2
kte den kie 1 1 2 1 1 6
kme den ruh 2 1 1 1 1 6
k,e den sm! 1 1 2
kme den tyr 1 2 3
kze den SberH I I
kze he! Sberkie 1 1

kie ho! her 2 1 3
kze ho! boh 1 2 3
kte ho! hur I I 1 1 1 5
kte ho! k2e I I
kie ho! ruh 5 5
kme ho! 32! 1 1 1 2 1 6
kie ho! tyr 1 1 2
km ho! SherH 1 1 2
kme ho! Sherkoe 1 1 1 3

mon ha! her I
mon her hor I I
mun her Skieher 1 1

mun den H 1 1 2

mon den her 1 1 1 3
mun den boh 1 1 2
mun den hor 1 1 2 4
mon den kie 1 2 3
mun den ruh 2 1 3
mun den 82! 2 1 2 5
mon den tyr 1 1 2
mon den SherH 1 1

mon den S herkie 1 1

mon ho! H 2 2 4
mon ho! her 1 1 1 3
mon ho! hoh 3 1 1 5
mon ho! bor 1 1

mon ho! k2e 2 1 1 4
mon ho! roh 1 1 1 2 5
mon ho! si! 3 2 1 6
mon ho! tyr I 1 2 2 6
mon ho! SkmeH 1 1

mon ho! S bersil 1 1 2
muon ho! S kmeber 1 1
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pen den
pen den
pen den hoh
pen den bur
pen den he
pen den nih
pen den is!
pen den tyr
pen ho! H
pro ho! her
pen ho! boh
pro ho! bur
pen ho! he
pen ho! s-oh

pen ho! is!
pen ho! tyr
pro ho! SberH
pen ho! S bern!
pen ho! S kse her

H nih
ho! tyr

is! den H
ss! den her
ii! den boh
is! den bor
is! den kse
ii! den nih
is! den is!
ii! den tyr
ii! den S bent!
ii! he! SkseH
is! ho! H
ss! ho! her
is! ho! hoh
ss! ho! but
ii! ho! he
ss! ho! nih
ii! ho! is!
ss! ho! tyr
is! ho! SherH
ss! ho! 5 bern!

SmunH den H
SmonH den bus-
S mon H den he
S mon H den is!
SmonH den Sberhe
S inun H den S hens!
SmonH ho! H
S mon H ho! ber
SmunH ho! hoh
S muri H ho! heir
S men H ho! S bern!
Ski' H den bee

SkuH den nih
SkiH den SberH
SkteH ho! bus-

SkzeH SherH hoh
S munkse her he
S man kse den kse

S munkse ho! S her H
Smonis! den bor
S monis! den s-oh

S munss! den is!
S manes! den S kseher
5 monet! ho! her
S monis! ho!

I
I
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1 2 1 1

3 2
3

1 2
1 1

2 2 1

2

1 2

1 1 1

2 1

1 1 2
1 1 1

I I
1 1

2
1 2 1

1 1

1 1

I I
2

1

1

I

I
I
1 1

2

2 1

1 1

2

2
1

I
I

3

I

I
I

I

1

I

2

2

I

2
I 1

I I
I
1 2
1 1 2
I I

1 1 1

I

1

I

1 1

I

2

I
I

I

I 1

1

I
I



G Game simulation endings

Table 12: Game simulation endings
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Austria Germany Turkey Italy France England Russia status mund

2.

3.
4.
5.

6.
7.

8.

9.
10.

11.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.

rand. sur rand. thin. rand. sun rand. dim. rand. win rand. dim. rand. elim.
rand. dim. rand. dim. rand. dim. rand. sur rand. sur rand. sun'. Ares win
rand. dim. rand. dim. rand. surv. rand. dim. rand. win Ares surt rand. dim.
rand. dim. rand. dim. rand. sun'. rand. sun'. rand. sun Ares surr Axes win
rand. dim. rand. dim. rand. dim. rand. dim. Ares sun'. rand. sun'. rand. win
rand. sur rand. dim. rand. dim. rand. surt Ares sur rand. dim. Ares win
rand. surv. rand. dim. rand. dim. rand. dim. Ares win Ares sun'. rand. sun'.
rand. dim. rand. dim. rand. dim. rand. sun'. Ares surv. Ares suro. Ares win
rand. dim. rand. dim. rand. dim. Ares surv. rand. win rand. dim. rand. surv.
rand. elim. rand. dim. rand. surv. Ares surv. rand. sun'. rand. sun'. Ares win
rand. dim. rand. dim. rand. dim. Ares win rand. dim. Ares surv. rand. surv.
rand. dim. rand. dim. rand. sun,. Ares surv. rand. surt Ares surv. Ares win
rand. dim. rand. dim. rand. dim. Ares surv. Ares win rand. dim. rand. dim.
rand. dim. rand. dim. rand. sun'. Ares surv. Ares sun'. rand. surv. Ares win
rand. dim. rand. dim. rand. dim. Axes surv. Ares win Ares surv. rand. sun'
rand. dim. rand. dim. rand. surv. Ares sun'. Ares sun'. Area surv. Ares win
rand. dim. rand. draw Area draw rand. dim. rand. draw rand. dim. rand. draw
rand. dim. rand. dim. Ares sun'. rand. dim. rand. dim. rand. dim. Ares win
rand. dim. rand. dim. Ares draw rand. dim. rand. dim. Ares draw rand. dim.
rand. sun'. rand. dim. Ares sure. rand. surv. rand. sun'. Ares sun'. Ares win
rand. dim. rand. dim. Ares surv rand. dun. Axes win rand. sun'. rand. dim.
rand. dim. rand. dim. Ares sun'. rand. dim. Ares win rand. sun'. Area sun'.
rand. dim. rand. dim. Ares sun'. rand. dim. Axes win Area surv. rand. dim.
rand. dim. rand. dim. Ares win rand. dim. Axes sun'. Ares sun'. Ares sun'.
rand. sun'. rand. dim. Ares surv Ares win rand. dim. rand. sun'. rand. dim.
rand. dim. rand. dim. Ares sun'. Ares sun'. rand. sun'. rand. dim. Ares win
rand. sun'. rand. dim. Ares sun'. Ares win rand. sun'. Ares sun'. rand. sun'.
rand. dim. rand. dim. Ares sun'. Axes sun'. rand. sun'. Ares sun'. Ares win
rand. dim. rand. dim. Ares sun'. Ares dim. Axes win rand. dim. rand. dim.
rand. dim. rand. dim. Ares sun'. Axes sun,. Ares sun'. rand. sun'. Ases win
rand. dim. rand. dim. Axes sun'. Ares sun'. Area win Area dim. rand. dim.
rand. dim. rand. dim. Ares sun'. Axes sun'. Ares sun'. Ares dim. Ares win
rand. sun'. Ares win rand. sun'. rand. sun'. rand. dim. rand. sun'. rand. dim.
rand. dim. Ares sun'. rand. dim. rand. sun'. rand. dim. rand. sun'. Area win
rand. dim. Ares win rand. sun'. rand. sun'. rand. dim. Axes sun'. rand. dim.
rand. dim. Ares sun'. rand. dim. rand. sun'. rand. sun'. Ares sun'. Ares win
rand. sun'. Ares win rand. sun'. rand. dim. Ares sun'. rand. dim. rand. dim.
rand. dim. Axes sun'. rand. dim. rand. sun'. Ares sun'. rand. dim. Ares win
rand. sun'. Ares dim. rand. dim. rand. dim. Ares win Ares sun'. rand. dim.
rand. sun'. Ares dim. rand. dim. rand. dim. Area sun'. Ares sun'. Area win
rand. sun'. Ares win rand. dim. Ares sun'. rand. dim. rand. sun'. rand. dim.
rand. elm. Ares win rand. sun'. Axes sun'. rand. dim. rand. sun'. Area sun'.
rand. dim. Ares win rand. sun'. Ares sun'. rand. dim. Ares sun'. rand. dim.
rand. elim. Ares sun'. rand. dim. Ares win rand. dim. Ares sun'. Ares sun'.
rand. ehm. Ares win rand. sun'. Ares sun'. Ares sun'. rand. sun'. rand. dim.
rand. dim. Ares dim. rand. dim. Axes sun'. Area sun'. rand. dim. Ares win
rand. dim. Ares win rand. dim. Ares sun'. Axes sun'. Ares dim. rand. sun'.
rand. dim. Ares sun'. rand. sun'. Area sun'. Ares sun'. Ares sun'. Axes win
rand. dim. Ares win Ares sun'. rand. dim. rand. dim. rand. sun'. rand. dim.
rand. sun'. Ares win Ares sun'. rand. dim. rand. dim. rand. dim. Ares sun'.
rand. elim. Ares win Ares sun'. rand. dim. rand. sun'. Area sun'. rand. dim.
rand. dim. Ares sun'. Ares win rand. dim. rand. dim. Axes sun'. Ares dim.
rand. dim. Ares win Ares sun'. rand. dim. Ares sun'. rand. sun'. rand. dim.
rand. dim. Ares dim. Ares dim. rand. dim. Area sun'. rand. sun'. Ares win
rand. ehm. Ares win Ares sun'. rand. dim. Axes sun'. Ares sun'. rand. dim.
rand. ehm. Ares win Ares sun'. rand. sun'. Ares sun'. Ares sun'. Ares dim.
rand. dim. Axes win Ares sun'. Axes sun'. rand. dim. rand. sun'. rand. dim.
rand. dim. Ares win Ares sun'. Ares sun'. rand. dim. rand. dim. Area dim.
rand. dim. Axes draw Ares draw Ares draw rand. dim. Axes draw rand. dim.
rand. dim. Axes draw Ares draw Ares draw rand. dim. Ares draw Ares dim.
rand. dim. Ares win Axes sun'. Ares sun'. Area sun'. rand. elim. rand. elim.
rand. dim. Ares sun'. Axes dim. Ares sun'. Ares sun'. rand. dim. Ares win
rand. dim. Ares draw Axes draw Axes draw Axes draw Ares draw rand. dim.
rand. dim. Ares win Ares sun'. Ares sun'. Ases sun'. Axes sun'. Ares sun'.

finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished

finished

finished
fimshed
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished

pre-ended
pre-ended
finished
finished

pre-ended
finished

162
26
98
30
50
58
82
52

118
42
54
34
46
36

168
54

218
138
218
4
76
98
82

188
90

152
42
68

134
86
82

198
42
70
44
36
70
42
84

110
44
44
36

118
76
76
78
44

186
74
76

114
94
34

142
106
56

102
218
218
136
88

218
116
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Austria Germany Turkey Italy France EngJand Russia status round

65. Ares win rand. surv. rand. sum. rand. dim. rand. sum. rand. eftm. rena. elun. finished 50

66. Ares win rand. dim. rand. dim. rand. dim. rand. elim. rand. sure. Ares sum. finished 100

67. Ares win rand. sum rand. elim. rand. dim. rand. surv. Ares sure. rand. sure, finished 78

68. Ares sure. rand. dim. rand. sure. rand. sure. rand. sure. Ares sum Ares win finished 44

69. Aim win rand. dim. rand. sure. rand. dim. Ares sure. rand. sure. rand. sure, finished 46

70. Ares sure. rand. dim. rand. sure. rand. dim. Ares sure. rand. dim. Ares win finished 58

71. Ares win rand. dim. rand. dim. rand. dim. Ares sure. Ares sure. rand. dim. finished 204

72. Ares draw rand. dim. rand. dim. rand. dim. Ares draw Ares draw Ares draw pre-ended 218

73. Ares win rand. dim. rand. dim. Ares sure. rand. dim. rand. sure. rand. sum. finished 110

74. Ares sure. rand. dim. rand. elim. Ares sure. rand. sure. rand. sure. Ares win finished 54

75. Ares win rand. dim. rand. dim. Ares sure. rand. dim. Ares sure. rand. dim, finished 70

76. Ares sure. rand. dim. rand. dim. Ares sure. rand. sure. Ares sure. Ares win finished 36

77. Ares win rand. dim. rand. dim. Ares dim. Ares sure. rand. sure. rand. sure. finished 80

78. Ares sure. rand. elim. rand. dim. Ares sure. Ares sure. rand. sure. Ares win finished 36

79. Ares win rand. dim. rand. dim. Ares dim. Ares sure. Ares sure. rand. dim. finished 108

80. Ares sure. rand. dim. rand. dim. Ares sure. Ares sure. Ares sure. Ares win finished 60

81. Ares win rand. dim. Ares sure. rand. dim. rand. dim. rand. sure. rand. sure, finished 86

82. Ares win rand. sure. Ares sure. rand. dim. rand. sure. rand. sure. Ares dim, finished 60

83. Ares win rand. dim. Ares sure. rand. dim. rand. sum. Ares sum. rand. dim, finished 1(Y2

84. Aim win rand. dim. Ares dim. rand. dim. rand. sure. Ares sure. Ares sure. finished 68

85. Ares sure, rand. dim. Ares sure. rand. dim. Ares win rand. sure. rand. dim. finished 54

86. Ares draw rand. elfin. Ares elim. rand. dim. Ares draw rand. dim. Ares draw pre-ended 218

87. Ares sure. rand. dim. Ares sure. rand. dim. Ares win Azes sure. rand. dim. finished 174

88. Ares draw rand. dim. Ares draw rand. dim. Ares draw Ares draw Ares draw pre-ended 218

89. Ares win rand. sure. Ares sure. Ares sure. rand. dim. rand. sure. rand. dim, finished 38

90. Ares elim. rand. dim. Ares sum. Ares sure. rand. sum. rand. dim. Ares win finished 40

91. Ares dim. rand. sure. Ares win Ares sure. rand. dim. Ares sum. rand. dim, finished 128

92. Ares sure. rand. dim. Ares sure. Ares sum. rand. dim. Ares sum. Ares win finished 110

93. Ares draw rand. dim. Ares drew Ares dim. Ares draw rand. draw rand. dim. pm-ended 218

94. Ares draw rand. dim. Ares draw Ares dim. Ares draw rand. dim. Ares draw pre-ended 218

95. Ares draw rand. dim. Ares draw Ares draw Ares draw Ares draw rand. dim. pie-ended 218

96. Ares draw rand. dim. Ares draw Ares dim. Ares draw Ares draw Ares draw pm-ended 218

97. Ares sure, Aim win rand. sure. rand. dim. rand. sure. rand. dim. rand. dim. finished 40

98. Ares sure. Ares sure. rand. dim. rand. dim. rand. sure. rand. sure. Ares win finished 80

99. Ares sure. Ares win rand. dim. rand. dim. rand. dim. Aim sum. rand. dim, finished 66

100. Ares dim. Ares win rand. sure. rand. sure. rand. dim. Ares sure. Ares sure. finished 36

101. Ares win Ares sure. rand. dim. rand. dim. Ares sure. rand. sure. rand. sure, finished 36

102. Ares draw Ares draw rand. dim, rand. dim. Ares draw rand. dim. Ares draw pm-ended 218

103. Ares draw Ares draw rand. dim. rand. dim. Ares draw Ares draw rand. dim, pm-ended 218

104. Ares win Ares sure. rand. dim. rand. dim. Ares sum. Ares sure. Ares sure. finished 62

105. Ares win Ares sure. rand. dim, Ares sure. rand. dim. rand. sure. rand. dim. finished 166

106. Ares win Ares sure. rand. dim. Ares sure. rand. dim. rand. sum. Ares sum. finished 58

107. Ares win Ares sure. rand. dim. Ares sure. rand. dim. Ares sure. rand. dim, finished 98

108. Ares sure. Ares sum. rand. dim. Ares sure. rand. dim. Ares sure. Ares win finished 66

109. Ares win Aim sum. rand. dim. Ares sure. Ares sure. rand. dim. rand. dim, finished 124

110. Ares sure. Ares dim. rand. dim. Aim sure. Ares sure. rand. sure. Ares win finished 78

111. Ares win Ares sure. rand. dim. Ares dim. Ares sure. Ares sure. rand. dim, finished 104

112. Ares dim. Ares win rand. dim. Ares sum. Ares sure. Ares dim. Ares sure. finished 74

113. Ares win Ares sure. Ares sure. rand. dim. rand. dim, rand. dim. rand. dim, finished 124

114. Ares sure. Ares win Ares sure. rand. elim. rand. dim. rand. dim, Ares dim. finished 188

115. Ares sure. Aim win Ares sure. rand. sure. rand. dim. Ares sure. rand. dim. finished 32

116. Ares draw Ares draw Ares draw rand. dim. rand. dim. Ares draw Ares dim, pm-ended 218

117. Aresdraw Ares draw Ares dim. rand.dim. Ares draw rand.dim. rand.dim, pre-ended 218

118. Ares dim. Aim sure. Ares win rand. elm. Ares sure. rand. sure. Ares sure. finished 110

119. Ares draw Ares draw Ares draw rand. dim. Ares draw Ares draw rand. dim. pre-erided 218

120. Ares win Ares dim. Ares sure. rand. dim. Ares sure. Ares sure. Ares sure. finished 128

121. Ares sure. Ares win Ares sure. Ares sure. rand. dim. rand. dim. rand. dim. finished 120

122. Aim sure. Ares win Ares sure. Ares dim. rand. sum. rand. dim. Ares dim. finished 118

123. Ares win Ares sure. Ares sure. Ares dim, rand. sure. Ares sure. rand. dim, finished 56

124. Ares win Ares sure, Ares sum. Ares dim. rand. dim. Ares sure. Ares sure. finished 92

125. Ares dim. Ares sure. Ares sure. Ares sure. Ares win rand. dim, rand. dim, finished 128

126. Ares dim, Ares draw Ares draw Ares draw Aim draw rand. dim. Ares draw pm-ended 218

127. Ares dim, Ares draw Ares draw Ares draw Ares draw Ares draw rand. dim. pre-ended 218

128. Ares sure. Ares dim. Ares sure. Aim sum. Ares sure. Ares sure, Ares win finished 74
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Figure 17: Average progress per empire


