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Abstract

Software agents are more and more used to perform autonomous tasks in real
world environments. This can be a single agent which is performing a task or a
group of agents cooperating to perform a task. A system that consists of more
than one agent is called a Multi-agent System (MAS). Multi-agent Systems is
a research field within the research domain of Artificial Intelligence. One of
the processes studied within MAS is cooperative problem solving (CPS). This
process describes the problem of one agent that sees a goI for which it needs
other agents to cooperate with to achieve this goal. Communication is essential
during CPS processes because successful cooperative problem solving requires
reliable one-on-group communication to attain an approximation of common
belief among the the agents cooperating in a team. This will be shown during a
brief introduction of cooperative problem solving. To attain an approximation
of common belief it is necessary that the agents gain a certain level of group
knowledge about the facts communicated. More specifically, the agents have to
know the facts that are communicated, the agents have to know to whom those
facts are communicated, and the agents have to know that the agents to whom
these facts are communicated know these facts.

A simple problem is the sequence transmission problem where one agent
communicates a sequence of data to another agent while both agents gain a
certain level of knowledge about this data. The sequence transmission problem
becomes more complicated when one agent wants to communicate a sequence
of data to a group of agents. To attain the desired level of knowledge gain-
ing, somehow the group information has to be involved in the communication.
In this thesis a general knowledge-based algorithm is presented that solves the
sequence transmission problem for one-on-group communication. This general
knowledge-based algorithm is correct for communication media where typical
communication errors occur as long as the connection satisfies the fairness con-
dition. It is shown that the agents from a group when using this algorithm for
n cycles, gain depth n of general knowledge about the members of the group
and about the facts communicated.

The communication involved in the CPS process is a bit more complicated
than the sequence transmission problem. The sequence transmission problem
concerns the transport of data from one agent to one or more other agents
while the CPS communication is more a dialogue between two or more agents.
The requirements of reliability and gaining of knowledge are the same for both
communication processes. A specific knowledge-based algorithm for CPS corn-
munication is presented. This CPS algorithm is a modified version of the general
algorithm adjusted for the specific demands of CPS communication. It is shown
that the agents from a group when using this algorithm for n cycles during
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iv ABSTRACT

a CPS process, gain depth n of general knowledge about the members of the
group and about the facts communicated.

In general, software agents are connected to each other in a network. The
most common network architecture for computers is the internet network ar-
chitecture. For the CPS algorithm to be of use for software agents in a MAS
environment involved in CPS processes, the CPS algorithm should be imple-
mented somewhere in the internet architecture. In this thesis the feasibility of
such an implementation is discussed. As a result of this discussion a design
specification for an implementation is presented.
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Chapter 1

Introduction

Today's society becomes more and more information driven. This growing
amount of information produces complex problems. Autonomous software agents
can be used to solve these problems or to act as a supportive system to help
humans solving these problems. Depending on the problem domain, this can be
one software agent performing a task by itself or it can be a group of software
agents cooperating in performing a task. Reasons for agents to cooperate can
be that the problem is geographically distributed. This means that agents are
needed at different locations to perform subtasks while cooperating to achieve
the main task. Another reason for agents to cooperate can be that the complex-
ity of a problem requires agents with different skills to solve this problem. A
group of cooperating autonomous agents is called a Multi-agent System, hence-
forth MAS. The study of MAS is a research field within the research domain of
Artificial Intelligence.

One of the research fields within MAS is Cooperative Problem Solving,
henceforth CPS. In this field research is done about the process of agents co-
operating to solve a certain goal. Wooldridge and Jennings give a model for
CPS consisting of four consecutive stages [21]. These four stages are potential
recognition, team formation, plan formation and team action. The CPS process
covers the entire process that starts with one initiating agent that sees an over-
all goal which it can not or does not want to achieve by itself, and ends with
a group of agents cooperating in achieving this goal. Communication is essen-
tial for CPS and Dignum, Dunin-Kplicz and Verbrugge give a more in-depth
analysis of the dialogues that play a role during the four stages of CPS in [1, 4].
Most writings about the communication involved with CPS make one and the
same assumption. This assumption is that whatever is communicated between
agents will arrive at the desired agents and will arrive correctly. This is not as
obvious as it seems. During communication, errors can occur such as messages
that get lost or mutated. Possible communication errors should be overcome by
a communication algorithm.
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2 CHAPTER 1. INTRODUCTION

1.1 Group communication
For one-on-one communication, algorithms exist which guarantee a reliable
knowledge-based communication. Examples of such an algorithm are presented
by Halpern and Zuck in [11] and by Stuip and Verbrugge in [18]. These algo-
rithms can handle the sequence transmission problem for one-on-one commu-
nication. The sequence transmission problem can be stated as two agents, a
sender and a receiver, where the sender sends a sequence of data packages to
the receiver. These data packages have to arrive at the receiver and have to
arrive in the right order. During this process both agents gain a certain level
of knowledge about the sent data, and gain a certain level of knowledge of each
others knowledge of the sent data.

In the second, team formation stage of CPS, the agents have to reach a
collective intention. For this to happen communication between the initiat-
ing agent and a group of potential agents is needed. During this one-on-group
communication a certain level of general group knowledge has to be attained.
General group knowledge means that all the agents the initiating agent is corn-
inunicating with have to gain a certain level of knowledge about the facts the
initiator is sending, that all these agents have to gain knowledge about to whom
the initiator is sending these facts, and that all the agents gain a certain level
of knowledge about the knowledge of the agents from this group. The algo-
rithms for one-on-one communication from [18, 11] are not sufficient for this
communication because they do not provide a mechanism for attaining group
knowledge. \Vhat is needed is a knowledge-based algorithm that guarantees
a reliable communication for one-on-group communication involved in a CPS
process.

1.2 Research questions
A first step towards an algorithm for one-on-group CPS communication is to
extend a reliable one-on-one communication algorithm so that it can handle the
sequence transmission problem for one-on-group communication. This brings
us to the first research question (RQ).

RQ1. Is it possible to design a knowledge-based algorithm for multi-agent
communication that can handle the one-on-group sequence transmission
problem?

This research question is answered in this thesis by the presentation of a general
knowledge-based algorithm for multi-agent communication. This algorithm will
also be denoted as general algorithm.

The sequence transmission problem is a one-way data transport problem.
The general knowledge-based algorithm handles this problem and as a result is
a data transport algorithm. The communication involved in a CPS process is
more a dialogue type of communication than it is a transport of data. In the
sequence transmission problem and accordingly in the general algorithm, there
is one and the same agent that acts as sender during the transmission process.
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In a CPS process there is also one agent that acts as a sender but over time this
role can be taken by different agents. Out of these differences of communication
comes the second research question.

RQ2. Is it possible to design a knowledge-based algorithm for CPS commu-
nication?

The answer to this research question is a knowledge-based CPS algorithm for
multi-agent communication that will be presented in this thesis. This algorithm
will also be denoted as ('PS algorithm. For the CPS algorithm to be of use
for software agents operating in the real world, it should be implemented. In
general, software agents are interconnected to each other in a computer network.
The most common network architecture for computer networks is the internet
architecture. The most useful way of implementing the CPS algorithm would
thus be somewhere in the internet architecture. This brings us to the third and
last research question.

RQ3. What are the possibilities of implementing the CPS algorithm in the
internet architecture?

In this thesis the feasibility of such an implementation is discussed. The result
of this discussion is a design specification for an implementation.

1.3 Structure of thesis
In the next chapter an overview is given of the process of CPS. The four stages
will be discussed and when one-on-group instead of one-on-one communication
is needed, this will be pointed out. Readers who are already familiar with CPS
can skip this chapter. In chapter 3, knowledge and communication will be dis-
cussed. An overview is given of knowledge and knowledge creation within a
group as can be found in CPS. The communication part of this chapter handles
he errors that can occur during communication and how a communication pro-

tocol can overcome these errors. In chapter 4, the knowledge-based algorithm
for MAS is presented together with au epistemic analysis and proof. chapter 5,
discusses the specific communication problems involved with CPS. An adjusted
algorithm for CPS which handles these problems is presented in chapter 6 to-
gether with an epistemic proof. In chapter 7, design specification are given for
the implementation of the CPS algorithm. chapter 8, finally, presents a discus-
sion of related literature and directions for future research. Appendix A, shows
a graphical overview of the CPS process.
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Chapter 2

cPs

The process of CPS starts with an initiating agent which sees an overall goal that
it wants to be achieved. This agent can not or does not want to achieve this goal
by itself so it has to look for a group of agents that can cooperate in achieving
this goal. This process can be subdivided in four consecutive stages: potential
recognition, team formation, plan formation, and team action [1]. Every stage of
CPS starts with an initial situation and a goal. Achievement of this goal results
in the outcome situation for that stage which on its turn is the initial situation
for the next stage. The goals of the four different stages can be described
formally by using multi-modal logic. In this chapter a description will follow of
the initial situation, the goal and the corresponding outcome situation of the
four stages of CPS based on [1, 4]. A graphical overview of a complete CPS
process can be found in appendix A.

2.1 Logical background on CPS
In the descriptions of the four stages of CPS the terms collective intention and
collective commitment are used. For an intention and a commitment to become
collective among a group of agents there has to be a common belief among
these agents. For a better understanding, brief descriptions of these concepts
will follow. The description of common belief is based on [8] and the descriptions
of collective intention and collective commitment are based on [1, 4, 3, 6].

Common belief is the notion of group belief which is constructed in a similar
way as common knowledge, except that a collective belief among a group that

need not imply that is true. Here follows a short reminder of the axioms
governing group beliefs. Let G {1,. . . , m} be a group of m agents. The
formula E-BELG() (group G has iI) as a general belief) is meant to stand for
ever agent in group G believes 1,":

E-BELG() -' A,EGBEL(i,7)

C-BELG(.') (group C has as a common belief) is meant to be true if everyone
in C believes , everyone in G believes that everyone in G believes i/, etc.

5



6 CHAPTER 2. CPS

Let E-BEL(tI') be an abbreviation for E-BELG(), and let BEL'(t) for
n � 1 be an abbreviation of Thus, we have intuitively
C-BELG(i1') if E-BEL(tl') for all n � 1.

A collective intention is the intention of a group G of agents to achieve some
goal. Let C {1,. . . ,m} be a group of m agents. The formula E-INT(tI')
(group G has 1' as a general intention) is meant to stand for "every agent in
group C has the same individual intention v":

E-INTG (1') -' A1EG INT (i, b)

The mutual intention M-INTG () is meant to be true if every agent in G intends
t, every agent in C intends that every agent in C intends i/,, etc. Denoting this
in a formula it looks like E-INT (tI' A E-INTG ( A ...)). Infinite formulas are
not allowed but intuitively the following recursive formula for mutual intention
denotes the same: M-INTG (t/) -' E-INT (, A M-INT (tb)). For a formal
deduction see [3]. For an intention to become collective there not only has to
be a mutual intention to i, the agents from C also need to have a common
belief about this mutual intention. This is denoted by the following axiom for
collective intention: ('-INTG (,) 4—' (M-INT (1,) A C-BELG (M-INTG (II')))

A strong collective commitment SC-COMMG,p (i/') means that all the agents
from group G collectively believe that the actions <O, ...O > from social plan
P are allocated to agents who have socially committed themselves to another
agent to perform these actions. For a collective commitment there first has to
be a collective intention C-INTc (). Second there has to be a plan P which
constitutes this goal ', constitute (, P), i.e. if fully executed the plan leads
to achievement of the goal. This plan P consists of actions <O,. .. , ö,> which
should be executed by the agents from group C to achieve t4'. The agents also
need to have a common belief that plan P constitutes the goal . For every
action from plan P there has to be an agent from G who committed itself to
another agent to perform this action, A6EP V,kEG COMM (i, k, 0). Again the
agents also need to have a common belief about these commitments. When
putting these parts together we get the following formula for a strong collective
commitment:

SC-CONIMc,p (v') -' C-INTo (tb) A constitute (0, P) A
C-BELG (constitute (tI', P)) A AEP V,kEG COMM (i. k, 5) A
C-BELc(A8 V,kEG COMM (i, k,5)).

More varieties of collective commitments others then the strong collective com-
mitment mentioned here can be found in [5].

An overview of the formulas just discussed and other also used in the rest of
this chapter can be found in the next table.
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Formulas Description in text
GOAL (a, il') is a goal of agent a
PotC (a, tI') Agent a sees a potential for cooperation

with respect to 1'
INT (i, ) Agent i has has the intention to achieve
M-INTG (,1') Group C has a mutual intention to

achieve /,
C-INTG () Group C has a collective intention to

achieve ,1,
BEL (i, p) Agent i believes that
E-BELG (tb) Group C has a general belief that
E-BEL' (i,1) E-BELG (E-BEL (tb))
C-BELG () Intuitively; E-BEL (), for all n 1.

Group G has a common belief that 1'
realize (< z, ..., >, ) Realisation of the subtasks < bi, ..., tI' >

leads to the main goal t
COMM (i, k, ö) Agent i socially committed itself to agent

k to perform action ö
SC-COMMc,p (u') Group C has a strong collective commit-

ment based on P to achieve

2.2 Potential recognition

The initial situation of potential recognition is an initiating agent a that sees an
overall goal i1'. This initial situation can be described formally as GOAL (a, t)
which means that 1' is a goal of a [1]. Initiating agent a can not or does not
want to achieve the overall goal by itself so it needs to find other agents to
cooperate with in achieving the overall goal 'I'. Thus the goal of this stage is
that agent a has to find one or more groups of agents that have the potential for
cooperation with respect to 1'. To achieve this, agent a has to find out what the
abilities, opportunities, willingness and commitment strategies with respect to

of all the agents are [1]. In the graphical representation this will be denoted as
(a, o, w, c). To get this information from these agents, agent a communicates

to them through one-on-one communication. The dialogue type involved in this
communication is information seeking. For a graphical representation of this
communication see figure 2.1. A successful outcome of this information seeking
dialogue is that agent a sees one or more groups of agents that have the potential
to cooperate in achieving the overall goal . This can be formally denoted as
PotC (a, ') which means that is the goal of agent a, which can not or does
not want to achieve l' by itself, and there are one or more groups G such that
agent a believes that each of these groups C can collectively achieve ,&.
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Figure 2.1: One-on-one information seeking dialogue communications between
initiating agent 4 and the other agents

2.3 Team formation

The initial situation of the team formation level is PotC (a, ,'), which is the same
as the outcome situation of the preceding stage. The goal of the team formation
stage is that agent a finds one group G among all the potential groups which
has a collective intention to achieve i,1'. A formal notation for this collective
intention is C-INT0 (ui) as defined in [3]. To establish this situation, agent a
has to persuade all agents i of a potential group to take on an individual inten-
tion towards , and to take on the intention that there be a mutual intention
among that group, INT (i, t' A M-INTG (tb)). Agent a communicates during this
persuasion dialogue one-on-one to each of the agents. A successful outcome of
these dialogues is that all the members of one of the potential groups have taken
on the intention INT (i, t1' A M-INTG (t)). We are now one step away from the
outcome situation of this stage. This last step is that the individual inten-
tions of all the agents becomes a collective intention. This collective intention
C-INTG () emerges from the fact that it has become a common belief that all
the agents in this group have taken on the intention INT (i, 1' A M-INTG (tI')).
To establish this situation agent a communicates the fact that all the members
of this group have taken on this intention through one-on-group communication
to this group. See figure 2.2. Because agent a has to communicate one-on-group,
the earlier mentioned one-on-one communication algorithms are not sufficient.
For this one-on-group communication, the algorithms that are presented in this
thesis have been developed. If the one-on-group communication between agent

L_



Figure 2.2: Initiating agent 4 communicates one-on-group the outcome situation
to the other agents

a and all the members of this group is successful then the collective intention
C'-INT(; (t,L') has been established and the outcome situation of the team forma-
tion stage has been reached.

The preceding stage ended with a group C together with the collective inten-
tion C-INTG (), which is also the initial situation for the plan formation stage.
In the plan formation stage, group C has to go from a collective intention to
achieve st', to the goal of this stage which is a collective commitment based
on a social plan P which will lead to the achievement of . The formation
of this plan starts with one of the agents from group G who takes on the role
of initiator. This initiating agent doesn't have to be the same as in the pre-
vious stages and can thus be any agent from the group. This initiator will
here be mentioned as agent b. Agent b generates a plan by an adequate task
division of t into a sequence of subtasks <,. .. , >. During this task di-
vision agent b communicates with the agents in the group through one-on-one
communication. The dialogue type that is used during this communication
is deliberation. The task division is successful if all the agents i of group G
have taken on the belief that these subtasks <tb,.. . ,iI> lead to the main
goal /', BEL(i,realize(<ii,. .. Agent b communicates then to all
the agents of group G through one-on-group communication that each agent

2.4. PLAN FORMATION 9
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Figure 2.3: Agents communicating one-on-one during the action commitment
process

of group G has taken on the belief BEL(i,realize(<1,. .. If this
communication is successful then the common belief
C-BELa (realize (<,. .. , v,)) has been established.

The next step in this pian generation process is that each subtask is
associated with one or more actions 8. For reasons of convenience it will be
assumed that every subtask t is associated with only one action ö. For this
process, one agent of the group takes on the role of initiating agent. Again
this can be any of the agents from group G and will be denoted here as agent
c. After each subtask t from . . , t,b,> is associated with one action
8,, every agent i from group G has to take on the belief that executing the
actions <ö,. ..,ö> realizes the subtasks <'i,... This is formally no-
tated as BEL(i,A1means-for(8j,tP)) as defined in [4]. After this belief
has been established, agent c communicates through one-on-group communi-
cation to all the agents of group G the fact that all the agents of group C
have taken on this belief. Successful communication leads to the common belief
C-BELG (A1means-for (8k, Now that the overall goal is divided into
subtasks, and that these subtasks are associated with actions, these actions have
to be allocated to the agents of group G.

Each action ö is allocated to one agent i from group G, resulting in pairs
<ö, i >. For every action that is allocated to one agent i, this agent socially
commits itself to another agent k to perform this action, COMM (i, k, 8,). See
figure 2.3. After a successful establishment of COMM (i, k, 8,) one of the agents
i or k communicates this fact through one-on-one communication to the initiat-
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ing and coordinating agent of the action allocation process. This initiating and
coordinating agent can be any agent from group G and will be denoted here as
agent d. At a certain point all the actions <6k,. . . , ö,> will have been allocated
to an agent with the corresponding commitment. If all these allocations have
been communicated to agent d, then agent d communicates this fact through
one-on-group communication to all agents of group G. This results in the sit-
uation that all the agents of group C collectively believe that all the actions
<ô1,. . . , 5,,> from plan P are allocated to an agent and that this agent socially
committed itself to another agent to perform this action. This situation is for-
mally known as a strong collective commitment SC-COMMa p (i') as defined in
[4]. This collective commitment was the goal of this stage and with it, this stage
has reached its outcome situation. There are a lot of other kinds of collective
commitments besides the strong collective commitment mentioned here [3]. For
the understanding of the background of the algorithms presented in this thesis
it is sufficient to speak only of the strong collective commitment.

2.5 Team action
The initial situation of this last stage of CPS is a collective commitment and
in this particular case a strong collective commitment SC-COMM,p (). The
agents who have socially committed themselves to perform an action 5 can now
execute this action. The process of agents executing their actions, is started by
the same initiating agent d from the action allocation phase from the previous
stage. The initiation of the action execution phase by agent d follows from
its one-on-group communication of the fact that all actions <Si,... , 5,,> have
been allocated. This is because the result of this communication is a collective
commitment to the social plan P, which describes when the actions will have
to be performed by which agent. During the action execution, communication
takes place between the agents of group C. To end this stage successfully the
following facts have to be communicated. When agent i from COMM (i, k,5,)
has executed his action Sj it communicates this to agent k. Agent i or agent
h communicates the fact that action S has been executed through one-on-one
communication to the initiating agent d. As soon as agent d for all actions
<(Si,. .. , 8,,> has received the fact that they have been executed, agent d knows
that the action execution phase has been successful. Agent d communicates this
fact through one-on-group communication to all the agents of group C. Group
C has now reached the outcome situation of the team action stage which means
that they successfully completed the CPS process.
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Chapter 3

Knowledge and
communication

A knowledge-based algorithm for multi-agent communication is needed for the
phases of CPS in which a collective intention, common belief, or a collective
commitment is required. Collective intention, common belief, and collective
commitment emerge after successful one-on-group communication as discussed
in chapter 2. In this chapter a logical background of knowledge and common
knowledge is given after which communication problems that arise in attaining
(common) knowledge during communication are discussed. This chapter ends
with a discussion on the creation of knowledge during one-on-group communi-
cation.

3.1 Logical background: knowledge and time
When proving properties of knowledge-based protocols, it is usual to use se-
mantics of interpreted systems I representing the behaviour of processors over
time (see [8, 14]). At each point in time, each of the processors is in some b-
cal state. All of these local states, together with the environment's state, form
the system's global state at that point in time. These global states form the
possible worlds in a Kripke model. The accessibility relations are defined ac-
cording to the following informal description. The processor R "knows" if
in every other global state which has the same local state as processor R, the
formula holds. In particular each processor knows its own local state; for the
environment, there is no knowledge (or accessibility) relation. The knowledge
relations are equivalence relations, obeying the well-known epistemic logic S5
(see [8]), including e.g. the knowledge axiom Kp . , i = 1, ..., n, as well as
axioms governing general and common knowledge such as AiEG K1ço
and CGç EG ( A We also use abbreviations for referring to general
knowledge at any finite depth. Inductively, Eo stands for EG and Ej' is

(Ep).
A run is a (finite or infinite) sequence of global states, which may be viewed

13



14 CHAPTER 3. KNOWLEDGE AND COMMUNICATION

as running through time. Time here is taken as isomorphic to the natural num-
bers. There need not be any accessibility relation between two global states for
them to appear in succession in a run. Time clearly obeys the axioms of the ba-
sic temporal logic K (see [9]), in which the following principle (A) is derivable:
(A) P(oço) —*
To further model time, we extend S5 with the following axiom:
KT1. KDcp—+DK,i=1,...,n
This axiom holds for systems with perfect recall [10]. Halpern et al. present a
complete axiomatization for knowledge and time [10], however in this thesis we
only need the axiom KT1.
As for notation, global states are represented as (r, m) (m-th time-point in run
r) in the interpreted system I. In particular for the temporal operators, we
have the following truth definitions:
(I,r,m) = D if (I,r,m') = for all m' � m
(I,r,m) = Pço if (I,r,m') = for some m' <m
In the next table some formulas are given, together with their informal mean-
ings that will be used in the rest of the thesis.

_Formulas Descriptions
Ksç' Sender S knows
KR, Receiver R knows ,
EG Every agent in group C knows p (general knowledge)
E7p Group C has depth k general knowledge of
CG,O It is common knowledge among group G that
RG C is the current group of receivers
P, At some moment in the past on this run, was true
D is now and will always be true on this run

3.2 Gaining knowledge
What does it take to change the state of agent i from being ignorant about a
fact to knowing , represented as K? To know an agent has to become
aware of . How this happens depends on the sensory input mechanisms of
the agents and the world they are operating in. An agent can become aware
of a fact in a direct manner because one of its input mechanisms senses this
fact, or an agent can become aware of a fact in a indirect manner because
it can deduce this fact from other facts it already knows. The direct manner
of attaining knowledge about a certain fact can be subdivided into an active
and a passive process.

The active process is that an agent gathers a certain fact by itself from its
environment and the passive process is that a certain fact is communicated
to this agent by another agent. The active process of attaining knowledge is
represented in the general algorithm from this thesis as an input tape storing a
fact which will be read by an agent i. After reading this tape, agent i knows
the fact stored on this tape, so K1.

The passive process is represented by an agent i who knows a certain fact
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and sends this fact to another agent r. Agent r knows the fact as soon
as it receives the fact sent by agent i and thus This passive process
of attaining knowledge is represented in the algorithm by the fact that agent r
stores every fact ç it receives from agent i and writes every consecutive fact p
it has stored to an output tape. Agent i and agent r are respectively denoted as
sender (S) and receiver (R) in the rest of the thesis. During the communication
of facts from the sender to the receiver errors can occur. In the next section
these errors and how a knowledge-based algorithm handles these errors will be
discussed.

3.3 Transmission problems
Communication between two or more agents consists of transmitting messages
via a medium. There are a lot of different kinds of media over which commu-
nication can take place. Which kind of medium is used depends mostly on the
domain the agent is operating in. Via a medium, connections between agents
can be established over which communication takes place. The point of interest
here is the reliability of this communication. Reliability here means that when
sender S sends a sequence of messages to receiver R, that receiver R receives this
sequence of messages fully, without any changes, and in the right order. Halpern
and Zuck called this problem the sequence transmission problem (11J. To over-
come this problem a communication system has to satisfy the following three
properties: fairness, liveness, and safety. The fairness property means that
when a message is sent by S to R infinitely many times, this message arrives
at least one time at R. The liveness property means that every message that is
received by R is written by R on its output tape. The safety property states
that every message written by R on its output tape is a prefix of the messages
from the input tape. During the transmission of messages over a connection,
errors can occur which jeopardize these properties for reliable communication.
The protocol by which the communication takes place has to overcome these
errors to assure reliable communication. The errors that can occur during com-
munication between a sender S and a receiver R are the following.

1. mutation: S sends a message to R which is received in a different form
by R:

2. deletion: a message is sent by S but is never received by R;

3. duplication: S sends a message to R and R receives this message more
than one time;

4. reordering: S sends a sequence of messages which are received by R in
a different order;

5. delay: S sends a message to R but this message arrives late at receiver
R;

6. insertion: R receives a message from S which was never sent by S.
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Not all these errors occur during every communication. It depends on the
connection that is used to communicate which errors can occur. The combina-
tion of the protocol by which the agents are communicating and the connection
that is used to communicate can be seen as a communication system (figure 3.1).
This combination determines whether the communication is reliable. Reliability
here means that the communication system satisfies the fairness, liveness, and
safety properties. This brings us to the following definition.

Definition 1 Communication system. A communication system consists
of a connection in a communication medium between one or more agents which
are communicating to each other according to a protocol that is known by all
the participating agents. The combination of the properties of the connection
and the features of the protocol determine the reliability of the communication

system.

Regardless which errors can occur in a system, if the connection over which
the communication takes place does not satisfy the fairness condition then re-
liable communication is not possible. In this case it could happen that none of
the messages sent by S arrive at R which means that there is no communication
at all. So for the discussion on how the protocols in this thesis handle the above
errors it is assumed that the fairness property holds for the connection over
which the communication takes place. The protocol is responsible for assuring
the liveness and safety properties by handling the errors that can occur at such

a connection.
The distinctions between the different errors are not very strict. Dependent

on the protocol and the connection, two different errors may appear to be one
and the same problem for the protocol. Nevertheless, it will be shown how a
knowledge-based protocol handles each of the above-mentioned errors should
they be present in the used connection.

Mutation. If mutation errors can occur then the problem for the receiver is:
how does it know whether the message it received is not mutated? The
solution for this is the checksum as used in the TCP [17]. To handle
mutation errors the TCP uses the 16-bit one's complement sum of the
message as its checksum [2). Because the checksum is a digital feature,
the assumption that has to be made about the message and the way

U

Communication medium

Figure 3.1: Communication system
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this message is sent over the connection is that they have to be digital as
well. The principle behind this mechanism is that the sender computes the
checksum and sends it with the message to the receiver. When the receiver
receives this message, it also computes the checksum of the message and
compares it with the checksum sent by the sender. If these two checksums
are the same, then the receiver knows that the message is not mutated.
If the checksums are not the same, the receiver throws this message away
and handles it as if it was not received at all.

The checksum from the TCP is a 16-bit representation of the message,
which means that there are 65.535 different representations. A checksum
where all the bits are 0 does not exist, that is why there are 65.535 different
representations instead of 216 (= 65.536) different ones. The set of possible
different messages that can be sent by the sender is infinite, so there are
messages which are different that will have the same 16-bit representation.
Thus it is possible that a message gets mutated during transmission while
the checksum of this mutated message is the same as the checksum of
the original message. When the receiver encounters this situation, it will
accept a mutated message as being correct. The probability for this to
happen is about 1 to 65.535, which in practice is small enough to assure
reliable communication.

Deletion. When messages can be deleted during transmission, then the sender
never knows whether a message that it has sent actually is received by the
receiver. The solution for this problem is very common and used in many
communication protocols. As soon as the receiver receives a message from
the sender it sends an acknowledgement of this reception to the sender. As
long as the sender did not receive an acknowledgement from the receiver
it keeps on sending this message to the receiver. The sender only starts
sending the next message when it has received an acknowledgement of
the previous message. The receiver has a similar problem when it sends
an acknowledgement to the sender. Because this acknowledgement can
be deleted during transmission, the receiver never knows if the sender
received it. The solution is here the same as for the sender. The receiver
keeps on sending this acknowledgement until it receives the next message
from the sender.

Before a sender starts retransmitting a message it has to consider the
time it takes for the receiver to process a message and send an acknowl-
edgement back. If the sender resends messages before the receiver could
send an acknowledgement, then these messages become redundant with
the potential risk of congestion of the connection. This also counts for the
receiver retransmitting an acknowledgement. For discrete systems that
communicate in cycles, agents have to wait one or more cycles before re-
transmitting. Real-time systems have to set a timer which represents the
time the other agents needs to be able to react, which is known as the Re-
transmission Time-Out (RTO) [18]. As soon as an agent sends a message
or acknowledgement it sets the timer arid only starts retransmitting if the
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timer ha.s expired.

This acknowledgement mechanism is applied in a bit different way in the
general algorithm in this thesis because this algorithm makes use of a
sliding, or sending, window analogous to the TCP [17], which makes it
possible to send more messages at a time before receiving acknowledge-
ments. The underlying principle is however the same for both mechanisms.
The operation of a sliding window will be explained in section 3.5.

Duplication. This means that the same message is received more than once by
the receiver. This problem can be caused by the fact that the sender did
send the message more than once to the receiver or because somewhere
during the transmission the message got duplicated. The first case can
happen because of the retransmission mechanism handling deletion errors,
in which case duplication is not really an error. In either case, the receiver
must know when it receives a message whether this is the first time that
it receives this message or that it already received this message before. If
the receiver were ignorant about this fact, then it would write the same
fact twice on its output tape. one-way of checking whether the receiver
already received a certain message before is by comparing this message
with all the messages it already received. This is not very effective.

The solution used by the algorithms is using sequence numbers. All the
messages are given a sequence number and this sequence number is sent
together with the message to the receiver. The receiver now only has
to compare the sequence number of a message that it receives with the
highest consecutive sequence number of the messages that it received so
far. If the sequence number of the message is less than or equal to the
highest consecutive sequence number, then the receiver knows that it is a
duplication and that it doesn't have to write this message on its output
tape. When the sequence number is greater than the highest consecutive
sequence number, then the receiver knows that it is a new message. If a
sending window is used, as is the case in the presented general algorithm,
then the receiver also has to compare the sequence number of the received
message with the sequence numbers of the non-consecutive messages that
it already received.

A sender can send an infinite amount of messages to a receiver. This
would mean that the set of sequence numbers has to be infinite as well.
The bigger the sequence number gets, the more space it takes to store it in
the message. In order to prevent the sequence number using all the space
of a message, the sequence number has a maximum value after which it
starts over again. In theory it can happen that a message from a previous
cycle of sequence numbers gets interpreted as belonging to the current
cycle of sequence numbers. The range that the sequence number goes
through has to be big enough to prevent this error from happening. The
TCP uses for the sequence number a 32 bit number which means that
there are more than 4 * iO different sequence numbers, which in practice
is a big enough number [17].
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Reordering. Because the general algorithm presented in this thesis makes use
of a sliding window (see section 3.5), the sender does not have to wait for
an acknowledgement of a message before it can send the next message.
With a sliding window, the sender can send a sequence of messages to
the receiver at once. If the connection consists of more than one channel,
then these messages don't have to go to the receiver via the same channel.
The transmission speed of these channels can differ, with the effect that
a message that was sent before another message can arrive at the receiver
after that message. In order to prevent a faulty output tape, the receiver
first must be aware that it received the messages out of order and accord-
ingly has to reorder these messages back to the original sequence before
it writes them down to its output tape. The solution for this problem
provided by the algorithm is the same as for the duplication error, which
is adding sequence numbers to the messages. Because each message has
a sequence number, the receiver knows what should be the right order of
the messages it received.

Delay. A connection can consist of more than one channel for the transport
of messages from the sender to the receiver. When these channels have
different transmission speeds, messages can get delayed. This can lead to
reordering errors as described above. When a delay lasts longer than it
takes for the retransmission mechanism to resend this message, then the
delayed message has no value for the receiver any more. The receiver still
has to process this message and look whether it is a new message and also
the connection system has to apply resources to get this now meaningless
message to the receiver.

If a communication system has to handle a lot of these delayed messages,
its performance can slow down. In order to prevent this from happening, a
maximum lifetime for the messages is used. Every message that is sent has
a maximum lifetime. When this lifetime is expired and this message is still
somewhere in the connection system, then this message will be deleted,
thus becoming a deletion error. This maximum lifetime mechanism also
prevents the receiver from interpreting a delayed message with a sequence
number from a previous round as belonging to the current sequence of
messages it is receiving. When the time it takes to go through one cycle
of sequence numbers is longer than the maximum lifetime of message, then
a message will be deleted before its sequence number comes up again.

Insertion. While receiving a sequence of messages from the sender the receiver
can receive a message that was not sent by the sender. The receiver
has to notice this fact, otherwise it would write a message to its output
tape that wasn't sent by the sender. The protocols presented in this
thesis handles this problem by adding to every message the source and
destination address of this message. When the receiver receives a message,
it checks whether it is the receiver mentioned in the destination field and
the receiver checks whether the source is the same as the sender it is
receiving messages from. In this way a misdelivered message will not end
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up on the output tape of the receiver.

Now that the possible errors have been discussed as well as how the presented
algorithms overcome them, some conclusions can be drawn. The duplication of
a message is not really an error for the algorithm because it is a feature of the
algorithm. A message that is delayed is not a problem in itself but can cause a
reordering problem or, if the delay lasts long enough, a deletion error. Mutated
message are thrown out and are not handled by the algorithm so a mutation
becomes a deletion error. A message that is inserted will also not be processed
by the algorithm and is just deleted. So the algorithm actually has to handle
only deletion and reordering errors. The only concern of an agent that sends a
message or an acknowledgement is whether it arrives, and the only concern of
an agent that receives messages is what the right order is of these messages.

3.4 Knowledge creation within a group
The goal of one-on-group communication is that all the members of the group
gain a certain level of knowledge about a fact sent by the sender, and that all
the members gain a certain level of knowledge about the knowledge of the group
of this fact . This implies that the members have to gain a certain level of
knowledge about which members the group consists of. When the group consists
of only a sender and one receiver we speak of one-on-one communication and
the gaining of knowledge is quite straightforward as described in [18, 11]. When
the group consists of a sender and two or more receivers, it becomes a bit more
complicated. The receivers of a certain fact now also have to know to whom
the sender is sending this fact for gaining the above mentioned knowledge. The
solution for this is to send the information about the extension of the group
together with the fact . Considering the general form of a message this can
be achieved in two ways. Analogously to the TCP [17], we will refer to the
general form of a message as a package. A package consists of a data part which
contains the fact to be sent and of a header which contains meta-information
about the data part. Thus, the sender can put the group information in the
data part of the message or iii the header. The group to whom the sender is
sending a certain fact is meta-information about this fact , so it is preferred
to store group information in the header of a package instead of in the data
part.

When the group of receiving agents is stored in the header, then as soon as
any of the receiving agents R receives this package it knows the j-th fact çaj
stored in this package, KR, , and it knows to which other receivers this message
is sent, KR, RG. How does R know whether the other receivers received this
package? The sender has to wait with sending a package with the next fact
until it has received acknowledgements about the package with the previous fact

from all the receivers. The sender then knows that all the receivers know
the fact ,, and thus KSEGWJ. Every receiver knows that the sender works
this way, so when a receiver R receives a package with the next fact it
knows that the sender knows that all other receivers did receive the previous
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package and thus know the previous fact so KR,KSEGcO. With every
repeating step of this cycle the knowledge of the sender and receivers of each
others' knowledge of the facts grows for previously sent facts and the knowledge
about each others' knowledge of the group they are in grows as well, KsEcc'
respectively KR, KsEcoi. The depth k of knowledge gained by the members of
a certain fact is equal to the amount of consecutive facts sent successfully after
this fact. The depth of knowledge within the group about the members of the
group is equal to the depth of knowledge within the group about the first fact
sent by the sender.

If one of the one-on-one algorithms from [18, 11] had been used, the receiv-
ing agents would not have known that the facts , they received were sent to
other receivers as well. Each of the receivers would have known not more than
that the group consists of just the sender and itself C = {S, R} instead of
C = {S,R1, ...,R}. The gaining of knowledge works in this case the same as
mentioned above. However, the knowledge that is gained differs. The know-
ledge a receiver R now has gained after having received two packages with the
consecutive facts and ÷,. is KR,KSE{S,R,}cOJ, and not the much stronger
KR, Ks E(; . So when the goal is to attain a certain depth of group knowledge,
the algorithms from [18, 11] are not sufficient.

3.5 Sliding window and knowledge
In the above description of one-on-one and one-on-group communication, the
sender waits before sending the next package until it has received acknowledge-
ments of this package from all the receivers in the group. When the sender
wants to send a large sequence of packages, this is not very efficient. For every
new package the sender wants to send, it has to wait for an acknowledgement
of the previous package. A more efficient way of sending packages is by using
a sliding window as used in the TCP [17]. The way a sliding window works is
that the sender sends a sequence of packages at once to the receiver. When the
receiver receives this sequence of packages, it only sends an acknowledgement
of the highest consecutive package received, indicating that it received all the
packages up to this one.

The size of the sliding window is determined by the amount of packages that
the receiver can process at once. The receiver communicates this size as an ad-
vice to the sender by storing this advice in the header of the packages it sends to
the sender. If this size is for example five, then the sender selects from its input
tape the first five items and sends these items as packages to the receiver. If
all these packages arrive at once at the receiver, the receiver sends an acknowl-
edgement of the last package to the sender. If not all the five packages arrive
at once at the receiver, the receiver sends an acknowledgement of the highest
consecutive package it did receive. If this highest consecutive received package
was for example package three, then the sender resends the packages four and
five to the receiver. The sender keeps on sending the unacknowledged packages
from the window until it receives an acknowledgement of the last package in
the window. As soon as the sender receives this acknowledgement it slides the
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window completely to the next five facts on the input tape. Again the sender
selects these five new facts from its input tape and sends them as packages to
the receiver. This cycle is repeated until the sender has sent all the items from
its input tape.

The size of the window is variable during this process. So if the amount of
packages that the receiver can process at once changes, it sends another advice
for the window-size. The sender decides what the actual window-size is and
makes this clear to the receiver by storing this actual window-size in the header
of the packages it sends to the receiver. The sliding window was designed for
one-on-one communication. For the sliding window to work with the one-on-
group communication algorithm, the following adjustment had to be made. On
the receiver side, nothing changes and all the receivers in the group send their
window-size advice in the headers of the packages to the sender. The sender
receives more than one advice and has to make a choice. The goal of the sliding
window is flow control and congestion control [17, 19J. In order to control
congestion, the sender does not send more messages at once than the receiver
can handle at once. Thus, in the one-on-group algorithm the sender has too take
the smallest size advised by the receivers. Should the sender choose the advice
of a bigger window-size, then the communication with receivers who advised
for a smaller window can get congested, slowing down the whole one-on-group
communication.

How does the sliding window effect the accumulation of knowledge when used
during communication? First let's have a look at the one-on-one communica-
tion. The window is assumed to have size w. The sender reads from its input
tape the first w items and thus knows these items, so Ks for j = 1, .., w. The
sender sends these items as packages to the receiver and continues sending these
packages until it received an acknowledgement of the last package from the cur-
rent window. As soon as the sender receives this acknowledgement, the sender
knows that the receiver knows that the sender knows the items from the first
window, KSKRKSçOJ for j = 1,.., w. The sender then slides the windows and
starts sending packages with the items from the second window. The receiver
is waiting for the packages with the items , for j = 1, .., w to be transmitted
by the sender. The receiver receives all these packages at once or just some
of them, and sends an acknowledgement of the highest consecutive package it
received. If the receiver did not receive all the packages from the window, the
receiver keeps on sending an acknowledgement of the highest consecutive pack-
age it received until it has received all the packages from the window. If the
receiver has received all the packages from the current window, then it keeps
on sending an acknowledgement of the last package from the window until it
receives a package from the next window from the sender.

In this way, at every cycle the knowledge of the others' knowledge of the
items from a window grows for items sent in previous windows. The difference
with the one-on-one communication where no sliding window is used is that
without a sliding window, the depth of knowledge grows with every successfully
sent fact and with a sliding window, the depth of knowledge grows with every
successful slide of the window. The effect of the sliding window on the accumu-
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lation of knowledge with one-on-group communication is analogous to the effect
for the one-on-one coiiiinunication. The difference is that the sender now has to
wait until it receives an acknowledgement of the last package from the window
from all the receivers before it can slide the window and start sending packages
from the new window. The depth of knowledge of items from previously win-
dows grows with every successful slide of the window. The depth of knowledge
about the members of the group grows accordingly and is equal to the depth of
knowledge of items from the first window.
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Chapter 4

General algorithm and
epistemic proof

The packages from the knowledge-based algorithm for one-on-one communica-
tion from [18], have the following form KR/s(position, data, window_size). SIR
identifies the source of this package (Sender of Receiver), and KR/s stands for:
the source of this package knows this package. The position field contains the
index number of the data element, the data field contains the actual data, and
the window s,ze field represents the size of the window. Since the one-on-group
algorithms from this thesis are extensions of this algorithm, the same notation
form for the packages will be used. The algorithm from [18] is for one-on-one
communication and thus there is only one sender and one receiver, which makes
it obvious to whom the package is sent. In the situation of one-on-group com-
munication this is not the case, so a destination field is added to the header.
Besides the destination, also the group to which the message is sent has to be
added to the package to solve the knowledge problem mentioned in section 3.4.
This is done in the group field. The solution for the mutation error from section
3.3 was the use of a checksum which deletes mutated packages, so a checksum
field is also added to the header. The package used by the one-on-group algo-
rithm now has the following form:

Ksource (destination, checksum, group, position, wind ow ..size, data)

Notice that the window-size field and the data field have switched position
in comparison with the packages of the algorithm from [18]. The reason for this
is to emphasize the fact that a package consists of a header and some data to be
sent. In the package first all the elements from the header are mentioned and
the last element stands for the data. SIR is changed into source to make the
notation more general. An explanation of some notation that appears in the
algorithm follows:

source = source port where this package is sent from [S, R] (S sender of the

25
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data, Ri are receiving agents {for i = 1 to n});
Ksource = the source who sends this package knows this package;
destination = destination port [S, R] (S is sending agent, R are receiving
agents {for i = 1 to n});
checksum = 16-bit one's complement sum of the package;
group = group receivers to which the message is sent [—, R) (No value for
this element means that the sender communicates one-on-one, R stands for
the sender communicates to the whole group);
position = position of data from the input tape;
window.size = size of the sliding window (sender sends actual size, receiver
sends advice for windowsize);
data = data that has to be transmitted.

The algorithm is designed for communication in asynchronous systems. This
means that the algorithm works in systems were there is no central clock and
it works in systems were the communication does not proceed in synchronous
steps. The reason for this is that this communication algorithm now can be used
on internet based networks which are asynchronous. This design choice makes
the algorithm event-driven. As a consequence, the algorithm for the sender as
well as for the receiver consists of two parts. One part handles the reception
of the packages and the other part handles the sending of the packages. The
reception of messages is independent and works asynchronously to the sending
process. Both processes affect the same local knowledge state of an agent.
Though being independent the sending and receiving algorithm influence each
other's behaviour through the local knowledge state of an agent.

In the next table, variables and functions as used in the general algorithm
are explained.

Acknowledgement
ack.Ri : Used by S. An acknowledged sequence

number received from R
highcons_ack...Ri Used by S. Highest consecutive acknowl-

edgement number received from R
highcons_ack_Rc : Used by S. Highest consecutive acknowl-

edgement number received form all re-
ceivers from group G

seq_number A sequence number
highcons.seq : Used by Ri. Highest consecutive sequence

number of the packages R received from
the sender

Checksum
calculate- : Calculates the checksum of a package
Checksum(package)
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Window
window.size The size of the sliding window
offset : Used by S. The offset of the current window
Iatest.adverLRi : Used by S. Latest advertisement for the

window size received from R
Iatest.advertJtG : Used by S. Lowest of the latestdverLRi

from all the receivers
estimateOptimal- : Function that is called by R to its system
WindowSize and that returns the best window..size for

the current state the system is in
Timer

timeout : The Retransmission Time-Out or RTO
timer : Used by R. Timer starts when an acknowl-

edgement is sent to the Sender
timer(seq,Ri) : Used by S. Starts when package with se-

quence seq is sent to Receiver R

4.1 General algorithm
The algorithm consists of four parts. The sender as wel as the receiver have
an algorithm that handles the incoming packages, and have an algorithm that
handles the outgoing packages. The lines in bold face are the lines from the
algorithm and the lines between brackets contain some comment on these algo-
rithm lines.

Sender (incoming packages)

1 for(i=lton)
(For all agents who sender is sending to, ... }

2 highcon&.nck...Rl = 0
{... initialize the highest consecutive acknowledge number.}

3 end
{ High_cons..ack_Ri 's initialized}

4 highcons.ack.RG = 0
(Initialize the overall highest consecutive acknowledgement.}

5 while true do
{ Get ready for receiving acknowledgements from the receivers you're sending to, f19J}

6 when received KR, (S, checksum,—, seq, window..size, —) do
{ You have received a package. Prepare for processing, ... [18J}

7 if (checksum = calculateChecksum(KR, (S, —, —, seq, window .size, —)))
{ Check if the checksum of the package is correct, delete package if not. fi 7J}

8 IatesLadvertfli = window..size
{ The last advertisement you have received from Ri is this one.}

9 IatesLadvert..RG = min(latest.advertjti (for I = 1 to n))
The Last RG advertisement is the lowest latest advertisement from all Ri's.}

10 if (seq> high. cons .ack.Ri) do
(If this acknowledgement from Ri is higher than the highest consecutive
acknowledgement received so far from Ri, ... fi6J}

11 highcons.ack..RI = seq
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{ Thzs is the new highest consecutive acknowledgement from Ri.}
12 forall ack..Rl with (ack..Ri ( highcons..ack_Ri) do

{ For all the packages up to the highest acknowledgment, ..
13 store KsK8(—,—,—,seg,—,—)

{... store the fact that you know that Ri knows it.)
14 end

(Acknowledgement from Ri updated. }
15 highcons.ack_RG = min(high.cons..ack.Ri (for i = 1 to n))

(The new hzgh..cons..ack_RG 23 equal to the lowest high_cons_ack_Ri for all i's.)
16 end

(/10/ ... highcons..ack..Ri and high..cons..ack..RG updated with
acknowledgement from Ri.)

17 end
{... [7].)

18 end
{f6J ... finished processing of incoming package.)

19 end
{... [5].)

Sender (outgoing packages)
1 window.size = 4

(Set initial window-size.}
2 time_out = 20

(Retransmission Time-Out (RTO). Common value for TCP is 20 ms.)
3 offset=0

(Reading of a tape starts at position 0.)
4 while true do

{Start reading and sending an infinite tape, ... /2.4/)
5 forall seq with (offset seq < offset-fwindow..size) do

(For all the packages in the current window, ...)
6 read(seq,alpha)

(... readthevaluesfromthetape,...}
7 store Kg(—,—,—,seq,—,alpha)

... and store this information in your knowledge base.)
8 end

(Tape within window has been read. Facts stored.)
9 while (highcons..ack_RG offset+window..size-1) do

{ While not all the packages in the window have been acknowledged
from RG (all agents), ... /21/)

10 forall seq with (offset <seq < offset+window..size) do
(For all the packages in the current window, ...}

11 for(l=lton)do
(... and for all receiving agents, .

.

12 if not KsK,(—,—,—,seq,—,—) do
{... check if package 'seq' has not been acknowledged yet by Ri, ...}

13 if (timer(..q.ru) � timeout) do
{... and its retransmission time has expired, .

.

14 checksum =
ca1cu1ateChecksum(K(Rj, —, group, seq, window..size, alpha))

{... calculate the checksum of the package to be sent ...)
15 send K (R,, checksum, group, seq, window_size, alpha)

{... (re)send the package to Ri.}
16 timer(..q.rn) = 0

{ Reset the timer. }
17 end

{A package for which the retransmission time was expired, ...}
18 end

(... and that was unacknowledged by Ri, has been resent.}
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19 end
(A package has been resent to oil agents that didn't acknowledge it.)

20 end
(All packages from the sending window have been resent to all the receiving agents
that didn't acknowledge these packages.)

21 end
(/91 ... all the packages in the window have been acknowledged by all
receiving agents Ri.)

22 offset = offset + window-size
(Move offset with the size of the current window.)

23 window..size = latest..advert..Rg
(Set the window-size to the latest group advertisement.)

24 end
{... /4].)

Receiver (incoming packages)

1 while true do
(Get ready for receiving an infinite tape, ... f7J}

2 when received Ks(Rj,group,checksum,seq,window..size,alpha) do
{ You have received a package (from S). Prepare for processing, ... [6J}

3 if(checksum = calculateChecksum(Ks(Rj, —,group, seq, window_size,alpha)))
(Check if the checksum of the package is correct, delete package if not.)

4 store KR Ks(—, —, group, seq, window..size, alpha)
(Store the received package.)

5 end
{... fSJ}

6 end
([2] ... finished processing incoming package.

7 end
{... [1].)

Receiver (outgoing packages)

1 when KR.KS(—,—, —,O,—,—)
{ Wait until the first message is received. }

2 highcons..seq = 0
(Initiate the highest consecutive sequence at 0.)

3 time..out = 20
(Set the retransmission Time-Out (RTO). Common value for TCP is 20 ms.}

4 timer=0
{ Reset timer.)

5 while true do
(Get ready to acknowledge incoming packages, ... f15/)

6 while not KR,(—,—,—,high..cons_seq+1,—,—) do
(Still not received package with sequence number 'high..cons..seq+l', ...}

7 if (timer � time_out)
(... and it is time to (re)transmit acknowledgement,
Prepare for (re)transmitting, . . ./12J}

M window..size = estimateOptimalWindowSize()
(Estimate the best window-size for the state the buffer of Ri is in.)

9 checksum =
calculateChecksum(KJ?, (S, —, —' hi gh..cons..seq, window_size, —))

(Calculate the checksum of the package to be sent.}
10 send KR (S, checksum, —, hi gh_cons_seq, window_size,—)

{Send acknowledgement.)
12 timer = 0

{ Reset the timer. }
13 end
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([7] ... you've just (re)transmiUed an acknowledgement package. }
14 end

{ You've received message high_con&.seq+ 1. }
15 highcons.seq = high.cons..seq +1

{ You now know the next message. Increment highcons..seq.}
16 end

{... [5].)

4.2 Epistemic analysis and proof
In this section a proof is given for the gaining of knowledge as described in
section 3.4. For the readability of the proof the form of the package is shortened
to Ksource(position, data). \Ve assume that the group stays unchanged and
for the destination we assume that the sender S sends to a receiver R1 and vice
versa, so the destination field and the group field are left out. Further it is
assumed that no mutation errors occur so the checksum field is also left out.
Because the sliding window and the possibility of changing the window-size only
effects the flow control, the window-size is left out as well.

Definition 2 The following abbreviations are used in the proof:

KR, (p, a): "Receiver i knows that the p-th data segment is a";
similar for K (p, a);
KR, (p, —): "Receiver i knows the value of the p-th data segment";
similar for Ks (p, —);
E (p, a): "Every receiver of group G knows that the p-th data segment is a";
EG (p, —): "Every receiver of group C knows the value of the p-th data segment".

Theorem 1 Let 7?. be any set of runs consistent with the knowledge-based al-
gorithm from section 4.1 where:

• the environment allows for deletion and reordering errors, but no other
kinds;

• The safety property holds (so that at any moment the sequence Y of data
elements received by each R is a prefix of the infinite sequence X of data
elements on S 's input tape).

Then for all runs in 7?. and all k � 0, j � 0 the following hold:

[Forth]: Ri stores KR, Ks (j + jWm, a) —' DKR, Kg (EGKS)k (j, a).
[Back_il: S stores KSKR, (j+ ,jWm,-_) DKsKR,Ks(EGKs)k(j,_).
[Back_GJ: S stores KSEG (j + Ym_Wm, —) DK (EGKS) (j,

In the proof below we use the following general principle from temporal logic,
see section 3.1:

A P(D) —+ o,
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From the assumptions of the theorem, we can derive some consequences that
we will regularly use in the proof:

B Because 1Z is consistent with the knowledge-based algorithm, S and R store
all relevant information from the packages that they receive. Moreover,
packages that are sent have the following form: KR, or Ksco, from
which the following can be concluded. If R receives Ks. then R stores
KR, thus also DKR, Kgp. Similarly for S.

C Under the same assumption of 1Z being consistent with the knowledge-based
algorithm, system 1 can be viewed as a system of perfect recall. Now we
have in general that KsD — DK5ço, see axiom KT1 from section 3.1.

Proof
\Ve prove theorem I by induction on k.

First we look at the situation for k = 0.
From B follows the Forth-part for (k = 0):

H1 stores KRIKS (j,o) — DKR,KS (j,c) (4.1)

H1 sends an acknowledgement only if it received a package. Together with
A and B we have:

if R sends KR, (j, —) then P (R stores K (j, o)) (4.2)

so PDK1K5(j,c), and DKR,Ks(j,a)

S only stores acknowledgements if it also received it from R1, thus it knows
that H1 has sent it in the past.

If S stores K KR, (j, —) then KP (H1 sends K11, (j, )) and .. (4.3)

With A and C and the fact proven at (2), it can now be derived that:

KSP(OKR,KS (j, ))' and KSDKR,KS (,, —), so DKSKR,KS (j, —)(4.4)

If (3) and (4) are put together, then we have the BackJ-part of the the-
orem for all i from the first window (k = 0).
S receives acknowledgements from all the receivers and is able to retrieve
information out of this. We go back two steps and look at another know-
ledge level of S instead of the knowledge level between S and just one
receiver.
S only stores acknowledgements if it did receive those. If S has received
acknowledgements of a certain package from HG where G = { 1, ..., n} then
S knows that R1<11..> have sent these acknowledgements in the past.

If S stores KSEG (j, —) then KsP (R1<1=1..> sends KR, (j, )) (4.5)
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\Vitli A and C and the fact proven at (2) it can now be deduced that:

KSP(DEGKS(j,—)), and KSDEGKS(3, —), so DKSEGKS(3,—) (4.6)

If (5) and (6) are put together, then we have the BackG-part of the
theorem for all j from the first window (k = 0).

\Vhat knowledge will emerge if the window slides? This will be shown in the
induction step.

induction step Suppose as induction hypothesis that Backj. Back_G and
Forth are valid for k — 1, with k � 1. Now a proof follows that Forth,
Backi, and Back..G are also valid for k.

[Fort hi:
S only slides the window if it has received from all the receivers R2 an
acknowledgement for the last package from the actual window.

S sends (j + EiWm, a) — P (S stores KSEG (j + —)) (4.7)

\Vitli the Back_G-part of the theorem for k — 1 and the first principle,
now the following can be deduced:

S sends Ks (j + iWm,a) —' DK. (EGKS)k(j, —) (4.8)

R2 knows this fact. So if R1 receives a package from S with position mark
j + E, then R knows that S has sent this package somewhere in the
past.

From the fact given at (8) together with A and B, the following can be
derived:

R1 stores KR,KS (j + 2jWm,) —* DKRKS (EGKs)c (j, (4.9)

This is exactly what the Forth-part of the theorem says.

[Backi]:
R only sends an acknowledgement for the j + EiWmth data element
if it did store KRKS (j + m=jWm, —) in the past. With A, now the
following can be derived:

R sends KR, (j + EjWm, —) .• DK,Ks (EGKS)k (j, —) (4.10)

S knows this fact. So if S receives an acknowledgement from R1 for the
j+EiWm4h data segment then S knows that R2 has sent this acknowl-
edgement in the past. Using A and B, it can now be concluded that:

S stores KsKR, (j + >mIWm, —) _* DKKp,Kg (EGKs)c (j, —)(4.11)

and this is exactly the Backi-part of the theorem.

1
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[Back...G]:
S receives acknowledgements from all R2. At a certain time S will have
received an acknowledgement for the j + w-th data segment from
all R. Thus,

S stores KsEa (j + EniWm, —)

\Vith A and B, it can now be concluded that:

S stores KSEG (j + EJk....mWm, —) . DK (EGKs)' (j, —) (4.12)

and this is exactly the back_G-part of the theorem.
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Chapter 5

CPS & one-on-group
algorithm

In the previous sections we have seen that it is possible to attain a certain
level of group knowledge while communicating one-on-group. The reason for
developing a one-on-group communication algorithm for MAS are the needs of
cooperative problem solving (CPS) as discussed in chapter 2. So let us have
a look at how the general algorithm from section 4.1 can work for the CPS
process. Communication within the CPS process consists of alternating one-
on-one communication with one-on-group communication, depending at with
phase of one of the four stages the CPS process is. The sender in the one-on-
group communication is the initiating agent of the current phase of one of the
CPS stages. This initiating agent can be the same agent throughout the whole
process of CPS or there can be different initiating agents. In what way do both
cases affect the gaining of group knowledge? And what are the implementation
requirements for a CPS specific algorithm to assure the gaining of knowledge as
discussed in chapter 3?

5.1 Gaining of knowledge throughout CPS
In between two one-on-group communication processes, the agents communicate
one-on-one, and vice versa. For the one-on-one communication it can be the
initiating agent communicating independently one-on-one wit ii all the members
of a potential team or it can be two agents communicating about a commit-
ment to perform an action and communicating the outcome to a coordinating
agent. After a successful one-on-group communication process, follows a one-on-
one communication process. And after a successful one-on-one communication
process, follows a one-on-group communication process. In fact, the transition
from one to the other communication process can be seen as a notification that
the previous communication process was successful.

During the team formation process for example, the initiating agent only
communicates the fact that the agents of a potential group have taken on the

35
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intention INT(i,t A M-INTG ()), if this is true. So as soon as the members
of a potential group receive the first one-on-group message communicated by
the initiator, the members of this group know that the previous one-on-one
communication process was successful. The transition from an one-on-group
to an one-on-one communication process works similarly if the initiating agent
stays the same. For example, an initiating agent only starts the plan formation
process by communicating one-on-one to the members of the team if this initiat-
ing agent received an acknowledgement of the last one-on-group communication
message from all the members of this team. So at the moment that the mem-
bers of the group receive a plan formation one-on-one communication message
from the initiating agent, they know that the one-on-group communication was
successful.

So for the gaining of group knowledge, the transition from an one-on-one
to an one-on-group communication process, and from an one-on-group to an
one-on-one communication process is equal to the gaining of group knowledge
at one cycle within one-on-group communication. All of this holds nder the
condition that the initiator is the same agent during the whole process. Thus
with each transition the depth of knowledge among the members of the group
grows from k to k + 1.

During the transition from one-on-one communication to one-on-group com-
munication, the initiator always stays the same agent. As discussed in chapter
2, this initiator is the only agent whose group knowledge is sufficient to start
communicating something one-on-group. During the transition from a one-
on-group communication process to a one-on-one communication process, the
initiator can be any other agent from the group which makes the situation a
bit more complex. The new initiating agent of the one-on-one communication
process can start his role as initiator as soon as he received the last one-on-group
message from the initiator of the one-on-group communication process.

It can be the case that one or more members of the group did not yet receive
the last one-on-group message. So when the members of the group receive
the first one-on-one message from the new initiator they don't know whether
all the members did receive the last one-on-group message as is the case in
the situation where the initiating agent stays the same. This means that the
depth of knowledge among the members of the group doesn't grow during this
transition. The new initiating agent from the one-on-one communication process
only starts sending one-on-group messages about the fact established during the
one-on-one communication process if this process was successful. For the one-
on-one communication process to be successful, all the agents from the group
must have received the last one-on-group message from the previous initiating
agent. So when the agents of the group receive the first one-on-group message
from the new initiating agent these agents know that all the agents received
the last one-on-group message from the previous one-on-group communication
process, and that all the one-on-one communication processes between the new
initiator and the other receivers of the group were successful. So with this
transition the depth of knowledge among the members of the group grows from
k to k + 1.
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The difference in gaining knowledge between the situation where the initi-
ating agent changes and the situation where the initiating agent stays the same
is that in the last situation the knowledge among the members of the group
grows with every transition and that in the first situation the knowledge of
the members only grows during the transition from one-on-one to one-on-group
communication.

5.2 Adjusting the algorithm for CPS, Problems
In the previous section it is discussed that within the CPS process the group
knowledge accumulates while going through the stages of CPS. For the general
algorithm presented in section 4.1 it was proved that the group knowledge grows
while a sender is communicating an arbitrary sequence of data one-on-group.
The question is now, how this general algorithm has to be modified in such a
way it can be used in the CPS process. A modified algorithm must be able
to handle the transition from one-on-one to one-on-group communication and
the transition from one-on-group to one-on-one communication with a possible
change of the initiating agent. By 'handling' it is meant that the communication
throughout the process is a stream of accumulating messages, thus assuring the
gaining of knowledge proved in section 4.2. Let us take the general algorithm
from section 4.1 and look where problems might be encountered while used in
the different situations of a CPS process. The messages from the general algo-
rithm are of the form:

Ksource (destiruition, checksum, group, position, window ..size, data).

When this message form is compared with the form of the messages used in
the proof, Ksource(posit ion, data), it is clear that in the latter case a lot of
fields are left out. This implies that they are not important for the knowledge
gaining. What is important is to determine which fields from the header are
involved in the knowledge gaining process as described by theorem 1,. Infor-
mally, this theorem states that when an agent receives successfully k messages
after any arbitrary message j, its knowledge of the group knowing this message
j is gained to the power of k. The destination field is only used by the connec-
tion in the communication medium to determine to which agent this message
has to be delivered and by the receiving agent which determines by this value
whether it is supposed to receive this message. Thus the destination field is
involved in message delivery and not in knowledge gaining. The checksum field
is used by the receiving agent of a package to determine whether any mutation
error has occurred. Being a check for mutation errors, the checksum is not in-
volved in knowledge gaining. The window..size field is part of the sliding window
mechanism which deals with flow and congestion control. The sliding window
affects the knowledge as stated in theorem 1, but is not directly involved in the
knowledge gaining process.

The group field is used by the receiving agent of the current package to
determine to which other agents this message is sent. This group information
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is involved in knowledge gaining but only in a way that a receiver can deduce
knowledge about the knowledge of other agents. It does not contribute to the
accumulating of knowledge or give problems in the knowledge gaining process
during the changing of the initiator. The source field has a similar function as
the group field. The receiver of a message determines by this field who the sender
is of this message, deducing knowledge about the knowledge of this sender.

The last field is the position field. This field determines what the index posi-
tion is on the input tape of the data element in the package. In the algorithm of
section 4.1, the sender starts sending messages from an input tape. Every data
segment from the tape has a sequence number which is sent together with the
data segment by the sender. On reception of a message, a receiver acknowledges
to the sender that it received this message by sending a message to the sender
containing the same sequence number. This mechanism works well for the case
where one sender is sending a predefined sequence of data to a group of receivers,
which in fact is a one-way transport of data. The communication process from
CPS is not a one-way transport of data but a dialogue communication process
where the next message is not predefined but depends on what the answers are
from the receivers. If we want to use the algorithm from section 4.1 for this dia-
logue type of communication with its interleaving one-on-one and one-on-group
communication, a single index is not sufficient because some problems will be
encountered.

It is very unlikely that during the independent one-on-one communication process
between the sender and the receivers, the same amount of messages will be used.
So for every sender-receiver communication within a one-on-one communication
process a separate index is needed. This works for the situation where the ini-
tiator stays the same agent. For example we take one group C consisting of
three agents R1, R2, and R3, G = {R1, R2, R3}. Agent R3 is the initiating
(sending) agent, temporarily denoted as S3, and the two other agents R and
R2 are the receivers. The index S3 uses to communicate with R1 starts at 100
and the index S3 uses to communicate with R2 starts at 200. Let us work out
an example. S3 sends four messages to R1 which are received and answered by
R1. This answer can be an answer to a question or request sent by S3 or just
an acknowledgement if S3 sent a statement.

In the notation that follows the agents are identified by the numbers 1,2 and
3. If an agent acts as a sender or receiver, this is denoted by Si or Ri respec-
tively. The agents exchange messages. The arrow, —> indicates the direction
of the message. The messages are of the form (100,_,data). The first field
contains a sequence number. The second field contains the group information.
In the case of one-on-one communication the value of this field is '...' and in the
case of one-on-group communication the value of this field is 'G'. The last field
contains the data that is sent.

Agent3 Agent 1
1. S3 —(100,_,data)—> Ri
2. S3 <—(100,_,answ)- Ri
3. S3 -(1O1,_,data)-> Ri
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4. S3 <—(101,_,answ)— Ri

5. S3 —(102,_,data)—> Ri

6. S3 <-(102,_,ansv)— Ri

7. S3 -(103,_,data)—> Ri

8. S3 <-(104,_,answ)— Ri

This brings the index for the next message to be sent to R1 to 104. S3 commu-
nicates two messages with R2, which are answered by R2, as follows

Agent3 Agent2
1. S3 -(200,_,data)—> P.2
2. S3 <—(200,_,answ)— R.2
3. S3 -(201,..,data)-> P.2
4. S3 <-(201,_,answ)- P.2

This brings the index for the next message to be sent to R2 by S3 to 202. During
both these one-on-one communications, S3 has reached the goal for this phase
and is now ready to communicate the outcome one-on-group to R1 and R2. To
communicate the outcome, S3 has to communicate two messages one-on-group
which are answered by R1 and R2:

Agent 1 Agent3 Agent2
1. Ri <-(104,G,data)— S3 —(202,G,data)-> P.2
2. Ri -(104,..,answ)—> S3 <-(202,_,answ)— P.2
3. Ri <-(105,G,data)- S3 -(203,G,data)-> P.2
4. Ri —(105,_,answ)—> S3 <—(203,_,answ)- P.2

After this successful one-on-group communication, S3 enters the next stage
where it has to communicate one-on-one again with the other agents from G.
The index for the next message to R1 is 106, and the index for the next message
to R2 is 204.

Introducing a separate index for each sender-receiver pair in the communication
solves the problem of the unequal amount of messages sent during the one-on-
one communication phase. Does this solution also work for the situation where
the initiator changes after the one-on-group communication? The previous ex-
ample ended with a successful one-on-group communication. Let us go from
there while R2 now takes over the role of initiator, temporarily denoted as S2,
and the previous initiator S3 will be denoted again as R3. S2 sends three mes-
sages to R1 which are received and answered by R1. Because S2 and R1 did not
communicate to each other before, S2 sets a new index to communicate with
R1 that starts at 300, as follows.

Agent2 Agenti
1. S2 -(300,_,data)-> Ri

2. S2 <—(300,_,answ)— Ri

3. S2 -(301,_,data)-> Ri

4. S2 <—(301,_,answ)— Ri

5. S2 —(302,_,data)-> Ri

6. S2 <-(302,_,answ)— Ri
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This brings the index for the next message to be sent from S2 to R1 at 303.
S2 also communicates one-on-one to R3. The last communication between 52
and R3 was the message (302,..,answ) being sent from R3 to S2. Now, S2 wants
to send some data to R3. Which index does it have to use? Agent S2 did not
yet communicate to R3 in the setting of S2 being the initiator. One possibility
could be that S2 sets a new index for this communication, starting for example
at 400. Another possibility is that 52 continues with the index being used by
S3 while communicating one-on-group to R2. In this case S2 can use the same
index number, 203, as used during its last answer message to S3. Or S2 can use
the next index number, 204. It seems there are three options for agent S2 to use
the index for communicating one-on-one with R3. For each of the three options
worked out next, the last two communication lines of the previous one-on-group
communication are taken as a starting point.

Option 1, S2 sets new index.

Agent 1 Agent3 Agent2
1. Ri <-(105,G,data)- S3 -(203,G,data)—> R2

2. Ri —(i05,_,answ)-> S3 <—(203,_,answ)— R2
3. R3 <-(400,_,data)-- S2
4. R3 —(400,_,answ)—> S2
5. R3 <—(401,_,data)- S2
6. R3 —(401 ,_,answ)—> S2

Option 2, S2 reuses the last index number.

Agent 1 Agent3 Agent2
1. Ri <—(105,G,data)- S3 -(203,G,data)—> R2
2. Ri —(105,_,answ)—> S3 <-(203,_,answ)- R2
3. R3 <-(203,_,data)- S2
4. R.3 -(204,_,answ)-> S2
5. R3 <-(204,_,data)- S2
6. R3 -(205,_,answ)—> S2

Option 3, S2 uses the next index number.

Agent 1 Agent3 Agent2
1. Ri <-(i05,G,data)- S3 -(203,G,data)-> R2

2. Ri —(105,_,answ)-> S3 <—(203,_,answ)— R2
3. R3 <-(204,_,data)- S2
4. R3 -(204,_,answ)-> S2
5. R3 <-(205,_,data)- S2
6. R3 -(205,,answ)-> S2

All the above options show some anomalies in the index numbering with respect
to being an accumulating stream of packages. For the first option, there are two
different consecutive communication streams between agent 2 and 3. This can
lead to parallel communication streams if agent 3 continues communicating as
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initiating agent S3 to agent 2. while agent 3 as receiver R3 also receives mes-
sages from S2. Two parallel communication processes between two agents about
the same process is prone to communication errors and thus a situation that
should be avoided. Besides being prone to errors, two parallel communication
processes break the stream of accumulating messages necessary for the gain-
ing of knowledge as proved in chapter 4. For the second option there are two
anomalies. The first one is that in the one-on-one communication the receiver is
the agent who increases the index with every answer instead of the sender. So,
when R3 sends an answer, it acknowledges an index it did not receive yet. The
second anomaly can arise at the second time agent 2 sends a message with the
same index. If the previous message was just an acknowledgement, then there
is no problem. Acknowledgements do not occupy an index number, otherwise
we would end up with acknowledging acknowledgements (171. If R3 sent data
instead of just an acknowledgement to agent 3 in the first message, then agent
2 cannot send another message with the same index number. When agent 3
answers with just an acknowledgement, agent 2 does not know whether agent
3 acknowledged the first or the second message. For option three it is possible
that agent 3 sends a next message (204,,data) to agent 2 and receives from
agent 2 a message (204,..,data) instead of (204,,answ). Both agents have then
sent a data message with index 204 and have also received a data message while
both agents expected an answer message. This is a situation that should be
avoided.

5.3 Adjusting the algorithm for CPS, Solutions
How can these problems be solved? TCP makes use of two indices per con-
nection [211. One index is configured by the sender and the other index is
configured by the receiver. Thus for every message that is sent between the
sender and receiver, a sequence number is sent as well as an acknowledgement
of the last consecutive sequence number that is received. Could this two index
system solve the index numbering problems? First let us look at a one-on-one
communication process ending with a one-on-group communication using two
indices per agent pair. Agent S3 communicates four messages one-on-one to
agent R1, and communicates two messages with agent R2. The first message
sent by the sender to an agent only contains the sequence number of the sender.
When the receiver receives this messages, it initiates its own sequence number
and answers with a package containing this sequence number together with the
acknowledged sequence number from the sender. Thus after two messages the
sender and receiver know each other's sequence numbers.

Agent 1 Agent3 Agent2
1. Ri <—(iO0,_,_,data) — S3

2. Ri —(200,100,_,ansv)—> S3

3. Ri <—(1O1.200,_,data)— S3 -(300,_,_,data) -—> R2

4. Ri —(201,iOi,_,answ)—> S3 <—(400,300,_,answ)- R2

5. Ri <—(i02,201,G,data)— S3 —(301,400Gdata)—> R2
6. Ri —(202,102,_,answ)—> S3 <—(401,301,_,answ)- R2
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This works straightforwardly, so let us look how this mechanism of two indices
works when the initiator changes. Lines 5 and 6 from the previous commu-
nication schema are used as starting point, and agent 3 becomes the sender.
The first option with the one index mechanism was that S2 set a new index to
communicate with R3. There are already two indices between S2 and R3, so
it is not necessary to set a new index. S2 and R3 start communicating one-
on-one, continuing the use of the indices they already used during the previous
one-on-group communication. This eliminates the problem of the possibility of
two parallel communication processes between both agents. Further it avoids
breaking up the stream of accumulating messages which is needed for the gain-
ing of knowledge proved in section 4.2. There are now two options left for S2
when using the two index number mechanism. The first one is that it reuses
the last index number and the other one is that it uses the next index number.
Worked out, these options look as follows.

Option 1, S2 reuses the last index number.

Agent 1 Agent3 Agent2
1. Ri <—(102,201,G,data)— S3 —(301,400,G,data)-> R2

2. Ri —(202,102,_,ansv)—> S3 <—(401,301,_,answ)— P.2

3. R3 <—(401,30i,_,data)— S2

4. P.3 -(302,40i,_,answ)-> S2

5. P.3 <—(402,302,_,data)- S2

6. P.3 —(303,402,_,answ)-> S2

Option 2, S2 uses the next index number.

Agent 1 Agent3 Agent2

1. Ri <—(i02,201,G,data)— S3 -(30i,400,G,data)—> P.2

2. Ri —(202,i02,_,answ)—> S3 <-(401,30i,_,answ)- P.2

3. P.3 <-(402,301,_,data)- S2

4. P.3 -(302,402,_,answ)-> S2

5. P.3 <-(403,302,_,data)- S2

6. P.3 -(303,403,_,answ)-> S2

For the first option, where S2 reuses the last index number, the anomaly of the

receiver increasing the index (as was the case in the situation with one index)
does not occur here. However, the second anomaly still exists. Agent 2 still sends
two messages with the same index numbers. If the first one was a message with
an answer instead of an acknowledgement, then agent 2 cannot send another
message with the same index numbers containing data for the new one-on-
one communication. Option 2 looks a bit strange. Agent 2 sends two messages
with the same acknowledgement number but increases its own sequence number.
Again a similar problem can arise as with the single index number mechanism. It
is possible that agent 3 sends a next message, (302,401,,data), to agent 2 while
it receives from agent 2 a message (402,301,,data) instead of (402,302,..,answ).
As can be seen, the index numbering is now completely messed up. Both agents
won't know how to proceed so this is a situation that should be avoided.
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Using a two index mechanism solves some of the problems that arise while the
initiator changes but not all the problems. The problems that are left have one
and the same cause. When another agent becomes the initiator it is not general
knowledge that there is a new initiator. Another agent from the group can start
acting as an initiator while the current initiator continues acting as an initiator
as well. This leads to the problems between these two agents as discussed above
but also leads to problems for the other agents in the group which still act as
receivers. These agents start getting one-on-one communication messages about
the next stage from different agents acting as initiator. It might be clear that
this is not a workable situation. To solve this problem, the algorithm has to
provide a mechanism that prevents that more then one agent acts as an initiator.

An initiator change takes place at the transition from a successful one-on-
group communication to the next one-on-one communication process. The so-
lution for preventing that more than one agent acts as an initiator is that if any
other agent wants to act as an initiator, this agent notifies the current initiator
of this fact. Instead of just acknowledging the last one-on-group message from
the current initiator the new initiator sends a request with this acknowledge-
ment. Before the current initiator starts communicating one-on-one for the next
stage, it now knows that there is another agent that wants to act as an initiator.
The current initiator now can decide whether it continues itself as an initiator or
whether it lets the other agent act as an initiator. If the current initiator decides
to continue as an initiator, it continues communication one-on-one concerning
the next stage. As soon as the agent that announced itself as a new initiator
receives the first one-on-one communication message from the sender, it knows
that it should not act as an initiator. If the current initiator decides that the
other agent can act as the initiator it sends a message one-on-one to this agent
confirming that it is the initiator for the next stage. After the new initiator re-
ceives this message, it knows that it is the initiator for the next stage and starts
communicating messages one-on-one concerning the next stage. The agents are
cooperative as stated in chapter 2 about CPS, so if the other agent has better
resources for being the new initiator, the current initiator shall transfer the role
of initiator to the other agent.

It can also be the case that there is more than one agent which notifies the
current initiator that it wants to act as the initiator for the next stage. The
current initiator makes a decision about which agent will get the role of initiator
for the next stage. If the current agent decides to continue to act as an initia-
tor, then it starts communicating facts one-on-one about the next stage. If the
current initiator decides that another agent can act as an initiator, it sends a
confirmation message to this other agent after which this agent starts communi-
cating facts one-oil-one about the next stage. For all the agents that announced
themselves as potential initiator, but did not get this role handed to them by
the current agent, will know this as soon as they receive a one-on-one message
concerning the next stage from another agent in the group. As noted before,
the agents are cooperative. The current initiator will choose the new initiator
based on which agent has the best resources. Let us work three examples. In
the first two examples, the current initiator and another agent both want to
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act as initiator. In the first example the initiator changes and in the second ex-
ample the initiator stays the same. The third example shows two other agents
announcing themselves a.s potential initiators, after which the current initiator
decides which agent will be the initiator for the next stage. The initiator is the
same agent as the sender denoted in the schemes as S, for the time it acts as an
initiator. The fact that an agent announces itself as being a potential agent for
the next stage is represented by the value mit in the data field. If the current
initiator decides that another agent can have the role of initiator, it sends a
message containing answ into the data field.

Example 1, S2 becomes the new initiator.

Agent 1 Agent3 Agent2
1. Ri <—(102,201,G,data)— S3 —(301,400,G,data)—> R2

2. Ri —(202102,_,answ)—> S3 <—(401,301,_,init)— R2

3. S3 —(302,401,_,answ)—> R2

Agent3 Agent2 Agent 1

4. P.3 <-(402,302,_,data)— S2 -(500,_,_,data) —> Ri
5. R3 -(303,402,_,answ)—> S2 <-(600,500,_,answ)- Ri

6. P.3 <—(405,303,_,data)-- S2 —(501,600,_,data)—> Ri

Example 2, S3 stays the initiator after mit request from S2.

Agent 1 Agent3

1. Ri S3 —(30i,400,G,data)-> P.2

2. Ri S3 <-(401,301,_,init)— R2
3. Ri P.3 —(302,401,_,data)—> S2
4. Ri P.3 <—(402,302,_,answ)- S2

5. Ri P.3 —(303,402,_,data)-> S2

6. Ri P.3 <-(405,303,_,answ)- S2

Example 3, S2 becomes the new initiator after mit request from S2 and S3.

Agent 1 Agent3 Agent2

1. Ri <—(102,201,G,data)- S3 -(301,400,G,data)-> R2

2. Ri —(202,i02,_,init)—> S3 <—(401,301,_,init)— R2

Agent3 Agent2 Agent 1

3. R3 -(302,401,_,answ)—> S2

4. P.3 <-(402,302,_,data)- S2 -(500,_,_,data) -> Ri
5. P.3 -(303,402,_,answ)-> S2 <-(600,500,_,answ)- Ri

6. P.3 <—(405,303,_,data)— S2 -(501,600,_,data)-> Ri

In the above three examples no anomalies in the index numbering are present.
The combination of the two index mechanism together with the mechanism that
regulates the change of the initiator handles the problems that could occur when
the initiator changes during the CPS process.

<—(102,201,G,data)—
—(202,,i02,_,answ)—>
<—(103,202,_,data)-

—(203,i03,_,answ)—>
<—(104,203,_,data)—

—(204,i04,_,answ)—>

Agent2



Chapter 6

CPS specific algorithm and
epistemic proof

The packages from the general algorithm from section 4.1 have the following
form: Ksource(destination, checksum, group, position, window ...size, data). As
discussed in section 5.2, an algorithm for CPS needs an index mechanism con-
sisting of two indices and does not need a sliding window. The window.,.size field
becomes the second index field. The first index contains the sequence number
from the agent who is sending the package, and the second index field contains
an acknowledgement of the sequence of the package this agent is reacting to.
These fields will be called respectively the sequence field and the acknowledge-
ment field. The package used by the CPS one-on-group algorithm now has the
following form:

K source (destination, checksum, group, sequence, acknowledgement, data)

Here follows an description of the fields from the package from the CPS al-
gorithm.
source = source port where this package is sent from [S, R,J;
Ksource = the source who sends this package knows this package;
destination = destination port of package [S, R1J;
group = group receivers to which the message is sent [Re, —] ("—" means
that the sender communicates only to the destination (one-on-one communi-
cation));
sequence = sequence number of message from agent who sends this message;
acknowledgement = sequence number of message that agent is reacting at
data = data that has to be transmitted.

In the next table, variables and functions as used in the CPS algorithm are
explained.

45
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Acknowledgement
ackRi : Used by S. An acknowledged sequence number

received from R
seqSRi Used by S. Sequence number of packages S is

sending to R
seqRi : Used by S. Sequence number of packages S is

receiving from Ri
seqRi : Used by R. Sequence number of packages RI is send-

ing to S

seqS : Used by R. Sequence number of packages Ri is re-
ceiving from S

Data
compose(data) : Used by S and R. Agent makes up the data it wants

to send

Timer
timeout The Retransmission Time-Out or RTO
timer : Used by R. Timer starts when an package is

sent to the Sender
tirner(seqSRI) : Used by S. Starts when package with sequence

seqSRi is sent to Receiver R
Checksum

calculate- : Calculates the checksum of a package
Checksum(package)

6.1 CPS algorithm
The algorithm consists of four parts. The sender as we! as the receiver have
an algorithm that handles the incoming packages, and have an algorithm that
handles the outgoing packages. The lines in bold face are the lines from the
algorithm and the lines between brackets contain some comment on these algo-
rithm lines.

Sender (incoming packages)

1 for(i=lton)
(For all agents who sender is sending to, ... }

2 ack_Ri = seqSRi
{... initialize the acknowledgement number.)

3 end
{ ack..Ri 's initsalized}

4 while true do
(Get ready for receiving acknowledgements from the receivers, (13/)

5 when received KR (S, checksum, —, seqR,, seqSR,, data) do
{ You have received a package. Prepare for processing, ... (12J}

6 if (checksum = calculateChecksum(KR, (S, —, —, seqRj, seqSR.j, data)))
(Check if the checksum of the package is correct, delete package if not. /1 1])

7 if (seqSRi = ack_Ri + 1) do
(If this acknowledgement from Ri is equal to the nexi ack..Ri, ... /101)

8 ack_Ri = seqSRl
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this is the new current acknowledgement from Ri, ..
9 store KSKR, (S, —, —, seqR,, seqSR,, data)

{... store the fact that you know that Ri knows it.}
10 end

{ /7J ... acknowledgement from Ri.)
11 end

{... /6].)
12 end

/5].. finished processing of incoming package.)
13 end

{... 141.)

Sender (outgoing packages)
1 time_out = 20

{Retransmission Time-Out (RTO). Common value for TCP is 20 ms.}
2 for(i=lton)do

{For all receiving agents.}
3 if not seqSRj do

{ If S did not communicate to R before)
4 seqSRi=x

{ Initiate own sequence number for Ri at x}
5 end

{seqSRi initiated.)
6 end

{seqSRi for all receiving agents initiated.)
7 while true do

{ Start sending sequence of messages, ... f25J)
8 compose(data)

{ make up the data for this package, ...}
9 store K(—, —, C, —, —,data)

{... and store this tnformation in your knowledge base.)
10 while ( ack_RI seqSRi) do

{ While not all recewers have acknowledged the package with sequence seqSRi . . . }
11 for(i=lton)do

{... and for all receiving agents, ...}
12 if not KSKR,(—,—,G,seqR1 + 1,SeqSR1,data) do

{... check if package 'seqSRi' has not been acknowledged yet by Ri, .. . }
13 if (timers.qsai � time_out) do

{... and its retransmission time has expired, ...}
14 checksum = calculateChecksum(Ks(Rj, —, C, seqSR1, seqR1, data))

{... calculate the checksum of the package to be sent ...)
15 send K(Rt, checksum, C, seqSRj, seqR,data)

{... (re)send the package to Ri.)
16 timer(.oqslu) = 0

{ Reset the timer.)
17 end

(A package for which the retransmission time was expired, . . . }
IM end

and that was unacknowledged by Ri, has been resent. }
19 end

{ A package has been resent to all agents that didn't acknowledge it. }
20 end

(/9] ... all agents Ri have acknowledged the package with sequence number seqSRi.}
21 for(i=lton)do

(For all receiving agents, ..
22 seqRi = seqRi + 1

Sequence number of next message from Ri is known. Increment seqRi.}
23 seqSRi = seqSRi + 1



48 CHAPTER 6. CPS SPECIFIC ALGORITHM AND EPISTEMIC PROOF

Increment own sequence number for RI.)
24 end

Sequence numbers for and from RI updated. }
25 end

{... [7/.)

Receiver (incoming packages)
1 while true do

{ Get ready for receiving sequence of messages, ... f7J}
2 when received Ks(R,,G,checksum,seqS,seqR1,data) do

{ You have received a package (from S). Prepare for processing, ... [6/)
3 if(checksum = calculateChecksum( K ( R,, —, C, seqS, seqR,, data)))

(Check if the checksum of the package is correct, delete package if not.)
4 store KR, Ks(—, —, C, seqS, seqRj, data)

{ Store the received package.)
5 end

{... /5/)
6 end

{f2] ... finished processing incoming package.)
7 end

{... [1].)

Receiver (outgoing packages)
1 when KR,KS(Ri,—,C,x,ø,data)

(The first message is received.}
2 seqS=x

(The first sequence number from S is x.}
3 seqRl=y

(Initiate own sequence number at y.}
4 time..out = 20

(Set the retransmission Time-Out (RTO). Common value for TCP is 20 ins.)
5 timer = 20

{Reset timer.)
6 while true do

(Get ready to acknowledge incoming packages, ... [15])
7 compose(data)

{... ,make up the data for this package, ...}
while not K,Ks(Ri,—,G,seqS+ 1,seqR,data) do
{Still not received package with 'seqS+l' (and 'seqRi'), ...}

9 if (timer � time.out)
{... and it is time to (re)transmit acknowledgement. Prepare for
(re)transmitting, . . .f12/)

10 checksum = calculateChecksum(KR (S, —, —, seqR, seqS, data))
(Calculate the checksum of the package to be sent.)

11 send KR (S, checksum, —, seqR,, seqS, data)
(... (re)send acknowledgement.)

12 timer = 0
(Reset the timer.)

13 end
([7/ ... you've just (re)transmitted an acknowledgement package.)

14 end
{ You've received message seqS+ 1 wiht acknowledgement seqRi}

15 seqS = seqS+1
You know the sequence number of the next message. Increment seqS.}

16 seqRi = seqRi-4-1
(Increment own sequence number, seqRi.)

17 end
{... /6).)
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6.2 Epistemic analysis and proof
In this section a proof is given for the gaining of knowledge as described in
section 5.1. For the readability of the proof the form of the package is shortened
to Ksource(sequence, data). \Ve assume that the group stays unchanged and for
the destination we assume that the sender S sends to a receiver R1 and vice versa,
so the destination field and the group field are left out. Further it is assumed
that no mutation errors occur so the checksum field is also left out. Theorem
2 only states the gaining knowledge about the data sent by the sender. In the
general algorithm, only the sender sends data and the receiver just acknowledges
these data. In the CPS algorithm the receiver can also sent data instead of only
acknowledgements. So every package sent is in fact an acknowledgement. The
gaining of knowledge of data sent by the receiver is similar to the gaining of
knowledge of data sent by the sender. From the perspective of the receiver, the
receiver functions as the sender of the algorithm with the only restriction that it
does not communicate one-on-group. For the proof we only need the sequence
number; the acknowledgement number is left out. Theorem 2 and the proof are
now analogous to the theorem and the proof of the windowless knowledge-based
one-on-group algorithm from van Baars and Verbrugge in [20].

Definition 3 The following abbreviations are used in the proof:

KR, (p, a): "Receiver i knows that the p-th data segment is a";
similar for Ks (p, a);
KR, (p, —): "Receiver i knows the value of the p-th data segment";
similar for K5 (p, —);
EG (p, a): "Every receiver of group G knows that the p-th data segment is a";
EG (p, —): "Every receiver of group G knows the value of the p-th data segment".

Theorem 2 Let 1Z be any set of runs consistent with the knowledge-based al-
gorithm from section 6.1 where:

• the environment allows for deletion and reordering errors, but no other
kinds;

• The safety property holds (so that at any moment the sequence Y of data
elements received by each R2 is a prefix of the infinite sequence X of data
elements on S 's input tape).

Then for all runs in 1?. and all k � 0,j � 0 the following hold:

[ForthJ: R2 stores KR,KS (j + k,a) — DKRKS (EGKS)" (ja)
[Back_i]: S stores KSKR, (j + k, —) — CJKSKRKS (EGKs)c (3 )

[Back_G]: S stores KsEc (j + k, —) — OK5 (EGKS) (j _)
In the proof below we use the same general principle from temporal logic as

presented in section 4.2.
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Proof
We prove theorem 2 by induction on k.

First we look at the situation for k = 0.
From B follows the Forth-part for (k = 0) namely

R stores KR,Ks(j,cx) — DKR,KS(j,a). (6.1)

R sends an acknowledgement only if it received a package. Together with
A and B we have:

if R sends KR, (j, —) then P (R1 stores Ks (j, o)), (6.2)

so PDKR, Ks (j, ci), and DKR K (j, ck).

S only stores an acknowledgements if it also received it from R1, thus it
knows that R2 has sent it in the past.

IfS stores KSKR, (j,—) then KsP(Rj sends KR, (j,—))... (6.3)

With A, C and the fact proven at (6.2) it can now be derived that:

KSP(DKR,KS(j,—)), and KSDKR,Ks(j,—), so DKSKR,Ks(j,—).
(6.4)

If (6.3) and (6.4) are put together, then we have the BackJ-part of the
theorem for the j-th data segment (k = 0).
S receives acknowledgements from all the receivers and is able to retrieve
information out of this. We go back two steps and look at another know-
ledge level of S instead of the knowledge level between S and just one
receiver.
S only stores acknowledgements if it did receive those. If S has received
acknowledgements of a certain package from R where G = { 1, ..., a) then
S knows that have sent these acknowledgements in the past.

If S stores KgE (j, —) then K5P (R1<21 > sends KR, (j, ))
(6.5)

\Vith A, C and the fact proven at (6.2) it can now be deduced that:

K5P (DEGKS (j, ))' and KSDEGKS (j, ), so DKgEK5 (j,
(6.6)

If (6.5) and (6.6) are put together, then we have the Back_G-part of the
theorem for the j-th data segment (k = 0).

\Vhat knowledge about the 3-th data segment will emerge for k 0? This
will be shown in the induction step.

induction step Suppose as induction hypothesis that Backj, Back_G and
Forth are valid for k — 1, with k � 1. Now a proof follows that Forth,
BackJ, and Back,.G are also valid for k.
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[Forth]:
S only starts sending packages with position mark (j + k) if it has received
from all the receivers R an acknowledgement for package with position
mark (j + (k — 1)).

S sends Ks (j + k, a) — P(S stores KSEG (j + (k — 1),—)). (6.7)

\Vith the Back_G-part of the theorem for k — 1 and A, the following can
be deduced:

S sends K5 (j + k,a) — OK5 (EGKs)c (j, )• (6.8)

R knows this fact. So if R2 receives a package from S with position mark
j + k, then R knows that S has sent this package somewhere in the past.
From the fact given at (6.8) together with A and B, the following can be
derived:

R stores K,Ks(j+k,a) —+ DKR,Ks(EGKS)k(j,_). (6.9)

This is exactly what the Forth-part of the theorem says.

[BackJ]:
R only sends an acknowledgement for the (j + k)-th data element if he
did store KRKS (j + k, —) in the past. \Viiii A, now the following can be
derived:

R1 sends KR, (j + k, —) — DKR,KS (EKs)' (j, (6.10)

S knows this fact. So if S receives an acknowledgement from R2 for the
(j + k)-th data segment, then S knows that R2 has sent this acknowledge-
ment in the past. Using A and B it can now be concluded that:

S stores KSKR, (j + k, —) — DKSKR,Ks (EGKS)k (j, (6.11)

and this is exactly the BackJ-part of the theorem.

[Back.G]:
S receives acknowledgements from all R1. At a certain time S will have
received an acknowledgement for the (j + k)-th data segment from all R.
Thus,

S stores K5E (j + k, —).

With A and B it can now be concluded that:

S stores KSEG (j + k, —) —* OK5 (EGKs)' (j, (6.12)

and this is exactly the Back_G-part of the theorem.
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Chapter 7

Design specifications for
implementation

The third research question was, what are the possibilities for implementing the
CPS algorithm in the internet architecture. Now that an algorithm is defined
for communication involved in the CPS process, the implementation possibilities
for such an algorithm can be explored. The main design specification is that
such an algorithm can be used in the standard internet architecture. A protocol
fitted in the internet architecture makes it possible to create MAS environments
with agents that are located around the world without having to build a new
network. In section 5.2 it has been discussed in what way the general algorithm
of section 4.1 has to be modified to ensure the necessary reliable knowledge-based
communication for CPS. The result of this discussion is the CPS algorithm from
section 6.1. An implementation of an algorithm for CPS communication has to
provide the properties of this CPS algorithm embedded in the model for reliable
communication as stated in definition 3.1 from section 3.3. Before the feasibility
of implementing the CPS algorithm in the internet protocol architecture will be
discussed, first a brief overview of the TCP/IP network architecture follows.
This overview is mainly based on [19, 2, 12].

7.1 TCP/IP network architecture
The TCP/IP network architeture is a layered model consisting of a stack of five
independent protocol layers. See figure 7.1. The lowest layer is the hardware
layer. The function of this layer is to transmit raw bits over a communica-
tion channel. There are a lot of different communication channels such as the
telephone line, optic fibre, satellite connection, and many more. Every differ-
ent communication channel has its own protocol which deals with the physical
properties of the connection and with how bits are represented. On top of the
hardware layer lies the network interface layer. During the sending process, this
layer accepts internet datagrams from the internet layer and transmits these
internet datagrams as bits over the communication channel. During the receiv-
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TCP/IP Layering Objects Passed

Application

f Messages or Streams

Transport

__________________

Protocol Packages

Internet

: Internet Datagrams

Network Interface
Frames

Hardware

Figure 7.1: TCP/IP Network layer architecture

ing process the network interface protocol receives bits from the communication
channel and delivers these bits as an internet datagram to the internet layer.

The protocol that runs at the internet layer is the internet protocol (IP).
This protocol is the heart of the internet architecture. This protocol sends and
receives internet datagrams which are the main packages the internet traffic
consists of. On top of the internet layer lies the transport layer. The protocols
at this layer send transport protocol datagrams to and receive transport protocol
datagrams from the internet layer. At the transport layer different protocols can
operate such as the transport control protocol (TCP), user datagram protocol
(UDP), and more. Although there are more protocols at this layer than just the
TCP, the internet architecture is in general referred to as TCP/IP architecture
because the TCP is the most common protocol used at this layer. The highest
protocol layer is the application layer. At this layer run applications which send
data to remote applications. Depending on the requirements of an application
with respect to reliability, the application chooses a suitable protocol from the
transport layer. The application delivers its data to this protocol after which
this data is processed down through the stack of protocols to a remote machine
where this data is processed up through the stack of protocols to the destination
application. Both machines can be connected directly or can be connected by a
network. If both agents are situated in different interconnected networks, these
networks are connected to each other by a router. A router is a special computer
that is willing to transfer packages from one network to another network and
consists of at least the lowest three layers of the TCP/IP architecture. Figure
7.2 shows a schematic overview of data sent from one agent to another agent
connected by a router.

The IP at the internet layer is the basis of the TCP/IP network architecture.
As can be seen in figure 7.2, the internet datagram is the highest conceptual
object being transmitted over the network. Every datagram from a protocol
from a higher level than the internet level is transported to the same higher
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level protocol at a remote computer embedded in an internet datagram. To
prevent rebuilding the internet architecture, a live version of the CPS algorithm
from section 6.1 should be implemented at a layer above the internet layer.
With respect to definition 1 from section 3.3 of a communication system, this
means that the connection from this definition includes at least the IP. Before
the possibility of an implementation of the CPS algorithm can be explored, it
should be clear what the properties of the internet layer are with respect to
reliability.

7.2 Internet layer
Figure 7.3 shows a schematic view of an internet datagrain. In this figure the
internet datagram is represented by lines which are 32 bits long. Every field
in the datagram consists of a certain amount of bits. The space occupied by
a field corresponds to the amount of bits this field consists of. The length of
the options field is variable so the amount of bits occupied by this field is also
variable. The header must consist of a multiple of 32 bits. If the options field
does not consist of a multiple of 32 bits, then accordingly the header also does
not. If this problem occurs the padding fills up the option field with zero-bits
to make it a multiple of 32 bits.

As discussed before, the internet layer is the basis for an implementation of
the CPS algorithm. So what properties does this layer provide with respect to
reliability. First let us compare the fields from the header of a CPS package
with the fields of the internet datagram header. A CPS algorithm package has
the following form:

Ksource(destination, checksum, group, sequence, acknowledgement, data).
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Figure 7.3: Internet Datagram [16, 2]

This package will be referred to as CPS package and consists of a header and of
a data part. The header of this CPS package will be referred to as CPS header
and the data part will be referred to as CPS data.

In both headers, a source and destination field are present. In the case of the
CPS header these are the source and destination fields and represent the names
of the sending and receiving agents. The source address and the destination field
address from the internet datagram header contain respectively the IP numbers
of the sending and receiving computers. Computers connected to an internet
are identified by an IP number. An agent that runs as an application on a
computer can be located by the IP number of its host computer. Just a name
such as 'agent 2' or 'receiver 5' as a source address will not work at the internet
level. In both headers a checksum is present.

The checksum field from the CPS header contains the checksum of the CPS
package. This is the checksum which handles mutation errors as discussed in
section 3.3. The checksum in the internet datagram header is the header check-
sum field and contains only the checksum of the internet datagram header and
does not handle mutation errors occurring in the data that is sent. Thus the
checksum mechanism from the CPS algorithm has to be implemented at a higher
level. There is no counterpart for the group field from the CPS algorithm in
the internet datagram. This makes sense because a group field is presented
in this thesis as the solution for the knowledge-based one-on-group communi-
cation problem. The group knowledge mechanism also has to be solved at a
higher level. For the sequence and the acknowledgement field from the CPS
header also no counterparts are present in the internet datagram header. The
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sequence and acknowledgement index mechanisms have to be solved at a higher
level as well. The time to live field from the internet datagram header indicates
the maximum time this datagram is allowed to live while being transmitted
over am internet. The function of this field is to prevent the problem of delayed
messages becoming redundant as discussed in section 3.3. Because the time to
live field is already present in the internet datagram we don't have to account
for it in the implementation of the CPS algorithm. The other fields from the
internet datagrani header are not of interest for the discussion here and will not
be discussed.

From the transmission problems as discussed in section 3.3 only the delay
problem is completely solved by the IP at the internet layer. The insertion error
is partially solved by the IP. This problem is solved for the insertion of internet
datagrams. When at the internet level an internet datagrani arrives, the IP
verifies by the destination address from the header whether it is supposed to
receive this datagram. Because the other transmission problems are not solved
at the internet layer they will have to be solved at a higher layer.

7.3 Transport layer
The conclusions of this chapter so far are that some of the transmission prob-
lems have to be solved at the transport layer or at the application layer and that
a live version of the CPS algorithm should be an implementation at the trans-
port layer or at the application layer. The transmission problems which still
have to be solved are insertion, mutation, deletion, duplication and reordering
errors. As discussed in section 3.3 the mechanisms that can handle these trans-
mission errors are the checksum for mutation errors, destination verification for
insertion errors, an index mechanism for duplication and reordering errors, and
an acknowledgement mechanism for deletion errors. Besides these transmission
problems the problem of group knowledge has to be solved as well. The solution
for this problem is including group information. So the mechanisms that still
have to be implemented for a working CPS algorithm are the following:

• checksum mechanism

• destination verification

• index mechanism

• acknowledgement mechanism

• group information

There are two possibilities for an implementation of the CPS algorithm. The
first one is that the CPS algorithm is implemented as a transport control proto-
col at the transport layer, and the second possibility is that the CPS algorithm
is implemented at the application level while it uses an existing protocol from
the transport layer. Let us consider the most common protocol that exists at
the transport layer to find out what its properties are. This protocol is the
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Figure 7.4: TCP datagram [17, 2]

TCP and formed the basis for the knowledge-based algorithm for the inter-
net transmission control protocol from [18] which in turn was the basis of the
general algorithm out of which the CPS algorithm has emerged, as presented
respectively in section 4.1 and 6.1. The TCP is a reliable connection-oriented
host-to-host communication service [17]. This means that it is a communica-
tion service for reliable communication between two hosts and that prior to the
actual communication a connection between these hosts has to be established.
What are the properties of this protocol?

A schematic view of a TCP datagram can be found in figure 7.4. This
figure represents the TCP datagram in a similar way as the internet datagram
is presented in figure 7.3. One of the fields from the TCP header is the checksum
field. This field contains the checksum of the TCP datagram. The data field
from this datagram contains data which an application wants to sent to a remote
application. The data field is part of the TCP datagram so the checksum field
handles possible mutation errors of the data as discussed in section 3.3. The
source port and the destination port field are used by the TCP to identify
a connection between two hosts. If a TCP datagram arrives at the TCP it
uses the values of these fields to verify whether it is supposed to receive this
datagram. The source port and the destination port field together with the
TCP solve the part of the insertion problem that was not solved at the internet
layer. The sequence number field contains a number which indicates what the
position is of this datagram in the sequence of datagrams to be sent. With
the acknowledgement number field the sender of this datagram acknowledges
a datagram it received by putting in this field the sequence number of the
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datagram it expects to receive next. Notice that this acknowledgement works
slightly differently from the acknowledgement mechanism as discussed in section
5.2 where the acknowledgement contains the sequence number of the received
package instead of the sequence number of the next datagram that is expected.
The principle and the proceeding of both mechanisms are however the same.
The other fields from the TCP datagram are not of interest for the discussion
here and will not be discussed.

It seems that the checksum mechanism, destination verification, index mech-
anism and the acknowledgement mechanism are foreseen by the TCP header
fields just discussed. It seems that we just need to add a group information
field to the TCP header and we have a protocol datagram that satisfies the
properties needed for an implementation of the CPS algorithm. Unfortunately
this is not the case. The TCP is a transport protocol whereas the CPS algo-
rithm is a dialogue algorithm. The TCP is used by an application that wants
to send some data to another application. The application hands the data over
to the TCP together with some information so that the TCP knows what the
destination is for this data. If this data is larger than the maximum size of the
data part, the TCP breaks the data up into smaller data segments and sends
these subdivided data segments as a sequence to the TCP of the destination
agent. Every subdivided data segment gets a TCP header and is transported to
the TCP at the remote computer on which the receiving application runs. The
remote TCP puts the subdivided data segments back to the original data and
delivers it to the destination application. The application has no direct access
to the fields from the TCP datagram. These fields are only used by the TCP.
This means that the sequence number field and the acknowledgement number
field have no meaning for the agent running as an application. In order to keep
track of the order and amount of messages this agent has communicated it has
to set up an index which administrates the sequence numbers of these messages.
The situation now is that if an agent wants to send some data to another agent
it stores this data together with the next sequence number in its knowledge base
and sends this data to the TCP, after which the TCP transports this data to
the TCP of the receiving agent.

The TCP is a reliable transport protocol. If the delivery of the data from the
agent fails, the TCP will notify the sending agent of this failure. So instead of
getting an acknowledgement the agent has to assume that the data is delivered
as long as it does not receive a delivery failure notice. In the first situation, the
agent gains knowledge about the delivery status and in the second situation, the
agent gains belief about the delivery status. Especially in the situation where
an agent has to communicate one-on-group, believing that a message is received
is not sufficient. A solution could be that the receiving agent sends data via
the TCP in which it acknowledges the reception of the data sent by the sender.
This situation starts to look like an implementation of the CPS algorithm at the
application level while it makes use of the TCP at the transport layer. This is
not very efficient because now for every message that a sending agent sends to
a receiving agent and in return for every answer or acknowledgement that the
receiving agent sends to the sending agent, the TCP's from these agent have to
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Figure 7.5: UDP datagram [2];(p.177)

establish a connection, transport the message, and close the connection. This
means a lot of overhead in the communication. Besides this growing overhead
there are now two mechanisms providing reliability operating at the same time.
It can thus be concluded that the TCP is not a suitable protocol to be used by
an application level implementation of the CPS algorithm, and the TCP itself
is not a good model for a transport layer implementation of the CPS algorithm.

7.4 Application layer

The implementation of the CPS algorithm tends to move to an implementa-
tion at the application layer. The TCP is not a suitable protocol to be used
by such an implementation. So, the question is whether there is another pro-
tocol at the transport control layer that can be used by an application layer
implementation of the CPS algorithm. A protocol which is a lot simpler than
the TCP is the user datagram protocol (UDP). In contrast with the TCP, the
UDP is an unreliable connectionless host-to-host message protocol. The UDP
provides a mechanism for applications to send messages to other applications
with a minimum of protocol mechanism [15]. A schematic overview of a UDP
datagram is presented in figure 7.5. The UDP header contains only four fields.
If we know what the properties of this protocol are with respect to reliability it
can be determined which mechanisms will have to be solved by an application
level implementation of the CPS algorithm. The first two fields from the UDP
header are the source port and the destination port. The destination port field
determines the destination of the message within the destination computer. The
source port determines the destination of the source within the computer where
this message was sent from. When a UDP datagram arrives at the transport
control layer the UDP can determine by the values of these fields whether it
is supposed to receive this datagram before it delivers the data from the data
field to the agent. This destination verification mechanism solves the part of the
insertion problem that was not solved at the internet layer. The checksum field
contains the checksum of the UPD datagram. The data field contains the data
which an application wants to sent to a remote application. The data field is
part of the UDP datagram, so the checksum field solves the mutation problem of
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the data as discussed in section 3.3. The length field contains a count of octets
the datagram exists of but is not of interest for the discussion here. From the
mechanisms that had to be solved for a workable CPS algorithm at the layers
higher than the internet layer, the UDP provides the checksum mechanism and
the destination verification mechanism. This means that an application level
implementation of a CPS algorithm still has to provide an index mechanism,
acknowledgement mechanism, and a group information mechanism, under the
assumption that it makes use of the UDP at the transport control layer.

In the CPS algorithm the group information mechanism consisted of a group
field that was added to the protocol package. In the case of one-on-group com-
munication this field represents all the agents this message is sent to. The so-
lution for the index mechanism is the use of two indices as discussed in section
5.2. One index keeps track of the sequence numbers of the messages sent by an
agent and the other index keeps track of the sequence numbers of the messages
received by an agent. In the protocol package from the CPS algorithm these
indices are stored in the sequence number field and in the acknowledgement num-
ber field of the CPS header. The acknowledgement mechanism uses the sequence
number field and the acknowledgement number field to acknowledge messages
received by an agent. The three CPS header fields just discussed together with
the data an agent wants to send to another agent form the CPS datagram of an
application level implementation of the CPS algorithm. A schematic overview
of the CPS datagram is presented in figure 7.6. The CPS algorithm delivers the
CPS datagram to the UDP together with some information so that the UDP
knows what the destination is of this CPS datagram. The protocol part of
the CPS algorithm implementation is an implementation analogue to the CPS
algorithm from section 6.1. with one exception. Because the checksum mecha-
nism is accounted for at the UDP, this mechanism can be left out of the CPS
implementation.
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Chapter 8

Discussion and conclusion

In the overview of CPS in chapter 2, it became clear that for a successful process
of collective problem solving, reliable one-on-one and one-on-group communi-
cation is needed. I referred to different one-on-one communication algorithms
which formed the basis for the general one-on-group communication algorithm
as presented in section 4.1. This algorithm allows true one-on-group commu-
nication, creating general knowledge up to any desired level about the identity
of the group and the announcement sent to the group by an initiating sender.
The first research question was if it is possible to design a knowledge-based
algorithm for multi-agent communication that can handle the one-on-group se-
quence transmission problem. With the development of the general algorithm
from section 4.1, this research question is positively answered.

Because the CPS communication process consists of more than just broad-
casting a data tape to a group of receivers, the general algorithm had to be
adjusted to the CPS algorithm as presented in section 6.1. This CPS algorithm
can handle the initiator changes and allows true one-on-group communication,
creating general knowledge up to any desired level about the identity of the
group and the announcement sent to the group by different initiating senders.
The second research question was if it is possible to design a knowledge-based
algorithm for CPS communication. With the development of the CPS algorithm
from section 6.1, this research question is also positively answered.

A related paper is 171 where a procedure is presented that, under some strong
assumptions about the communication channels, trust among group members
and temporary persistence of some relevant beliefs (e.g. the group should be
aware of the procedure), establishes a common belief C-BEL(). The idea
is essentially that one initiator first broadcasts the message to all agents in
the group, based on a standard low-level communication protocol such as TCP,
ensuring that it knows at a certain point that E-BELG(p); then the initiator
broadcasts the message that C-BEL0() to all of them. Typically, such strong
assuinpt ions are only true in very fixed multi-agent systems, such as partici-
pants in a rescue operation who work in a fixed team according to a commonly
known fixed procedure [7]. The two one-on-group procedures presented in this
thesis do not establish common beliefs but only fixed levels of group knowledge,
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but can work in open environments because the prerequisites are much weaker
than those in [7]. This is in line with the argument in [6] that developers of
multi-agent systems can decide beforehand, according to organization structure,
goal and environment, which level of team-awareness of relevant propositions is
appropriate for a given application.

As future work in this direction, it would be interesting to design a logic
exactly suited to communication protocols such as TCP and the two one-to-
many protocols given here, in a similar fashion as the sound and complete system
TDL developed by Lomuscio and \Vona in [13] for authentication protocols.
For such a system with a computationally grounded semantics of interpreted
systems, it may even be possible to develop model checking techniques in order
to check relevant properties automatically.

Research question three asked the question what the possibilities are of im-
plementing the CPS algorithm in the internet architecture. For an implemen-
tation of the CPS algorithm to be of practical use it has to fit in the standard
internet architecture. As discussed in chapter 7, such an implementation should
at least make use of the IP at the internet layer of the TCP/IP architecture.
Chapter 7.3 showed that the TCP at the transport layer is not a useful protocol
for an implementation of the CPS algorithm. This chapter further showed that
some of the mechanisms iieeded by the CPS algorithm have to be implemented
at the application level. Availability of these mechanism at the transport layer
leads to a redundant implementation. In section 7.4 it became clear that the
UDP is a very useful protocol to be used by an application level implementation
of the CPS algorithm.

As future work in the practical direction, an implementation should follow
at the application level which makes use of the UDP protocol at the transport
level. This implementation then should be tested in different real world MAS
environments. These tests should back up the proof from this thesis about
reliability and knowledge gaining.
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Appendix A

CPS process

The packages used in the following graphical representation have the following
form: Ksource(destination,group,data). Source represents the sender, destina-
tion represents the destination of the package, group represents the group this
package is sent to, and data is the data to be sent.

1. Potential recognition

• Initial situation, figure A.1
• In progress, figure A.2
• Outcome situation, figure A.3

2. Team formation

• Initial situation, figure A.4
• In progress, figure A.5
• Outcome situation, figure A.6

3. Plan formation

• Initial situation, figure A.7
• In progress (1), figure A.8
• In progress (2), figure A.9
• In progress (3), figure A.1O
• In progress (4), figure A.11
• In progress (5), figure A.12
• Outcome situation, figure A.13

4. Team action

• Initial situation, figure A.14
• In progress, figure A.15
• Outcome situation, figure A.16
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S.t of Agents in a world W.

5J

Figure A.1: Potential recognition, initial situation

Level 1: PotentIal recognition (initial situation)
Initial situation: Agent-4, initiator, has a goal ip that it wants to be achieved, (GOAL(4,)).
Outcome: Potential for cooperation that initiator agent-4 sees with respect to y, denoted as
PotC(4,). PotC(4,4,) means that p is the goal of agent-4 and there are one or more groups C, such
that agent-4 believes that G can collectively achieve i. The index i denotes the different potential
groups.
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Figure A.2: Potential recognition, in progress

69

Level 1: Potential recognition (in progress)
Initiating agent-4 inquires what the abilities, opportunities, willingness and commitment strategies of
the different agents are with respect to the goal p. He does this through one on one communication.

Dialogue types: information seeking.
Speech acts: ASS(e,1), REQ(uest).
Is(a_,w,c) means: with respect to p this agent is able and willing to cooperate in athievrng this goal and has
commitment strategle c with respect to this goal
l4;(a,o,w,c) means: with respect to p this agent is able, has the oppo.ttflhies and is wiing Cuoperale 1 athieviig this
goal and has commitment strategie C with respect to this goal

2 S.t of Agents Inaworid W

i 1

141(a,o,w,c)

3

K4(7 -

K64_,ASS)
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<4(2._ASS)
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Set of Agents In a world W

Figure A.3: Potential recognition, outcome situation

Level 1: PotentIal recognItion (outcome situation)
Outcome: Initiating agent-4 sees potential for cooperation (PotC(4,)) with respect to goal qi and
with one ore more groups Gi. Visualised here is group G1 = (1,2,4,7]

Agent-4 can transmit the outcome per potential group to each of the agents that are member of this
group for wich agent-4 sees potential. He does this through one on one communication. This is an
optional step for this stage.

Dlabgue types: end fase of Information seeking.
Speech acts: ASS(ert).
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Figure A.4: Team formation, initial situation

Level 2: Team formation (Initial situation)
Initial situation: Initiating agent-4 has a sequence of potential groups for achieving goal w.
Visualised here is group Gi =112,4,7]
Outcome: Initiating agent-4 has found ono group Gi which has a collective intention C-INT0(*y) to
achieve '.
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Figure A.5: Team formation, progress

Level 2: Team formation (In progress)
Initiating agent-4 tries for all potential groups to persuade the members to take on an individual
intention towards p and the intention that there be a mutual intention among that group (INT(i,9, A
M-lNTGl(4))). He does this through one on one communication.

Dialogue types: Persuasion.
Speech acts: ASS(ert). REQ(uest), CHALL(ange), CONC(ede).

Set of Agents In a world W.

..—••.. 3

5.'.--'



Figure A.6: Team formation, outcome situation

Level 2: Team formation (Outcome situation)
Outcome: Initiating agent-4 has found group Gi where all the members have the intention to
achieve 'i and have the intention that there be a mutual intention among Gi (lNT(l. A M-
INTGI('4i))). The collective intention C-lNT0(t) emerges from the fact that intitiating agent-4
comunicates through one one group communication that all the members in Gi did take on lNT(i,
A M-1NT01(q,)).

Dialogue types: end fase of Persuasion.
Speech acts: ASS(ert).

Set of Agents in a world P1".

5N._/
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Set of Agents In a world 'W.

Level 3: Plan formatIon (Initial situation)
Intitlal situation: Group Gi together with the collective intention to achieve ', (C-lNT6()).
Outcome: A collective commitment of group Gi based on a plan P. There are allot of different
kinds of collective commitments. A common kind is the strong collective commitment SC-
COMMG1P(w) with will be used here.

4

Figure A.7: Plan formation, initial situation



Figure A.8: Plan formation, in progress (1)

Level 3: Plan formation (In progress — Task division(1))
Any agent (here we use agent-4) from group Gi can act as initiating agent who starts generating a
plan by an adequate task division of y into a sequence of subtasks ('I4'2' These subtasks
are compared with the individual capabilities and opportunities that the agents of group GI have. All
the agents from group Gi have to take on the belief that these subtasks ('1i'2. . ,w,,) lead to the
main goal j,, BEL1(realize(<4,1

Dialogue types: Deliberation(persuasion (inquiry)),Deliberation (persuasion(ln formation seeking)).
Speech acts: point ofresearch, (ASS(ert), REQ(uest), CHALL(ange), CONC(ede),...).

Set of Agents inaworid W.
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Figure A.9: Plan formation, in progress (2)

Level 3: Plan formation (In progress — Task division (2))
All agents of group Cl believe that the sequence of subtasks (w,t'2.t'3'4.'v) lead to the main goal
4', BEL(realize(<4',,4',,4',4'4.,,>,9i). Initiating agent-4 communicates this fact to all agents of group
Cl through one on group communication which leads to the collective belief that the subtasks
(4'1w2.4'3.4'4.'v) lead to the main goal i. (C-BEL0(reaIze(<w,,9I,,4ft.w4,w,>,w)).

Dialogue types: end fase of Deliberation(Persuasion) dialogue.
Speech acts: ASS(ert).

Set of Agents in a world '14'.

6-.--'



Figure A.1O: Plan formation, progress (3)

Level 3: Plan formation (In progress — Means-end analysis(1))
Any agent (here we use agent-4) from group Gi can act as initiating agent to associate actions to
the subtasks. Each subtask (411,p2, ,,) is associated with with one action • A sybtask can also
be associated to more than one action but for reasons of convenience here only one action per
subtask is presented. All the agents from group Gi have to take on the belief that executing the
actions (1,ö2,.. .6w,) realize the subtasks (iv1.v2.. ,w,), BELA11 means-for(8LY)). The initiating
agent-4 communicates to the members through one on one communication

Dialogue types: Deliberation(lnquiry).
Speech acts: point of research (REQ(uest), ASS(ert),

Set of Agents In a world W.

5
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Figure A.11: Plan formation, in progress (4)

Level 3: Plan formation (In progress — Means-end analysis (2))
All the agents from group Gi belief that executing the actions (81,62,. ,S,,) realize the subtasks
(w1.''2. . BEL1(/V'1 means-for(81911)). Initiating agent-4 communicates this fact to all agents of
group Gi through one on group communication which leads to the collective belief that executing
the actions (61,62, ,6,,) realize the subtasks (w,'i'2,. ,), C-BELG(Al means-for(&)).

Dialogue types: end fase of Deliberation(Inquiry) dialogue.
Speech acts: ASS(ert).
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Figure A.12: Plan formation, in progress (5)
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Level 3: Plan formation (in progress — Action allocation)
Any agent from Gi can act as initiating agent to coordinate the allocation process of the actions.
Each of the actions (&,..,ö,) are allocated to an agentj, which results in pairs <&J. Agentj
socially commits itself to another agent k to perform this action resulting in COMM(j,k,ô). Either
agent j or k communicates a succesfull outcome to the initiating agent of this stage. In this case
there are 7 subtasks with 7 actions associated with them.

Dialogue types: Deliberation (lnquiry(Negotiation)), Deliberation (Negotiation (Inquir,', Information
Seeking)).
Speech acts: point of ,esearch, (ASS(ert), REQ(uest), CHALL(ange), CONC(ede)....).
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Figure A.13: Plan formation, outcome situation

Level 3: Plan formation (Outcome situation)
Outcome: All agents of the group Gi have the right beliefs, intentions and commitments to achieve
the overall goal 41, COMM0 p(4,). The initiating agent-4 communicates this to the group through Q2Q
on prouo communication through which the desired collective commitment emerges, C-
COMM0

Dialogue types end fase of overall dialogue type Deliberation.
Speech acts: ASS(ert).

Set of Agents In a world



Figure A.14: Team action, initial situation

Level 4: Team Action (Initial situation)
Intitlal situation: A collective commitment of group 01 based on a plan P. There are allot ci
different kinds of collective commitments. A common kind is the strong collective commitment SC-
COMMGIP(y) with will be used here.
Outcome: The actions (1,ö2, .. ) associated to the subtasks ('v1'2. . . ,) have been carried
out by the agents of group 01 who were committed to do them. By the succes of these actions the
overall goal has been achieved.
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Set of Agents in a world

Figure A.15: Team action, in progress

Level 4: Team Action (In progress)
The actions (&,,2,. .) associated to the subtasks ('1''2'.• ,) are being carried out by the
agents who did commit themseif to execute these actions. Agents can communicate to each other
through one on one als well one on amuo communication.

Dialogue types: All types possible, depending on the domain and the collective commitment.
Speech acts: Dialogue type dependent.



Level 4: Team Action (Outcome)
Outcome: The actions (81ö2, ,E,) associated to the subtasks (y1,q,2, have been carried
out by the agents of group Gi who were committed to do them. By the succes of these actions the
overall goal i has been achieved.
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Figure A.16: Team action, outcome situation




