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Introduction

CHAPTER1
Introduction

Imagine that you have a robot that wants to operate in your home environment
like a human and accomplish several different tasks. Do you think that it is
possible to hard-code such a robot to work in every home-like environment
to do several tasks without any failure? This seems impossible since even
the programmer cannot predict all the possible conditions with which a robot
might be confronted while operating. Therefore, the robot should be able to
continuously learn and adapt to its surrounding environment. For example,
assume that such a robot wants to recognize different kinds of objects and
move them or give them to the user. What if the robot is limited to recognizing
only a predefined category of objects? It can detect all the objects that the
programmer considered in the model but cannot learn new object categories.
This makes the robot less and less useful after a while when you bring new
unforeseen objects to your house. What is needed is a robot that is able to
learn new object categories with no limitation on the number of possible kinds
of objects in the environment.

Let us think of a robot having such a capability of open-ended learning but
not being able to learn by only watching a few objects of the same category and
needing a lot of training data. This makes the model not sufficiently flexible
to adapt to the changes in a dynamic environment. Therefore, learning with
a smaller number of learning data is preferable.

Assume that a robot can learn an open-ended number of objects using only
a small number of learning instances. However, suppose we find that the robot
has wrongly categorized a teapot as a mug. Even knowing that a teapot and
a mug might look similar, we still would like to know precisely why the model
makes such a mistake. Otherwise, debugging the model to prevent the mistake
would require that many different mugs and teapots are shown to the robot
while we don’t have so many in house. Therefore, it would be ideal to have
explanations for each prediction of the model and to know why a certain object
is categorized as a certain category. If we have such a robot that can provide
such explanations, we can debug the model more easily. Moreover, we could

1
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2 1.1. Machine learning and robotics

trust the robot more since every decision of the robot would be transparent to
us.

Summarizing, in this thesis, methods are developed for continuous learn-
ing, for learning new object categories using limited data, and for explaining
categorization outcomes. The methods can for instance be used in robot sce-
narios.

1.1 Machine learning and robotics

The focus in most current machine learning approaches is on improving the
learning precision of the algorithm using a large number of learning instances.
Deep neural networks typically need days of training on a fast Graphics Pro-
cessing Unit (GPU). Using these processing units together with the learning
capacity of the neural architectures enables the state-of-the-art techniques to
achieve the highest learning precision. These approaches often follow an end-
to-end learning paradigm that can directly map the input to the desired out-
put without the need for manual feature extraction and a dedicated feature
engineering phase. Deep learning approaches usually have a separate initial
learning phase followed by a testing phase. These methods also have some
limitations which make them an unsuitable choice for open-ended robotic ap-
plications.

For instance, General Purpose Service Robots (GPSRs) need to operate in
dynamic environments that are prone to changes. Therefore, a robotic agent
should be able to quickly adapt to these changes in the environment in an
online incremental manner. Handling unforeseen failure conditions is also re-
quired for GPSRs robots since pre-programming an agent to handle unforeseen
conditions is not possible. Therefore, a GPSR should be able to learn in an
online incremental manner for handling unforeseen failure conditions.

In robotic scenarios with both planning and vision components, a GPSR
has a limited source of inputs and should operate in an open-ended dynamic
scenario. In open-ended scenarios, the number of class labels is neither limited
nor known in advance. This means that the robot should be able to learn new
classes over time as they are needed for a general-purpose agent in a dynamic
environment. Therefore, the model should be class-incremental and should
learn in an online incremental manner without each time fully retraining the
model. A GPSR acquires data by interacting with the environment. There-
fore, it does not have access to a large amount of data in the initial phase and
should learn from a few instances. Moreover, we need a model to be explain-
able for human users so that they can interact with the model to explain the
underlying reasons for each decision so that the human users can both under-
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stand and debug the model using a set of correcting feedback. Obtaining an
explainable model leads to a more trustworthy robot that is easier to interact
with [124]. Therefore, proposing a machine learning technique that can learn
with a small number of training instances and that can operate in open-ended
scenarios while producing explanations for each choice is required for robotic
applications. Furthermore, this model can be used for robotic vision applica-
tions to recognize 3D object categories and segment 3D objects into semantic
parts.

Developing methods for explainable online incremental machine learning
that can operate in open-ended scenarios is the aim of this thesis. Towards this
goal, different approaches in argumentation theory and topic modeling have
been proposed. Consequently, the combination of the proposed argumentation-
based approaches and the topic modeling techniques have been used to achieve
the desired model.

1.2 Background

In this section, we discuss the research background of the studies in this thesis:
Online Incremental Machine Learning, Open-Ended Class-Incremental Ma-
chine Learning, Argumentation-based Learning, 3D object category recogni-
tion, and parts segmentation. Subsequently, we will list the desired features
of a machine-learning technique for a GPSR. The thesis structure is discussed
next, and the list of publications for each chapter concludes this chapter.

1.2.1 Online Incremental Machine Learning

Machine learning methods are employed to mine the collected data for rel-
evant information and to predict future developments by generated models.
However, classical batch machine learning approaches in which all data is si-
multaneously accessed, do not meet the requirements whenever the data is
gradually gathered. Also, systems should be able to work based on a small set
of currently gathered data. Furthermore, these models do not continuously in-
tegrate new information into already constructed models. Instead, new models
are regularly reconstructed from scratch. Such circumstances not only imply
very time-consuming tasks but also lead to potentially outdated models when
a needed reconstruction is delayed.

Overcoming such limitations requires a paradigm shift to sequential data
processing in a streaming scheme. This not only allows to use of information
as soon as it is available to guarantee up-to-date models but also reduces the
costs for data storage and maintenance.
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Online incremental learning aims to develop models that can continuously
learn new tasks from new data while preserving knowledge learned from the
previously learned tasks [134]. Incremental and online algorithms fit natu-
rally to this scheme, since they continuously incorporate information into their
model, and traditionally aim for minimal processing time and space.

A recent study on the comparison of state-of-the-art methods for incremen-
tal online machine learning [112] shows that three methods are outperforming
others, namely Incremental Support Vector Machines (ISVM) [38] together
with LASVM [34], which is an online approximate SVM solver, and Online
Random Forest (ORF) [145].

1.2.2 Open-Ended Class-Incremental Machine Learning

Incremental learning is related to different research topics, including continual
learning and lifelong open-ended learning. These learning schemes are often
used interchangeably [50, 163]. Incremental learning can be considered as a
continual learning type in which tasks are presented in supervised data chunks.
In contrast, continual learning is not limited to supervised learning. Lifelong
open-ended learning [42, 19] requires models to be capable of learning during
the whole lifetime of the model, in which new information must be acquired and
incorporated continuously into the existing model to optimize and update task
performance. In these circumstances, a streaming data source might have a
non-stationary distribution. In order to handle this variance, a desirable model
should be able to continuously adapt to the streaming data in an incremental
manner. This model should handle a large number of tasks using a limited
computational and memory capacity. Open-ended machine learning techniques
are not restricted to learning from a fixed number of class labels and they can
handle a growing number of class labels in run-time [91].

1.2.3 Argumentation in Artificial Intelligence

Argumentation is a reasoning and discussion model based on an interaction be-
tween supporting and attacking arguments [164, 22]. Argumentation has been
used in various applications such as non-monotonic reasoning [166], inconsis-
tency handling in knowledge bases [8, 26], and decision making [10, 33, 66].
In [57], Dung defined an Abstract Argumentation Framework (AF) as a pair
with as members a set of arguments (of which the inner structure remains
unspecified) and a binary relation representing the attack relation among the
arguments. Extending Dung’s idea, some arguments can also support a con-
clusion while others attack the conclusion. This has been formalized in Bipolar
Argumentation Frameworks (BAF) [9].
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There is a growing literature on argumentation-based machine learning.
The survey by Cocarascu et al. [46] lists the following works using argumenta-
tion in supervised learning. Argumentation-Based Machine Learning (ABML)
[120] uses the CN2 classification approach [44]. This method uses experts’
arguments to improve classification results. Amgoud and colleagues [11] ex-
plicitly use argumentation in the context of classification. There are other
approaches for improving classification using argumentation in the literature
[36].

In contrast with the aforementioned methods, we are not using argumenta-
tion for improving the current machine learning approaches or resolving con-
flicting decisions between current classification methods; instead, we focus on
the development of a supervised incremental learning method.

1.2.4 3D Object Category Recognition and Parts
Segmentation

The topic of 3D object category recognition and classification experienced in-
creasing interest in recent years since 3D sensors became popular and different
3D object datasets have become publicly available. These methods have differ-
ent applications in robotics, namely in robotic manipulation, navigation, and
security, for instance for detecting dangerous objects [37].

Most recent object recognition and detection techniques are based on deep
neural networks [79, 80, 88, 109, 136, 146, 111]. These methods typically need
a large labeled dataset for a long training process. Typically, the number
of object categories (class labels) should be predefined in advance for such
methods. However, in some real-time robotic scenarios, an agent can face new
object categories while operating in the environment. Therefore, the model
should get updated in real-time in an open-ended manner without completely
retraining the model [16].

Object parts segmentation is one of the challenging problems in 3D shape
analysis. Data-driven part-segmentation methods typically outperform tradi-
tional geometrical methods [179]. In recent years, deep learning approaches
have been widely exploited among researchers in this field [182]. Although
these techniques show promising results in some applications, they are not
well-suited for open-ended learning scenarios where the number of object cat-
egories and part-segments are not predefined and can be extended over time.

1.2.4.1 Limitations of 3D Semantic Segmentation Techniques

The majority of existing models for 3D shape segmentation have the follow-
ing five limitations when they are used in open-ended dynamic environments.
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First, most of these models are trained with a fixed set of labels, which greatly
limits their flexibility and adaptivity. For instance, a model trained to segment
a table into three semantic parts cannot be used to correctly segment a table
with four parts. Second, using a fixed set of labels limits the number of object
categories that the model can segment. For example, a model which previously
learned how to segment a cup and a table cannot learn to segment a new object
such as an airplane unless the model is retrained. Third, for state-of-the-art
techniques, a good accuracy requires a long training time. This prevents the
model to quickly adapt to the changes in the open-ended dynamic environ-
ment. Fourth, the object parts segmentation and object category recognition
methods in the literature typically use a large training set, while learning with
a lower number of learning instances is required for quick adaptation of the
model to changes. Fifth, 3D object category recognition techniques are typ-
ically not robust to a high degree of occlusion, while encountering occluded
objects is common in the real-word dynamic environments.

These limitations motivated us to design an open-ended 3D object parts
segmentation model which can learn with higher accuracy and a lower number
of learning instances.

1.3 General Purpose Service Robots: Desirable
Features

In this section, we list desirable features as they are needed for General Purpose
Service Robots, and are studied in this thesis. We relate the features to cur-
rent key topics of research in artificial intelligence: adaptability, explainability,
collaboration and responsibility, as suggested in [5].

1. Learning in an online incremental manner (Chapters 2, 3, 4, and 6).
This means that the model should learn incrementally based on the
streaming observations of the agent and adapt the model without a
need for retraining the model. This requires the model to save previ-
ously acquired knowledge and adapt it when a contradicting concept is
encountered. The desired model should be robust to the problems of
catastrophic forgetting [67, 98] and concept-shift [173]. This feature is
related to the research topic adaptability.

2. Learning from a small number of learning instances (Chapters 2,
3, 4, and 6). This feature is strongly required when an agent should learn
and adapt to the environment as quickly as possible after observing only
a few data instances. This topic has recently received a lot of attention
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that is typically called few-shot learning [171]. This feature is related to
the research topic adaptability.

3. Class-incremental (open-ended or lifelong) learning (Chapters 4,
and 6). Lifelong learning is a key feature for robots operating in a dy-
namic environment where new unforeseen classes of objects can be ob-
served any time. In these cases, the robot should be able to extend the
model while preserving all the previously learned knowledge. Lifelong
(open-ended or class-incremental) learning has recently been addressed
in many research papers [185, 24, 157]. This feature is related to the
research topic adaptability.

4. Learn to recognize the category of 3D objects (Chapters 4, and 6).
An agent should learn to recognize new object categories by observing
only a few object views and object instances of the same category to
adapt to the environment. This enables the agent to initiate different
tasks in the environment and interact with these objects in a later stage.
For instance, it can then learn to manipulate these 3D objects. This
feature is related to the research topics collaboration and adaptability.

5. Learn to semantically segment 3D object parts (Chapter 6). This
feature is specifically needed when an agent needs to manipulate different
object categories or needs to explain why a specific object belongs to a
certain category. This feature is related to the research topics adaptability
and explainability.

6. Accelerating a probabilistic inference technique to approximate
the parameters of the models (Chapters 4, 5, and 6). Using prob-
abilistic machine learning approaches in different tasks typically needs
an approximation algorithm for the inference process. These inference
techniques should work as fast as possible to enable an agent to operate
in real-time. This feature is related to the research topic adaptability.

7. Handle high degrees of occlusion while recognizing 3D objects
(Chapter 6). In real-world robotic applications, occlusion typically hap-
pens, for instance since typically a single-source 3D camera is used.
Therefore, part of an object might not be visible, hence the model should
be able to handle a high degree of occlusion for 3D object category recog-
nition. This feature is related to the research topic adaptability.

8. Producing explanations for the predictions of the model (Chap-
ters 2, 3, and 6). Explainable Artificial Intelligence (XAI) aims to provide
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explanations for a machine learning model to be understandable for hu-
mans. Some of the approaches in the XAI community try to interpret the
underlying reasoning process of black-box approaches like Artificial Neu-
ral Networks (ANNs) [138, 119, 115]. Unlike these approaches, we would
like to have a model which is interpretable without a need for a separate
unboxing algorithm for finding out the reasoning process. Therefore, the
desired model should provide explanations of the reasoning process in
addition to the underlying learning task. This feature is related to the
research topics explainability and responsibility.

9. Interacting with human users to learn from them and enable
them to debug the model (Chapters 4, and 6). Having a model that
can learn by interacting with a human user would be desirable in many
applications. A desirable model should be easy to debug by a non-expert
human user. This feature is related to the research topic collaboration.

1.4 Thesis Structure

In this thesis, we propose the following approaches to address the aforemen-
tioned challenges:

• Chapter 2 introduces an argumentation-based online incremental learn-
ing approach that can learn from a small number of learning instances
and leads to explainable rule sets for the predictions of the model. The
proposed model can be utilized for open-ended scenarios as well where
the number of feature values is not fixed and pre-defined. Although the
proposed model outperforms online incremental learning, (deep) rein-
forcement learning, and contextual bandit techniques in the experiments,
it has some limitations, namely, the high computational and space com-
plexity.

This chapter has been published in the IEEE 15th International Con-
ference on Automation Science and Engineering (CASE) in 2019 [16].
Moreover, it has been extended and published as a journal paper in
IEEE Transactions on Automation Science and Engineering (TASE) in
2021 [20].

• Chapter 3 aims to accelerate the argumentation-based learning approach
by lowering space and computational complexity. The model has been
simplified and two new strategies have been utilized to accelerate the
model. This leads to a new model that can handle higher dimensional
datasets.
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This chapter has been published in the 20th International Conference on
Machine Learning and Applications (ICMLA) in 2021 [17].

• Chapter 4 proposes an open-ended local hierarchical Dirichlet process
for recognizing the object category of 3D objects in real-world robotic
scenarios using a robotic arm. This technique can learn with a small
number of learning instances and operate in real time. A human user
can interact with the model to teach new object categories to the model
and send correcting feedback to the model in case of wrong predictions.
Moreover, an artificially simulated teacher is developed to facilitate the
extensive set of experiments for evaluating the model.

This chapter has been published in the Robotics and Autonomous Sys-
tems (RAS) journal in 2022 [19].

• Chapter 5 is based on my master thesis research in the artificial intelli-
gence program at Yazd University. We have extended this research in my
PhD. It introduces an inference technique for the Markov Random Fields
(MRF) probabilistic graphical model to accelerate the performance of
loopy belief propagation. This algorithm is further utilized for the image
completion task where a missing part of an image should be filled in with
no training data other than the same testing image. This is a challenging
task, since using the local information in a stand-alone image might not
be adequate for filling in a large missing part from the same image.

This chapter has been published in the IET Image Processing journal in
2020 [21].

• Chapter 6 adapts the previously proposed local hierarchical Dirichlet
process technique for the open-ended 3D semantic object parts segmen-
tation approach task. The resulting technique uses two local-to-global
and global-to-local object descriptors to represent the 3D objects. This
makes the model more suitable for open-ended applications since con-
structing a pre-defined dictionary for the model is not required anymore.

This chapter also integrates argumentation-based learning with the local
hierarchical Dirichlet process in order to obtain a 3D object category
recognition technique that can handle a high degree of occlusion. This
technique can produce explanations for the predictions of the model using
the parts of objects. Therefore, the resulting model can predict the
category of an object even if some parts of the object are not visible due
to occlusion.

This chapter is being prepared for a submission [18].
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1.5 Publications per Chapter

• Chapter 2: Argumentation-Based Online Incremental Learning

– H. Ayoobi, M. Cao, R. Verbrugge, and B. Verheij, “Handling unfore-
seen failures using argumentation-based learning,” in 2019 IEEE
15th International Conference on Automation Science and Engi-
neering (CASE), Aug 2019, pp. 1699–1704

– H. Ayoobi, M. Cao, R. Verbrugge, and B. Verheij, “Argumentation-
based online incremental learning,” IEEE Trans Autom. Sci. Eng.,
vol. 19, no. 4, pp. 3419–3433, 2022

• Chapter 3: Accelerated Argumentation-Based Learning

– H. Ayoobi , M. Cao, R. Verbrugge, and B. Verheij, “Argue to learn:
Accelerated argumentation-based learning,” in 20th IEEE Interna-
tional Conference on Machine Learning and Applications, ICMLA
2021, Pasadena, CA, USA, December 13-16, 2021. IEEE, 2021,
pp. 1118–1123

• Chapter 4: Local-HDP, Interactive Open-Ended 3D Object Cat-
egory Recognition in Real-Time Robotic Scenarios

– H. Ayoobi, H. Kasaei, M. Cao, R. Verbrugge, and B. Verheij, “Local-
HDP: Interactive open-ended 3D object category recognition in real-
time robotic scenarios,” Robotics and Autonomous Systems (RAS),
vol. 147, p. 103911, 2022

• Chapter 5: Swift Distance Transformed Loopy Belief Propaga-
tion using a Novel Dynamic Label Pruning Method

– H. Ayoobi and M. Rezaeian, “Swift distance transformed belief prop-
agation using a novel dynamic label pruning method,” IET Image
Processing, vol. 14, no. 9, pp. 1822–1831, 2020

• Chapter 6: Explain What You See - 3D Object Recognition and
Segmentation using Local-HDP and Argumentation

– H. Ayoobi, H. Kasaei, M. Cao, R. Verbrugge, and B. Verheij,
“Explain What You See: 3D Object Recognition and Parts Seg-
mentation,” 2022, (Under Preparation)
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1.6 Additional Resources

In this section, we have provided the online repositories for different chapters
of this thesis. Moreover, two videos for the robotic experiments in Chapter 4
are provided.

The source codes for Chapter 2, Chapter 3, Chapter 4, and Chapter 5
are available at https://github.com/H-Ayoobi/ABL, https://github.com/
H-Ayoobi/Accelerated_ABL, https://github.com/H-Ayoobi/Local-HDP and
https://github.com/H-Ayoobi/SDTBP written in Python and C++. More-
over, the code for chapter Chapter 6 will be available after publishing this
chapter.

Two videos for the robotic demonstrations in Chapter 6 are available at
https://youtu.be/YPsrBpqXWU4 and https://youtu.be/otxd8D8yYLc.

https://github.com/H-Ayoobi/ABL
https://github.com/H-Ayoobi/Accelerated_ABL
https://github.com/H-Ayoobi/Accelerated_ABL
https://github.com/H-Ayoobi/Local-HDP
https://github.com/H-Ayoobi/SDTBP
https://youtu.be/YPsrBpqXWU4
https://youtu.be/otxd8D8yYLc
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CHAPTER2
Argumentation-Based

Online Incremental Learning
An Explainable Machine Learning Model

This chapter is based on [20]. In this chapter, a new online incremen-
tal learning machine learning technique is proposed. This technique is
based on argumentation theory and different argumentation formalisms,
namely, abstract argumentation frameworks and bipolar argumentation
frameworks. The resulting technique is a supervised structured ma-
chine learning method that can handle unforeseen failure conditions.
This method has been compared to different online incremental tech-
niques as well as (deep) reinforcement learning and contextual bandit
(associative reinforcement learning) techniques. The results show that
the proposed technique outperforms state-of-the-art methods in terms
of learning speed and learning accuracy. However, it is limited to low-
dimensional datasets since its computational complexity is high. Chap-
ter 3 addresses this issue and proposes a simplified model with lower
computational complexity.

13
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Argumentation-Based Online Incremental
Learning

Abstract

The environment around general-purpose service robots has a dynamic
nature. Accordingly, even the robot’s programmer cannot predict all
the possible external failures which the robot may encounter. This re-
search proposes an online incremental learning method that can be fur-
ther used to autonomously handle external failures originating from a
change in the environment. Existing research typically offers special-
purpose solutions. Furthermore, the current incremental online learning
algorithms cannot generalize well with just a few observations. In con-
trast, our method extracts a set of hypotheses, which can then be used
for finding the best recovery behavior at each failure state. The pro-
posed argumentation-based online incremental learning approach uses
an abstract and bipolar argumentation framework to extract the most
relevant hypotheses and model the defeasibility relation between them.
This leads to a novel online incremental learning approach that over-
comes the addressed problems and can be used in different domains
including robotic applications. We have compared our proposed ap-
proach with state-of-the-art online incremental learning approaches, an
approximation-based reinforcement learning method, and several online
contextual bandit algorithms. The experimental results show that our
approach learns more quickly with a lower number of observations and
also has higher final accuracy than the other methods.

14
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Note to Practitioners

This work proposes an online incremental learning method that learns
faster by using a lower number of failure states than other state-of-the-
art approaches. The resulting technique also has higher final learning
accuracy than other methods. Argumentation-based online incremental
learning generates an explainable set of rules which can be further used
for human-robot interaction. Moreover, testing the proposed method
using a publicly available dataset suggests wider applicability of the
proposed incremental learning method outside the robotics field wher-
ever an online incremental learner is required. The limitation of the
proposed method is that it aims for handling discrete feature values.

2.1 Introduction

The development and application of domestic service robots are growing rapidly.
Whereas basic household robots are already common practice [114], the study
of General Purpose Domestic Service Robots (GPSR) able to do complex tasks
is increasing [116, 148]. Due to the dynamic environment around GPSRs, they
need to efficiently handle noise and uncertainty [83].

On the hardware level of GPSRs, any kind of system failure should be
avoided. On a practical level, which involves persistent changes in the envi-
ronment, it becomes much more difficult to account for all possible external
failures at design time. Therefore, it is important to note that encountering
unforeseen failures is mostly the default state for GPSRs, rather than an ex-
ceptional state as often described in the literature. There are some solutions
for external failure recovery in the literature, which involve using simulations
for the prediction of external failures [6] and logic-based reasoning to account
for external failures [156, 147]. However, in most of these cases, the solutions
are proposed for specific applications. In the following, we use the word “Fail-
ure” instead of the word “External Failure” for conciseness. This means that
the focus of our research is not on system/hardware failures. In this thesis,
we propose an argumentation-based incremental online learning method for
recovering from unforeseen failures.

2.1.1 Argumentation

Argumentation is a reasoning model based on interaction between arguments
[164]. Argumentation has been used in various applications such as non-
monotonic reasoning [140], inconsistency handling in knowledge bases [165],
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and decision making [13]. In [57], Dung has defined an Abstract Argumenta-
tion Framework (AF) as a pair of the arguments (whose inner structures are
unknown) and a binary relation representing the attack relation among the
arguments. Extending Dung’s idea, some arguments can support a conclusion
and others might be against (attacking) that conclusion in the bipolar argu-
mentation framework [9]. Both the Bipolar Argumentation Framework (BAF)
and the Abstract Argumentation Framework (AF) are used in the proposed
argumentation-based learning approach.

2.1.2 Argumentation in Machine Learning

According to a recent survey by Cocarascu et al. [46], the works using argu-
mentation in supervised learning are listed as follows. Argumentation-Based
Machine Learning (ABML) [120] uses the CN2 classification approach [44].
This method uses experts’ arguments to improve the classification results.
The paper by Amgoud et al. [11] explicitly uses argumentation. There are
other approaches for improving classification using argumentation in the liter-
ature [36].

Machine learning techniques have also been used for argumentation mining
[103, 118, 59]. Bishop et al. combined argumentation with machine learning
to prevent failure in deep neural network based break-the-glass access control
systems [28].

In contrast with the aforementioned methods, we do not use argumentation
for improving the current machine learning approaches or resolving conflicting
decisions between current classification methods; instead, we focus on the de-
velopment of an online incremental learning method. Moreover, the proposed
method only uses class labels for the testing phase and not for the training.
Therefore, it can be utilized in open-ended (class-incremental) scenarios as
well [19].

2.1.3 The Expansions

This research is an expansion of the conference paper [16]. The specific expan-
sions are listed as follows.

• The comparison of our proposed Argumentation-Based Learning (ABL)
approach with multiple associative reinforcement learning approaches or
contextual bandit algorithms has been added to the paper. Contextual
bandit algorithms are the most relevant approach to study types of sce-
narios similar to those presented in the thesis.
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• Formalizing the proposed method. This includes formalizing the updat-
ing procedure of the hypotheses generation unit and hypotheses argu-
mentation unit, formalizing the process of generating hypotheses from
the BAF and formalization of the first and second guess generation.
In this way, the specification of the method is fully precise and non-
ambiguous.

• Extending the proposed method to handle multiple successful recovery
behaviors rather than only one successful recovery behavior at each state.
Real-world robotic scenarios sometimes have multiple successful recovery
behaviors for a failure state.

• Specifying the algorithms in the proposed method by adding pseudocodes
to explain argumentation-based learning in more detail. In this way, the
computational details of our implemented algorithms are fully explained.

• Validating the argumentation-based learning method outside the robotics
scenarios, using a publicly available machine learning dataset (from the
UCI repository). This emphasizes the applicability of the proposed
method as a general technique for online incremental learning and it
shows that this method is not limited to robotics applications.

The rest of this chapter is organized as follows. The required background
is presented in Section II. Section III introduces the scenarios used in this
research. In Section IV, the proposed method has been explained in more
detail. Section V presents the experiments and the results obtained from this
research. The discussion is presented in Section VI. The conclusion is given in
Section VII.

2.2 Background

The Abstract Argumentation Framework (AF) and Bipolar Argumentation
Framework (BAF) are the building blocks of the online incremental learning
approach. AF, BAF and online incremental machine learning algorithms are
formally defined in this section.

2.2.1 Abstract Argumentation Framework

An argumentation framework defined by Dung [57] is a pair AF = ⟨ AR, Ratt

⟩ where AR is a set of arguments, and Ratt is a binary relation on AR, i.e.
Ratt ⊆ AR × AR. The meaning of A Ratt B is that A attacks B where A and
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Figure 2.1: An abstract argumentation framework (AF)

B are two arguments. In order to define the grounded extension semantics in
AF, which is used in the proposed learning method, some semantics should be
defined first.

(Conflict-Free) Let S ⊆ AR. S is conflict-free iff there is no B,C ∈ S such
that B attacks C.

(Acceptability) An argument A ∈ AR is acceptable with respect to a set S
of arguments iff for each argument B ∈ AR: if B attacks A then B is attacked
by at least one element of S.

(Admissibility) A conflict-free set of arguments S is admissible iff each ar-
gument in S is acceptable with respect to S.

(Characteristic Function) The characteristic function FAF in an argumen-
tation framework AF = ⟨ AR, Ratt⟩ is defined as follows:

FAF : 2AR → 2AR and

FAF (S) = {A|A is acceptable with respect to S}.

(Grounded Extension) The grounded extension of an argumentation frame-
work AF, denoted by GEAF , is the least fixed point of FAF with respect to
set-inclusion [57]. Since FAF is a monotonic function with respect to set in-
clusion [57], the existence of the fixed point for this function follows from the
Knaster-Tarski theorem [158]. Therefore, every argumentation framework has
exactly one grounded extension.

Example: Consider the argument set AR = {A,B,C,D,E} and the attack
relations given by Ratt = {(A,B), (B,A), (C,D), (C,E)} as demonstrated in
Fig. 2.1. Then the conflict-free sets of arguments would be {}, {A}, {B}, {C},
{D}, {E},{A, C}, {A, D}, {A, E}, {B, C}, {B, D}, {B, E}, {D, E}, {A, D, E},
{B, D, E}. Among these, only the sets of {}, {A}, {B}, {C}, {A, C}, {B, C}
are admissible. The grounded extension is {C}, which is the least fixed point
of FAF .
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2.2.2 Abstract Bipolar Argumentation Framework

An Abstract Bipolar Argumentation Framework (BAF ) [9] is an extension of
Abstract Argumentation Framework by adding a support relationship. A BAF
is a triple of the form ⟨AR,Ratt, Rsup⟩ where AR is the finite set of arguments,
Ratt⊆ AR × AR is the attack set and Rsup⊆ AR × AR is the support set.
Considering Ai and Aj ∈ AR, then Ai Ratt Aj means that Ai attacks Aj and
Ai Rsup Aj means that Ai supports the argument Aj.

The semantics of BAF are as follows:

(Conflict-Free) Let S ⊆ AR. S is conflict-free iff there is no B,C ∈ S such
that B attacks C.

(Admissible set) Let S ⊆ AR. S is admissible iff S is conflict-free, closed for
Rsup (if B ∈ S and B Rsup C ⇒ C ∈ S) and S defends all its elements. For
instance in Fig. 2.3, {A,C,E, F} is an admissible set since E defends C (i.e.
E attacks D which itself is attacking C) and C defends A and no argument
attacks F. Therefore, {A, C, E, F} defend all its elements.

(Preferred extension) The set E ⊆ AR is a preferred extension iff E
is inclusion-maximal among the admissible sets. An inclusion-maximal set
among a collection of sets is a set that is not a subset of any other set in
that collection. Every argumentation framework has at least one preferred
extension [57].

(Supporting Weights) Like [126] the support relations in our model also
have an assigned weight. Therefore, a node with higher sum of supporting
weights can attack nodes with lower sum of supporting weights. For instance,
Fig. 2.2 shows that the aggregated supporting weight of the argument A is
6 + 4 = 10 and the corresponding supporting weight for the argument B is
2+ 3+ 4 = 9. Therefore, argument A can attack and defeat B. The ↛ arrows
show attack relations and the → arrows demonstrate support relations in Fig.
2.2 and Fig. 2.3. The formal definition of the supporting weights function is
defined in Eq. 8 in Section IV-D.

Figure 2.3 shows a bipolar argumentation framework. The admissible sets are
{}, {E}, {A, C, E}, {A, C, E, F}. The preferred extension in this BAF is {A,
C, E, F}.

Notice that arguments are shown with circles, attack relations are shown
with ↛ and supports are shown with → in this chapter.
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Figure 2.2: The supporting weights in a Bipolar Argumentation Framework
(BAF)

Figure 2.3: A Bipolar Argumentation Framework (BAF)

2.2.3 Online Incremental Machine Learning Algorithms

We define an incremental learning approach that uses a sequence of data in-
stances d1, d2, ..., dt for generating the corresponding models M1,M2, ...,Mt.
In case of incremental online learning, each data instance di incrementally up-
dates the model and Mi : Rn → {1, ..., C}, where C is the number of class
labels, is representing the model which depends on Mi−1. The online learning
is then defined as an incremental learning which is also able to continuously
learn. Incremental learning approaches have the following properties:

• The model should adapt gradually, i.e. Mi is updated using Mi−1.

• The previously learned knowledge should be preserved.

A recent study on the comparison of the state-of-the-art methods for incre-
mental online machine learning [112] shows that Incremental Support Vector
Machines (ISVM ) [38, 152] together with LASVM [34], which is an online ap-
proximate SVM solver, and Online Random Forest (ORF ) [145] outperform
the other methods. The comparison methods used in our paper have been
chosen based on the aforementioned survey [112].

The proposed argumentation-based incremental learning approach uses the
bipolar argumentation framework to model the visited data instances and gen-
erate relevant hypotheses. Subsequently, the abstract argumentation frame-
work is used to model the defeasibility relations (i.e. the attack relations)
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Figure 2.4: Schematic overview of the possible failure state scenarios. Only the
green location is relevant for finding the best recovery behavior. Alt. stands
for the Alternative Route recovery behavior.

between the current set of generated hypotheses and predict the best action
(recovery behavior) for an unforeseen incoming data instance. Furthermore,
the model incrementally gets updated as new data instances enter the model.

2.3 Scenarios

The performance of the different methods is tested using three test scenarios.
The aim of the first two test scenarios is to model a situation where a pro-
grammer has provided an initial solution (e.g., a top level behavior such as
entering the room), while (s)he has not accounted for all possible failures (e.g.,
objects and persons blocking the entrance), but allows the robot to find new
solutions whenever a (previously unseen) failure occurs.

The basic setup of the first two test scenarios is illustrated in Fig. 2.4.
The high-level behavior of the robot aims to proceed from the initial location
to the target location using three entrances. Different obstacles might be on
its way to the target location. In these scenarios, an agent observes all the
obstacle locations at once and chooses a single recovery behavior (action) for
recovering from that failure state. The agent can reach the goal if it chooses
the best recovery behavior; otherwise, it fails to reach the goal.

In order to make the explanation of the method simpler, we first concentrate
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on finding only the best recovery behavior for each failure state. In the method
Section IV, we will also explain how to generalize the method to scenarios
where multiple recovery behaviors might be successful in a failure state.

2.3.1 Recovery Behaviors

Whenever the robot is confronted with a failure state, it may use any of the
following recovery behaviors to resolve the issue. The run-time of each recov-
ery behavior in seconds is presented in parentheses in front of each recovery
behavior:

• Continue (2s): This solution is only useful if the failure has resolved itself
(e.g., the obstacle moved away just after the failure).

• Push (5s): The robot can try pushing any obstacle.

• Ask (4s): The robot can try to ask any type to move.

• Alternative Route (Alt) (10s): The robot can move to another entrance
to reach the target location.

It is important to note that choosing Alternative Route as the best recovery
behavior may not always lead to success, because the robot may again en-
counter new obstacles (Fig. 2.4). Moreover, the best recovery behavior not
only depends on the run-time of each recovery behavior, but also on the type,
the color and the location of the obstacles.

2.3.2 Test Scenario 1

In this scenario, three types of obstacles (ball, box or person) with four colors
(red, blue, green or yellow) can be presented in one of the locations 1 to 6
(Fig. 2.4). Locations 7 to 9 play no role in this scenario. There can be
either zero or one combination of color-type in each location. Only location
number 5, marked in green (Fig. 2.4), is relevant for choosing the best recovery
behavior. It is important to notice that the robot does not know this fact and
it should infer that the only effective location is location number 5 by observing
different failure states in the environment.The agent observes all the obstacle
locations at once and chooses a single recovery behavior (action) at each state.
A new state is generated randomly at each time step. The number of possible
combinations of the color-type in each location is 13 (3 types × 4 colors + “no
obstacle” = 13). Since there are 6 locations in this scenario, the number of all
possible states in this scenario is 136 = 4, 826, 809.
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Notice that colors can have meaningful interpretations for each type of ob-
stacle. For instance, the red object might be heavy and cannot be pushed,
while green ones are light. On the other hand, red people can be more co-
operative and move out of the robot’s way when being asked. Therefore, the
colors can represent any realistic feature for the people and the objects. Using
the colors instead of these realistic features simplifies the scenarios with fewer
features.

2.3.3 Test Scenario 2

This scenario is more complex than the first scenario since each color-type com-
bination can be presented in any of the nine possible locations. Here, only the
green locations 5 and 8 are required for determining the best recovery behav-
ior. Once again, the robot does not know this fact and it should infer that the
only effective locations are the location number 5 and 8 by observing different
failure states in the environment. The agent predicts a single recovery behav-
ior (action) while it can observe all the obstacle locations at once at each state.
The number of all possible states in this scenario is 139 = 10, 604, 499, 373.

2.3.4 Test Scenario 3

The third scenario has a different purpose and context. It shows the applica-
bility of the proposed method outside the robotics field. The recent study on
online incremental machine learning techniques [112] used the publicly avail-
able datasets from the UCI machine learning repository [56]. We also used
the SPECT heart dataset from the UCI machine learning repository. This
dataset represents the diagnosis of cardiac Single Proton Emission Computed
Tomography (SPECT) images. Each of the images (patients) is even classified
as normal or abnormal. The database of 267 SPECT image sets has been
processed for extracting features that summarize the original SPECT images.
We randomly selected 40 out of 267 data instances and fed them incrementally
to the incremental learning approaches in order to compare the results.

The SPECT heart dataset has recently been used in various researches
[149, 69, 53, 128].

2.3.5 Test Scenario 4

In addition to the three new scenarios introduced in this thesis, we have also
included the mushroom dataset from the UCI machine learning repository [56],
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which has been used in contextual bandit research [172, 139, 31]. The mush-
room dataset includes descriptions of hypothetical samples corresponding to
23 species of mushrooms divided into two classes (edible and poisonous). For
this experiment, the dataset has been randomly shuffled in each iteration and
the first 500 instances of the shuffled data have been chosen.

Notice that we do not use class labels in the training and that the label for
each class is determined autonomously based on a trial and error procedure in
our proposed method. Class labels are only used for testing the performance
of the model for prediction on an unforeseen data instance.
In this section, we will discuss the proposed argumentation-based learning
method for recovering from an unforeseen failure state.

2.4 Argumentation-Based Learning (ABL)

In order to explain ABL, we first use a simplified version of the previous test
scenarios where there is only one location ahead of the robot (instead of 6 or 9).
When there is no obstacle ahead of the robot, the best recovery behavior is
“Continue”.

Assume that the robot encounters a blue-ball blocking the entrance. Since
there is no pre-trained model yet, the robot tests different recovery behaviors
in order of their run-time to find the best one. Supposing that pushing the
ball was successful in this case, the robot should learn from this experience.

However, unlike the traditional tabular reinforcement learning techniques,
only learning the best recovery behaviors (actions) for exactly the same ex-
periences (states) is not enough. We need a learning approach capable of
inferring the correlated feature values (each feature value is the color or type
of the obstacle at each location or an empty location with no color and type)
for choosing the best recovery behavior. This is known as generalization in
the machine learning literature. For instance, encountering a red ball and a
green ball with the same recovery behavior of pushing, the robot should make
a new hypothesis push a ball. Therefore, the next time the robot encounters
the yellow ball, it can easily infer that Push is the best recovery behavior.

Encountering a yellow ball with Alternative Route as the best recovery
behavior contradicts the previous hypothesis. Therefore, a new hypothesis is
made: Push a ball unless it’s yellow. From an argumentation perspective,
we can see each hypothesis as an argument. Therefore, the second generated
hypothesis can attack and defeat the first argument. This is inspired by human
agents who make new hypotheses from their perceptions and reason about the
best course of action at each state.

The architecture of the proposed argumentation-based learning method is
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Figure 2.5: Architecture of the proposed Argumentation-based learning
method.

shown in Fig. 2.5. A bipolar argumentation framework is used as hypotheses
generator unit and an abstract argumentation framework models the defeasi-
bility relation between these generated hypotheses.

Algorithm 2.4 presents the pseudocode of argumentation-based learning.
When a new data instance enters the model, all the combinations of its feature-
values and the set of nodes in the grounded extension of the AF will be ex-
tracted. Each node (argument) in the AF unit is of the form precondition →
post-condition: weight. According to the similarity between the preconditions
of the arguments in the grounded extension and the feature values combina-
tions, there will be three possible cases. Either there will be a unique simi-
larity, multiple similarities or no similarity. In case of unique similarity, the
post-condition of the argument (which is a recovery behavior) will be used as
the first guess and will be applied to the environment to see the result. On the
occasion that there exist multiple similarities, the recovery behavior with the
highest weight among the arguments will be chosen and its post-condition will
be applied to the environment. A successful recovery from the failure state
will update the BAF unit using Algorithm 2.2. On the other hand, failure
from recovery will lead to generating the second guess (Algorithm 2.3), up-
dating the BAF unit (Algorithm 2.2), generating hypotheses from BAF unit
(Algorithm 2.4) and updating the AF unit (Algorithm 2.5), respectively.



C
ha

pt
er

2

26 2.4. Argumentation-Based Learning (ABL)

Algorithm 2.1: Argumentation-Based Learning pseudocode
input: Current BAF Graph, Current AF Graph, Data Instance DI
entering the argumentation-based learning model

output: List of best recovery behaviors called BRB-list

- Extract all feature-value combinations DI and add them to a list
called Combs.

- Find the set of nodes in grounded extension (GE of AF )
for (all gx in GE) do

for (all comb in Combs) do
if (gx.precondition==comb) then

BRB-list.Add(gx.post-condition)

if (BRB-list is not empty) then
if (BRB-list.Length==1) then

- Apply BRB-list[0] to environment and observe the result.
else

- Select a recovery behavior in BRB-list with highest weight.

if (result==failure) OR (BRB-list is empty) then
- Use BAF unit for second guess generation and add these guesses
to BRB-list by using Algorithm 2.3

- Update the BAF unit using Algorithm 2.2.
- Generate Hypothesis from the updated BAF using Algorithm
2.4.

- Update the AF unit using the generated hypotheses using
Algorithm 2.5.

if (result==success) then
- Update the BAF unit using Algorithm 2.2.

return BRB-list

Notice that the graphs that are the outcome of the argumentation-based
learning algorithm are a disjoint union of complete irreflexive graphs. Hence,
the grounded extensions of the graphs that result from the algorithm all have
the form of a union of singleton complete subgraphs.

We now use an illustrative example to explain the proposed method in
more detail.
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Order Color Type Best Recovery Behavior
1 Red Ball Push
2 Red Box Alternative Route
3 Red Person Ask
4 Green Ball Push
5 Green Box Alternative Route
6 Green Person Ask
7 Blue Ball Push
8 Blue Box Alternative Route
9 Blue Person Alternative Route
10 Yellow Ball Push
11 Yellow Box Alternative Route
12 Yellow Person Ask
13 None None Continue

Table 2.1: Possible combinations of color-type with the best recovery behav-
iors.

2.4.1 Example

Table 2.1 shows the best recovery behavior when the robot encounters an
obstacle with different colors and types. Notice that this table is only used for
this example and a randomly generated table is utilized for each of the 1000
independent runs for the experiments. Figures 2.6 to 2.8 show the updating
procedure of the model step by step. In the hypotheses generation unit (BAF ),
an arrow → shows a support relation between arguments, and ↛ shows an
attack relation between them. However, in AF,→ shows an attack relationship
between the arguments.

Referring to Table 2.1, at the beginning of the learning procedure, the
robot encounters a Red-Ball (R-Ba). It tests all the recovery behaviors in
order of their run-times and finds the Push recovery behavior as a success
(Table 2.1). Subsequently, the Bipolar Argumentation Framework is getting
updated as in Fig. 2.6. In order to update the BAF, first, the best recovery
node is added which is Push in this case. Then all the possible combinations
of the feature-values of the current state are added as supporting nodes. The
supporting nodes for Push are R, Ba and R-Ba. If there previously exists the
same supporting node, its supporting weight will be increased. For instance in
Fig. 2.7, where 8:B-Bo enters the BAF, since B and B-Bo are new supporting
nodes for the Alt (Alternative Route) recovery behavior, they are added to the
model with a supporting weight equal to 1. On the other hand, Bo already
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exists in the set of supporting nodes for Alt and its weight is increased. After
updating the supporting weights, a set of hypotheses is generated based on the
number of occurrences of each supporting node. For instance, after observing
1:Red-Ball (R-Ba), R → Push and Ba → Push are added to the AF unit.

Encountering 2:R-Bo and using the previously generated hypotheses (specif-
ically R → Push), the robot would infer that the best possible recovery be-
havior is Push, which is a wrong choice in this case (Table 2.1). Therefore, the
robot tries other recovery behaviors and finds Alt as success and updates the
model accordingly. Moreover, a bidirectional attack will be added among all
the recovery nodes in the BAF (in this case, Alt and Push). Subsequently, the
new set of hypotheses is generated to update the hypotheses argumentation
unit. Finally, an abstract argumentation framework is updated to model the
attack relations between the set of generated hypotheses (arguments). This
BAF-AF update cycle goes on and on during the learning procedure.

In this small example, seven out of thirteen predictions of the model are
correct, and only two are wrongly classified using the proposed argumentation-
based learning. In other cases, our system can provide multiple probable
guesses. For instance, when 12:Y-P enters the system in Fig. 2.8, the AF
cannot provide any suggestion but the BAF will suggest both Ask and Alt as
the candidate recovery behaviors. However, the mapping of the states to the
best recovery behavior is randomly generated in all the experiments.

2.4.2 Hypotheses Generation Unit (BAF Unit)

This unit has two roles. Firstly, it generates a new set of hypotheses whenever
the AF unit could not classify the new data instance correctly (1). The second
role of this unit is to produce a second guess for the best recovery behavior (2):

1) In order to generate a new set of hypotheses from the constructed BAF,
only one recovery behavior is considered which is highlighted with a red box in
Fig. 2.6 to 2.8. The pseudocode shown in Algorithm 2.4 shows the procedure
of hypotheses generation.

The pseudocode of updating the current hypotheses generation graph (BAF
unit) using a new data instance is shown in Algorithm 2.2. The only nodes
which are getting updated during this process are the best recovery behavior for
the current data instance and its supporting nodes. Autonomously identifying
the best recovery behavior through trial and error, the update procedure for
hypotheses generation takes place. The updating procedure searches for a node
in the BAF graph with the best recovery behavior and appends all the possible
combinations of the feature-values of the current state to the support nodes of
the best recovery behavior node. In case that a supporting node already exists
in the best recovery behavior node, its supporting weight is incremented.
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Algorithm 2.2: Updating Hypotheses Generation Unit

input: Current BAF Graph, New Data Instance (DI) and the Best
Recovery Behavior BRB

output: BAF Graph

- Extract all feature-value combinations of DI and add them to a list
called Combs.

if (BRB is not in BAF) then
- Add BRB to the BAF graph;
- Add bidirectional attack edges between BRB node and all other
Recovery Behavior Nodes (RBN) in BAF;

for (any item in Combs) do
- Boolean isNewCombination = true
for (any sup in BRB.supporting-nodes) do

if (item == sup) then
sup.weight += 1;
isNewCombination = false;

if (isNewCombination) then
BRB.supporting-nodes.Add (item);

2) In order to generate a second guess, a new BAF should be constructed.
For an unforeseen failure state, the set of all possible combinations of feature-
values is compared with the supporting nodes of each recovery behavior node.
According to the sum of the matching supporting weights, the attack relations
are adapted among the recovery behaviors. Therefore, only recovery behaviors
with a higher sum of the matching supporting weights can attack the other
recovery behavior. For instance, in the example, when 12: Y-P enters the
model for prediction, the AF is not be able to guess the best recovery be-
havior. Constructing a new BAF for a second guess, shown in Fig. 2.9, the
calculated weighted sum for the Alternative Route (Alt) node is the same as
Ask and higher than Push. Accordingly, the attack relations get updated. Us-
ing preferred extension semantics and its intersection with recovery behavior
nodes, both Alternative Route (Alt) and Ask are chosen as the second guesses.
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Figure 2.6: Example of argumentation-based learning for the illustrative ex-
ample (Part 1/3). Each complete subgraph corresponds to one precondition
using the colors and types in Table 2.1. The nodes in each complete subgraph
are labeled ‘precondition→ best recovery behavior’ for one of the best recovery
behaviors.

2.4.3 Updating Procedure of the Hypothesis
Generation Unit (Algorithm 2.2)

In Section II-C, the formal definition of online incremental learning is repre-
sented. The sequence of labeled data instances d1, ..., dt is entering the model
and the BAF unit gets updated. The hypotheses generation unit is represented
by BAFt+1 when a data instance dt is entering this unit.

BAF0 = ⟨AR0, Ratt0 , Rsup0⟩ = ⟨∅,∅,∅⟩

BAFt+1 = update(BAFt, dt) ∀t ≥ 0 (2.1)

In the following lines, the update procedure for the BAF model is described.
The BAF model at time t+1 is in the following form:

BAFt+1 = ⟨ARt+1, Rattt+1 , Rsupt+1⟩ (2.2)
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Figure 2.7: Example of argumentation-based learning for the illustrative ex-
ample. (Part 2/3)
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Figure 2.8: Example of argumentation-based learning for the illustrative ex-
ample. (Part 3/3)
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Figure 2.9: The generated BAF when Yellow-Person (12:Y-P) enters the
model. Blue nodes show the intersection of preferred extensions and recov-
ery behavior nodes.

Using the best recovery behavior at time t called BRBt (This is determined
by trial and error in the environment) and the set of all the subsets of feature
values in the n-dimensional data instance dt = (f1t , f2t , ...., fnt) (fit shows
the ith feature value of the n-dimensional dt vector), called Combs(dt), the
arguments set of the BAF gets updated in the following form:

ARt+1 = ARt ∪BRBt ∪ Combst (2.3)

where
Combst = Pdt (2.4)

Here Pdt denotes the powerset of the set of feature values dt. In addition to the
set of all the arguments AR, we need to keep track of the set of the Recovery
Behavior Nodes (RBN ) among the arguments in the following way:

RBNt =
{
BRB0, ..., BRBt−1

}
(2.5)

The attack relation Rattt+1 is getting updated using the current set of the
Recovery Behavior Nodes RBNt and the best recovery behavior BRBt.

Rattt+1 = Rattt ∪
{
att(BRBt, b)|b ∈ RBNt

}
∪
{
att(b, BRBt)|b ∈ RBNt

} (2.6)

The support relations between the arguments are getting updated as follows.

Rsupt+1 = Rsupt ∪
{
sup(c, BRBt)|c ∈ Combst

}
(2.7)
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Algorithm 2.3: Second Guess Generation Pseudocode
input: Current BAF Graph, Set of Recovery Behavior Nodes (RBN)
output: Set of recovery behaviors

- Generate a new graph G from BAF with the same set of nodes.
- G.sup = BAF.sup
for Node a in RBN do

for Node b in RBN do
if a != b then

if (a.weight > b.weight) then
G.attacks.add(attack(a,b));

else if (a.weight == b.weight) then
G.attacks.add(attack(a,b));

- return the set of nodes in the preferred extension of G.

For instance in the example, when the 1:R-Ba enters the BAF unit (Fig. 2.6),
all the combinations of this data instance {R, Ba, R-Ba} are added as support
nodes to the current best recovery behavior node, which is Push.

There is also a weight function Wt : Rsup → N+ which specifies the weights
of the support relations in Rsup at time t. Whenever Rsup gets updated, the
corresponding weights for the support relations update in the following way:

∀c ∈ Combst : Wsup(c,BRBt)t+1 ={ Wsup(c,BRBt)t + 1 if sup(c, BRBt) ∈ Rsupt

1 otherwise

(2.8)

Here, Wsup(c,BRBt)t is the weight of the support relation sup(c, BRBt) at time
t. Eq. 8 means that if the supporting node c has been already existed in the
BAF unit, then its weight is incremented. Otherwise, its supporting weight is
set to 1.

2.4.4 Generating the Second Guesses using BAF
(Algorithm 2.3)

For generating the second guess using the incoming data instance dt, another
BAF should be constructed. Fig. 2.9 shows the new extracted BAF when the
12:Y-P enters model. It is almost the same as the main hypotheses generation
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Algorithm 2.4: Hypotheses Generation Pseudocode.
input: Current BAF Graph, Threshold, the best recovery behavior
and the latest hypothesis with wrong recovery behavior called
WrongRule

output: The set of generated hypotheses

- Choose the Best Recovery Behavior node called BRB.
- Normalize the supporting weights of BRB to [0, 1].
- Sort BRB.supporting-nodes according to their weight values from
high to low.

- Sum = 0;
- Hypotheses-List = Empty;
for (any sup in BRB.supporting-nodes) do

if (sup.weight > Threshold) then
Add sup→ BRB to the Hypotheses-List;

for any (A → BRB) in Hypotheses-List do
for any B → BRB in Hypotheses-List do

if (A ⊃ B) then
Remove (A → BRB) from Hypotheses-List;

Add WrongRule.P recondition→ BRB to Hypotheses-List;
return Hypotheses-List;

unit. However, only the attack relations Ratt should be adapted as follows.

Rattt =
{
att(a, b) | a, b ∈ RBNt, x, y ∈ Combst,( ∑

(x,a)∈Rsupt

Wsup(x,a)t ≥
∑

(y,b)∈Rsupt

Wsup(y,b)t

)} (2.9)

Only the recovery behavior node with the higher aggregated supporting weights
can attack the other recovery behavior node in the generated BAF. For gener-
ating a second guess, the preferred extensions semantics is used to choose the
best recovery behavior nodes as the second guess. Therefore, the elements in
the intersection of the preferred extensions set and the set of recovery behavior
nodes RBNt are selected.

2.4.5 Hypotheses Generation (Algorithm 2.4)

Using the updated Bipolar Argumentation Framework (BAF ) from the pre-
vious subsection, the set of hypotheses can be generated. Therefore, we can
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inductively define the hypothesis set as follows:

HS0 = ∅;

HSt+1 = GenerateHypothesis(BAFt+1, BRBt+1, NCt); (2.10)

Here, NCt is the hypothesis used in the AF unit and was Not Correctly (NC )
determined the action (recovery behavior). We also count the number of times
the recovery behavior BRBt+1 was the best recovery behavior until now and
call it CBRBt+1. Each hypothesis in the hypotheses has the form of precon-
dition (pre) → post-condition (post): weight where weight is the hypothesis
weight. Whenever a hypothesis is shown in the form pre → post instead of
the previous form, it means that the hypothesis weight is equal to 1. The
formalization of generating the hypotheses set is as follows:

HSt+1 =
{
(A→ BRBt+1) : weight | A ∈ AR \RBNt+1

, weight =
Wsup(A,BRBt+1)t+1

CBRBt+1

, sup(A,BRBt+1) ∈ Rsupt+1

, Normalized(Wsup(A,BRBt+1)t+1) ≥ threshold,
∀a ∈ A ∄b ∈ A : a ⊂ b

}
∪ {(NCt.pre→ BRBt+1)}

(2.11)

Here, the threshold ∈ [0,1] and Normalize is the linear normalization function
for Wsup(A,BRBt+1). This equation means that when the best recovery behav-
ior is determined, it is used as the post-condition of the hypothesis and its
supporting nodes with a weight higher than a specific threshold are chosen
as the pre-condition. The hypothesis weight is also computed based on the
supporting weight of the supporting node in the pre-condition and the number
of times the current recovery behavior was the best recovery behavior so far.
Choosing a low threshold value means generating more hypotheses. We have
tried different values for the threshold ranging from 0 to 1 with step-size of
0.1 in the experiments. We found out that threshold = 0.4 was a good value
in all the experiments. For other datasets, one might need to fine-tune this
parameter.

2.4.6 Hypotheses Argumentation Unit using AF

As stated in the previous sections, this unit tries to justify what has been
learned so far by updating the attack relations between the arguments (hy-
potheses). The arguments in this framework can only bidirectionally at-
tack each other when they have the same preconditions but different post-
conditions.
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Algorithm 2.5: Updating Hypotheses Argumentation Unit
input: Current AF Graph, the new set of generated hypotheses HS
from BAF unit

output: AF Graph

for (all item in HS) do
- Add item to set of AF.arguments
- Update the attack relations between arguments as follows
for (all arg in AF.arguments) do

if (arg.pre == item.pre) & (arg.post != item.post) then
AF.attacks.Add(attack(item, arg))
AF.attacks.Add(attack(arg, item))

return AF

When a new data instance enters the model, there are three possible cases
for the set of hypotheses in the grounded extension of the AF. When the
grounded extension of the AF is the empty set, the second guess is generated
by the BAF unit. If one argument with the same post-condition exits in
the grounded extension of the AF, then this post-condition will be the AF ’s
first guess. If more than one argument with different recovery behaviors in
their post-condition was chosen, the weights of arguments determine which
argument has more power to be selected. For instance in the example, if blue-
ball enters the model after it has been trained using the complete set of data in
Table-2.1, both B → Alt: 2/4 and Ba → Push:1 can be used for prediction.
Since the Ba → Push:1 has higher weight, the Push recovery behavior will
be chosen, which is the correct choice for this failure state. Notice that in
the proposed argumentation-based learning method, it can be proved that the
grounded extension is a set of the singletons in the AF.

Algorithm 2.5 shows the updating process of the hypotheses generation
unit.

2.4.7 Updating Procedure of Hypotheses
Argumentation Unit (Algorithm 2.5)

The hypotheses generation unit is represented by AFt when data instance dt−1

is entering this unit for updating.

AF0 = ⟨AR,Ratt⟩ = ⟨∅,∅⟩

AFt = update(AFt−1, HSt) ∀t ≥ 1 (2.12)
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In time t the Abstract Argumentation Framework (AF) is:

AFt = ⟨ARt, Rattt⟩ (2.13)

Here the argument set ARt is updated at time t using all elements in the
recently generated hypotheses set HSt and the previous arguments set ARt−1

as follows:
ARt = ARt−1 ∪HSt (2.14)

The attack relationship Rattt is also get updated whenever two arguments have
the same preconditions but different post-conditions:

Rattt = Rattt−1 ∪
{
att(x, y)|x ∈ ARt, y ∈ ARt,

x.pre = y.pre ∧ x.post ̸= y.post
} (2.15)

Here, the att(x,y) is the abbreviation for x Ratt y. Figures 2.6, 2.7 and 2.8
show this process. Whenever the hypothesis R → Push enters the AF unit,
since it has the same precondition but different post-condition with respect to
the existing hypothesis R → Alt in AF, they will bidirectionally attack one
another.

Each time a new data dt enters the AF unit for the first guess genera-
tion, the grounded extension called GEt+1 is computed. Using Combst+1, the
Best matching Hypothesis BHt+1 is chosen to generate the first guess in the
following way.

BHt+1 =
{
A ∈ Ht+1|B ∈ Ht+1, A.weight ≥ B.weight

}
(2.16)

where

Ht+1 =
{
h ∈ GEAFt+1 | h.pre ∈ Combst+1

}
(2.17)

This means that only the hypothesis with the highest weight can be selected
as the best matching hypothesis. Subsequently, the first guess is the post-
condition of the current best hypothesis:

FGt+1 = BHt+1.post (2.18)

2.4.8 Why not Reinforcement Learning?

Reinforcement Learning (RL) techniques learn by interacting with the envi-
ronment. Like our proposed method, these methods effectively learn with trial
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and errors, by performing actions and remembering their consequences [154].
Traditional tabular reinforcement learning methods are inefficient for large
state spaces [23]. Moreover, most traditional tabular reinforcement learning
techniques do not take the similarity of the features of each state into account,
which is needed for the robotic scenarios in this chapter. However, there are
a few exceptions. Some more recent tabular RL techniques have the gener-
alization capability and take the similarity of features into account [54, 190].
In order to include the generalization capability into traditional tabular RL
techniques, a non-linear function approximation technique like artificial neural
networks is incorporated to handle the large state space and account for the
similarity of the features among the states. However, the robotics scenarios
in this research have the following properties which make these RL methods
behave similarly to a neural network:

• In these scenarios, the next state is not dependent on the current state
and the current action because the simulated failure states are generated
randomly in the experiments.

• As a consequence of independence between two consecutive states, there
is no delayed reward in the corresponding robotic scenarios. Therefore,
only the instant rewards, that are dependent on the success of choosing
the best recovery behavior at each state, are enough for the formulation.

Considering these properties, the function approximation of the reinforcement
learning approach is like a neural network which takes the current state and the
current action and outputs the instant rewards. Using such a neural network,
the next step is to find the action with the highest instant reward for that
state to be selected as the best recovery behavior. This is similar to having
a neural network which takes the current state as the input and outputs the
best recovery behavior in that state. This network has been implemented as
an MLP neural network in the results section. Moreover, we have compared
our method with contextual bandit algorithms.

2.4.9 Contextual Bandits

Contextual bandits or associative reinforcement learning techniques have been
used for scenarios similar to those studied in this thesis. Therefore, we compare
the performance of the proposed ABL technique with various online contextual
bandit algorithms.

Contextual bandit is defined as follows. There is an agent who can choose
between a number of choices (known as “arms”), which can lead to stochastic
rewards. In each round, the current state is generated, which is a set of features
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of a fixed dimensionality that is known as “context”. The agent chooses an arm
at each round and the corresponding reward for that action in that specific
context is returned as a feedback to the agent. The ultimate goal of the agent
is to find a policy that maximizes the long-term rewards using the history of
previous actions.

Most research on finding an efficient algorithm for contextual bandit prob-
lems in the last decade can be divided into two categories, namely Upper
Confidence Bounds based algorithms (UCB) [52, 192, 74, 87] and Thompson
Sampling algorithms (TS) [52, 106, 4, 1]. Zhou el al. [191] proposed an offline
multi-action learning approach which can take constraints on the learning pol-
icy into account, for instance budget constraints. In Section V, we will compare
our method with both UCB and TS approaches.

2.4.10 Generalizing ABL to Other Real-Word Scenarios

So far, we have assumed that at each failure state only one recovery behavior
is successful and the others fail. However, this assumption might not be the
case in all the real-word scenarios. Therefore, in the following paragraphs, we
explain how we can generalize the ABL method to handle multiple successful
behaviors.

Like Reinforcement Learning (RL) techniques, each action (i.e. a recovery
behavior in our case) must have a reward reflecting how good it is. For example
this reward can be a function of the run-time of that recovery behavior where
the lower run-time leads to higher reward. This reward function for each
recovery behavior can be formulated as follows.

R =

{
0 Failure

1
run-time Successful Recovery Behavior

(2.19)

Using the epsilon-greedy algorithm [154] for choosing the different recovery
behaviors at each failure state, we are able to have a trade-off between the
exploration of the new recovery behaviors and the exploitation the previously
successful recovery behaviors. When a new recovery behavior is explored and
it is successful, then the BAF unit in ABL should generate a new set of hy-
potheses based on that recovery behavior and its run-time.

Furthermore, the hypothesis format in the AF unit of the ABL method
should be changed. The new hypotheses have the form pre → post : weight
: reward. Subsequently, the set of hypotheses with the highest rewards in
the grounded extension of the AF unit is found for choosing the best recovery
behavior. If the hypotheses used in the previous step have the same rewards,
the weight is used to choose the best recovery behavior as before.
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The required changes in the ABL algorithm are listed below:

• The line “choose the Best Recovery Behavior node called BRB” in the
Algorithm 2.4 should change to “choose the Best Recovery Behavior node
called BRB based on the epsilon-greedy algorithm (ϵ = 0.05)”

• The Reward is added to the format of each hypothesis.

pre→ post : weight : reward

• The Best Recovery Behavior from the AF unit is chosen based on the
grounded extension, the reward and the weight of each hypothesis.

This methodology is only needed when we don’t know the rewards of each
recovery behavior (action) in advance. If we previously know the rewards for
each of the recovery behaviors (as in our experiments), with the following
modification, we can use the same ABL method as before. At each point, a
trial and error procedure takes place based on the ordering of the recovery
behaviors from the one with the highest reward (lowest run-time) to the one
with the lowest reward (highest run-time). This guarantees that the first
successful recovery behavior is always the best choice.

2.5 Experiments

In this section, we compare the performance of our proposed ABL method with
other incremental learning techniques and contextual bandits algorithms. We
have utilized a device with Intel(R) Core(TM) i7-7700HQ 2.81 GHz processor
and 16 GBs RAM using Windows 10 OS for all the experiments. The survey
by V. Losing et al. compared a broad range of incremental online machine
learning techniques [112]. Using the key methods in their survey, we are also
comparing the proposed method with Incremental Support Vector Machine
(ISVM ) [38, 72, 73], incremental decision tree based on C4.5 [133] and ID3,
incremental Bayesian classifier [3], Online Random Forest (ORF )[145] and
Multi-Layer Neural Networks for classification with localist models like Radial
Basis Functions (RBF ) which work reliably in incremental settings [135, 113].

Cortes has recently compared the performance of different contextual ban-
dit algorithms in his paper [47]. He adapted Multi-Arm Bandits (MAB) poli-
cies to contextual bandit algorithms. We have also compared our proposed
ABL technique to various online contextual bandit approaches.
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2.5.1 Performance Measure

The mean performance of each method is calculated over 1000 independent
runs. Each run for the robotic scenarios consists of 200 failure recovery at-
tempts. Since the order of the failures has a direct effect on all the open-
ended online incremental learning methods like ours, the order of failures is
randomized for each run in which there is an equal uniform probability for
each solution to be a success. We measure the accuracy using the following
performance metric:

accuracy =
number of successful attempts

number of all the attempts that have been tried so far

We are interested in knowing whether the method picked the best recovery
behavior or not for a given failure state.

For the third test scenario, we randomly choose 40 data instances for the
online train and test procedure.

Notice that all the methods use the same randomly generated data set
compatible with the conditions mentioned in the test scenarios.

Furthermore, the mapping of each state to the best recovery behavior (a
table like Table 2.1), which is used for testing the performance of the model,
is randomly generated at each of the 1000 independent experiments.

2.5.2 Comparison criteria

In the robotic scenarios, we need a learning approach that can quickly learn
to recover from failure states in a low number of attempts. Moreover, for
other test scenarios, the goal is to incrementally learn from a lower number
of training instances. Therefore, the increase in learning accuracy in a lower
number of attempts is one important criterion (which we call learning speed) to
evaluate the efficiency of the method [21]. Therefore, learning curves with the
highest steepness in a smaller number of attempts are desirable. Furthermore,
the final learning accuracy is also an important criterion.

2.5.3 Comparison Methods

The first method utilized for comparison is an incremental naive Bayesian
classifier [137]. We use exactly the same suggested parameters as [137] in the
experiments. The second categories of methods that are used for comparison
are rule extraction and decision-tree based methods. The PART algorithm
is based on the C4.5 decision tree classification method [175]. PRISM is an
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algorithm for inducing modular rules [39, 174]. The ID3 algorithm constructs
an unpruned decision tree for classification [132]. The J48 algorithm is also
based on a pruned or unpruned C4.5 decision tree [133]. The incremental
version of decision tree algorithm is discussed in [177]. We used the standard
Weka1 machine learning software for the implementation of these methods with
suggested parameter values.

The incremental version of the random forest algorithm is called Online
Random Forest (ORF ) [145]. We have used the same suggested parameters
as in this implementation of the online random forest method. The Multi-
Layer Perceptron (MLP) neural network is also used for the comparison. An
experiment has been conducted to find the best number of hidden layers and
the best number of hidden neurons at each layer. Specifically, we have tested
MLPs with 1 to 10 hidden layers and for each hidden layer, we have tested 1 to
100 hidden neurons with the ReLU activation function to find the architecture
with the best learning accuracy in all our experiments. The architecture with 2
hidden layers and 30 hidden neurons in the hidden layers turned out to perform
best for all the scenarios. Notice that, in general, a higher number of hidden
layers and neurons leads to over-fitting of the model in the initial iterations
and a lower number of hidden layers and neurons leads to under-fitting of the
model and a lower learning capacity of the model in the final iterations.

The final algorithm for the comparison is Incremental Support Vector Ma-
chine (ISVM ). We have tested different non-linear kernel types for the ISVM
method, namely, the polynomial kernel function, the sigmoid kernel function
and the radial basis kernel function, in order to find the one with that leads to
the higher learning accuracy for all the experiments. Consequently, we have
chosen Radial Basis Function (RBF) for conducting all the experiments.

We have utilized several online contextual bandits approaches for our com-
parisons including bootstrapped upper confidence bound [47, 75], bootstrapped
Thompson sampling [47, 58] and some other methods from [47], including ep-
silon greedy, adaptive greedy, explore-then-exploit, exploration based on ac-
tive learning, softmax explorer and exploration based on active learning ap-
proaches. For all these approaches, we have utilized the suggested parameter
fine-tuning method in the original implementation.

Notice that to fairly compare the ABL approach with all the contextual
bandit approaches, we have used the same procedure as ABL for training the
contextual bandit models. This means that we have also used the best choice
of action at each state to update a contextual bandit model if it fails to predict
the correct action at that state.

1https://www.cs.waikato.ac.nz/ml/weka/

https://www.cs.waikato.ac.nz/ml/weka/
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Figure 2.10: Comparison of Argumentation-Based Learning (ABL) with key
methods for incremental online learning [112] using the first test scenario.

2.5.4 Results

As one can see in Fig. 2.10, Fig. 2.11 and Fig. 2.12, the proposed Argumentation-
Based Learning (ABL) method outperforms all the other methods in both the
comparison criteria used for this research, namely, the final learning accuracy
and the learning speed. The steepness of the learning curve shows that the
ABL learns faster in a lower number of iterations.

For the first test scenario, after observing 30 failure states, ABL achieves
74% accuracy, while the best method among others has 60% accuracy. The
final accuracy of ABL is 95%, while the best final accuracy among other meth-
ods is 90%. For the second test scenario, after 30 observations, the ABL has
58% accuracy while J48 as the best performer among all other methods has
42% accuracy. Moreover, the final accuracy of ABL for the second test scenario
is 85% while J48 and ID3, the best among all others, achieve almost 80% final
accuracy.
In the third scenario, which differs from the two prior scenarios in context,
ABL repeatedly outperforms all the other methods in both of the comparison
criteria. Among other methods, incremental naive Bayes and incremental ran-
dom forest (ORF ) have better results. The final learning accuracy of ABL in
this scenario is 75% while it is 70% for the incremental naive Bayes method.
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Figure 2.11: Comparison of Argumentation-Based Learning (ABL) with key
methods for incremental online learning [112] using the second scenario.

The slope of the learning curve also shows the faster learning speed of ABL
with respect to all of the other methods.

Figure 2.13, 2.14 and 2.15 show the comparison of ABL with contextual
bandits using the first and second scenario as well as the mushroom dataset.
In all experiments, ABL outperforms the other approaches considerably, both
in terms of learning speed and in terms of final learning accuracy. The ex-
plorative nature of contextual bandit algorithms may lead to this difference in
performance.

2.6 Discussion

A key reason that the proposed method works better than Naive Bayes orig-
inates from the independence assumption between all features in the Naive
Bayesian formulation. In the case of neural networks, considering that there
is only a small number of training data instances, a complex neural network
tends to over-fit and a small neural network leads to under-fitting. Choosing
the best neural network architecture dynamically according to the number of
visited data is also a challenging task. On the other hand, decision-tree based
techniques fail at the initial recovery attempts and then gradually learn the
best recovery behavior. This is because of the change in entropy or information
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Figure 2.12: Comparison of Argumentation-Based Learning (ABL) with key
methods for incremental online learning [112] using the third scenario. This
non-robotic scenario emphasizes that the proposed ABL method is generaliz-
able to other online incremental learning scenarios.

gain when new unforeseen data updates the decision tree. This is also the case
with the Online Random Forest (ORF ) method. Furthermore, ISVM does not
perform well in circumstances where only a few features are associated with
predicting the class label. In all the above cases, the suggested ABL approach
performed better as it considers any possible dependence between features and
it can immediately focus on features which are most relevant for the optimal
decision.

Moreover, ABL leads to an explicit representation of the learning process
understandable for humans, as is also the case with decision-tree based tech-
niques. In contrast, neural networks, support vector machines, and Bayesian
techniques are all black boxes [188] (this means that the trained models are not
easily interpretable and explainable) for humans. This explicit representation
of the learning process can be utilized in combination with human-robot in-
teraction. Employing this property, ABL can be used in multi-agent scenarios
where agents can transfer their knowledge to each other.

The proposed ABL method has a limitation. It handles data sets with
discrete feature values. This limitation can be addressed in future works.
Since the complexity of ABL is exponential, we return to the complexity issue
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Figure 2.13: Comparison of Argumentation-Based Learning (ABL) and some
contextual bandit methods [47] for the first scenario. The red curve shows the
accuracy of ABL.

in Chapter 3.
Consequently, the proposed argumentation-based incremental learning al-

gorithm could learn in fewer attempts with higher accuracy than other algo-
rithms used for comparison. The results have also shown that ABL outper-
forms contextual bandit algorithms in terms of learning accuracy. There is a
big gap between the performance of ABL and contextual bandits approaches
for the robotics scenarios. We believe that the reason for such a big gap is that
ABL prioritizes exploitation to exploration. This means that for the dynamic
robotics scenarios, which are randomly generated, ABL utilizes the previously
acquired knowledge. However, the contextual bandit approaches intrinsically
deal with the trade-off between exploration and exploitation. This means that
the exploration policy leads to exploring new actions rather than utilizing the
previously learned ones for such a dynamic environment. For a more standard
dataset (for the contextual bandits setting) like the mushroom dataset, the
performance of ABL is more close to the contextual bandit algorithms (Figure
2.15). Moreover, ABL extracts an explicit set of rules that explain the knowl-
edge acquired by the agent over the interaction with the environment. This
feature makes the method more explainable and easy to debug by an expert.

Therefore, this method can be a good alternative when the feature val-
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Figure 2.14: Comparison of Argumentation-Based Learning (ABL) and some
contextual bandit methods [47] for the second scenario.

ues are discrete. Although we have shown that the current ABL approach is
working well for the aforementioned scenarios in this thesis, these results are
limited to datasets with discrete feature values that are not high-dimensional.
To make ABL more efficient for higher dimensional problems, we have intro-
duced Accelerated Argumentation-Based Learning (AABL) [17] to improve the
space and computational complexity of the method.

2.7 Conclusion

General purpose service robots should be able to recover from unexpected fail-
ure states caused by environmental changes. In this article, an argumentation-
based learning (ABL) approach is proposed which is capable of generating
relevant hypotheses for online incremental learning scenarios. This set of hy-
potheses is updated incrementally when unforeseen data enters the model.
The conflicts among these hypotheses are modeled by Abstract Argumenta-
tion Frameworks.

The performance of ABL has been evaluated using both the robotics and
the non-robotics incremental learning scenarios. The third scenario, which
has a non-robotic context, is a publicly accessible dataset from the UCI ma-
chine learning repository. This scenario shows the fact that the proposed
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Figure 2.15: Comparison of Argumentation-Based Learning (ABL) and some
contextual bandit methods [47] for the mushroom dataset.

ABL method can be used in any online incremental learning application with
discrete feature values. Moreover, we have also compared the performance
of different contextual bandit algorithms with ABL. According to these ex-
periments, the proposed method learns faster and with higher ultimate clas-
sification accuracy than various state-of-the-art online incremental learning
methods.
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CHAPTER3
Argue to Learn

Accelerated Argumentation-Based Learning

This chapter is based on [17].This chapter addresses the issue of the high
computational complexity of the argumentation-based learning tech-
nique proposed in Chapter 2. It uses a simplified model based only
on bipolar argumentation frameworks. Moreover, the proposed model
uses two strategies to reduce the complexity of the model. The re-
sulting model has polynomial complexity with respect to the number
of features, while the original argumentation-based learning technique
has exponential complexity with respect to the number of features in
the dataset. This makes the resulting model more suitable for higher
dimensional datasets. Moreover, the accelerated argumentation-based
learning method achieves higher learning speed and learning accuracy
compared to the original model.

51
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Argue to Learn:
Accelerated Argumentation-Based Learning

Abstract

Human agents can acquire knowledge and learn through argumentation.
Inspired by this fact, we propose a novel argumentation-based machine
learning technique that can be used for online incremental learning sce-
narios. Existing methods for online incremental learning problems typ-
ically do not generalize well from just a few learning instances. Our
previous argumentation-based online incremental learning method out-
performed state-of-the-art methods in terms of accuracy and learning
speed. However, it was neither memory-efficient nor computationally
efficient since the algorithm used the power set of the feature values
for updating the model. In this chapter, we propose an accelerated
version of the algorithm, with polynomial instead of exponential com-
plexity, while achieving higher learning accuracy. The proposed method
is at least 200× faster than the original argumentation-based learning
method and is more memory-efficient.

52
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3.1 Introduction

Argumentation-Based Learning (ABL) [16, 20] outperformed other online in-
cremental learning approaches and was shown to be successful in handling
unforeseen failures. However, ABL is not efficient in terms of space and com-
putational complexity. Therefore, the current ABL approach is not usable
for high-dimensional datasets. In this chapter, we propose a novel Accelerated
Argumentation-Based incremental online Learning (AABL) method that has a
lower space and computational complexity and higher learning accuracy. This
entails lower run-time and memory consumption. Moreover, like the origi-
nal ABL, AABL can generate a set of explainable hypotheses (arguments) for
predicting the best recovery behavior (class label).

3.1.1 Argumentation in Machine Learning

Argumentation is a reasoning model based on an interaction between argu-
ments [164]. Argumentation has been used in various applications such as non-
monotonic reasoning [140], inconsistency handling in knowledge bases [165],
and decision making [13]. In [57], Dung has defined an Abstract Argumen-
tation Framework (AF) as a pair of arguments and an attack binary relation
among the arguments. Extending Dung’s idea, some arguments can support a
conclusion and others might be against (attacking) that conclusion in the Bipo-
lar Argumentation Framework (BAF) [9]. According to a survey by Cocarascu
et al. [46], the works using argumentation in supervised learning are listed as
follows. Argumentation-Based Machine Learning (ABML) [120] uses the CN2
classification approach [44]. This method uses experts’ arguments to improve
the classification results. The paper by Amgoud et al. [11, 45] explicitly uses
argumentation. There are other approaches for improving classification using
argumentation in the literature [36].

3.1.2 The Expansions

This research is an expansion of our previous paper [16, 20]; see Chapter 2 of
this thesis. The specific expansions are listed as follows.

• Proposing a simpler architecture of the model using only a BAF rather
than using both the AF and a BAF.

• Accelerating the prediction and update procedure of the model by intro-
ducing an algorithm with lower space and computational complexity by
going from exponential to polynomial complexity.
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• Including more evaluation scenarios with different levels of complexities.

• Adding run-time and memory usage analysis for both the proposed and
previous ABL method.

• Specifying the algorithms in the proposed method by adding pseudocodes
to explain argumentation-based learning in more detail.

3.2 Background

The bipolar argumentation framework [9] is the main building block of our pro-
posed accelerated argumentation-based learning approach. Argumentation-
based learning and BAF are formally defined in this section.

3.2.1 Argumentation-Based Learning

Using the combination of AF and BAF, argumentation-based learning has
been proven to outperform state-of-the-art online incremental learning meth-
ods [16, 20]. ABL extracts a set of relevant hypotheses from the learning in-
stances in an online manner and explicitly represents the knowledge acquired
from the learning instances as an explainable set of rules as arguments and de-
feasibility relations among them. ABL can learn with fewer learning instances.
However, it lacks the ability to work with higher dimensional data since it uses
all the subsets of the feature values as the supporting nodes and this makes
the model slow and not memory-efficient. In this chapter, we will propose a
new argumentation-based learning approach that resolves these issues.

3.2.2 Abstract Bipolar Argumentation Framework

An Abstract Bipolar Argumentation Framework (BAF ) [9] is a triple of the
form ⟨AR,Ratt, Rsup⟩ where AR is the finite set of arguments, Ratt⊆ AR×AR
is the attack set and Rsup⊆ AR × AR is the support set. Considering Ai and
Aj ∈ AR, then Ai Ratt Aj means that Ai attacks Aj and Ai Rsup Aj means
that Ai supports the argument Aj.

The semantics of BAF are as follows:

(Conflict-Free) Let S ⊆ AR. S is conflict-free iff there is no B,C ∈ S
such that B attacks C.

(Admissible set) Let S ⊆ AR. S is admissible iff S is conflict-free, closed
for Rsup (if B ∈ S and B Rsup C ⇒ C ∈ S) and S defends all its elements.



C
hapter

3

3.3. Scenarios 55

Figure 3.1: A Bipolar Argumentation Framework (BAF).

(Preferred extension) The set E ⊆ AR is a preferred extension iff E
is inclusion-maximal among the admissible sets. An inclusion-maximal set
among a collection of sets is a set that is not a subset of any other set in that
collection.

Figure 3.1 shows a bipolar argumentation framework. The admissible sets
are {}, {E}, {A, C, E}, {A, C, E, F}. The preferred extension in this BAF is
{A, C, E, F}.

3.2.3 Online Incremental Machine Learning Algorithms

A recent study on the comparison of the state-of-the-art methods for incre-
mental online machine learning [112] shows that Incremental Support Vector
Machines (ISVM ) [152, 97] together with LASVM [34], which is an online ap-
proximate SVM solver, and Online Random Forest (ORF ) [27] outperform the
other methods. The original ABL approach outperformed all these methods
in terms of accuracy and learning speed [16, 20]. Therefore, we only compare
the proposed AABL method with the original ABL approach. Both AABL
and ABL can be utilized in open-ended learning scenarios [19].

3.3 Scenarios

The performance of the different methods is tested using three test scenarios.
The aim of these test scenarios is to model a situation where a programmer
has provided an initial solution (e.g., a top-level behavior such as entering
the room), while he has not accounted for all possible failures (e.g., objects
and persons blocking the entrance), allowing, however, the robot to find new
solutions whenever a (previously unseen) failure occurs.

The basic setup of the test scenarios is illustrated in Fig. 3.2. The high-
level behavior of the robot aims to proceed from the initial location to the
target location using three entrances. Different obstacles might be on its way
to the target location. Looking at all the obstacle locations at once, the robot
can reach the goal by choosing the best recovery behavior.
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Figure 3.2: Schematic overview of the possible failure state scenarios. Only the
green location is relevant for finding the best recovery behavior. Alt. stands
for the Alternative Route recovery behavior.

3.3.1 Recovery Behaviors

Whenever the robot is confronted with an obstacle, it may use any of the
following recovery behaviors to resolve the issue:

• Continue: This solution is only useful if the failure has resolved itself
(e.g., the obstacle moved away).

• Push: The robot can try pushing any obstacle.

• Ask: The robot can try to ask any obstacle to move.

• Alternative Route (Alt): The robot can move to another entrance to
reach the target location.

It is important to note that choosing an Alternative Route as the best recov-
ery behavior may not always lead to success, because the robot may again
encounter new obstacles (Fig. 3.2). Moreover, the best recovery behavior
depends on the type, color, and location of the obstacle.

3.3.2 Test Scenario 1

In this scenario, three concepts (ball, box or person) with four colors (red,
blue, green or yellow) can be presented in one of the locations 1 to 6 (Fig.
3.2). Locations 7 to 12 play no role in this scenario. There can be either zero
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or one combination of color-concept in each location. Only location number 5,
marked in green (Fig. 3.2), is relevant for choosing the best recovery behavior.
It is important to notice that the robot does not know this fact and it should
infer it by itself.The number of possible combinations of the color-concept in
each location is 13 (3 types × 4 colors + “no obstacle” = 13). Since there are
6 locations in this scenario, the number of all possible states in this scenario
is 136 = 4, 826, 809.

Notice that colors can have meaningful interpretations. For instance, the
red object might be heavy and cannot be pushed, while green ones are light.
Using the colors instead of these realistic features simplifies the scenarios with
fewer features.

3.3.3 Test Scenario 2

This scenario is more complex than the first scenario, since each color-concept
combination can be presented in one of the locations 1 to 9 (Fig. 3.2). Here,
only the green locations 5 and 8 are relevant for determining the best re-
covery behavior. The number of all possible states in this scenario is 139 =
10, 604, 499, 373.

3.3.4 Test Scenario 3

The third scenario is the most complex scenario in all the scenarios. Each color-
type combination can be presented in any of the twelve different locations (Fig.
3.2). Like the previous scenario, only locations number 5 and 8 play a role for
determining the best recovery behavior. In this Scenario, the number of all
the possible states is 1313 = 302, 875, 106, 592, 253.

3.4 Method

In this section, with an illustrating example, we first explain the Bipolar Ar-
gumentation Framework (BAF) unit which is the main building block of the
proposed approach. Subsequently, we define AABL, and its updating proce-
dure.

3.4.1 Explanation of the Method with an Illustrating
Example

We first use the simplified version of the test scenarios with only one location
ahead of the agent (instead of 6, 9 or 12 locations). Figure 3.3 shows the
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Figure 3.3: Architecture of the proposed Argumentation-based learning ap-
proach.

Order Color Concept Best Recovery Behavior
1 Red Ball Push
2 Red Box Alternative Route
3 Red Person Ask
4 Green Ball Push
5 Green Box Alternative Route
6 Green Person Ask
7 Blue Ball Push
8 Blue Box Alternative Route
9 Blue Person Alternative Route
10 Yellow Ball Push
11 Yellow Box Alternative Route
12 Yellow Person Ask
13 None None Continue

Table 3.1: Possible combinations of color-type with the best recovery behaviors

architecture of the proposed argumentation-based learning approach.
Using the randomly generated Table 3.1, the robot is initially confronted

with a Red-Ball (R-Ba) and tries different recovery behaviors to find out that
the best choice is Push. The model initially gets updated by the subsets of
feature values with size 1 (L := 1). This means that the supporting nodes R
and Ba are added to the Push recovery behavior (Fig. 3.4). Subsequently,
the agent encounters a Red-Box (R-Bo) for which the subsets of feature values
with size L = 1 consist of R and Bo. Looking at the current state of the
BAF, R supports the Push recovery behavior and it is chosen as the model’s
prediction. Since, this is a wrong choice, the agent try other recovery behaviors
and find “Alternative route” (Alt) as the best recovery behavior. Therefore,
the Alt node gets updated with its supporting nodes R and Bo and also a
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bidirectional attack among Alt and Push nodes. Since R supports both Push
and Alt recovery behaviors, it is not a unique supporter for each of them and
it will be pruned from both the recovery behaviors and will be marked as a
node which can no longer support any recovery behavior nodes in the future.

For the third learning instance the robot is confronted with a Red-Person
(R-P) and the models does not have any prediction since no current recovery
behavior node in the BAF has either P or R in its supporting nodes. The
BAF unit gets updated with only P as a supporting node for the Ask since R
has been previously marked as a non-supporting node and bidirectional attack
relations are added among all pairs of the recovery behaviors. Subsequently,
the agent encounters with a Green-Ball (G-Ba) obstacle and since Ba supports
the Push in the BAF unit, Push is chosen as a prediction for the best recovery
behavior. The BAF gets updated using G supporting node for Push recovery
behavior. This process will continue and the model predicts the best recovery
behavior correctly in the subsequent obstacle confrontations until the agent
encounters a blue person.

When the agent encounters a Blue-Person (B-P), it chooses Ask as the
best recovery behavior. This is a reasonable choice because Ask was the best
recovery behavior for all the previous cases where a Person was the obstacle,
namely, in R-P and G-P. However, it turns out that the best choice for B-P
is Alt. Since, the subsets of feature values with size 1 were not adequate for
choosing the best recovery behavior for both the Ask and the Alt recovery
behaviors, the size of the subsets of the feature values is incremented i.e. L :=
L+1 in this case L = 2. Therefore, the supporting node B-P is added to the Alt
recovery behavior and the supporting nodes R-P and G-P are added to the Ask
recovery behavior while P is pruned and marked as a non-supportable node.
The model predicts the correct categories for the rest of the learning instances
until it is confronted with a Yellow-Person (Y-P). In this case the model does
not have any guess for the best recovery behavior and gets updated with the
Y-P supporting node. The last learning instance None-None is a new case
based on the previous agent’s experiences and it does not have any prediction
for that. Finally the model gets updated and a new recovery behavior node
Continue (Cont) is added to the BAF model. In this illustrating example, the
proposed approach has seven correct predictions and two wrong predictions
out of all the thirteen instances while having no other predictions for the other
four cases. Notice that fixing the upper bound of L to 2 leads to good results
in practice. This ensures the polynomial complexity of the resulting approach.

Comparing the number of nodes between the proposed model and the pre-
vious argumentation-based learning model [16, 20], the number of saved nodes
in memory for our proposed approach decreases from 44 to 11 and the num-
ber of attack or support relations decreases from 40 to 13 (Fig. 3.5). Since
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Figure 3.4: Example of Argumentation-Based Learning for the illustrating
example. First part
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a) Our Approach b) Original ABL approach [16, 20]

Figure 3.5: Comparison of the ABL models after training on the illustrating
example

each attack or support relation is between two nodes, the memory usage for
these relations is twice the memory usage of the saving nodes. Moreover, the
supporting weights and argument weights are reduced from 40 to 0. There-
fore, the total memory usage decreases from 44 + (40 × 2) + 40 = 164 to
11 + (13× 2) + 0 = 37 which is more than four times (4×) lower in this small
illustrating example. Moreover, the lower number of saved nodes in the mem-
ory results in the lower number of comparisons between the feature values and
lower ultimate run-time.

3.4.2 Accelerated Argumentation-Based Learning

As explained in the previous sub-section, the main difference among the pro-
posed Accelerated Argumentation-Based Learning (AABL) approach and the
ABL is the architecture of the model. Here, only a the BAF unit is utilized.
Algorithm 3.1 shows the pseudocode of the proposed approach for AABL. In-
stead of initiating the model with all the subsets of feature values, the model
begins with the subsets of size 1 and increases the size of the subsets when all
the nodes are pruned and no nodes of subset-size L = 1 are available (ensuring
that the maximum size of the subsets can be 2). In practice, one can choose
any subset-size greater than 2 to obtain a more complex model than AABL.
In comparison with other methods that do not take feature dependencies into
account (which means that they only consider subsets of length 1), the choice
of size of 2 leads to better results while keeping the model complexity low.
This way the number of required computations in the algorithm is signifi-
cantly reduced. Using the extracted subsets and the set of supporting nodes
in the model, the best recovery behavior (action) is predicted. If the model
could predict a recovery behavior in the previous step, it will be applied to the
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Algorithm 3.1: Argumentation-Based Learning
input: Current BAF graph, Data Instance X entering the argumentation-based
learning model, feature values subsets’ size L, The class label or Best Recovery
Behavior (BRB) for X

output: The predicted label for X called Y

Start:
- Extract all feature value combinations in X with length L and add them to a list
called Combs.

- Let SNs be the set of supporting nodes (in form of “supporting-node →
supported-node”) in the BAF.

for (all sn in SNs) do
for (all comb in Combs) do

if (sn.supporting-node==comb) then
Y.Add(sn.supported-node)

if (Y is not empty) then
if (Length(Y)==1) then

- Apply Y to environment and observe the result.
else

- Select a prediction in Y at random (Y := Y[random_index]) and
observe the result.

else
- Randomly choose a prediction from the available class labels (observed
recovery behaviors).

- should_Increment_L := Update the BAF unit (using Algorithm 2 with
input parameters: current BAF graph, BRB, Combs, SNs).

while (should_Increment_L == True) and (L≤2) do
- L := L+1
- Compute the combinations of the feature values again as Combs.
- should_Increment_L := Update the model with Algorithm 2.

return Y

environment. If there exits more than one predictions, one of them is chosen
randomly. Otherwise, the random choice is among all the possible recovery be-
haviors (actions). Subsequently, the BAF unit is updated using the algorithm
3.2. The updating process has two steps, namely, updating the attack relations
and updating the support relations. When a new recovery behavior (action)
is added to the model, bidirectional attacks will be added between the newly
added recovery behavior (action) and all the other previous recovery behaviors
(actions) in the model. The supporting nodes are then added or pruned based
on their uniqueness in supporting a recovery behavior (action). When all the
supporting nodes are pruned, the size of the subsets of the feature values will
increase.
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Algorithm 3.2: Updating the BAF Unit
input: Current BAF graph, class label (Best Recovery Behavior) BRB,
Combinations of feature values for X called Combs, Set of Supporting Nodes in
the BAF graph SNs

output: A Boolean variable “should_Increment_L” that tells whether L needs
to be incremented or not.

Start:
- Let RNs be the set of all the class labels (Recovery behavior Nodes) in the BAF.
- Let attacks be the set all the attack relations (for a ∈ RNs and b ∈ RNs the
attack relations are in form of “a → b”) among the class labels (recovery
behavior nodes) in the BAF.

Step 1: (Updating attack relations and class labels)
if (BRB is not in BAF) then

- add BRB to the BAF graph;
- add bidirectional attacks between BRB and all the other class labels
(recovery behavior nodes) as follows:

for all rn in RNs do
- attacks.add( BRB → rn )
- attacks.add( rn → BRB )

Step 2: (Updating support relations)
- Let should_Increment_L := True
for ( all comb in Combs) do

- Let Add_Support :=True
for (all sn in SNs) do

if (sn.supporting-node == combs) then
- Add_Support :=False
if ( sn.supported-node ̸= BRB ) then

- Mark comb as a non-unique node that can not support any
node in future.

- Remove sn from the set supporting nodes in BAF SNs.

if (comb is not Marked) then
- should_Increment_L := False
if (Add_Support == True) then

- SNs.add(comb → BRB)

return should_Increment_L
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3.4.3 Complexity Analysis

In this subsection, the computational time complexity and space complexity
of both AABL and the original ABL are discussed.

3.4.3.1 Computational Time Complexity

In the previous subsections, we have explained that the proposed ABL method
begins with extracting the subsets of feature values with size 1 and then in-
creases the size of subsets if needed. Moreover, pruning unnecessary supporting
nodes reduces the required number of computations of the approach. Assum-
ing that n is the number of features in a dataset, the worst-case complexity
of the proposed algorithm is O(n2), while the original ABL method has O(2n)
worst-case complexity.

3.4.3.2 Space Complexity

Space complexity of the proposed AABL method is directly related to the
computational time complexity of the approach since we need to keep all sup-
porting nodes in the memory. Hence, the space complexity of AABL is at least
the same as the computational time complexity O(n2). The space complexity
of the original ABL approach is O(2n).

3.5 Experiments

3.5.1 Experimental Setup

In all the experiments, a table like Table 3.1 is randomly generated. Using this
randomly generated table, we then randomly generate the three scenarios as
explained in Section III. Each experiment has been conducted ten times (iter-
ations) and the average result is reported. In order to compare the accuracy
of both the proposed AABL and the original version of ABL [16, 20], we have
set the limit of 200 recovery attempts at each iteration. The run-times are
reported in seconds.

3.5.2 Experimental Results

In this section, three sets of experiments have been conducted. First, the run-
time of both approaches for all the scenarios have been compared. Second,
the memory consumption of both methods has been compared. Third, the
learning accuracy of both approaches has been compared.
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Proposed Approach (secs) Original ABL (secs)
First Scenario 0.42 84.76

Second Scenario 3.16 3318.68
Third Scenario 13.56 87088.60

Table 3.2: Comparison of run-times in seconds for different scenarios.

Proposed Approach (MBs) Original ABL (MBs)
First Scenario 0.9 20.4

Second Scenario 1.3 161.1
Third Scenario 1.7 392.73

Table 3.3: Comparison of memory usage for different scenarios.

3.5.2.1 Comparison of Run-times

Table 3.2 shows the comparison of the run-times of the proposed AABL and
the original ABL over these scenarios. As you can see, the newly proposed
approach outperforms the original version of ABL by a large margin. For
the first scenario, the run-time of the original ABL is 84.76s, while the newly
proposed method has the run-time of 0.42s. This means that AABL runs
almost 200 times faster than ABL. The run-time of our proposed approach for
the second scenario is 3.16s, while it is 3318.68s for the original ABL approach.
This means that the proposed approach is more than 103 times faster than
the previous approach for the second scenario. For the third scenario, the
proposed ABL algorithm runs 6 × 103 times faster than the original ABL
algorithm.

Figure 3.6 shows the relation between the number of locations in a scenario
like the first scenario and the run-time of different approaches. The run-time of
the original ABL approach exponentially increases while the proposed acceler-
ated ABL approach maintains much lower run-time that is linearly dependent
on the number of locations. Since the first scenario is only dependent on the
location number 5, only the subsets with the size 1 from the feature values are
extracted.

3.5.2.2 Comparison of the Memory Usage

In order to compare the memory usage of both the previous ABL approach
and the new proposed ABL approach, we have made a comparison. Table 3.3
shows the comparison of the memory usage of both approaches in MBs for
all the scenarios. For the first scenario, our current method has more than
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Figure 3.6: The relation between the run-time and the number of locations in
a scenario like the first scenario.

Figure 3.7: The comparison of learning accuracy vs number of recovery at-
tempts between the proposed AABL and the original ABL for the first sce-
nario.

20 times lower memory consumption. Moreover, for the second scenario, the
memory consumption is more than 70 times reduced in the newly proposed
approach. The proposed approach uses 200 times lower memory for the third
scenario.

3.5.2.3 Evaluating the Accuracy

In order to evaluate the performance of both methods based on the learning
accuracy, we have conducted two experiments. Figure 3.7 compares the accu-
racy of both methods for the first scenario. The comparison of both methods
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Figure 3.8: The comparison of learning accuracy vs number of recovery at-
tempts between the proposed AABL and the original ABL for the second
scenario.

for the second scenario is illustrated in Figure 3.8. In both cases, the proposed
ABL approach has higher accuracy.

3.6 Conclusion

Argumentation-Based online incremental Learning (ABL) has been introduced
recently in [16, 20]. ABL outperformed other state-of-the-art online incremen-
tal learning algorithms. Although ABL has higher learning accuracy than
other approaches, the it is not suitable for high dimensional problems. The
reason lies in the high computational complexity of the approach. In this chap-
ter, we have proposed Accelerated Argumentation-Based Learning (AABL),
which has lower computational complexity, and memory usage. The resulting
approach can be used for higher dimensional problems while having a bet-
ter learning accuracy than the original version of the ABL algorithm. We
have conducted three sets of experiments with more complex scenarios and
analyzed the run-time and memory usage of the methods. The proposed ap-
proach outperforms the original version of ABL algorithm in terms of run-time
and memory usage by a large margin while slightly outperforming the orig-
inal ABL in terms of accuracy. The lower computational complexity of the
proposed approach makes it applicable for wider range of machine learning
problems.
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CHAPTER4
Local Hierarchical Dirichlet Process

Open-Ended 3D Object Category Recognition

This chapter is based on [19] and it introduces a hierarchical Bayesian
model for the 3D object category recognition task. This model learns
in real-time from high-dimensional datasets in an online incremental
manner. It achieves high learning accuracy using only a small number
of learning instances. This method is suitable for both offline static
datasets and online open-ended scenarios where the number of class
labels is not fixed and grows over time. The model is evaluated in two
robotic applications both in real-world and simulated environments. It is
a non-parametric probabilistic model that can autonomously determine
the number-of-topics parameter from the dataset.

69



C
ha

pt
er

4

Local-HDP: Interactive Open-ended 3D Object
Category Recognition in Real-Time Robotic

Scenarios

Abstract

We introduce a non-parametric hierarchical Bayesian approach for open-
ended 3D object categorization, named the Local Hierarchical Dirichlet
Process (Local-HDP). This method allows an agent to learn independent
topics for each category incrementally and to adapt to the environment
in time. Each topic is a distribution of visual words over a predefined
dictionary. Using an inference algorithm, these latent variables are in-
ferred from the dataset. Subsequently, the category of an object is de-
termined based on the likelihood of generating a 3D object from the
model. Hierarchical Bayesian approaches like Latent Dirichlet Alloca-
tion (LDA) can transform low-level features into high-level conceptual
topics for 3D object categorization. However, the efficiency and accu-
racy of LDA-based approaches depend on the number of topics that is
chosen manually. Moreover, fixing the number of topics for all categories
can lead to overfitting or underfitting of the model. In contrast, the pro-
posed Local-HDP can autonomously determine the number of topics for
each category. Furthermore, the online variational inference method has
been adapted for fast posterior approximation in the Local-HDP model.
Experiments show that the proposed Local-HDP method outperforms
other state-of-the-art approaches in terms of accuracy, scalability, and
memory efficiency by a large margin. Moreover, two robotic experiments
have been conducted to show the applicability of the proposed approach
in real-time applications.

70
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Figure 4.1: An illustrative example of an inter-category variation of the mug
category in the Washington RGB-D dataset (top), and different object views
of a mug object (bottom).

4.1 Introduction

Most recent object recognition/detection techniques are based on deep neural
networks [79, 80, 88, 109, 136, 146, 111]. These methods typically need a large
labeled dataset for a long training process. The number of object categories
(class labels) should be predefined in advance for such methods. However, in
real-life robotic scenarios, a robot can always face new object categories while
operating in its environment and it requires learning from a small number
of observations. Therefore, the model should be updated in an open-ended
manner without completely retraining the model [20]. In this chapter, open-
ended learning means that the number of categories (class labels) is not fixed
and predefined for the model and that it can grow during runtime. Further-
more, object category recognition is not a well-defined problem because of the
large inter-category variation (Figure 4.1 (top)), multiple object views for each
object (Figure 4.1 (bottom)), and concept drift in dynamic environments [91].

Object recognition in humans is a complex hierarchical multi-stage process
of streaming visual data in the cortical regions [43]. The hierarchical struc-
ture of the brain for the object recognition task has motivated us to choose
hierarchical Bayesian models like Latent Dirichlet Allocation (LDA) [30] and
Hierarchical Dirichlet Process (HDP) [160] for object category recognition.

In this chapter, we suggest that 3D visual streaming data should be pro-
cessed continuously, and object category learning and recognition should be
performed simultaneously in an open-ended manner. We propose the Local
Hierarchical Dirichlet Process (Local-HDP), an extension of the Hierarchical
Dirichlet Process [160] method, which can incrementally learn new topics for
each category of objects independently. In contrast to notable recent works
[91, 90, 150] using a predefined number of topics, Local-HDP is more flexible



C
ha

pt
er

4

72 4.1. Introduction

Figure 4.2: The architecture of the proposed method.

since it is a non-parametric Bayesian model that can autonomously determine
the number of topics for each category at run-time.

Figure 4.2 shows the processing layers of the proposed Local-HDP. The
tabletop objects are detected in the initial phase (green bounding box around
apple on the table in Figure 4.2). Subsequently, the hierarchy of the five
processing layers is utilized. The features layer extracts a set of local shape
features using the spin-image descriptor [85].

The computed features are represented as a Bag of Visual Words (BoWs).
The obtained representation is then sent to the topics layer, where a set of top-
ics is inferred autonomously for the given object using the proposed Local-HDP
method. Each topic is a distribution of visual words over a dictionary. In other
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words, the topic layer provides an unsupervised mapping of the BoW represen-
tation to the topics space, which can fill the conceptual gap between low-level
features and high-level concepts. As shown in the object views layer, the
appearance of an object may vary from different perspectives (Figure 4.1 (bot-
tom)). Therefore, it is necessary to infer topics using different object views.
There might be different instances in an object category as well (see Fig-
ure 4.1 (top)). This point is addressed in the categories layer. Moreover, a
simulated teacher has been developed to interact with the model and evaluate
its performance in an open-ended manner.

This work extends two approaches, namely Local-LDA [91] and HDP [160],
in four aspects. First, our approach can autonomously detect the number of
required topics to independently represent the objects in each category, avoid-
ing the limitation of Local-LDA for determining the number of topics in ad-
vance. This feature prevents underfitting or overfitting of the model. Second,
our research adapts the online variational inference technique [169], which
significantly reduces inference time. Third, the proposed local online varia-
tional inference method leads to memory optimization since it needs to store
a smaller average number of instances per object category in memory. Fourth,
our work extends the hierarchical Dirichlet process [160] by learning and up-
dating local topics for each object category independently in an incremental
and open-ended fashion.

4.2 Related Work

Object representation is one of the main building blocks of object recognition
approaches. The underlying reason is that the output of the object represen-
tation module is used in both learning and recognition. Object representa-
tion techniques can be categorized into three groups, namely, global and local
object descriptors and machine learning approaches [104]. Notable global ob-
ject descriptors are Global Orthographic Object Descriptor (GOOD) [95, 92],
Ensemble of Shape Functions (ESF) [176] and Viewpoint Feature Histogram
(VFH) [143]. Examples of local 3D shape descriptors include Spin-Images
(SI) [85], Intrinsic Shape Signature (ISS) [187], and Fast Point Feature His-
togram (FPFH) [144]. Local descriptors are more robust to occlusions and
clutter. However, comparing pure local descriptors is a computationally ex-
pensive task [7]. To alleviate this problem, machine learning techniques like
Bag of Words (BoW) [93], Latent Dirichlet Allocation (LDA) [30, 96] and deep
learning [108, 178] methods can be used for representing objects in a compact
and uniform format.
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Kasaei et al. [91] extended Latent Dirichlet Allocation (LDA) and pro-
posed Local-LDA. They showed the application of Local-LDA in the context
of open-ended 3D object category learning and recognition. Similar to our
approach, Local-LDA learns a set of topics for each object category incre-
mentally and independently. Unlike our approach, in Local-LDA, the same
number of topics is chosen in advance based on trials and errors for all of
the object categories. A good choice for the number of topics for each ob-
ject category is correlated to the intra-category variation of each 3D object
category. Therefore, choosing the same number of topics for all the object
categories with different intra-category variations might be not reasonable.
Moreover, in open-ended scenarios, it is not feasible to anticipate the inter-
category variation of 3D objects that the model might see in the future and
choose a fixed number of topics in advance for all the categories. To solve
these issues, our approach can autonomously choose the number of topics for
each object category on the fly without a need for prior trials and errors. This
makes our approach more robust for recognizing object categories with various
inter-category and intra-category variations and applicable in real-world open-
ended scenarios. Local-LDA uses collapsed Gibbs sampling for approximating
the posterior probability. However, we adapt the online variational inference
technique [169] for Local-HDP.

Our approach builds on the Hierarchical Dirichlet Process (HDP) [160],
which is based on Dirichlet process (DP) [64] and a mixture of DPs [12]. The
posterior inference is intractable for HDP, and much research has been done
to find a proper approximate inference algorithm [160, 159, 110]. The Markov
Chain Monte Carlo (MCMC) sampling method for DP mixture models has
been proposed for approximate inference in HDPs [121]. David Blei et al.
proposed the variational inference for DP mixtures [29]. Teh et al. [160]
proposed the Chinese Restaurant Franchise metaphor for HDP and used the
Gibbs sampling method for the inference. The online variational inference
approach is proposed by Wang et al. [169] for HDP, which can be used in online
incremental learning scenarios and for large corpora. Our method is different
from HDP, since the proposed Local-HDP only shares the topics in the local
models for each category and not across different categories. This is especially
needed in the case of 3D object categorization for open-ended scenarios [91].
The use of local topics avoids underfitting the model by considering intra-
category variations. HDP has further extensions to construct tree-structured
representations for text data which have nested structure [123]. Similar to
the supervised hierarchical Dirichlet Process (sHDP) [49], we use the category
label of each object. Unlike sHDP, we learn object categories in an open-ended
fashion, while in sHDP, the number of object categories to be learned should
be defined in advance.
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Deep learning-based approaches [189, 184, 63] try to learn a sparse repre-
sentation for 3D objects. Unlike our approach, such methods typically need a
large labeled dataset and require a long training time. In particular, our pro-
posed approach does not require a large labeled dataset and can incrementally
update the model facing an unforeseen object category in an open-ended man-
ner. Moreover, the number of categories is not fixed in open-ended approaches
like ours.

4.3 Method

We assume that an object has already been segmented from the point cloud
of the scene, and we hence mainly focus on detailing the Local Hierarchical
Dirichlet Process (Local-HDP) approach.

4.3.1 Pre-Processing Layers

In Figure 4.2, the first two layers—the feature layer and BoWs layer— are
the pre-processing layers. In the feature layer, we first select key points for
the given object and then compute a local shape feature for each key point.
Towards this goal, we first voxelized1 the object (Figure 6.5) (b), and then, the
nearest point to each voxel center is selected as a key point. Afterward, the
spin-image descriptor2 [85] is used to encode the surrounding shape in each key
point using the original point cloud (Figure 6.5 (c)). This way, each object view
is described by a set of spin-images in the first layer, Os = {s1, . . . , sN} where
N is the number of key points. The obtained representation is then sent to
the BoWs layer. Since HDP-based models have the bag-of-words assumption
- that the order of words (visual words) in the document (3D object view)
can be neglected - the BoWs layer transforms the computed spin-images to a
BoW format (Figure 6.5 (d)). Towards this end, the BoWs layer requires a
dictionary with V visual words (spin-images). In this work, we have created
a dictionary of visual words using the same methodology as Local-LDA [91].
The obtained BoW representation is fed to the topic layer.

4.3.2 Local Hierarchical Dirichlet Process

After synthesizing the point cloud of the 3D objects to a set of visual words
in BoW format, the data is ready to be inserted into the topic layer where the

1www.pointclouds.org/documentation/classpcl_1_1_voxel_grid.html
2www.pointclouds.org/documentation/classpcl_1_1_spin_image_estimation.

html

www.pointclouds.org/documentation/classpcl_1_1_voxel_grid.html
www.pointclouds.org/documentation/classpcl_1_1_spin_image_estimation.html
www.pointclouds.org/documentation/classpcl_1_1_spin_image_estimation.html
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(a) coffee mug (b) voxelization

(c) local-features (d) BoW

Figure 4.3: (a) The RGB-D image of a coffee mug. (b) key points selection
using voxelizing [91]. (c) key points neighborhoods are represented by different
colors. (d) The BoW representation for the given object.

proposed Local-HDP method is employed. In this layer, the model transforms
the low-level features in BoW format to conceptual high-level topics. In other
words, each object is represented as a distribution over topics, where each
topic is a distribution of visual words over a dictionary. To this end, we use an
incremental inference approach where the number of categories is not known
beforehand and the agent does not know which additional object categories
will be available at run-time.

The plate notation of Local-HDP is shown in Figure 6.4. In this graph,
C is the number of categories, |c| is the number of objects in each category.
Each object, j, is represented by a set of N visual words, Wj,n where j, n
shows the n’th visual word from the j’th object. Each visual word is an
element from the vocabulary of visual words with predefined V words, that is
Wj,n ∈ {1...V }. Using a Coffee Mug as an example, a distribution over the
topics of the Coffee Mug should be used to generate the visual words of the
object. Accordingly, a particular topic is selected out of the mixture of possible
topics of the Coffee Mug category to generate the visual words. For instance,
coffee mugs typically have a “handle”, which is represented as a distribution of
visual words that repeatedly occur together. This can be interpreted as the
“handle” topic, which is inferred from the co-occurrence of the visual words in
several objects of the same category.

The process of choosing a topic and then drawing the visual words from
that topic is repeated several times to generate all the visual words of the
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Coffee Mug. It is worth mentioning that the generative process is not used in
the experiments. However, the local online variational inference technique is
used to do a reverse procedure of inferring the topics, corresponding to latent
variables from the 3D object views. Using the inferred topics, we then compare
the log-likelihood of generating the visual words in a 3D object for each local
model. The category of the local model with the highest log-likelihood is then
selected as the predicted category of the 3D object.

4.3.3 Dictionary of Visual Words

In this chapter, we have used the method of [91] to construct the dictionary
of the visual words. This means that a dictionary with V visual words is
constructed by clustering a random subset of 50% of the training data. We have
utilized the k-means method for clustering the local shape descriptors (spin-
images) of the randomly selected objects into V visual words. Consequently,
the nearest spin-images to the cluster centers are selected as the dictionary’s
visual words.

4.3.4 Local Online Variational Inference

The inference method is responsible for inferring the latent variables in the
model using a dataset [21]. In this section, we adapt the online variational
inference method [169] for Local-HDP. This method can be used in open-
ended applications since it can handle streaming data in an online and in-
cremental manner. Moreover, it is faster than traditional approximate infer-
ence techniques, e.g., Chinese restaurant franchise [160] and variational infer-
ence [29], and it can be used to infer the latent variables of differently scaled
datasets [169].

Online variational inference for HDP is inspired by the online variational
Bayes [77] method for LDA. This method tries to optimize a variational objec-
tive function [86] exploiting stochastic optimization [141]. HDP is a collection
of DPs Gj that share the same base distribution G0 (which is also drawn from
a DP). These DPs share the same set of atoms and only the atom weights are
different. Mathematically, a two-level HDP is defined as follows:

G0 ∼ DP (γH)

Gj ∼ DP (α0G0), for each j
(4.1)

where α0 > 0 is the scaling parameter and γ is the concentration parameter of
a DP. Sethuraman’s stick-breaking construction technique [65] is responsible
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for determining the number of topics in the model. Using the same approach as
[169] for HDP, the variational distribution for local online variational inference
is in the following form:

q(β′, π′, c, z, ϕ) = q(β′)q(π′)q(c)q(z)q(ϕ) (4.2)

In the terminology of variational inference techniques, q is called the varia-
tional approximation to the posterior p. Variational techniques try to solve
an optimization problem over a class of tractable distributions Q in order to
find a q ∈ Q that is most similar to p and can be used as its approximation.
Moreover, β′ = (β

′

k)
∞
k=1 is the top-level stick proportion, π′ = (ϕ

′
jt)

∞
t=1 is the

bottom-level stick proportion and cj = (c
′
jt)

∞
t=1 is the vector of indicators for

each Gj. Moreover, ϕ = (ϕk)
∞
k=1 is the inferred topic distribution, and zjd is

the topic index for the nth visual word in the j th 3D object. The infinity
notion (∞) shows the open-ended nature of the number of parameters.

The factorized form of q(c), q(z), q(ϕ), q(β′) and q(π′) is the same as the
online variational inference for HDP [169]. Assuming that we have |c| objects
in each category for Local-HDP, the variational lower bound for object j in
category C is calculated as follows:

L
(C)
j =

Eq[log(p(wj|cj, zj, ϕ)p(cj|β′)p(zj|π′)p(π
′

j|α0))]

+H(q(cj)) +H(q(zj)) +H(q(ϕ′))

+
1

|c|
[Eq[logp(β

′)p(ϕ)] +H(q(β′)) +H(q(ϕ)] (4.3)

Where H(.) is the entropy term for the variational distribution. Therefore, the
lower bound term for each category is calculated in the following way:

L(C) =
∑
j

L
(C)
j = Ej[|c|L(C)

j ] (4.4)

Using coordinate ascent equations in the same way as online variation infer-
ence, the object-level parameters (aj, bj, φj, ζj) are estimated. To be more
specific, aj and bj are the parameters of the beta distributions for the bottom-
level stick proportions πj, φj is the variational parameter for the vector of
indicators cj, and ζj is the variational parameter for the topic zj. These vari-
ables are defined in the same way as in [169]. Then, for the category-level
parameters (λ(C), u(C), v(C)), we do gradient descent with respect to a learning
rate:
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Figure 4.4: The plate notation of Local-HDP.

∂λ
(C)
kw (j) = −λkw + η + |c|

T∑
t=1

φjtk(
∑
n

ζjntI[wjn = w]) (4.5)

∂u
(C)
k (j) = −uk + 1 + |c|

T∑
t=1

φjtk (4.6)

∂v
(C)
k (j) = −vk + λ+ |c|

T∑
t=1

K∑
l=k+1

φjtl (4.7)

Here, K and T are the documents (3D object view) and corpus (category) level
truncates. Moreover, φ (multinomial), ζ (multinomial), and λ (Dirichlet) are
the variational parameters, which are the same for all the categories. Using
an appropriate learning rate pt0 for online inference, the updates for λ(C), u(C)

and v(C) become:

λ(C) ← λ(C) + pt0∂λ
(C)(j) (4.8)

u(C) ← u(C) + pt0∂u
(C)(j) (4.9)

v(C) ← v(C) + pt0∂v
(C)(j) (4.10)

Algorithm 6.1 shows the pseudo-code of the proposed inference technique for
the Local-HDP approach.
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Algorithm 4.1: Local Online Variational Inference
initialization:
Randomly initialize λ(C) = (λ

(C)
k )Kk=1, u

(C) = (u
(C)
k )K−1

k=1 and
v(C) = (v

(C)
k )K−1

k=1 for all the learned categories. Set t0 = 1
for each Category C do

while Stopping criterion is not met do
- Use the object view j for updating the parameters.
- Compute the document-level parameters aj , bj ,Φj , ζj using the
same methodology as [169].

- Using Eq. 5-7, compute the natural gradients ∂λ(C)(j), ∂u(C)(j)
and ∂v(C)(j).

- Set pt0 = (τ0 + t0)
−K , t0 = t0 + 1.

- Update the λ(C), u(C), v(C) parameters using Eq. 8-10.
end

end

4.3.5 Object Category Learning and Recognition

In this subsection, the mechanism of interactive open-ended learning has been
explained in more detail. Classical object recognition methods do not support
open-ended learning. In contrast, our method is open-ended, and the number
of categories can be incrementally extended through time. The system can
interact with a human user to learn about new categories or to update ex-
isting category models by receiving corrective feedback when misclassification
occurred. We follow the same methodology as [94] for this purpose. The user
can interact with the system with one of the following actions:

• Teach: introducing the category of a target object to the agent.

• Ask: inquiring the agent about the category of a target object.

• Correct: sending corrective feedback to the agent in case of a wrong
categorization.

Whenever the agent receives a teach command, it incrementally updates the
local model corresponding to the category of the target object using the afore-
mentioned online variational inference technique. In the case of the ask com-
mand, the log-likelihood is used to determine the category of an object. The
log-likelihood is computed in the same way as in [169]. The local model with
the highest likelihood is then selected as the predicted category for an object.



C
hapter

4

4.4. Experimental Results 81

4.4 Experimental Results

Following the same protocol as Local-LDA [91] for interacting with a simu-
lated teacher, two sets of experiments, namely, offline experiments and open-
ended experiments, have been conducted to evaluate the performance of the
proposed method. The offline experiments use the k-fold cross-validation tech-
nique for evaluating the performance of the model in offline scenarios with a
small number of training instances. The open-ended experiments are focused
on evaluating the proposed approach for the scenarios in which the number of
object categories (class labels) is not fixed and can grow over time. In open-
ended scenarios, the model is updated in an incremental manner. However,
in the offline evaluations, the model is trained once with a training set and
then evaluated using a testing set from the dataset. For Local-HDP in all
the experiments, we set pt0 = (τ0 + t0)

−K where K ∈ (0.5, 1] and τ0 > 0 as
suggested by [169].

4.4.1 Datasets and Baselines for Comparison

For offline evaluation of the proposed Local-HDP and the other state-of-the-
art approaches, we have used the restaurant RGB-D object dataset [94]. This
dataset has 10 categories of objects and each category has a significant intra-
category variation. It consists of 306 different object views for 10 household
objects. Therefore, it is a suitable dataset to perform extensive sets of exper-
iments.

The Washington RGB-D dataset [105] is used for online open-ended eval-
uation of the method since it is one of the largest 3D object datasets. It
has 250,000 views of 300 common household objects, categorized into 51 cat-
egories. Figure 4.5 shows some of the categories of objects presented in the
Washington RGBD Dataset. In all experiments, only the depth data has been
used for determining the category of 3D objects. Therefore, as one can see in
Figure 4.5, detecting the category of an object based solely on the depth data
is a hard task even for humans.

We have compared the proposed Local-HDP using local online variational
inference with Local-LDA [91], LDA with shared topics [30], BoW [93], RACE
[122], and HDP with shared topics and online variational inference [169].

4.4.2 Offline Evaluation

Similar to Local-LDA, our approach has several parameters that should be well
selected to provide an appropriate balance between recognition performance,
memory usage, and computation time. In order to fine-tune the parameters
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Figure 4.5: Similar object categories to those from the Washington RGBD
dataset. The second row shows the same objects as the first row, but without
color (in red), to emphasize the similarity of objects based on the depth data.

Table 4.1: Average accuracy of Local-HDP and Local-LDA based on 440 ex-
periments with different parameter values.

Parameters IW VS SL
Value 4 8 0.01 0.02 0.03 0.04 0.03 0.04 0.05 0.1 0.15

Acc
(%)

Local-LDA 84 83 81 82 86 83 81 83 84 85 83
Local-HDP 94 92 91 93 95 93 91 92 92 94 91

Parameters Dictionary Size
Value 40 50 60 70 80 90 100 200 500 2000 2500

Acc
(%)

Local-LDA 82 82 82 83 85 85 86 87 88 90 87
Local-HDP 91 92 92 92 92 93 93 94 95 96 94

of our proposed method for offline evaluation, 440 experiments have been con-
ducted with different parameter values. The voxel grid approach has been
used for down-sampling and finding the key points for the local descriptor.
The voxel grid has a Voxel Size (VS) parameter which determines the size
of each voxel. Moreover, the spin-image local descriptor has two parameters,
namely Image Width (IW) and Support Length (SL).

In all experiments, the first-level and second-level concentration param-
eters are set to 1, the chunk size for offline evaluation is set to 1, and the
maximum number of topics is set to 100. All the other parameters are set
to the default values as proposed in [169] . Moreover, in all the experiments
the LDA parameters are set to be the same values as described in [91]. Since
online variational inference is a stochastic inference technique, for each experi-
ment the order of the data instances has been permuted 10 times and for each
permutation, 10-fold cross-validation has been used. Accordingly, the results
have been averaged.

Table 4.1 shows the comparison of Local-HDP and Local-LDA with differ-
ent parameter values. As one can see in this table, the proposed Local-HDP
method outperforms Local-LDA which is the best among the other methods
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Table 4.2: The comparison of different approaches using the best parameter
values. The average run-time of each experiment is reported for all the ap-
proaches.

Approach Accuracy (%) Run-time (s)
RACE [122] 87.09 1757
BoW [93] 89.00 195

LDA (shared topics) [30] 88.32 227
Local-LDA [91] 91.30 348

HDP (shared topics) [169] 90.33 233
Local-HDP (our approach) 97.11 352

Table 4.3: The comparison of the proposed approach with some deep learning
approaches for 3D object classification.

Approach Accuracy (%) Accuracy (%)
(original dataset) (augmented dataset)

PointNet [129] 0.11 85.13
PointNet++ [130] 0.12 87.45
PointCNN [107] 0.12 88.02

Local-HDP 97.11 98.64

(see [91]). Using the best parameter values based on Table 4.1 and the corre-
sponding tables in [91], the accuracy of all the approaches is shown in Table
4.2.

Table 4.2 shows that Local-HDP outperforms the other state-of-the-art
methods in terms of accuracy by a large margin. In particular, the accuracy of
Local-HDP was 97.11%, which is around 6.11 percentage points (p.p.) better
than Local-LDA, and 6.78, 9.11, 8.11, 10.11 p.p better than HDP, LDA, BoW,
and RACE approaches respectively. Moreover, Local-HDP has almost the
same run-time as Local-LDA.

Table 4.3 shows the comparison of the proposed Local-HDP approach with
some deep learning architectures, namely, PointNet [129], PointNet++ [130],
and PointCNN [107] for offline evaluation. Since the number of training in-
stances for each category is limited in the restaurant RGB-D object dataset
[94] (the number of training instances for offline 10-fold cross-validation for the
fork category is 8 and the average number of training instances per category is
27), the deep learning approaches tend to overfit and could not generalize well.
To resolve this issue for deep learning approaches, the dataset is augmented
20 times by randomly rotating the point clouds around different axes. Table
4.3 also compares the accuracy of deep learning approaches with the proposed
Local-HDP after augmentation.

To uniformly sample 2048 points from a point cloud for the deep learning
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Table 4.4: The average result of 10 open-ended experiments for all the methods.

Approach #QCI #LC AIC GCA(%)
LDA 269 9.1 16.74 51.00%
HDP 753 27.2 12.76 66.14%

Local-LDA 1411 40.6 13.75 69.44%
Local-HDP 1330 51.0 6.85 85.23%

approaches, a mesh is constructed using the ball-pivoting algorithm for surface
reconstruction [25]. Subsequently, the point clouds are normalized to a unit
sphere (the same approach is used in PointNet [129]) to uniformly sample 2048
points from the constructed meshes.

4.4.3 Open-Ended Evaluation

In order to evaluate our model in an open-ended learning scenario, we used the
Washington RGBD dataset [105], and we have followed the same methodology
as discussed in [91]. In particular, we have developed a simulated teacher
which can interact with the model by either teaching a new category to it
or asking the model to categorize the unforeseen object view. In case of a
wrong categorization of an object by the model, correcting feedback is sent
to the model by the simulated teacher. In order to teach a new category,
the simulated teacher presents three randomly selected object views of the
corresponding category to the model. After teaching a new category, all of
the previously learned categories are tested using a set of randomly selected
unforeseen object views. Subsequently, the accuracy of category prediction is
computed. In open-ended evaluation, the model observes the 3D objects one
by one, and the history of the latest 3n predictions of the model is considered
for calculating the accuracy, where n is the number of the learned categories. If
the corresponding accuracy is higher than a certain threshold τ = 0.66 (which
means that the number of true positives is at least twice the number of wrong
predictions), the simulated teacher will teach a new category to the model. If
the learning accuracy does not exceed the threshold τ after a certain number
of iterations (100 for our experiments), the teacher infers that the agent is not
able to learn more categories and the experiment stops. More details on the
online evaluation protocol that has been used in our experiments can be found
in [90].

Since the performance of open-ended evaluation may depend on the order of
introducing categories and object views (randomly selected at the beginning of
each experiment), 10 independent experiments have been carried out for each
approach. Several performance measures have been used to evaluate the open-
ended learning capabilities of the methods, namely: (i) the number of Learned
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Exp##QCI#LC AIC GCA(%)
1 201 8 14.88 52.74
2 231 8 16.38 53.68
3 336 10 17.2 57.74
4 495 15 15.47 62.22
5 193 9 14.44 46.63
6 138 5 17.4 47.83
7 264 7 20.29 54.17
8 348 10 19.3 53.16
9 206 9 15.22 46.60
10 279 10 16.9 50.18

Avg. 269 9.1 16.74 51

(a) Summary of experiments for LDA
Exp##QCI#LC AIC GCA(%)

1 1011 34 13.24 65.58
2 737 22 14.59 65.40
3 306 15 10.47 63.40
4 439 19 10.84 66.06
5 1079 34 13.26 67.66
6 1052 35 12.74 67.59
7 937 25 16.52 63.93
8 909 32 11.88 68.76
9 480 24 9.417 67.92
10 1069 32 14.66 65.11

Avg. 753 27.2 12.76 66.14

(b) Summary of experiments for HDP

Exp##QCI#LC AIC GCA(%)
1 1346 40 12.93 70.51
2 1764 40 17.73 66.61
3 1385 43 12.4 70.83
4 1224 41 11.29 72.22
5 1594 47 13.11 70.20
6 1551 46 13.04 70.21
7 1263 35 14.83 67.22
8 1455 46 12.04 71.41
9 1012 34 12.53 67.98
10 1518 34 17.62 67.26

Avg. 1411 40.6 13.75 69.44

(c) Summary of experiments for Local-LDA (Online Variational Inference)

Exp##QCI#LC AIC GCA(%)
1 1325 51 6.45 86.72
2 1370 51 8.25 80.44
3 1325 51 6.62 86.04
4 1325 51 6.70 85.74
5 1325 51 6.37 87.02
6 1325 51 7.03 84.45
7 1325 51 6.64 85.96
8 1325 51 6.80 85.36
9 1330 51 7.17 83.98
10 1327 51 6.47 86.66

Avg. 1330 51 6.85 85.23

(d) Summary of experiments for Local-HDP (our approach)

Figure 4.6: Summary of 10 experiments for open-ended evaluation LDA, HDP,
Local-LDA and our proposed Local-HDP approach. The learning capacity and
the global accuracy of different models is compared with the corresponding
plots.
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Figure 4.7: The absolute number of stored instances per category (for one
out of ten open-ended experiments): the lower stored instances mean that the
method is more memory efficient. The horizontal axis from left to right shows
the order of introducing categories to all methods.

Categories (#LC); (ii) the number of Question/Correction Iterations (#QCI)
by the simulated user; (iii) the Average number of stored Instances per Cat-
egory (AIC) ; (iv) Global Categorization Accuracy (GCA), which represents
the overall accuracy in each experiment. These performance measures have
the following interpretations. #LC shows the open-ended learning capability
of the model, which answers the following question: How capable is the model
in learning new categories? #QCI shows the length of the experiment (itera-
tions). AIC represents the memory efficiency of the method. A lower average
number of stored instances per category means a higher memory efficiency of
the method. AIC is also related to learning speed. A smaller AIC means that
the method requires fewer observations to correctly recognize each category.
#GCA shows the accuracy of the model in predicting the right category for
each object.

In order to compare methods fairly, the simulated teacher shuffles data
at the beginning of each round of experiments and uses the same order of
object categories and instances for training and testing all the methods. Figure
4.6 (left) shows the detailed summary of 10 experiments for LDA, HDP, Local-
LDA, and Local-HDP methods. It shows that Local-HDP could learn all 51
categories in all experiments, while Local-LDA, HDP, and LDA, on average
learned 40.6, 27.2, and 9.1 categories, respectively (Table 4.4). The average
AIC for Local-HDP is 6.85, while it is 13.75, 12.76, and 16.74 for Local-LDA,
HDP, and LDA, respectively. This means that the proposed approach could
achieve higher learning accuracy (85.23 compared to 69.44, 66.14, and 51)
while observing a smaller number of 3D objects (around 50% fewer examples).
This result shows the descriptive power of Local-HDP.

Figure 4.6 (center) shows the learning capability of the new categories as
a function of the number of learned categories versus the question/correction
iterations. Local-HDP achieved the best performance by learning all the 51
categories in 1330.20±13.95 iterations (Table 4.4). One important observation
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is that shuffling the order of introducing categories by the simulated user does
not have a serious effect on the performance of Local-HDP, while it affects
the performance of other methods significantly. The longest experiment, on
average was continued for 1411.20±212.75 iterations with Local-LDA and the
agent was able to learn 40.60± 4.98.

Figure 4.6 (right) plots the global categorization accuracy versus the num-
ber of learned categories. It was observed that the agent with Local-HDP
not only achieved higher accuracy than other methods in all experiments but
also learned all the categories. It is worth mentioning that Local-HDP con-
cluded prematurely due to the “ lack of data” condition, i.e., no more categories
available in the dataset. This means that the agent with Local-HDP has the
potential of learning more categories in an open-ended fashion. According to
Table 4.4, the average GCA for Local-HDP is 85.23% and it is 69.44%, 66.14%
and 51.00% for Local-LDA, HDP, and LDA, respectively.

Figure 4.7 represents the absolute number of stored instances per category
in one round of the open-ended experiments. It shows that the agent with
Local-HDP stored a lower or equal number of instances for all of the categories.
On closer review using Figure 4.6 (left), one can see that the Local-HDP
on average stored 6.85 instances per category to learn 51 categories, while
Local-LDA stored 13.75 to learn 40.6 categories. HDP achieved third place
by storing 12.76 instances to learn 27.20 categories and LDA was the worst
among the evaluated approaches, i.e., on average it stored 16.74 instances to
learn 9.10 categories. According to this evaluation, Local-HDP is competent
for robotic applications with strict limits on the computation time and memory
requirements.

4.5 Real-time Robotic Application

To demonstrate the applicability of the proposed 3D object categorization
method in real-time robotic applications, we have performed two object ma-
nipulation experiments, as shown in Figure 4.8. In both robotic applications,
the model is trained in an open-ended manner from scratch and the models
are not pre-trained.

In both demonstrations, a UR5e robotic arm is used to manipulate the
objects located on a table. Moreover, a Kinect camera is fixed in front of the
table to acquire the visual data for further perceptual analysis. The system
detects table-top objects, draws a bounding box around them, and assigns
a tracking ID (TID) to each object (Figures 4.8.b - 4.8.d). To compute the
orientation of the bounding boxes, the Principle Component Analysis (PCA)
WOLD198737 algorithm has been used. First, a local reference frame is con-
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a) The robotic setup for the first demonstration.b) Point cloud and object category visualization
in RViz for the first robotic demonstration.

c) Clearing coke cans from the table for
the second robotic demonstration.

d) The RViz visualization of the recognized
categories for the second robotic demonstration.

Figure 4.8: The real-time application of the proposed Local-HDP 3D object
category recognition method in a robotic scenario

structed by applying PCA on the normalized covariance matrix, Σ, of the
point cloud, i.e., ΣV = EV , where E = [e1, e2, e3] contains eigenvalues in the
descending order, and V = [v1, v2, v3] represents the eigenvectors. Therefore,
v1 is the eigenvector with the largest variance of the points of the object. We
consider v1 and v2 as X and Y axes, respectively. We define the Z axis as the
cross product of v1×v2. The minimum and maximum values in each axis are
then considered for computing the oriented bounding boxes.

The model does not initially have any knowledge about the category of
the objects located on the table. In both scenarios, we involved a human user
in the learning loop as it is necessary for human-robot interaction. In the
first scenario, a user can interact with the system through the RViz3 [131] 3D
visualization environment and assign a category label to each of the detected
objects on the table. After introducing the object category labels to the model,
it can detect the category of the objects even if they have been placed in a
different location on the table, which might change the object view partially

3 ROS Visualization: http://wiki.ros.org/rviz

http://wiki.ros.org/rviz
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due to the perspective or occlusion by the other objects. Finally, the clearing
task is initiated in which for each individual object, the end-effector of the
robotic arm moves to the pre-grasp position of a target object, and then grasps
the object and puts it into a trash box located on the table (Figure 4.8.a).
This demonstration showed that the system was able to detect different object
categories and learned about new object categories using very few examples
on-site. Furthermore, it was observed that the proposed approach was able
to distinguish geometrically very similar objects from each other (e.g., Cup
vs CokeCan). The video of this robotic demonstration is available at https:
//youtu.be/otxd8D8yYLc.

The second robotic demonstration has more emphasis on category recogni-
tion of unforeseen objects and performing a category-specific robotic task. In
this demonstration, a user interacts with the system through voice commands
and introduces the initially located objects on the table to the model. The
model uses the segmented point cloud of these table-top objects to train the
model. Subsequently, three new objects will be spawned on the table in the
Gazebo simulator [99]. After the detection of each of the new objects, the sys-
tem tells the predicted category to the user and asks for corrective feedback in
case of a wrong prediction. This way the system learns about new object cate-
gories incrementally and updates the category models once a misclassification
happens.

After recognizing all object categories, the user commands the robot to
clear all the coke cans from the table and put them into the trash box located
on the table. To accomplish this task, the robot should detect the pose as
well as the label of all objects. Then, the robot grasps and manipulates all the
coke cans from the table while keeping the rest of the objects from different
categories on the table (Figure 4.8.c). A video for this robotic demonstration
is available at https://youtu.be/YPsrBpqXWU4.

4.6 Conclusion

We propose a non-parametric hierarchical Bayesian model called Local Hier-
archical Dirichlet Process (Local-HDP) for interactive open-ended 3D object
category learning and recognition. Each object is initially represented as a
bag of visual words and then transformed into a high-level conceptual topics
representation.

We have conducted an extensive set of experiments in both offline and
open-ended scenarios to validate our approach and compare its performance
with state-of-the-art methods. For the offline evaluations, we mainly used 10-
fold cross-validation (train-then-test). Local-HDP outperformed the selected

https://youtu.be/otxd8D8yYLc
https://youtu.be/otxd8D8yYLc
https://youtu.be/YPsrBpqXWU4
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state-of-the-art (i.e., RACE, BoW, LDA, Local-LDA, and HDP) by a large
margin, achieving appropriate computation time and object recognition accu-
racy. In the case of open-ended evaluation, we have developed a simulated
teacher to assess the performance of all approaches using a recently proposed
test-then-train protocol. Results show that the overall performance of Local-
HDP is better than the best results obtained with the other state-of-the-art
approaches.

Local-HDP can autonomously determine the number of topics, even though
finding a good choice for the number of topics is not a trivial task in LDA-
based approaches. Moreover, the number of topics in Local-LDA should be
defined in advance and is the same for all object categories, which may lead
to overfitting or underfitting of the model. Local-HDP has resolved this issue
by finding the number of topics for each category based on the intra-category
variation of objects. Adapting online variational inference to the proposed
approach enables Local-HDP to approximate the posterior for large datasets
rapidly.

In order to demonstrate the applicability of the proposed approach in real-
time robotic applications, two robotic demonstrations have been conducted
using a UR5e robotic arm. These experiments showed that the robot was able
to learn new object categories using very few examples over time by interacting
with non-expert human users.

In the continuation of this work, we would like to investigate the possibility
of using the proposed method for graspable part segmentation of 3D objects.
This way, we can address the problem of 3D object recognition and affordance
detection (i.e., detecting graspable parts) simultaneously.
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CHAPTER5
Swift Distance Transformed Loopy

Belief Propagation
using a Novel Dynamic Label Pruning Method

This chapter is based on my master program in artificial intelligence
at Yazd University. This research topic has been extended during my
PhD. This chapter proposes a fast inference algorithm for the loopy belief
propagation technique in Markov Random Fields (MRF) probabilistic
graphical models [21]. This method enables an MRF model to infer the
parameters in real-time and decreases the computational complexity of
the previous methods. It has been utilized for the image completion
(inpainting) task. Image completion is the task of filling in a relatively
large missing part of an image. This is a challenging problem since in
this chapter, the model only utilizes the local information of the same
image to inpaint the missing part and there is no training set like in most
image completion methods that are based on deep neural networks.
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Swift distance-transformed Belief Propagation
using a Novel Dynamic Label Pruning Method

Abstract

Loopy belief propagation (LBP) suffers from high computational time,
specifically when each node in the Markov random field (MRF) model
has lots of labels. In this study, a swift distance-transformed belief prop-
agation (SDT-BP) method is proposed. SDT-BP employs an efficient
dynamic label pruning approach together with distance transformation
to boost the running time of the LBP. The proposed dynamic label prun-
ing approach is independent of any specific message scheduling. The re-
sultant solution’s energy is less than Priority-BP. Furthermore, SDT-BP
guarantees convergence in fewer iterations. The direct combination of
distance-transformed belief propagation (DT-BP) with the dynamic la-
bel pruning in Priority-BP has O(KTNlog N) computational complexity.
However, the proposed method results in O(KTN) complexity. Where
N is the number of nodes, K is the number of labels for each node, and T
is the number of iterations. The authors conduct several experiments on
image inpainting case studies, to evaluate this method. According to this
analysis, DT-BP faces nearly 90% speedup by preserving the energy of
the solution at almost the same level. Furthermore, this method can be
utilized in any MRF model where its distance function is transformable,
i.e. in various image processing and computer vision problems.

92
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5.1 Introduction

Nowadays, Markov Random Field (MRF) is a commonplace means for solving
diverse problems in computer vision, namely, image restoration, image segmen-
tation, stereo, 3D vision, object labeling, optical flow, etc. This is especially
true for cases where training based on a large dataset of images is not possible.
The MRF formulation of these problems turns into energy minimization which
is NP-hard. Belief Propagation (BP), introduced by Pearl. J [127], is one of
the approximation algorithms proposed to deal with this issue. This algorithm
can efficiently approximate the solution. It can also find the exact solution if
certain constraints hold for the problem [127].

Although there were remarkable advances in the way of finding an effi-
cient algorithm, the standard Loopy Belief Propagation (LBP) still suffers
chiefly from high run-time and computational complexity. Thus, reference [61]
proposed a new phenomenal approach for reducing the computational com-
plexity of belief propagation via the notion of Distance Transformation (DT)
[35]. We call this method distance-transformed Belief Propagation (DT-BP).
Komodakis et al. [101] introduced another effective method for accelerating
belief propagation. This method dynamically schedules the message passing
and tries to prune the proper labels for each random variable of an MRF
model during the inference phase. In this chapter, we propose a combinato-
rial approach by combining distance transformation with a new dynamic label
pruning approach to accelerate LBP.

The general framework for many computer vision problems is defined in
the following way. Let P be the set of image pixels and let L be the label
state space e.g. intensity values in pixel-wise inference or similar patch offsets
in patch-wise inference [76]. We use the intensity values of image pixels as
labels in all the experiments. A labeling f is the assignment of fp ∈ L to
each pixel p ∈ P . The formulation is based on two assumptions: first, the
output image should be similar to our input image (for inpainting application,
this assumption is true for all the pixels of the image except the ones in the
missing regions). Second, labels of neighboring pixels should vary smoothly
all over the image except on objects’ boundaries. The quality of each labeling
is measured by the following energy function:

E(f) =
∑
p∈P

Dp(fp) +
∑

(p,q)∈N

V (fp, fq). (5.1)

Here, N is the set of edges in a four-connected image grid graph. Dp(fp)
is the data cost according to our first assumption. V (fp, fq) is the smoothing
or discontinuity cost corresponding to our second formulation assumption. fp
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and fq are the labels of two adjacent pixels. Furthermore, finding a labeling
with minimum energy, which is equivalent to the MAP estimation problem for
the corresponding MRF, is the ultimate goal. Notice that the best labeling f ∗

is the one with the lowest energy level:

f ∗ = argmin
f∈L

(E(f))

Although [101] has notable pros, its dynamic label pruning method cannot
be used directly with DT-BP without increasing the computational complexity
of the resulting algorithm. Komodakis et al. employed the notion of priority
in their message scheduling approach. Each data structure managing to deal
with priority has at least O(logN) computational complexity for either in-
sert or delete operation. Therefore, a direct combination of DT-BP [61] and
Priority-BP [101] has O(KTNlogN) computational complexity (notice that
the computational complexity of Priority-BP method is O(K2TNlogN)). In
contrast, our proposed approach uses a new dynamic label pruning method to
resolve this issue and it results in O(KTN) worst-case computational complex-
ity, where N is the number of nodes in an MRF, T is the number of iterations
of the algorithm, and K is the number of labels for each node. Due to the la-
bel pruning procedure, our proposed method accelerates DT-BP up to almost
90%.

Moreover, Komodakis et al. mentioned that their label pruning approach
[101] wouldn’t work properly without their priority-based message passing.
However, our method can be utilized in combination with any message schedul-
ing algorithm.

Another foremost characteristic of our approach is the guarantee of con-
vergence. According to the experimental results, the convergence speed of the
proposed method is higher than Priority-BP. This means that our approach
converges in fewer iterations.

The dynamic label pruning approach in Priority-BP yields solutions with
higher energy levels than DT-BP. However, the solutions of our approach have
quite lower energy than Priority-BP. In the case of image inpainting and denois-
ing, we obtain results with nearly the same degree of accuracy (energy level) as
DT-BP. We call our approach Swift distance-transformed Belief Propagation
(SDT-BP) method.

This chapter is organized as follows: Section 2 describes the background
and related works. The proposed method is explained in Section 3. Section
4 demonstrates the experimental results and Implementation details. Possi-
ble future works are explained in Section 5. The chapter is concluded with
Section 6.
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5.2 Background and Related Works

In this section, we first review the Loopy Belief Propagation (LBP) inference
method and the transformation of the linear distance function. Subsequently,
Priority-BP is reviewed. We explain the criteria for measuring the efficiency
of any energy minimization problems afterward. Finally, we will address some
related works.

5.2.1 Loopy belief propagation

Belief propagation algorithm has various applications in different scientific re-
searches [102, 151, 84, 186, 51] including computer vision and robotic fields.

The max-product algorithm can be used to find the labeling with the mini-
mum energy level for equation (1). Conventionally, this algorithm is defined by
probability distributions, but an equivalent approach is to convert them to neg-
ative log probabilities. In this way, the min-sum algorithm can be used to find
the optimal labeling [61]. The min-sum algorithm is less sensitive to numerical
artifacts, and it directly incorporates the energy function definition [61].

The notion of message passing has a fundamental role in understanding
how original BP has excessive computational time. The max-product algo-
rithm works by passing local messages all over the nodes of an MRF model.
In our case, this model is a four-connected neighborhood system. At each
iteration, every node sends messages to all of its neighboring nodes while re-
ceiving incoming messages from those nodes. This process repeats until all
of these messages converge, i.e., they do not face discernible change anymore.
Sometimes, the messages do not converge, and the algorithm continues until
the maximum number of iterations. For instance, pixel-wise image inpainting
problems usually encounter this issue.

Each message is a vector whose size is defined by the number of possible
associated labels. Let mt

pq be the message from node p to its adjacent node q
in iteration t. Because we use the negative log in the min-sum algorithm, the
messages m0

pq between every pair of adjacent nodes should be initialized with
zero. In each iteration, every single message is computed in the following way:

mt
pq(fq) =

min
fp

(
Dp(fp) + V (fp, fq) +

∑
s∈N(p)\q

mt−1
sp (fp)

)
. (5.2)

Here, N(p)\q is all the adjacent nodes with p except q.
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5.2.2 Distance transform

The standard implementation of LBP algorithm without any acceleration method
has O(K2TN) computational cost. We supposed that all MRF nodes have the
same number of labels, which are intensity values for each pixel of the im-
age. The complexity of computing each message using equation (2) is O(K2).
Felzenszwalb et al. proposed the following distance transform approach for re-
ducing the cost of each message computation to O(K) [61]. In this approach,
they used the distance transformation method [35].

Defining the smoothness cost function based on the degree of difference
between labels,

V (fp, fq) = s ∥ fp − fq ∥ . (5.3)

We first rewrite equation (2) as:

mt
pq(fq) = min

fp

(
h(fp) + V (fp, fq)

)
. (5.4)

Here, h(fp) = Dp(fp)+
∑

s∈N(p)\qm
t−1
sp (fp). We initialize the message vector

m with h(fp) values and then update each vector entry sequentially. Eventu-
ally, the proper distance transformed message computation method is com-
puted in the forward and backward pass like below:

Algorithm 5.1: linear distance transformation
1: Forward Pass:
2: for fq ← 1 to k − 1 do
3: m(fq)← min(m(fq),m(fq − 1) + s);
4: end for
5: Backward Pass:
6: for fq ← k − 2 to 0 do
7: m(fq)← min(m(fq),m(fq + 1) + s);
8: end for

This distance transformation algorithm only works for a linear smoothing
cost function. We call this method DT-BP. You can find more details on the
distance transformation algorithms in [61] and [183].

After T iterations, belief is computed for each node:

bq(fq) = Dq(fq) +
∑

p∈N(q)

mT
pq(fq). (5.5)

Finally, the label f ∗
q which minimizes the bq is allocated to each node q.
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5.2.3 Priority-BP

Another influential method for dealing with large label state spaces in BP was
proposed in [101]. This method is known as Priority-BP. Their approach has
two main extensions to standard BP: dynamic label pruning which occurs while
BP is running. It is based on the principal idea of dramatically reducing the
number of labels to enhance the BP algorithm. The second extension is named
priority-based message passing using label pruning and allowing the algorithm
to send cheap messages between the nodes of an MRF model [101]. Conse-
quently, it increases BP’s convergence speed, thus accelerating this algorithm.
In spite of these advantages, our experiments revealed that this algorithm
leads to a considerable energy level increase compared to DT-BP in pixel-wise
inference. Notice that the direct combination of DT-BP and Priority-BP is
impossible without increasing the computational complexity of DT-BP. The
reason behind this fact is explained in the introduction section.

5.2.4 Measuring efficiency

There are two criteria for measuring the efficiency of any algorithm in this do-
main: energy level and running time. The energy level (equation (1)) pertains
to the quality of our solution. As we defined in the previous section, a solution
with less energy is more desirable. After T iterations of our algorithm, we
should first find the f ∗

q :

f ∗
q = argmin

fq∈L
bq(fq). (5.6)

For each node, this obtained f ∗
q is assigned to node q. Subsequently, the

energy level is computed with equation (1).

5.2.5 Image inpainting and Image completion

Image inpainting is the process of plausibly filling in small missing regions
within an image. Image completion is another similar computer vision prob-
lem that covers a broader range of applications. However, these terms are
often used interchangeably. There are many researchers focusing on finding
efficient (in terms of accuracy and run-time) solutions for image inpainting
problems. Achanta et al. [2] proposed a solution for the challenging problem
of completing an image whose 99% of pixels are randomly missing. Although
the computational complexity of their method is linear in the number of pix-
els of the full image, it fails to fill big missing regions and holes. Recently,
image completion techniques based on deep neural networks have been widely
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used. The methods in [81] and [125] use a deep neural network to complete
images of arbitrary resolutions. Gao et al. [70] proposed another data-driven
image completion method. Moreover, Yu et al. [183] proposed a generative
model-based method that not only can reconstruct the missing regions but can
also explicitly use the surrounding image features while it is training the net-
work. Using deep neural networks have also been used for video completion
[180]. Although deep learning-based approaches can outperform pixel-wise
and patch-wise image completion in terms of the quality of results, they are
highly dependent on the training set which may not be available for specific
applications. If the picture to be inpainted is nothing like any of the samples
in the training set, their output will not be plausible. The other consequence
of using this kind of method is their long training times.

The result of the proposed method has not been compared with deep neural
network-based image completion approaches because of two reasons. 1) The
purpose of using the proposed method in image completion problems is to fill
in the missing regions by just using the local information available in the single
image itself (the neighborhood of the filling region). Therefore, the proposed
method does not use a separate training and testing phase using a large set of
images for tuning the parameters of the model as most of the deep learning
approaches do. 2) Since our focus is on accelerating the inference phase for real-
time applications, it is not possible to use deep neural network-based models
which usually need long training time.

We conducted experiments on three image inpainting and denoising case
studies to elucidate the effectiveness of our proposed approach.

5.2.6 Other related works

There are other attempts to enhance BP’s computational cost and running
time by properly scheduling message passing and even altering the message
computation formula. The so-called tree-reweighted message passing algo-
rithm ([167], [168], and [100]) slightly differs from the standard BP in message
computation equation. Moreover, reference [60] used a simple idea for message
scheduling in which the message with the largest abrupt change in two succes-
sive iterations has the most priority. Practically, this approach leads to faster
convergence, and it decreases the likelihood of getting stuck in local minima.
There is no consideration for handling large label space in these approaches.
Besides, Sudderth et al. [15] and Isard [82] have independently proposed a
non-parametric BP algorithm. Their technique is based on an efficient sam-
pling procedure, but it can be used mainly for extending BP to non-discrete
distributions.
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Generalized Belief Propagation (GBP) [181] is a region-based BP algorithm
leads to faster convergence in Markov random fields. However, its computa-
tional time is high for practical applications. Therefore, [41] and [40] indepen-
dently tried to accelerate GBP with diverse methods.

The problem of image inpainting and denoising with various inference
methods are considered comprehensively by [155] and [89]. Although stat-
ing the image inpainting problem is simple, finding a plausible solution for
this problem is far from a trivial task, specifically in pixel-wise methods.

The computational complexity of distance-transformed belief propagation
is O(KTN). Moreover, the time complexity of the Priority-BP method in [101]
is O(K2TNlogN). Therefore, its running time is higher than DT-BP. Accord-
ing to our experimental results, the quality of the Priority-BP’s solutions is
almost 5% lower (5% higher energy level) than DT-BP. In this chapter, we
propose a new belief propagation algorithm that is swifter than DT-BP and
has quite comparable results with DT-BP.

5.3 Swift distance-transformed Belief
Propagation

This section covers our proposed method, which reduces the message passing
computational complexity and run-time by using distance transformation and
a new dynamic label pruning approach. We have covered distance transfor-
mation for the linear distance function in the previous section. We explain
our dynamic label pruning method in this section. It has been proven that
belief propagation is impractical for problems with an extensive number of
labels [101]. In order to overcome this problem, we prune the labels which
correspond to improbable label assignments. Furthermore, we talk about the
incorporation of the proposed dynamic label pruning method in the distance-
transformed belief propagation approach. Besides, when the algorithm does
not converge, we propose to resolve the issue with an early stopping criterion.

5.3.1 Dynamic label pruning

As we mentioned in the introduction section, the direct combination of DT-BP
[62] and Priority-BP [101] leads to an increase in computational complexity.
Therefore, we propose a new dynamic label pruning method that is not de-
pendent on any specific message scheduling and keeps the worst-case compu-
tational complexity as low as DT-BP (i.e. O(KTN)). It is important to note
that the dynamic label pruning capability of the proposed approach leads to a
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much lower run-time than DT-BP. This is due to the fact that K (the number
of labels for each node) is continuously decreasing in the successive iterations
of our approach.

The label pruning method is the main part of our algorithm. Therefore,
the following preliminary steps are essential. First, a belief vector is computed
using equation (5) for each node. We normalize beliefs by subtracting the least
value in each belief vector from all belief values in that vector. Like [101], we
also call these normalized beliefs the relative beliefs (brelq (fq)) . As mentioned
in equation (6), the labels with lower belief values are more desirable to choose.
At this point, the pruning procedure is ready to take a roll. However, we need
a proper method for assessing the possibility of pruning each node.

Finding eligible labels for pruning is another fundamental step in the label-
pruning procedure. If a node is quite uncertain about choosing the proper
label assignment, no pruning should take place. For instance, the nodes in
the missing region are not certain enough about appropriate labels at early
iterations. Therefore, we need to measure each node’s confidence level. Thanks
to [101], we have the idea for finding this confidence level. The confidence
measurement approach originates from the following simple assumption. For
each node and belief vector, we count the number of belief values that are
below a specific threshold noted by Bconf. A lower count means the node has
higher certainty about choosing the proper label.

Before going into details of this approach, we should mention the following
fact. [55] and [48] have already used confidence level in their works. Reference
[101] uses this concept in priority-based message passing which is inseparable
from the dynamic label pruning approach. However, we used confidence level
for evaluating the possibility of pruning for each node and also finding the
proper labels to be pruned.

Algorithm 5.2 measures the confidence level for every single node. The
count value is in scope [1,Knp] where Knp is the number of labels that have
not been pruned in the current iteration for the associated node. Notice that in
each iteration, we do not count the labels which have previously been pruned.
When the count value is high, there are many labels among which the node
should choose. However, a node with a low count value is more confident about
the most probable label assignment.

Confidence level has a strong correlation with the number of possible labels
for pruning. In other words, a high confidence level lets the algorithm prune
more labels safely. Therefore, we consider the following three assumptions in
the label-pruning procedure:

• Least confidence level (count = Knp) means no pruning,
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Algorithm 5.2: confidence level computation for each node
1: for fq ← 1 to k do
2: if fq has not been pruned then
3: Increase the count value if brelq (fq) < Bconf;
4: end if
5: end for

• Highest confidence level (count = 1) means pruning of all labels except the
most probable one,

• For confidence levels falling in scope (1,Knp), we should use a proper map-
ping.

We define a new threshold for label pruning indicated by Bprune. In our ap-
proach, Bprune is in scope [Bconf,Bmax] where Bmax = max(brelq (fq)). The al-
gorithm prunes any label whose relative belief value is higher than Bprune.
Moreover, finding Bprune according to confidence level makes our label prun-
ing algorithm independent of any specific message scheduling algorithm. In
order to find Bprune w.r.t confidence level, we employ the three aforementioned
assumptions. Fig. 5.1 shows the corresponding linear mapping from Count
value to Bprune.

Figure 5.1: Linear mapping between confidence level (Count) and pruning
threshold (Bprune). Knp is the number of not pruned labels in the current
iteration.
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After computing Bprune, the algorithm prunes the labels whose relative
beliefs are above this threshold. Using the proposed linear mapping, nodes with
a higher confidence level have a lower pruning threshold. Thus, the pruning
method prunes more labels for these nodes. Notice that in each iteration, SDT-
BP employs the pruning procedure after the message computation process for
all nodes.

As shown in Fig. 5.1, the linear mapping is only sensitive to Bconf. There
are two choices for determination of the appropriate Bconf. Either assigning
a static Bconf for all nodes or dynamically finding the proper Bconf for every
single node of the MRF model. The following subsection discusses the results
of these choices in detail.

5.3.2 Constant versus dynamic Bconf

We found out that Bconf has a key role in the balance between the run-time
and energy of the final solution. As we mentioned in the previous subsection,
there are two alternatives for Bconf determination.

• Constant (fixed) Bconf for all the nodes,

• Dynamic Bconf for every single node.

The higher Bconf means larger count value. Therefore, the linear mapping
leads to higher Bprune and less pruning. As a result, the final solution achieves
a lower energy level at the cost of higher run-time than the second alternative.
On the other hand, choosing lower Bconf has the inverse results. According
to the aforementioned facts, there is a trade-off between run-time and energy
level balancing by Bconf. Therefore, finding the proper constant Bconf for all
nodes is important.

Furthermore, every single node can determine the Bconf value dynamically
according to its own belief vector. We tried many alternatives and eventually

chose Bconf =
Bmax

3
. When the confidence level of a node is high, there are

only a few labels with zero relative beliefs. The other labels have much higher

relative beliefs. Thus, assigning Bconf =
Bmax

3
leads to an intense pruning rate.

On the other hand, many near-zero relative beliefs exist when the confidence
level is low. In preliminary iterations of the algorithm, some higher relative

beliefs exist, too. So, assigning Bconf =
Bmax

3
preserves the near zero labels

and prunes the other ones. If a node does not become confident enough after
notable iterations, it normally oscillates between specific numbers of labels.
These labels usually have high similarity to each other. Such cases hinder the
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convergence of the algorithm. By assigning Bconf =
Bmax

3
, the node is forced

to choose the most probable label by pruning the other ones.

Figure 5.2: The comparison of the pruning process between SDT-BP and
Priority-BP. Although SDT-BP prunes more labels after 16 iterations, it
reaches a lower energy level than Priority-BP according to our experimen-
tal results. Priority-BP greedily prunes many labels at early iterations. This
comparison is done for the pixel with coordination (100, 10) in our first case
study (the penguin case study).

This dynamic Bconf leads to the guarantee of convergence in a few itera-
tions. While the algorithm goes on, most nodes are gradually forced to prune
all their labels except the most probable one. The pruning map of Fig. 5.3
shows this fact. In this way, even if there are some nodes that are not sure
about their best label assignment, they will be persuaded by other nodes to
prefer one of these label assignments. The guarantee of convergence is at the
cost of a small increase in energy level. We should emphasize that Priority-BP
caused a considerable energy level increase compared with DT-BP. Accord-
ing to experimental results, our proposed method outperforms Priority-BP in
terms of both the solution’s quality (lower energy level) and the run time. This
discernible energy increase in [101] is due to the fact that the pruning threshold
(Bprune) is a constant value. In this way, even the nodes with a low confidence
level, which have a low priority in each iteration, prune some of their valuable
labels. Moreover, constant Bprune leads to intense pruning in initial iterations
of the algorithm as shown in Fig. 5.2. This makes the algorithm disregard a
few informative labels at early iterations. Therefore, Priority-BP prunes labels
more greedily than SDT-BP.

Consequently, dynamic Bconf determination always leads to convergence,
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but static Bconf does not guarantee it like DT-BP. In order to reasonably
compare our method using static Bconf with DT-BP in non-converging cases,
we propose a simple early stopping criterion for BP. Notice that this early
stopping criterion does not have any effect on the termination of our proposed
method using dynamic Bconf.

5.3.3 Early stopping criterion for belief propagation

Occasionally, the BP algorithm does not converge even after a considerable
number of iterations. In order to perform a more legitimate comparison for
such cases, we need an early stopping criterion for belief propagation. Fur-
thermore, as mentioned in the previous section, one of the most paramount
features of dynamical Bconf computation is the guarantee of convergence in a
few iterations.

After each iteration of the algorithm, we need to find out whether any
assigned labels of nodes have been changed since the previous iteration. If
there is no change in label assignment, the algorithm is converged. This is
the normal stopping criterion for BP. In addition to such a procedure, we
also count the number of nodes that have different assigned labels from their
previously assigned ones. We refer to such count value as C. Consequently, the
Algorithm 5.3 is the proposed early stopping criterion for belief propagation.

We used β = 30 for all our experiments. This means that after 30 succes-
sive iterations if the value C does not decrease, we suppose the algorithm is
oscillating between several repetitious label assignments and there is no way
for convergence. In practice, this criterion worked fine for all converging and
non-converging cases. In other words, if the algorithm converges, this criterion
mostly does not interfere with the convergence and does not stop the algorithm
earlier than the convergence time. That is why we choose such a high β value.

Notice that using energy level instead of C and minimum energy level in-
stead of minC in Algorithm 5.3 will lead to almost the same results in all the
experiments. For the sake of conciseness, we do not mention such results with
energy level-based early stopping criterion.

5.3.4 Incorporating dynamic label pruning in DT-BP

After each iteration, the appropriate labels are pruned safely. So it is time to
disregard the pruned labels in the procedure of distance-transformed message
passing. As we previously mentioned, the message vectors are initialized with
h(fp) values. In order to incorporate the label pruning effect in this process,
we do not compute h(fp) values for the pruned fp labels. Instead, we initialize
their corresponding message value with a large constant integer (1000 is used
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Figure 5.3: Pruning map. Darker pixels express that more labels are pruned
for the corresponding node. This pruning map is for the primary iterations of
SDT-BP with dynamic Bconf.



C
ha

pt
er

5

106 5.3. Swift distance-transformed Belief Propagation

Algorithm 5.3: first early stopping criterion
1: define st = 0
2: define minC as a big integer constant
3: while st <= β do
4: compute C

5: st = st+ 1
6: if C < minC then
7: minC = C

8: st = 0
9: end if

10: end while

in our experiments). Subsequently, the distance-transformed message passing
procedure for linear smoothing cost function can disregard the pruning labels in
the forward and backward pass of Algorithm 5.4 (because it uses the minimum
function).

Algorithm 5.4: SDT-BP distance transformation
1: for fq ← 1 to k − 1 do
2: if fq is not pruned then
3: m(fq)← min(m(fq),m(fq − 1) + s);
4: end if
5: end for
6: for fq ← k − 2 to 0 do
7: if fq is not pruned then
8: m(fq)← min(m(fq),m(fq + 1) + s);
9: end if

10: end for

Consequently, after each iteration of the distance-transformed message
passing algorithm, we use the proposed dynamic label pruning method for all
nodes. Notice that we also ignored pruned labels in the process of computing
C in Algorithm 5.3.

Assuming that T is the number of iterations of the proposed method and
N is the number of nodes in the MRF model and K is the number of labels
for each node, the inference procedure for all the iterations of the algorithm
in the worst case has O(KTN) computational complexity which is lower than
O(K2TNlogN) for the priority-BP. It is important to emphasize that, due to
the pruning procedure, K (the number of labels for each node) is decreasing
in consecutive iterations of the algorithm. This means that practically much
lower than O(KTN) operations are needed for the proposed algorithm.
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(a)

(b)

Figure 5.4: The penguin case study running time - energy level plot with
normal convergence criterion (a) and with early stopping criterion (b). Left
is the full-size plot. Right is the zoomed-in plot. Notice that each marker
point is an iteration of the algorithm.

5.4 Experiments

In this section, we evaluate the efficiency of our proposed algorithm for accel-
erating distance-transformed belief propagation. There are three examples of
image inpainting and denoising case studies. We compare our algorithm with
DT-BP in run-time and energy level of the final solution. Fig. 5.4 to Fig. 5.9
illustrate the ultimate results of our proposed method (SDT-BP) versus the
distance-transformed belief propagation method (DT-BP).

Before going into detailed results, notice that all the algorithms are imple-
mented in C++ on Linux Ubuntu. The experiments were conducted on an
Intel core 2 duo machine with a 2.53GHz CPU and 4 GB RAM. We fixed the
parameters to β = 30 and s = 1 in SDT-BP and DT-BP. Moreover, we used
the proposed scheduling method in [61] and accelerated updating of [101] for
SDT-BP and DT-BP. Notice that our implementation of DT-BP and SDT-BP
only differs in dynamic label pruning procedure and its incorporation into the
process of distance transformation. The other parts of these implementations
are exactly the same. In order to implement Priority-BP, the parameters are
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set in the following way. Lmin = 3, Lmax = 20, Bconf = 80, Bprune = 100.
The penguin case study is a noisy picture with a missing region to be

inpainted. The size of this image is 122×179 pixels. As shown in Fig. 5.5, the
visual qualities of SDT-BP and DT-BP solutions are almost the same. Using
static Bconf determination leads to quite identical results to DT-BP. Fig. 5.4.a
illustrates the running time - energy level plot for the penguin case study by
utilizing the normal stopping criterion and dynamic Bconf. Notice that DT-BP
is not converging in this case and its run-time is 513.08 seconds. Therefore,
these algorithms are terminated by the defined maximum number of iterations,
which is 400 in all the experiments. As we have proven in the previous section,
SDT-BP with dynamic Bconf is converged in 31 iterations and 20.19 seconds.
Fig. 5.4.a also demonstrates the running time - energy level plot for SDT-BP
with static Bconf and normal stopping criterion. Both DT-BP and SDT-BP
with static Bconf do not converge in the specified number of iterations.

In order to have a more rigorous comparison with DT-BP, we used our
proposed early stopping criterion with dynamic Bconf in Fig. 5.4.b. This figure
illustrates the running time - energy level plot for the penguin case study. DT-
BP is terminated by our early stopping criterion in 76 iterations and in 97.92
seconds. The running time - energy level plot for SDT-BP with static Bconf

alongside the early stopping criterion is also illustrated in Fig. 5.4.b which
runs in 56.79 seconds. Both DT-BP and SDT-BP with fixed Bconf are stopped
in 76 iterations by the early stopping criterion, whereas SDT-BP with dynamic
Bconf converged in 31 iterations and 20.19 seconds.

Table 1 shows the numerical results of comparing our algorithm with DT-
BP for SDT-BP with static and dynamic Bconf. Dynamic Bconf determination
with normal stopping criterion has 96.06% running time reduction in the pen-
guin case study. Using the proposed early stopping criterion with dynamic
Bconf leads to 79.37% acceleration. On the other hand, the energy level in-
crease for both of these specifications is 1.85%.

Using static Bconf with normal stopping criterion results in 44.22% speed up
and 0.18% energy level increase in the penguin case study according to Table 1.
Utilizing our proposed early stopping criterion with static Bconf yields 41.99%
acceleration and 0.18% energy level increase. Notice that in all cases with
static Bconf determination, SDT-BP and DT-BP are terminated due to the
early stopping criterion.

Table 2 demonstrates the energy level increase of our proposed method with
dynamic Bconf versus Priority-BP compared with DT-BP. The Priority-BP has
a 6.16% energy level increase for the penguin case study while our proposed
method has only a 1.85% increase. Furthermore, our method leads to faster
convergence. SDT-BP with dynamic Bconf converges in 31 iterations whereas
Priority-BP does not converge in the specified maximum number of iterations.
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Figure 5.5: The penguin case study. Results of applying different methods
with different possibilities of stopping criterion and Bconf. The size of all these
images is 122× 179.
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Table 5.1: Acceleration and energy level increase percentages comparing our
proposed method with DT-BP. Notice that β = 30 for the proposed early
stopping criterion. SDT-BP has Bconf = 80 in all the static cases.

Table 5.2: Comparing SDT-BP using dynamic Bconf and Priority-BP with
DT-BP. The comparison is done on energy level increase and the number
of iterations for convergence. The symbol × means that the corresponding
algorithm does not converge in the specified number of iterations.
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Figure 5.6: The three girls case study. Results of applying different methods
with different possibilities of stopping criterion and Bconf. The size of all these
images is 483× 405. Input is the result of adding salt and pepper noise to the
original image.

The running time of Priority-BP is extremely higher than DT-BP. Besides,
Priority-BP has extremely higher computational complexity. Therefore, we do
not compare our proposed method with Priority-BP in running time.

The three girls case study is a scratched image and our goal is to inpaint
the missing region. In order to add noise to this image, we used salt and
pepper noise. The image size is 483 × 405 pixels. In the case of dynamic
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(a)

(b)

Figure 5.7: The three girls’ case study running time - energy level plot with
normal convergence criterion (a) and with early stopping criterion (b). Left
is the full-size plot. Right is the zoomed-in plot. Notice that each marker
point is an iteration of the algorithm.

Bconf in Fig. 5.6, the quality of SDT-BP and DT-BP solution varies to a small
extent. SDT-BP with static Bconf results in visually the same solutions as DT-
BP. Fig. 5.7.a is the energy level - running time plot for the three girls’ case
study by utilizing the normal stopping criterion. DT-BP is not converging in
this case. However, SDT-BP with dynamic Bconf is converging in 37 iterations
as expected. The running time - energy level plot that employs the static
Bconf with normal stopping criterion is also illustrated in Fig. 5.7.a. SDT-BP
with fixed Bconf is non-convergent. Fig. 5.7.b is the running time - energy
level plot for the proposed method with early stopping criterion and dynamic
Bconf. DT-BP was terminated in 88 iterations by the early stopping criterion.
The running time - energy level plot for SDT-BP with fixed Bconf and early
stopping criterion is also represented in Fig. 5.7.b.

According to Table 1, SDT-BP with dynamic Bconf leads to 95.68% running
acceleration and 1.08% energy level increase using normal stopping criterion
for the three girls’ case study. Incorporating our proposed stopping criterion
results in an 80.47% running time reduction and 1.08% energy level increase.
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(a)

(b)
Figure 5.8: The parrot case study running time - energy level plot with normal
convergence criterion (a) and with early stopping criterion (b). Left plot is
the full-size plot. Right plot is the zoomed-in plot.

It is shown in Table 1 that SDT-BP with static Bconf and normal stopping
criterion leads to 44.83% acceleration and 0.27% increase of energy level com-
pared with standard DT-BP approach. Employing the proposed early stopping
criterion SDT-BP yield a 43.54% run-time reduction and 0.27% energy level
increase.

According to Table 2, the energy level increase of Priority-BP is 5.12% for
the three girls’ case study while SDT-BP results in a 1.08% increase. There-
fore, SDT-BP yields more accurate results. Moreover, SDT-BP with dynamic
Bconf converged in 37 iterations while Priority-BP does not converge in the
specified number of iterations. Consequently, the convergence speed of SDT-
BP is higher than Priority-BP.

The parrot case study is a picture to be inpainted, in which the cage has
to be removed. The image size is 731 × 736 pixels. We add salt and pepper
noise to this picture. As it is shown in Fig. 5.9, the difference in the quality of
our solution and DT-BP solution is hardly discernible when the dynamic Bconf

determination is used. SDT-BP with static Bconf results in quite similar results.
The running time - energy level plot for SDT-BP with dynamic Bconf and
normal stopping criterion is shown in Fig. 5.8.a. DT-BP is not converging in
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Figure 5.9: The parrot case study. Results of applying different methods with
different possibilities of stopping criterion and Bconf. The size of all these
images is 731× 736. Input is the result of adding salt and pepper noise to the
original image.
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this case study again. SDT-BP with dynamic Bconf converges in 54 iterations.
The running time - energy level plot for SDT-BP using static Bconf and normal
stopping criterion is also presented in Fig. 5.8.a. Fig. 5.8.b demonstrates the
running time - energy level plot employing dynamic Bconf and the proposed
early stopping criterion. DT-BP stopped in 256 iterations. Fig. 5.8.b is also
the illustration of the running time - energy level plot for SDT-BP with fixed
Bconf and the proposed early stopping criterion. SDT-BP with static Bconf

stopped in 196 iterations in this case.
According to the last column of Table 1, SDT-BP accelerates DT-BP

93.57% and increases the energy level 1.36% employing dynamical determi-
nation of Bconf and normal stopping criterion. Assimilating the early stopping
criterion with dynamic Bconf in SDT-BP leads to 89.96% acceleration and
1.36% energy level increase compared to DT-BP in the parrot case study.

Table 1 shows that employing static Bconf alongside normal stopping crite-
rion yield 45.12% acceleration and 0.12% energy level increase w.r.t DT-BP on
the parrot case study. The early stopping criterion incorporated in SDT-BP
with fixed Bconf leads to 56.24% acceleration and 0.12% energy level increase.

According to Table 2, Priority-BP results in a 6.24% increase in energy
level. Moreover, SDT-BP with dynamic Bconf converges in 54 iterations and
Priority-BP does not converge in 400 iterations. This shows a higher conver-
gence speed in the proposed approach.

Notice that in all the experiments, the well-known distance-transformed
BP does not converge. Our proposed algorithm with dynamic Bconf has con-
verged in a few iterations in all the experiments. Moreover, Priority-BP does
not converge in all cases. Therefore, SDT-BP with dynamic Bconf has a higher
convergence speed than Priority-BP. SDT-BP static Bconf and DT-BP are ter-
minated due to early stopping criterion in all case studies.

The pruning map for all the case studies is shown in Fig. 5.3. The pruning
map shows the number of pruned labels for each pixel. Darker pixels stand
for more pruned labels for the corresponding node in the MRF model. It is
conspicuous that after a few iterations, most nodes prune all their labels except
the most probable one.

5.5 Future works

Our proposed method enhances the computational complexity and run-time
of the belief propagation algorithm by pruning the appropriate labels securely
and dynamically. In all our experiments, there are 256 labels for the nodes
(corresponding to the gray-scale intensity values of pixels) in the MRF model.
We believe that our SDT-BP algorithm can engender better results in other
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problems with larger label state space. Consequently, this algorithm can be
incorporated more successfully in other domains like patch-based image com-
pletion, etc. where there exist numerous numbers of labels. Distance transfor-
mation is not always feasible in all of these cases. Therefore, we need a new
general-purpose distance transformation method usable for a broader range of
distance functions.

5.6 Conclusion

Loopy belief propagation (LBP) as an approximation inference algorithm for
Markov random fields is widely used in recent research. The main limitation
of the LBP algorithm is its high computational time for message passing, es-
pecially in problems with large label state space. We have proposed a novel
approach named the swift distance-transformed belief propagation (SDT-BP)
which substantially reduces the run-time of the distance-transformed belief
propagation (DT-BP) method, leading to solutions with almost the same qual-
ity. The notion of dynamic label pruning is used, which is independent of
the message scheduling algorithm, unlike the other methods like priority-BP,
which is limited to certain kind of message scheduling. This new label pruning
approach is incorporated alongside distance-transformed belief propagation.
Moreover, SDT-BP outperforms Priority-BP in both the quality of the ul-
timate solution and convergence speed. The proposed method converges in
fewer iterations than Priority-BP. As proved in previous sections, the direct
combination of Priority-BP and DT-BP has at least O(KTNlogN) time com-
plexity. In contrast, the computational complexity of our proposed approach is
O(KTN). Furthermore, this method is faster than DT-BP because of the new
dynamic label pruning approach incorporated in our method. As Komodakis
et al. mentioned in Priority-BP’s paper [101], their label pruning method
malfunctions unless being used beside the priority-based message passing al-
gorithm. However, SDT-BP can be incorporated in combination with any
message scheduling algorithm. The other foremost facet of the proposed ap-
proach is the guarantee of convergence in a low number of iterations when
dynamic Bconf is used. We used several case studies in image completion and
inpainting to evaluate the proposed method.



C
hapter

6

CHAPTER6
Explain What You See

3D Object Recognition and Parts Segmentation using

Local-HDP and Argumentation

This chapter is prepared for submission. In this chapter, we first adapt
the proposed local hierarchical Dirichlet process (Chapter 4) for the 3D
object part segmentation task. The proposed technique does not re-
quire the dictionary construction step and it is more suitable for open-
ended scenarios. Subsequently, argumentation-based learning is inte-
grated with the proposed segmentation technique to recognize the cate-
gory of 3D objects. Integrating these models leads to the explainability
of the object recognition module as well as robustness when facing un-
certainty. This enables the model to handle high degrees of occlusion in
the testing phase, outperforming state-of-the-art techniques by a large
margin. The resulting model produces explanations for the object recog-
nition task in the context of the learned object parts. This makes the
model more transparent and easier to debug. The results show that the
proposed model has higher mean Intersection over Union (mIoU) and
recognition accuracy than state-of-the-art techniques.
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Explain What You See:
3D Object Recognition and Parts Segmentation

using Local-HDP and Argumentation

Abstract

The local hierarchical Dirichlet process is a hierarchical Bayesian method
that has recently been used for 3D object category recognition. This
method has been proven to be efficient for recognizing the category of
3D objects using a lower number of learning instances in offline and open-
ended scenarios than other state-of-the-art techniques. In this chapter,
the local hierarchical Dirichlet process is adapted for the semantic 3D
object parts segmentation task. In contrast to most deep neural models
for semantic parts segmentation, the proposed technique requires a lower
number of learning instances to achieve a high learning accuracy. The
proposed model can also be utilized in open-ended scenarios where the
number of 3D object parts is not fixed for each category and can increase
over time. The model has been integrated with argumentation-based on-
line incremental learning, recently introduced as an explainable machine
learning technique. This method has outperformed other state-of-the-
art online incremental learning techniques in terms of learning speed
and learning accuracy. Using this method together with the local hier-
archical Dirichlet process for semantic 3D object parts segmentation, an
explainable 3D object category recognition technique is proposed that is
more robust to occlusion. The resulting technique can produce explain-
able justifications for the reasoning process.
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6.1 Introduction

Object segmentation is one of the challenging problems in 3D shape analysis.
In this domain, data-driven part-segmentation techniques outperformed tra-
ditional geometrical methods [179]. In recent years, deep learning approaches
have been widely exploited among researchers in this field [182]. These neural
network architectures typically extract data-driven features rather than using
hand-crafted features. Although these techniques show promising results in
some applications, they are not well-suited for open-ended learning scenarios
where the number of object categories and part-segments are not predefined
and can be extended over time.

The majority of existing models for 3D shape segmentation have five limi-
tations to be used in open-ended dynamic environments. First, most of these
models are trained with a fixed set of labels, which greatly limits their flexi-
bility and adaptivity. For instance, a model trained to segment a table into
three semantic parts cannot be used to correctly segment a table with four
parts, even if they both belong to the same shape family. Second, using a
fixed set of labels limits the number of object categories that the model can
segment. For example, a model which previously learned how to segment a
cup and a table cannot learn to segment a new object like an airplane unless
the model is retrained. Third, the training time of most of the state-of-the-art
techniques is high to achieve good learning accuracy. Table 6.1 shows the aver-
age training time of two well-known approaches in the literature compared to
our proposed approach. Fourth, most of the object segmentation and object
category recognition methods in the literature use a large training set, while
learning with a lower number of learning instances is required for the faster
adaptation of the model to an open-ended dynamic environment. Fifth, 3D
object category recognition techniques are typically not robust to high degrees
of occlusion. Facing occluded objects is common in real-world dynamic en-
vironments. These limitations motivated us to design an open-ended model
which can learn new object categories and new object parts using an online
incremental technique. The proposed method is more robust to occlusion and
can learn with a lower number of training instances.

Open-ended 3D object segmentation is required in some applications, such
as robotic grasping where the graspable parts should be detected for any ma-
nipulable object. Considering the application of robot applications in more
complex and dynamic environments, it is evident that pre-programing all pos-
sible object categories and object parts segments for a robotic application are
impossible. Instead, robots should learn autonomously from novel experiences,
supported by feedback from human teachers [91]. Therefore, the competence
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Approach Run-time
PointNet++ [130] 114912
PartNet [182] 161568
Ours 253

Table 6.1: Comparing the training time of two well-known deep learning ap-
proaches in the literature with our approach.

Point Cloud
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Part 2

Local-HDP
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Body Handle

Point Cloud
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Part 4

Segmented

Body Wing Tail Engine

Object 
Category

ABL

Mug Table
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Figure 6.1: The architecture of the proposed method.

of a service robot should increase over time, i.e., robots must robustly adapt
to new environments by being capable of segmenting new objects and parts.
In order to incrementally adapt to new environments, an autonomous assistive
robot must have the ability to process visual information and conduct learning
and recognition tasks in a concurrent and open-ended fashion [96].

Using the output of the semantic object parts segmentation technique, the
Argumentation-Based Learning (ABL) technique [20] is incorporated to rec-
ognize the category of the object. This method can explain the reason for
classifying a point-cloud into a certain object category. Moreover, this partial
information can lead to a more robust object category recognition technique
that can perform better when there is an occluded object in the scene. Fig-
ure 6.1 shows the architecture of the model for recognizing the category of
different objects.

Our approach for object parts segmentation and object category recogni-
tion extends the previous Local-HDP method for object category recognition
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Figure 6.2: An example of an occluded 3D object in a scene.
[19] and argumentation-based learning [20]. Firstly, it uses local-to-global and
global-to-local object descriptors to represent each point on the point-cloud of
an object. Therefore, there is no need for dictionary construction for Local-
HDP. Here each bin in the histogram of the descriptors represents a word in
the dictionary. This is an important feature for open-ended applications since
there is no need for constructing a pool of 3D objects and performing clus-
tering to construct a dictionary in the pre-processing phase like in Local-LDA
[91] and Local-HDP for object category recognition [19]. Secondly, the integra-
tion of the argumentation-based learning and Local-HDP enables the model to
handle high dimensional data and provide explanations for the reasoning pro-
cess. In contrast, argumentation-based learning is limited to low-dimensional
datasets [17]. Thirdly, using the argumentation-based learning technique for
the object category recognition module makes the model robust to high de-
grees of occlusion while most state-of-the-art approaches do not perform well
in these scenarios.

On the architecture level of the Local-HDP method, first, the 3D point-
cloud of an object is down-sampled using the voxelized grid approach. For each
point in the point-cloud, a combination of local-to-global and global-to-local
shape descriptors is extracted and they form a histogram. This histogram is
then used as a Bag of Words (BoWs) representation of each point that can be
fed directly to the topic layer of Local-HDP. For the part-segmentation layer,
a semantic object part’s label is determined by selecting a local model with
the highest likelihood of generating that point.

As mentioned before, an explainable machine learning technique like ABL
can lead to a 3D object category recognition method that is more robust to
occlusion. As an example, the ABL model can explain that a 3D object is
classified as a mug category since it has a handle like a mug and a body that
looks like a mug. This explanation can help the model to detect the category
of a mug object when it is occluded in the scene by other objects. Figure
6.2 shows a possible scene with an occluded mug. Even if the model has been
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previously trained on the mug objects with body and handle parts, using ABL,
the model can infer that this object is a mug although it only has a handle
looking like a mug. Moreover, an expert can inject knowledge into the model
by interacting with the model and saying ‘Although all the previous mugs that
the model has seen previously consist of a body and a handle, there exist some
mugs that do not have a handle’. Therefore, the model can correctly predict
the category of 3D objects that have never been seen before and only have a
body-like mug.

The rest of this chapter is organized as follows. Section 2 discusses related
work. The required background in topic modeling and the hierarchical Dirich-
let process are explained in Section 3. Section 4 discusses the background
of argumentation-based online incremental learning. The proposed method-
ology for open-ended 3D object category recognition is clarified in Section 4.
Section 5 shows the results related to the two sets of offline and open-ended
experiments. The conclusion and future possible work is discussed in Section
6.

6.2 Related Work

3D object segmentation is a challenging task [161, 142]. The methods in this
field can be categorized based on their different characteristics, e.g, goal (sur-
face type vs. part-type), geometric criteria (region-based vs. boundary-based),
degree of learning (supervised vs. unsupervised), user involvement (automatic
vs. interactive), number of objects used as information sources (single vs. mul-
tiple), type of features (geometric vs. structural), and finally the granularity of
the produced result (hierarchical vs. non-hierarchical) [161]. In this research,
we focus on non-hierarchical, part-type, supervised, interactive 3D object seg-
mentation which can be further used for other applications like grasp points
detection. For instance, a handle can be segmented as a graspable part of a
mug. Our method is data-driven and can learn to segment new objects in an
open-ended manner.

In this work, we have focused on supervised part-based segmentation us-
ing point-clouds. State-of-the-art approaches for this purpose include, Point-
Net [129], PointNet++ [130], PointCNN [107], O-CNN [170], SSCN [71],
PCNN [14], SPLATNet [153] and PartNet [182]. PartNet is a deep neural net-
work shown to outperform all other approaches[182]. However, it is a hierarchi-
cal segmentation technique while our approach is non-hierarchical. Moreover,
unlike all these methods, our method is not based on deep neural networks
and can be used in open-ended domains where the number of objects and
part-segments are not predetermined. This is not the case for deep neural
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networks with a fixed number of class labels that require retraining the model
when a new object category is added to the dataset. Furthermore, unlike
deep neural architectures, our approach does not need a long separate train-
ing process before testing the model. This means that the model is trained
incrementally and can be tested in real-time applications. A large number of
parameters in deep neural architectures require a large number of training ex-
amples for optimization. However, experiments have shown that our model is
capable of obtaining the same level of performance by only observing a small
fraction of the training set used in other deep-learning approaches.

The main building block and basic component of any 3D shape analysis
task is a mechanism for finding the similarity between different 3D models.
The core component of this mechanism is the object representation method.
The performance of object representation techniques depends heavily on their
underlying object descriptor which can be categorized into two groups, namely
global object descriptors and local object descriptors [104].

A good object descriptor should be robust to different nuisances, such
as noise, occlusion, clutter, and deformation. Moreover, they should lead
to 3D object recognition using different viewpoints of objects from different
perspectives. Global 3D shape descriptors encode the entire 3D object, while
local descriptors encode the small neighborhood around a set of detected key
points. We use an ensemble of both techniques for describing the object parts.

Examples of local 3D shape descriptors include Spin Images (SI) [85] (which
has been used in this chapter), 3D shape context [68], Intrinsic Shape Signature
(ISS) [187], Signature of Histograms of Orientations (SHOT) [162], Fast Point
Feature Histogram (FPFH) [144], Hierarchical Kernel Descriptors [32]. Local
descriptors are more robust to occlusions and clutter and are more suitable
for 3D object recognition using different view points of objects. However,
comparing local descriptors with each other for recognizing the 3D object is a
computationally expensive task [7]. To alleviate this problem, other machine
learning techniques like Bag of Words (BoWs) approach [93], Latent Dirichlet
Allocation (LDA) [30, 96] and deep learning [108, 178] methods can be used for
representing objects in a compact uniform format. Towards this goal, Local
Latent Dirichlet Allocation (Local-LDA) [91] extends the LDA approach for
open-ended 3D object category learning. Similar to our approach, Local-LDA
shares topics among the objects in the same categories. However, the number
of topics should be chosen based on trial and error in local-LDA while it is
autonomously determined in our proposed method.

In recent years, good progress has been observed in semantic 3D object seg-
mentation methods using the deep neural architectures [129, 130, 107, 182, 78].
These techniques are typically trained with large datasets and the testing set
contains the same class labels as the training set. However, our proposed ap-
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proach can extend the number of class labels in run-time and it does not need
a large training dataset. Moreover, state-of-the-art approaches are typically
tested with complete 3D objects with no occlusion. However, in real-world
scenarios it is typical to have occluded objects in the scene and the method
should also work well with the occluded objects in the testing set. Our pro-
posed method can perform well in the presence of high degrees of occlusion in
the testing set.

6.3 Background

In this section, we will discuss the Hierarchical Dirichlet Process (HDP) [160]
and the Local Hierarchical Dirichlet Process (Local-HDP) for 3D object cat-
egory recognition [19] in more detail. Furthermore, we briefly explain the
Argumentation-Based Learning (ABL) method for online incremental learn-
ing with discrete feature values [20, 17, 16].

6.3.1 Hierarchical Dirichlet Process

Hierarchical Dirichlet Process (HDP) [160] is a non-parametric hierarchical
Bayesian model which can automatically detect the required number of topics
during the inference. Let (θ, β) be a measurable space, with G0 a probabil-
ity measure on it. Let α0 be a positive real number. A Dirichlet Process
DP(α0, G0) is defined to be the distribution of a random probability measure
G over (θ, β) such that, for any finite measurable partition (A1, A2, ..., Ar) of
θ, the random vector (G(A1), ..., G(Ar)) is distributed as a finite-dimensional
Dirichlet distribution with parameters (α0G0(A1), ..., α0G0(Ar)):

(G(A1), ..., G(Ar)) ∼ Dir(α0G0(A1), ..., α0G0(Ar)) (6.1)

G0 is itself a draw from a Dirichlet process DP(H,γ). The steak-breaking con-
struction and Chinese restaurant franchise metaphor have also been formulated
for the hierarchical Dirichlet process [160]. The probabilistic graphical model
of HDP is shown in Fig. 6.3a. The stick-breaking construction of HDP is
illustrated in Fig. 6.3b.

6.3.2 Local Hierarchical Dirichlet Process for 3D
Object Category Recognition

Local-HDP is a non-parametric hierarchical Bayesian method that has been re-
cently introduced for 3D object category recognition in offline and open-ended
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(a) HDP (b) Stick-breaking

Figure 6.3: The plate notations of the hierarchical Dirichlet process mixture
model and its stick-breaking construction.
scenarios. This method uses the non-parametric nature of the HDP together
with the fast inference approximation of the posterior from the online varia-
tional inference technique [169]. This method constructs a local HDP model
for each of the object categories. The approximation inference technique infers
the topics (each topic is a distribution of the visual words over the dictionary)
and the topic proportions (distribution of each BoWs format of the 3D ob-
ject over the inferred topics) from the training dataset for each of the local
models corresponding to each object category. Subsequently, the likelihood of
generating the BoWs format of a 3D object using the local spin-image shape
descriptors is calculated for each of the local models and the one with the
highest likelihood is selected as the predicted category. For the open-ended
scenarios, the system interacts with a human teacher to learn new object cat-
egories when needed and extend the number of learned categories over time.
The locality of the models gives them this flexibility. Figure 6.4 shows the
plate notations of the Local-HDP method for 3D object category recognition.
Here, |C| is the number of 3D objects in each local model corresponding to
category C. The evaluation results show that Local-HDP learns with fewer
number of learning instances compared to state-of-the-art methods for 3D ob-
ject category recognition. Moreover, the experimental results show that it has
higher learning accuracy and lower memory consumption than the compared
methods.

6.3.3 Argumentation-Based Learning

Argumentation-Based Learning is an online incremental learning method that
is composed of different argumentation frameworks from the argumentation
theory. Argumentation theory is a reasoning model that models the interaction
between multiple arguments [164]. Dung defines an Abstract argumentation
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Framework (AF) as a pair of arguments and a set of binary relations showing
the interaction between them. This relation shows the attack relations between
two arguments. ABL assumes that the inner structure of the arguments A and
B is pre → post. Therefore, A and B bidirectionally attack each other if and
only if both A and B have the same pres but have different posts. ABL also
uses the Bipolar Argumentation Framework [9] that has support relations in
addition to the attack relations between the pairs of arguments. ABL assumes
that A supports B if and only if A.post equals B.pre. ABL also defines an
argument that is neither attacked nor supported by any other arguments as
the facts with post inner structure.

Argumentation-based learning uses the BAF unit and AF unit for gen-
erating hypotheses from the learning instances and modeling the interaction
between the generated hypotheses to predict the class labels for the testing
instances, respectively. ABL outperformed state-of-the-art online incremental
learning techniques, neural architectures, reinforcement learning, and contex-
tual bandit algorithms in the experimental results using different case studies.
This method is capable of learning with a lower number of learning instances
while achieving higher learning accuracy. Moreover, ABL is limited to low-
dimensional datasets due to its high computation complexity. This problem
is addressed in the Accelerated Argumentation Based Learning (AABL) tech-
nique [17]. AABL simplifies ABL’s model by using solely the bipolar argu-
mentation framework. This method uses a pruning mechanism together with
a new strategy to extract the subsets of feature values for constructing the sup-
port relations in the BAF. These two mechanisms reduce the computational
and space complexity of the method from exponential to polynomial. Both
the run-time and memory consumption of AABL is exponentially lower than
ABL. Consequently, AABL can be utilized in higher dimensional datasets.
The experimental results show that AABL also has better learning accuracy
than ABL.

Both ABL and AABL are capable of generating explanations for the reason-
ing process. Therefore, they can be used for explaining the reason for choosing
each class label as the prediction of the model. This enables the model to be
more understandable for humans. Moreover, an expert can debug the model
by injecting knowledge into the model in form of a set of arguments that attack
or support each other.

6.4 Method

The main goal of the proposed 3D object segmentation method is to indepen-
dently learn topics for each semantic segment of the object using local shape
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(a) Stick-breaking

Figure 6.4: The plate notations of the local hierarchical Dirichlet process mix-
ture model and its stick-breaking construction. In this graphical model, C
is the number of learned categories and |c| is the number of objects in each
category.
descriptors to represent the local neighborhood around each point. In this
way, the input to the model will be a local shape descriptor of a keypoint in an
object. The model can find a proper label for each keypoint comparing the like-
lihood of the topic distribution of the current local shape descriptor with each
local model. In the following subsections, we first describe the preprocessing
layers and then explain our local-HDP model in detail.

6.4.1 Processing Layers

The first two layers used in Local-HDP are the feature layer and Bag-of-Words
(BoWs) layer. Unlike Local-HDP for object category recognition [19], the
BoWs layer is not used in the same way. The input to the model is the
histogram of a mixture of local-to-global and global-to-local shape descriptors
for each individual point in the 3D point-cloud. Therefore, the histogram of
a descriptor for each point is considered a BoWs representation. This means
that there is no need for dictionary construction in this research and each
bin in the histogram of a descriptor is considered as a word in a dictionary.
In the feature layer, a new composition of local-to-global and global-to-local
information is computed for all the points belonging to the object. Spin image
descriptor [85]1 is view-independent and pose and illumination invariant; thus,
it is an appropriate choice for robotic applications. In this chapter, spin images
have been used for the local-to-global representation of the points in the 3D
objects. This means that the supporting radius of the spin-images is considered
large enough to cover all the points in the object’s point-cloud. Figure 6.6

1http://docs.pointclouds.org/trunk/classpcl_1_1_spin_image_estimation.
html

http://docs.pointclouds.org/trunk/classpcl_1_1_spin_image_estimation.html
http://docs.pointclouds.org/trunk/classpcl_1_1_spin_image_estimation.html
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(a) Coffee mug (b) Voxel Grid

Figure 6.5: a) The RGB-D image of a coffee mug from the Washington RGB-D
dataset. b) Using voxel grid method for keypoint detection and downsampling.

(a) A Keypoint’s Normal (b) Local-to-Global Spin-image (c) 2D Bins

Figure 6.6: a) The surface normal of a keypoint shown in red. b) The corre-
sponding local-to-global spin-image of the keypoint. c) The representation of
the spin-image in 2D bins.
shows the local-to-global spin-image of a keypoint and its representation in
2D bins. Subsequently, as shown in Fig. 6.5b, the voxel grid method2 is used
to simultaneously down-sample the point-cloud and find the keypoints. The
centers of the voxels that have an intersection with the object’s point-cloud are
then used as keypoint. The computed local-to-global descriptor for the closest
point to each keypoint is used as the descriptor of the global neighborhood
around that keypoint (Fig. 6.6).They are incorporated in combination with a
global-to-local descriptor, which is described in the next subsection, as inputs
to the Local-HDP model. The obtained representation is then inferred to a
set of topics in the topic layer.

6.4.2 Oriented Local to Global 3D Object Descriptor

Our experiments showed that using solely a local-to-global descriptor for each
point in the object’s point-cloud is not enough for the segmentation task.
This representation lacks the global-to-local information required for the object

2\protect\protect\unhbox\voidb@x\hbox{http://docs.pointclouds.org/trunk/
classpcl_1_1_voxel_grid.html}

\protect \protect \unhbox \voidb@x \hbox {http://docs.pointclouds.org/trunk/classpcl_1_1_voxel_grid.html}
\protect \protect \unhbox \voidb@x \hbox {http://docs.pointclouds.org/trunk/classpcl_1_1_voxel_grid.html}
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parts semantic segmentation. As stated previously, each point in our model is
described using a local-to-global shape descriptor. This representation has the
key role in finding the segmentation label of that point. State-of-the-art local
shape descriptors define local reference frames to construct the local descriptor.
For instance, approaches like spin images use a cylindrical reference frame,
which is rotation invariant. Other approaches like SHOT [162] use a local
reference frame which is dependent on the structure of the surface-normals
of the neighboring nodes of the keypoint. The spin-image shape descriptor
loses some information due to the cylindrical structure of the reference frame
in order to be robust to noise and be invariant to different transformations.
Moreover, the SHOT descriptor is not robust to sparse point-cloud structures.

For 3D segmentation of the object, we can use a global-to-local shape
descriptor. The first descriptor shows the location of each point with respect
to all other points in the point-cloud. Using this descriptor one can estimate
the location of each point in the point-cloud. This descriptor pin-points a
specific point on a global representation of the object with a repeatable global
reference frame.

The global-to-local descriptor can pin-point any point p in the point-cloud
using a global reference frame. In order to find the global reference frame,
we use the same methodology as GOOD 3D object descriptor [95]. We use
Principle Components Analysis (PCA) to find the most three dominant eigen-
vectors that show the principal directions with regard to the distribution of
the points in the point-cloud. The directions of the vectors need to be disam-
biguated using the same approach as GOOD. Like GOOD, for each projected
point p̂ = (α, β) from the point-cloud P , where α is along the x axis and β is
along the y axis, first a row r(p̂) and a column c(p̂) are defined as follows:

r(p̂) =

⌊
α + l

2
l+ϵ
n

⌋
(6.2)

c(p̂) =

⌊
β + l

2
l+ϵ
n

⌋
(6.3)

Where l is the support length, n is the number of bins and ϵ is a small value used
for robustness in the GOOD descriptor. The left panel of Figure 6.7 shows the
three projected planes for a mug. Unlike the GOOD global descriptor, using
the orthogonal projections of the points in the point-cloud, we use a different
technique to pinpoint the point p∗ in the projection bins. For each bin with
row i and column j, the value of each bin is calculated as follows:
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Keypoint

(a) Global Projections (b) Keypoint on the Projection (c) 2D Bins

Figure 6.7: a) The global projections of a mug object. b) A keypoint on a
selected projection is shown with a red dot. c) The projected point-cloud is
then down sampled to a set of bins and the keypoint is pinpointed on it.

bini,j
r,c =

∑
p∈(r(i),c(j))

(
(1− d)

l
)2 (6.4)

Here, d = ||p − p∗|| is the Euclidean distance of point p from the keypoint p∗
that we want to pinpoint. This process will be repeated for all the points in
the point-cloud and the three projected planes. At this step, we can find the
location of the point in the point-cloud using the aforementioned global-to-
local descriptor.

Using the combination of the two aforementioned local-to-global and global-
to-local descriptors can lead to a better representation for each point in the
point-cloud. We convert this descriptor to a histogram of a specific size and
each bin is a considered as a word in a document. This histogram is consid-
ered as a Bag of Words (BoWs) to be fed to the model. The performance of
this descriptor is evaluated in the results section using the 3D object parts
semantic segmentation task. Notice that only the local-to-global descriptor is
used for segmenting the occluded objects.

6.4.3 3D Object Segmentation using Local-HDP

After synthesizing the point-cloud of the 3D objects to a set of BoWs, the data
is ready as input to the topic layer where the Local Hierarchical Dirchlet Pro-
cess (Local-HDP) method is utilized. Unlike Local-LDA [91] and Local-HDP,
there is no need for dictionary construction in the proposed method. This is
a notable difference since, in open-ended applications, dictionary construction
is one of the main steps of the topic modeling approaches, which can be a
hard task in practice. As stated previously, each point is represented as a set
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of descriptors with V bins {s0, ..., sV }. For each object, we use Local-HDP
to construct an independent local model for all the points located at each
semantic part of the 3D object. Therefore, the number of local models are
corresponding to the number of parts in an object.

Using a hierarchical Bayesian model called Local-HDP, we are able to trans-
form the low-level spin-image feature to conceptual high-level topics features
. Assuming that each point is a distribution over topics, each topic is itself
a distribution over the bins of the local descriptor (si). The topics in our
method are only locally shared among the points of the same semantic seg-
ment of the object and not across all points. This means that the point’s
visual word is only used to update a local model related to that part of the
object. This uses an incremental inference approach where the number of ob-
ject parts and object categories are open-ended and not known beforehand.
The proposed method also uses unsupervised HDP topic inference. However,
a human teacher or simulation-based interaction can teach the model new ob-
jects and object parts when the teacher introduces a new object that cannot
be assigned to one of the previously learned categories. Here, C is the number
of open-ended objects and |c| is the number of the points in each cluster. The
points consist of a set of N bins Wn,d where n,d means the n-th bin from the
d -th point (document). Each bin is an element from the vocabulary of bins
with predefined V words, that is Wd,n ∈ {1...V }.

After the model is constructed in a generative manner, the reverse proce-
dure for inferring the latent variables from the data should be used. The next
subsection shows the proposed inference mechanism for local-HDP.

6.4.4 Local Online Variational Inference

Posterior inference is intractable for the HDP, and Local-HDP has adapted the
online variational inference [169] to approximate the inference method. This
method is suitable for open-ended applications since it is fast and it infers the
topics in an online incremental manner.

A two-level Hierarchical Dirichlet Process (HDP) is made from a set of
Dirichlet Processes (DP) sharing a basic distribution G0. This distribution
(G0) is also drawn from a DP. Mathematically, this can be explained as follows:

G0 ∼ DP (γH)

Gj ∼ DP (α0G0)
(6.5)

Gj represents a DP for each document. All Gjs share the same atoms and the
only difference between the Gjs is related to their corresponding weights. H
is a symmetric Dirichlet over the vocabulary simplex known as topics.
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In order to generate the data from HDP, we need the following two steps.
First, the topic association for the jth document (θjn) is generated. Second
the nth word of the jth document (wjn is generated using the topics.

θjn ∼ Gj, wjn ∼Mult(θjn) (6.6)

An inference algorithm performs the reverse process by inferring the distribu-
tions over topics and the distribution over vocabulary words (θs) using the
dataset of documents. For the segmentation task, each document is the BoWs
representation of the local-to-global shape descriptor for each point from the
point-cloud.

Using Sethuraman’s stick-breaking construction for HDP [160], the varia-
tional distribution for online variational inference is as follows.

q(β′, π′, c, z, ϕ) = q(β′)q(π′)q(c)q(z)q(ϕ). (6.7)

Where β′ = (β
′

k)
∞
k=1 is top-level stick proportions, π′ = (ϕ

′
jt)

∞
t=1 is the bottom-

level stick proportion and cj = (c
′
jt)

∞
t=1 is the vector of indicators for each Gj.

Moreover, ϕ = (ϕk)
∞
k=1 is the infered topic distributions, zjn is the topic index

for each word wjn.
The factorized form of q(c), q(z), q(ϕ), q(β′) and q(π′) is the same as the

online variation inference for HDP [169]. Assuming that we have |C| objects
in each category for Local-HDP, the variational lower bound for document j
in the semantic object part C is calculated as follows:

L
(C)
j = Eq[log(p(wj|cj, zj, ϕ)p(cj|β′)p(zj|π′)p(π

′

j|α0))]

+H(q(cj)) +H(q(zj)) +H(q(ϕ′))

+
1

|C|
[Eq[logp(β

′)p(ϕ)] +H(q(β′)) +H(q(ϕ)] (6.8)

Where H(.) is the entropy term for the variational distribution. Therefore,
the lower bound term for each category is calculated in the following way.

L(C) =
∑
j∈C

Lj = Ej[|C|Lj] (6.9)

Using coordinate ascent equations in the same way as online variation infer-
ence for HDP, the document-level parameters (aj, bj, ψj, ζj) are estimated [160].
Then for the category-level parameters (λ(C), u(C), v(C)), we do a gradient de-
scending with respect to a learning rate.

∂λ
(C)
kw (j) = −λkw + η + |C|

T∑
t=1

φjtk(
∑
n

ζjntI[wjn = w], (6.10)
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Algorithm 6.1: Local Online Variational Inference
initialization:
Randomly initialize λ(C) = (λ

(C)
k )Kk=1, u(C) = (u

(C)
k )K−1

k=1 and
v(C) = (v

(C)
k )K−1

k=1 for all the learned semantic objects parts. Set t0 = 1
for each Semantic Object Part C do

while Stopping criterion is not met do
- Use the object view j for updating the parameters.
- Computer the document-level parameters aj, bj,Φj, ζj using
the same methodology as [169].

- Using Eq. 7-9, compute the natural gradients ∂λ(C)(j),
∂u(C)(j) and ∂v(C)(j).

- Set pt0 = (τ0 + t0)
−K , t0 = t0 + 1.

- Update the λ(C), u(C), v(C) parameters using Eq. 10-12.
end

end

∂u
(C)
k (j) = −uk + 1 + |C|

T∑
t=1

φjtk, (6.11)

∂v
(C)
k (j) = −vk + λ+ |c|

T∑
t=1

K∑
l=k+1

φjtl. (6.12)

Where φ (multinomial), ζ (multinomial) and λ (Dirichlet) are the variational
parameters which are the same for all the categories. Using an appropriate
learning rate pt0 for online inference, the updates for λ(C), u(C) and v(C) become:

λ(C) ← λ(C) + pt0∂λ
(C)(j) (6.13)

u(C) ← u(C) + pt0∂u
(C)(j) (6.14)

v(C) ← v(C) + pt0∂v
(C)(j) (6.15)

Here, pt0 should satisfy the following condition. This condition guarantees
convergence [141].

∞∑
t0=1

pt0 =∞,
∞∑
t0

p2t0 <∞ (6.16)

In all the experiments, we set pt0 = (τ0 + t0)
−K where K ∈ (0.5, 1] and τ0 > 0.

Algorithm 6.1 shows the pseudo-code of the proposed inference technique for
the Local-HDP approach. Notice that a local HDP model is used for each of
the semantic object parts in the dataset.
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Airplane (4) Bag (2) Cap (2) Car (4) Chair (4) Earphone (2) Guitar (3) Knife (2)

Lamp (3) Laptop (2) Mug (2) Motorbike (6) Pistol (3) Rocket (3) Skateboard (3) Table (2)

Figure 6.8: Different object categories of the ShapeNet core dataset. The
number of object category parts is written in parentheses.

6.5 Experimental Results

Using a platform with Intel(R) Core(TM) i7, 3.30GHz processor, and 16GB
RAM with SSD hard disk, we compared our proposed 3D semantic segmen-
tation method using the adapted online variational inference technique with
other methods. Specifically for open-ended evaluation, the comparison is done
with Local-LDA [91], LDA with shared topics [30], BoWs [93], RACE [122]
and HDP with shared topics and the online variational inference technique
[169]. For offline evaluation of the method we have compared our method with
PointNet [129], PointNet++ [130], PointCNN [107], O-CNN [170], SSCN [71],
PCNN [14], SPLATNet [153] and PartNet [182].

Two sets of experiments have been done to evaluate the performance of
the proposed method. Firstly, we use the ShapeNet core segmentation dataset
[117] for offline evaluation of all the methods. This dataset consists of 573,585
part instances over 26,671 3D models covering 24 object categories. Like all the
other approaches, we have used the average Intersection over Union (IoU)(%)
metric for evaluation of the part-based segmentation quality. For the second
set of experiments, the same dataset has been used. However, this time a
simulated teacher introduces an object to an agent after random shuffling of
all instances in the dataset.

6.5.1 Offline Evaluation of the 3D Object Parts
Segmentation

For offline evaluation of the proposed method, we used 2-fold cross-validation
using 50% of the data instances for training and 50% for testing. Figure 6.8
shows some of the object categories of the PartNet dataset.

Table 6.2 shows the comparison of offline evaluation of our approach versus
other approaches.The proposed Local-HDP method for the objects parts seg-
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Figure 6.9: A few examples of the resulting 3D object segmentation outputs
using the Local-HDP model. The red points show the wrongly segmented
points.

Method Aero Bag Cap Car ChairEph.GuitarKnifeLampLaptopMotorMugPistolRocketSkateTable
PN 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

PN++ 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
O-CNN 85.5 87.1 84.7 77.0 91.1 85.1 91.9 87.4 83.3 95.4 56.9 96.2 81.6 53.5 74.1 84.4
SSCN 84.1 83.0 84.0 80.8 91.4 78.2 91.6 89.1 85.0 95.8 73.7 95.2 84.0 58.5 76.0 82.7
PCNN 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8
SPLAT 83.2 84.3 89.1 80.3 90.7 75.5 92.1 87.1 83.9 96.3 75.6 95.8 83.8 64.0 75.5 81.8
PtCNN 84.1 86.4 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0
PartNet 87.8 86.7 89.7 80.5 91.9 75.7 91.8 85.9 83.6 97.0 74.6 97.3 83.6 64.6 78.4 85.8

Our 91.988.292.482.8 93.4 89.5 93.7 91.5 87.6 97.9 78.0 98.2 86.3 68.8 83.7 88.6

Table 6.2: Results of offline evaluation of our approach compared with other
state-of-the-art approaches. The average part-wise IoU(%) metric has been
used for the evaluation of the 3D segmentation methods. In this table, the
words ‘PN’, ‘PN++’, ‘SPLAT’, ‘PtCNN’ stand for ‘PointNet’, ‘PointNet++’,
‘SPLATNet’ and ‘PointCNN’, respectively. Moreover, the word ‘Aero’ is used
instead for the ‘Airplane’ category.

mentation task outperformed PartNet by 4% higher average IoU. Figure 6.9
shows the segmented 3D objects with false segmented points colored in red.
This representation shows that most of the misclassified points are located
near a region where two or more parts are connected to each other.

6.5.2 Open-Ended Evaluation of the 3D Object Parts
Segmentation

For the online evaluation of Local-HDP for 3D object segmentation, we have
two sets of experiments. For the first set of experiments, we follow the same
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methodology as Local-LDA [91]. We use a simulated teacher which can ei-
ther teach a new category segment to the model or ask the model to do the
semantic part segmentation for an unforeseen object view. In case of wrong
segmentation of an object by the model, the correcting feedback is sent to the
model by the simulated teacher. To teach a new category’s parts segments,
the simulated teacher presents three randomly selected object views of the cor-
responding category to the model. After this step, a set of randomly selected
unforeseen object views of all the previously learned categories is presented to
the model for category prediction. Subsequently, the average part-wise IoU
(%) for the semantic segmentation is computed. If the corresponding IoU is
higher than a certain threshold T = 0.75 (which means that the number of
true positives is at least triple the number of wrong category predictions), a
new category will be taught by the simulated teacher to the model. If the
learning accuracy does not exceed the threshold T after a certain number of
iterations (100 for our experiments), the teacher supposes that the agent can-
not learn further and stops the experiment. To calculate the part-wise IoU of
the model at each point, a sliding window of size 3n, where n is the number
of learned categories, has been used. More details on the online evaluation
protocol which has been used in our experiments can be found in [90].

For the second set of evaluations, Local-HDP is compared to state-of-the-
art deep architectures for 3D object segmentation. For each object category, we
have plotted the mIoU(%) metric for segmentation accuracy using the different
number of training examples. This shows how well the models generalize
concerning the number of observed training instances. A model with higher
accuracy and a lower number of observations would then be preferable for
open-ended applications where the agent should quickly adapt to the changes
in the environment and the previously unseen observations.

For the first set of experiments, 10 independent experiments have been
carried out. This way the random initialization of the models cannot abruptly
change the results. Moreover, the order of presenting the objects to both
models is kept the same using the simulated teacher. Several performance
measures have been used to evaluate the open-ended learning capabilities of
the methods, namely: (i) the number of Learned object Parts (#LP); (ii) the
number of Correction Iterations (#CI) by the simulated user; (iii) the Average
number of stored Instances per object Part (AIP) ; (iv) Mean part-wise IoU
(mIoU), the average part-wise IoU of each open-ended experiment. The left
part of Table 6.3 shows the result of the experiments for Local-LDA using the
aforementioned performance measures. The right part of Table 6.3 shows the
performance of our proposed method (Local-HDP).

According to Table 6.3, the average number of learned object parts for
Local-HDP is all the 47 object parts from the 16 categories, while Local-LDA
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Exp# #CI #LP AIP mIoU (%)
1 891 38 9.19 0.78
2 654 37 8.40 0.76
3 514 39 7.87 0.77
4 873 38 8.14 0.79
5 579 37 9.04 0.76
6 605 40 7.91 0.77
7 849 36 9.20 0.75
8 550 34 8.32 0.78
9 560 39 7.99 0.76
10 564 37 8.92 0.77
Avg
±std

564
±147

37.50
±1.71

8.49
±0.53

0.76
±0.01

(a) Local-LDA
Exp# #CI #LP AIP mIoU (%)

1 1179 47 3.31 0.89
2 1224 47 3.66 0.90
3 1241 47 3.54 0.89
4 1217 47 3.13 0.91
5 1123 47 3.23 0.87
6 1235 47 3.81 0.88
7 1252 47 3.29 0.92
8 1115 47 3.72 0.89
9 1291 47 3.73 0.90
10 1232 47 3.01 0.91
Avg
±std

1210
±55

47
±0

3.44
±0.28

0.89
±0.01

(b) Local-HDP (our)

Table 6.3: Summary of 10 experiments for the open-ended evaluation.

learned 37.50± 1.71 object parts on average. This means that Local-HDP can
learn better than Local-LDA using the same dataset and learning protocol.
Since online variational inference has been used for the inference in the Local-
HDP method, AIP is much lower for Local-HDP with the average number of
3.44 ± 0.28 instances per object part, which validates memory efficiency. On
the other hand, Local-LDA needs to save on average 8.49± 0.53 instances per
object part. In terms of global segmentation mIoU, Local-HDP performs much
better than Local-LDA.

6.5.3 Object Category Recognition with
Argumentation-Based Learning

At this step, the 3D objects are segmented into different parts and ready to be
used as input to an explainable machine-learning technique to recognize their
category. Argumentation-Based online incremental Learning (ABL) is used
in this research for this purpose. A number of parts labels (s1, s2, ..., sn) are
segmented for a 3D object view O. These segmented parts labels are used as
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(a) Mug (b) Airplane

(c) Cap (d) Skateboard

Figure 6.10: The comparison of our proposed Local-HDP method for 3D object
segmentation with PartNet and PointNet++ deep neural network architectures
using four different training sizes (n). Max means that the maximum size of
the training set is used for each object category.
the features for training the model.

ABL has been used for 3D object category recognition using a scenario
for simulating occluded objects from the Shapenet core dataset. In this sce-
nario, an object is occluded and a part of its point-cloud is randomly removed
(Figure 6.11). The parts segmentation model is trained on the complete point-
clouds with no missing parts and the occluded objects are only used in the test
phase. This scenario can be used to evaluate the robustness of the proposed
approach to occlusion. Providing the segmentation information to ABL, the
model predicts the category of the object and produces an explanation for its
prediction.
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(a) Mug (b) Random Rotations (c) Random Cuts 
(Simulated Occlusions)

Figure 6.11: The process of simulating the occluded objects. a) A randomly
selected mug. b) Random rotations of the selected mug. c) Random cuts from
the random rotations.

6.5.3.1 Occlusion

In order to evaluate the robustness of the model to occlusion, the same dataset
is used to simulate an occluded set of objects. Using the Shapenet core dataset
[117], the objects are randomly rotated in 3D and a piece of its point-cloud
is randomly removed using the following procedure. A 2D plane is used to
randomly remove a piece of the point-cloud of the object. This plane is parallel
to the yz plane and it passes from a random point on the x-axis between the
minimum (min) and the maximum (max) of the x coordinate of all the points
in the point-cloud. To avoid too small or too large removing parts from the
point-cloud of the rotated 3D object, the random cutting point on the x-axis
is chosen in the range of [min + max−min

4
,max − max−min

4
]. Then, the part

of the object on the left side of the plane is omitted. Figure 6.11 shows this
process for nine random rotations and random cuts. This way a simulated
occluded object is constructed using the same dataset as the segmentation
task. Although in general occlusion can result in more complicated shapes,
the aforementioned process is chosen for simplicity.

To compare the performance of different approaches on the original Shapenet
core and the occluded dataset, two sets of experiments are conducted. The
proposed approach is compared with the Local-HDP method for the object cat-
egory recognition task [19], PointNet (PN) [129], and PointNet++ (PN++)
[130]. The model is trained with the original Shapenet core dataset for in both
sets of experiments. The first set of experiments also uses the original dataset
for the testing phase. However, the second set of experiments uses the occluded
dataset to evaluate the robustness of the model to the occlusion. This means
that in the second set of experiments, the model is trained using 90% of the
original Shapenet core dataset and the rest of the 10% objects are occluded,
using the aforementioned procedure, to construct the testing set. Notice that
the 10-fold cross-validation technique is used for both sets of experiments and
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Segmented

Handle

Category

Mug

Explanation

Handle → Mug

ABL

Mug Table

Aero Bag

Figure 6.12: An example of the generated explanations from the
argumentation-based learning model.

Ex# Original Dataset Occluded Dataset
Our Local-HDP PN++ PrN Our Local-HDP PN++ PrN

1 99 97 97 97 83 45 21 25
2 97 96 96 96 85 41 19 22
3 98 97 96 97 82 43 23 22
4 99 98 97 98 87 38 21 24
5 98 98 97 97 84 42 19 23
6 99 98 97 98 83 47 22 24
7 98 97 97 97 88 40 21 25
8 99 98 96 98 85 46 24 23
9 99 98 97 97 84 44 17 25
10 98 97 97 97 84 46 19 24
Avg
±std

98
±0.69

97
±0.69

96
±0.48

97
±0.63

84
±1.84

43
±2.93

20
±2.11

23
±1.15

Table 6.4: The comparison of the recognition accuracy (%) of the trained
model on the original dataset for the object category recognition task with
different testing sets from the original dataset and the occluded dataset.

the resulting accuracies are reported for each fold.
Table 6.4 compares the recognition accuracy (%) of the trained model for

different testing sets namely, the original dataset and the occluded dataset.
This table shows that the proposed outperforms all the other methods for both
the original and the occluded datasets. The results of recognition accuracies on
the occluded dataset show that the proposed method is more robust than other
methods to occlusion with the average 84% accuracy. The other approaches
namely, Local-HDP, PointNet++, and PointNet achieved 43%, 20%, and 23%
learning accuracies, respectively. Therefore, the proposed approach achieved
on average 41% higher accuracy than the second best performing approach
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i.e. Local-HDP. Figure 6.12 shows an example of an explanation generated by
ABL for the object category classification task. This means that the proposed
method can also generate an explanation for choosing a certain category as
the prediction of the model.

6.6 Conclusion

In this research, we proposed a non-parametric hierarchical Bayesian model
called Local Hierarchical Dirichlet Process (Local-HDP) for 3D object part
segmentation. The proposed technique is integrated with the argumentation-
based online incremental learning technique for the 3D object category recog-
nition task. All points in the point-cloud of the 3D objects are represented
by a local-to-global and a global-to-local descriptor in a bag-of-words format.
The proposed approach transfers these bags of words to the hierarchical dis-
tribution over a set of topics. Each topic is a distribution over the words.
State-of-the-art techniques for the 3D object parts segmentation task, already
have a high learning accuracy. These techniques typically use deep neural
networks that take a long time for training. Therefore, they are not suitable
for open-ended or class-incremental scenarios where the number of class labels
(object parts and object categories) may increase over time. These scenarios
are very likely when a general-purpose service robot performs in a home-like
dynamic environment. This means that the proposed model should be able to
get updated incrementally in run-time without a need for retraining when a
new object category or an object part is observed in the run-time. Moreover,
most of the current 3D object parts category recognition techniques are not
robust to occlusion. This means that when the models are trained on the
complete set of 3D objects with no missing parts, they can poorly segment or
recognize an occluded object from a previously learned category.

The extensive set of experimental results showed that the proposed Local-
HDP approach outperforms the other state-of-the-art object parts segmenta-
tion and 3D object category recognition methods, in terms of both accuracy
and run-time. The mean part-wise Intersection of Union (mIoU) is used as
the evaluation metric for the objects parts segmentation task. The offline
evaluation of the model shows higher mIoU for the parts segmentation task
compared to state-of-the-art deep neural network-based approaches like Part-
Net, PointCNN and PointNet++. The open-ended evaluations showed that
the proposed model has higher generalization capability by observing a much
lower number of training examples. This is very useful for open-ended domains
where the agent should learn to segment new object categories and new parts
with only a few training instances to be able to adapt to the surrounding en-
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vironment in a short time period. The experimental results for evaluating the
robustness of the 3D object category recognition technique to occlusion show
that the proposed technique outperforms other techniques by a large margin.
Moreover, the argumentation-based learning technique can provide the rea-
son for choosing a certain category for a 3D object. The applications of the
provided explanations of the model can be investigated for future work since
it seems suitable for human-robot interaction. Using the explanations of the
model, a human user can understand the robot’s decisions, debug the model,
and interact with it.
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CHAPTER7
Discussion and Conclusion

Considering a general-purpose service robot that needs to operate in a home-
like dynamic environment, a robot programmer cannot predict all the possible
failure conditions that the robot might encounter in its lifetime. Therefore,
the model should have a mechanism to adapt to the changes in the environ-
ment. Open-ended (lifelong or class-incremental) learning and online incre-
mental learning are required for this purpose. The model should adapt to
changes over time without the need for retraining. Moreover, the number of
classes that a model can learn should not be fixed and predefined.

In this thesis, we have addressed the problem of online incremental learning
in Chapter 2 and Chapter 3. Open-ended learning is addressed in Chapter 4
and Chapter 6. Chapter 2 proposes Argumentation-Based Learning (ABL) for
an agent to learn incrementally based on its interaction with the surrounding
environment to handle unforeseen failure states. Accelerated Argumentation-
Based Learning (AABL) is proposed in Chapter 3 to address the restrictions
of ABL. AABL has a simpler architecture than ABL. Chapter 5 addresses a
probabilistic inference technique to infer the posterior probability of a Markov
Random Fields (MRF) model. To solve real-world robotic vision problems like
3D object category recognition and semantic 3D object parts segmentation, the
Local Hierarchical Dirichlet Process is proposed in Chapter 4 and Chapter 6.
Local-HDP has some restrictions for 3D object category recognition when the
3D objects are highly occluded in the testing set. Finally, argumentation-
based learning has been integrated with Local-HDP to handle this problem in
Chapter 6.

In the following section, we address the contributions of all the approaches
in this thesis and compare them with each other in terms of underlying struc-
tures, learning approaches, computational complexity, learning speeds, inter-
operability, and accuracy. Also there the main strengths and restrictions of
the approaches are summarized. Section 7.2 explains possible future work.
The final section returns to the features of a desirable model as discussed in
Section 1.3.
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1 2 3 4 5 6 7 8 9
Method AF BAF Online Inc Approach Complexity NFH Speed Accuracy
ABL ✓ ✓ ✓ ✓ Supervised Exponential tens High High

AABL ✗ ✓ ✓ ✓ Supervised Polynomial hundreds Higher Higher

Table 7.1: The comparison between ABL and AABL in their architectures and
performances.

7.1 Contributions

In this thesis, different approaches including ABL, AABL, Local-HDP and
their combination have been proposed. We now summarize the contribu-
tions of this thesis as well as the strengths and restrictions of each approach.
Argumentation-based online incremental learning (ABL) shows promising re-
sults in terms of learning accuracy and learning speed. Moreover, it produces
a set of explanations for the reasoning process behind the classification task.
However, the original version of ABL is computationally complex and it is
not memory efficient. To address this issue, accelerated argumentation-based
learning (AABL) proposes two strategies to simplify the architecture of the
model and the learning process.

Table 7.1 shows the comparison of the two methods in terms of their archi-
tectures and performances. The first two columns compare the two methods
based on the argumentation frameworks used in their architectures. ABL uses
both the Abstract argumentation Framework (AF) and Bipolar Argumentation
Framework (BAF), while AABL only uses BAF. The online and incremental
(Inc) learning capabilities are addressed in columns three and four. Column
five shows that both of these can be used in supervised learning applications.
The space and computational complexity of the two methods are addressed in
column six. Column seven shows the Number of Features that both methods
can roughly Handle (NFH). The last two columns compare the two methods
in terms of learning speed and learning accuracy. Both methods have higher
learning speed and learning accuracy than state-of-the-art online incremental
machine learning techniques. A method with a higher learning speed needs a
lower number of learning instances to achieve higher learning accuracy. AABL
has higher learning speed and learning accuracy than ABL. Notice that both
ABL and AABL are used for supervised learning or classification tasks.

Table 7.2 compares ABL, AABL, and Local-HDP for two different appli-
cations, namely, 3D object recognition and 3D object part segmentation, and
the integrated model. The integrated model explained in Chapter 6 combines
Local-HDP for the 3D object part segmentation task with ABL for the ulti-
mate task of 3D object category recognition. All the proposed methods are
online incremental but they have different architectures. Local-HDP uses the
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Method Online Incremental Open-Ended NFH Missing Data Explainable
ABL ✓ ✓ tens ✗ ✓

AABL ✓ ✓ hundreds ✗ ✓
Local-HDP

(Object Recognition) ✓ ✓ thousands ✗ ✗

Local-HDP
(Segmentation) ✓ ✓ thousands ✓ ✗

Integrated
(Object Recognition) ✓ ✓ thousands ✓ ✓

Table 7.2: The comparison of all the proposed machine learning methods in
this thesis. The integration of ABL and Local-HDP has all the advantages of
both techniques.

Hierarchical Bayesian (HB) approach while ABL and AABL are based on Ar-
gumentation Theory (AT). Moreover, Local-HDP is designed for open-ended
scenarios, while ABL and AABL are not utilized in open-ended scenarios. No-
tice that the architectures of ABL and AABL do not make any assumption
on the number of classes. Therefore, they can also be used in open-ended ap-
plications, although this has not been investigated here. Local-HDP has been
used for robotic vision applications with thousands of features while ABL and
AABL are utilized in scenarios with a smaller number of features. Local-HDP
for 3D object category recognition cannot handle a high degree of missing data
in the testing set, while the integrated technique can handle highly occluded
objects. The proposed Local-HDP for 3D object parts segmentation can han-
dle missing data. Moreover, ABL and AABL are structured machine-learning
techniques that are not designed to handle missing data. In terms of explain-
ability, ABL, AABL and the integrated method all produce explanations for
the reasoning process. However, Local-HDP does not produce any explana-
tions for the reasoning process apart from the learned topics that are inferred
from the dataset. The learned topics are not necessarily visually explainable.

The experimental results show that the integrated technique has the advan-
tages of ABL, AABL, and Local-HDP. This means that the integrated model
has the following features (as listed in Section 1.3 on features desirable for
General Purpose Service Robots):

1. The integrated model can learn in an online incremental manner.

2. The integrated model can learn with a small number of learning in-
stances.

3. The integrated model is suitable for open-ended class-incremental learn-
ing.

4. The integrated model learns to recognize the category of 3D objects.
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5. The integrated model can semantically segment a 3D object.

6. The integrated model uses an accelerated inference technique for the task
of 3D object segmentation, namely, online variational inference.

7. The integrated model can handle a high degree of occlusion for recogniz-
ing the category of a 3D object.

8. The integrated model can be the basis of explanations for the predictions
of the model.

9. The integrated model can interact with a human teacher to get correcting
feedback and learn from the user’s interactions. This can be further used
for debugging the model.

The aforementioned characteristics of the proposed integrated model make it
a suitable choice for robotic applications.

7.2 Limitations

We now summarize the main restrictions of the methods proposed. As men-
tioned in Chapter 2, the original version of argumentation-based learning is
restricted to low-dimensional datasets since the computational complexity of
this approach is high. This problem is addressed in Chapter 3 by an acceler-
ated argumentation-based learning technique. Both ABL and AABL achieve
higher learning precision and can learn with a smaller number of learning in-
stances than state-of-the-art online incremental learning techniques. AABL is
faster, more memory efficient and it has higher learning precision than ABL.
Although the complexity of AABL is lower than ABL, it is restricted to discrete
feature values. This limits the application of the approach in a setting of high-
dimensional, continuous feature values. To address this restriction, one can
change the architecture of the model or use this model as a high-level learner
on top of a low-level feature extraction technique that extracts high-level fea-
tures rather than low-level features. This has been done in Chapter 6, where
the AABL is combined with the Local-HDP approach as a high-level object
category recognizer using the segmentation labels produced by Local-HDP.

Local-HDP for object category recognition works well with 3D object point-
clouds. It achieves higher learning precision and it can handle an open-ended
number of object classes. This is especially required in robotic applications. It
can learn new 3D object categories with a few learning instances and achieve
high learning precision. However, this technique, like most state-of-the-art
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techniques, is not robust against a high degree of missing parts in the point-
cloud or a high degree of occlusion. Chapter 6 addresses this issue by a pipeline
of a low to high-level 3D object part segmentation technique that gets a low-
level description of the points and produces high-level parts segmentation la-
bels for an object. ABL is used as an explainable technique that can handle
missing data and achieve better classification accuracy by using high-level de-
scriptions of object parts in a 3D object. Such a mixture of low-level and
high-level models addresses the previously mentioned restrictions of our ap-
proaches for the 3D object recognition task. This approach assumes that the
point-cloud of 3D objects is previously known or can be easily detected in the
environment. Therefore, it cannot handle clutter scenes where we have a pile
of objects and the objects’ bounding boxes are not easily separable.

7.3 Future research

In this section, we address possible directions of research focusing on the meth-
ods developed in this thesis.

7.3.1 Argumentation-Based Learning

Argumentation-Based online incremental Learning is introduced in Chapter 2
and Chapter 3. ABL is then used in Chapter 6 to learn as a high-level machine
learning technique on top of the proposed local hierarchical Dirichlet process
model for the task of 3D object part segmentation that produces the low-
level segmentation labels. This combination shows promising results when the
objects are occluded due to explainability of the argumentation-based learning.
The explainable set of rules produced in this process can be further used for
debugging the model in future work. For example, when ABL predicts a
wrong label for a testing example, a user’s feedback can be useful to enhance
the two argumentation frameworks in a way that this example can be classified
correctly at later stages. Moreover, this technique can be useful for human-
robot interactions. For instance, when the AF or BAF unit in ABL cannot
provide a first or second guess, the model can interact with a user to learn how
to classify an unforeseen instance.

Argumentation-Based Learning has already been compared to contextual
bandit approaches that are typically used in recommender systems. Therefore,
in future work, we can use argumentation-based learning as a recommender
system and compare it with state-of-the-art techniques.
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7.3.2 Local Hierarchical Dirichlet Process

Local Hierarchical Dirichlet Process is a hierarchical Bayesian model that has
been introduced in Chapter 4. Local-HDP has been used in 3D object category
recognition in robotics. This model has later been adapted in Chapter 6 for
the task of 3D object segmentation. Local-HDP led to promising results in
both offline and open-ended (class-incremental) scenarios. This is especially
interesting for the robotics domain where the environment surrounding a robot
is dynamic and prone to changes.

Local-HDP is a two-level Bayesian model that can autonomously determine
the number of topics and find the topic proportions. This is suitable for the
tasks like image recognition and segmentation. However, for the hierarchical
segmentation of objects, having more than two levels in the model might be
more useful. This can be investigated in future work. Moreover, Local-HDP
can be utilized in other supervised learning domains.

7.3.3 Inference Algorithms

We have introduced two inference techniques in this thesis, namely, an online
variational inference technique in Chapter 4 for the Local-HDP model and
swift distance transformed loopy belief propagation for Markov random fields
in Chapter 5. Both of these approaches are fast approximations of the posterior
probabilities using two different techniques for two different models. Targeting
hierarchical segmentation might need more than two levels for the hierarchical
Bayesian approach and the new model requires a new inference technique for
future works to address this problem.

7.3.4 Argumentative Explanations for Machine
Learning Models

Producing argumentative explanations using the Argumentation-Based Learn-
ing approach (Chapter 2, Chapter 3 and Chapter 6) has shown promising re-
sults compared to state-of-the-art techniques. Specifically, the argumentative
explanations help the 3D object category recognition model detect the cate-
gory of occluded objects. The power of argumentative explanations motivates
us to look further into the argumentative explanations for different black-box
machine learning techniques like deep neural networks. For future work, we
aim to produce argumentative explanations for deep neural networks, namely,
feed-forward neural networks and convolutional neural networks, in order to
explain the intrinsic reasoning process for each prediction using an argumen-
tation framework.
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7.3.5 Explanations for Debugging the Model and
Human-Robot Interaction

In this thesis, we have introduced explainable machine learning techniques
that can produce a set of reasons (explanations) for their predictions (Chap-
ter 3, Chapter 3 and Chapter 6). However, we have not explicitly used these
explanations for debugging a trained model. A comprehensive user study can
be conducted in future work to incorporate the obtained explanations for the
process of debugging the model. Moreover, this can be further extended to add
a human user in the loop to fine-tune the model according to his/her desire.
Therefore, the model could be altered by interacting with humans as well as
learning from the data.

7.4 Conclusion

Aiming to propose a suitable method for explaining what a robot sees, dif-
ferent approaches for explainable online incremental learning in offline and
open-ended domains are proposed in this dissertation. These approaches are
utilized in different supervised learning scenarios as well as in robotics vision.
Argumentation-Based online incremental Learning (ABL) is proposed as an
explainable machine learning technique that can learn using a lower number
of learning instances than most common machine learning techniques. ABL is
composed of two argumentation formalisms namely, an Abstract argumenta-
tion Framework (AF) and a Bipolar Argumentation Framework (BAF). The
BAF unit is responsible for generating a set of hypotheses/arguments out of the
training instances by using the grounded extension semantics. Modeling the
defeasibility relations between the generated arguments is the responsibility of
the AF unit using the preferred extension semantics.

The resulting ABL model is then compared with state-of-the-art online
incremental learning methods, deep reinforcement learning techniques, and
contextual bandits approach. The experimental results show that the pro-
posed approach can learn faster and better than other methods. This is espe-
cially important when there is a limited number of available training instances.
Moreover, online incremental learning methods typically face the phenomenon
of concept shift. This means that the underlying rules for classifying data as
a specific class can change over time. Therefore, a machine learning technique
like ABL that can learn faster and adapts more quickly to the underlying
changes is preferable. ABL also allows the generation of explainable rules for
the underlying reasoning process. This enables ABL to be more user-friendly
since a user can easily understand the reason behind each decision and debug
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the model if needed. Moreover, a user can inject knowledge into the model in
the form of arguments. Therefore, ABL is suitable for human-robot interac-
tion.

ABL also has some restrictions since its computational complexity is high.
Consequently, it is not suitable for high-dimensional datasets. This motivated
the introduction of a simpler model called Accelerated Argumentation-Based
Learning (AABL). AABL simplifies ABL by including only a BAF unit. To
reduce the complexity of the model, two strategies are used. First, instead
of extracting all the subsets of the feature values for each training example,
AABL starts with extracting length-one subsets and increments the length of
the subsets if required (considering that fixing the higher bound of the length of
the subsets to two works well in the practice). The condition for increasing the
length of the subsets depends on the second strategy, which is the pruning step.
In this step, the supporting nodes that are not uniquely supporting a class label
are pruned. Using these strategies, the resulting AABL model has polynomial
complexity rather than the exponential complexity of ABL by the use of a fixed
upper bound on the length of feature value subsets. Therefore, it has much
lower run-time and memory consumption and it is more suitable for higher-
dimensional datasets. The experimental results also show that the learning
accuracy is improved in comparison to the original ABL model. The reason
for the resulting improvement in learning accuracy is that the AABL model
can focus only on the relevant supporting nodes after the pruning step, while
ABL sometimes utilizes the wrong supporting nodes. Consequently, AABL
has better performance than ABL since it can learn with a lower number of
learning instances and achieve higher learning accuracy. Moreover, it is much
faster and more memory-efficient than ABL.

The local Hierarchical Dirichlet Process (Local-HDP) is a hierarchical Baye-
sian approach that can handle very high dimensions of data and lots of train-
ing examples. Therefore, it is suitable for computer vision problems with
thousands of features. Local-HDP is capable of learning in both offline and
open-ended scenarios. In open-ended scenarios, the number of class labels is
not fixed and can grow over time. Therefore, Local-HDP is a good choice
for general-purpose service robots performing in a home-like dynamic environ-
ment. It combines the advantages of the Hierarchical Dirichlet Process (HDP)
and Local Latent Dirichlet Allocation (Local-LDA). It is a non-parametric
model that can autonomously determine the number of required topics in the
inference phase. Therefore, it does not have the limitations of LDA-based
approaches. Moreover, it uses local models for each class label and can ex-
tend the number of local models over time. Local-HDP has been used for the
problem of 3D object category recognition and outperformed all the state-of-
the-art approaches by a large margin. It is also much faster than Local-LDA
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since it adapts an online variational inference technique. Local-HDP can learn
new 3D object categories with a much lower number of learning instances and
incrementally adapts to the dynamic environment. It has been used in two
robotic experiments, namely real-time 3D object category recognition and ob-
ject manipulation with a robotic arm. It interacts with a human teacher to
learn new object categories and it is suitable for human-robot interaction.

In order to achieve higher robustness against nuisance such as occlusion of
3D object categories, ABL and Local-HDP have been integrated. Local-HDP
has been adapted to be used for the 3D semantic object parts segmentation
task. This enables the model to segment 3D objects into different semantic
parts. This method results in a higher mean Intersection of Union (mIoU %)
for different 3D object categories. Most of the 3D semantic part segmentation
methods are based on deep neural networks in the literature. These methods
typically need a large training dataset that is not available for general-purpose
service robots operating in a dynamic home-like environment. Local-HDP for
semantic 3D object parts segmentation can learn to segment different object
categories with a lower number of learning instances. Moreover, it is suitable
for open-ended applications where the number of object categories and the
semantic parts are not fixed and predefined and can grow over time. This
method has been compared with state-of-the-art deep neural architectures and
outperformed all in terms of run-time, learning accuracy, and mLoU %. Using
the output of the proposed Local-HDP method for semantic 3D object parts
segmentation as an input to the ABL model, an integrated model has been
proposed for 3D object recognition. In particular, the ABL model uses the
extracted semantic part labels as learning features and predicts the category
of the objects. Using a local-to-global feature descriptor together with the
explainability of ABL, the resulting model is robust to a high level of occlusion.
Most state-of-the-art approaches could not handle a high amount of occlusion
for correct 3D object category recognition. The experimental results show
that the resulting integrated model is much more robust to occlusion than
state-of-the-art approaches.

To summarize, proposing the ABL technique led to an explainable online
incremental learning that has been improved by introducing AABL. To handle
higher-dimensional data in the robotic vision domain, Local-HDP has been
proposed, which can operate in dynamic open-ended environments. Conse-
quently, Local-HDP has been adapted for the segmentation task and has been
integrated with ABL for the 3D object recognition task. The resulting model
has all the advantages of ABL, AABL, and Local-HDP and can be widely used
in different robotic vision tasks.
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Summary

Summary

In this thesis, we have introduced new techniques for the problems of open-
ended learning, online incremental learning, and explainable learning. These
methods have applications in the classification of tabular data, 3D object cat-
egory recognition, and 3D object parts segmentation. We have utilized argu-
mentation theory and probability theory to develop these methods.

Lifelong open-ended learning requires models to be capable of learning
during the whole lifetime of the model, in which new information must be
acquired and incorporated continuously into the existing model to optimize
and update task performance. In these circumstances, a streaming data source
might have a non-stationary distribution. In order to handle this variance, a
desirable model should be able to continuously adapt to the streaming data
in an incremental manner. This model should handle a large number of tasks
using a limited computational and memory capacity. Open-ended machine
learning techniques are not restricted to learning from a fixed number of class
labels and they can handle a growing number of class labels in run-time.

Machine learning methods are employed to mine the collected data for
relevant information and to predict future outcomes by generated models.
However, classical batch machine learning approaches in which all data is si-
multaneously accessed do not meet the requirements whenever the data is
gradually gathered. Also, systems should be able to work based on a small set
of currently gathered data. Furthermore, these models do not continuously in-
tegrate new information into already constructed models. Instead, new models
are regularly reconstructed from scratch. Such circumstances not only imply
very time-consuming tasks but also lead to potentially outdated models when
a needed reconstruction is delayed. Overcoming such limitations requires a
paradigm shift to sequential data processing in a streaming scheme. This not
only allows using the information as soon as it is available to guarantee up-to-
date models but also reduces the costs for data storage and maintenance.

The goal of online incremental machine learning techniques is to continu-
ously learn new tasks from new data while preserving knowledge learned from
previously learned tasks. Incremental and online algorithms fit naturally to
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this scheme since they continuously incorporate information into their model,
and traditionally aim for minimal processing time and space.

The first proposed open-ended online incremental learning approach is
Argumentation-Based online incremental Learning (ABL). ABL works with
tabular data and can learn with a small number of learning instances us-
ing an abstract argumentation framework and bipolar argumentation frame-
work. It has a higher learning speed than state-of-the-art online incremental
techniques. However, it has high computational complexity. We have ad-
dressed this problem by introducing Accelerated Argumentation-Based Learn-
ing (AABL). AABL uses only an abstract argumentation framework and uses
two strategies to accelerate the learning process and reduce the complexity. In
contrast to ABL, AABL starts with extracting subsets of feature values with
length one and increases the subset size when necessary. Moreover, AABL
prunes unnecessary supporting nodes. Both ABL and AABL are limited to
discrete feature values and cannot handle high-dimensional continuous fea-
tures.

The second proposed open-ended online incremental learning approach is
the Local Hierarchical Dirichlet Process (Local-HDP). Local-HDP aims at ad-
dressing two problems of category recognition of 3D objects and segmenting
3D object parts. The topic of 3D object category recognition and classification
experienced increasing interest in recent years since 3D sensors became popular
and different 3D object datasets have become publicly available. These meth-
ods have different applications in robotics, namely in robotic manipulation,
navigation, and security, for instance for detecting dangerous objects.

Typically, the number of object categories (class labels) should be prede-
fined for state-of-the-art methods. However, in some real-time robotic scenar-
ios, an agent can face new object categories while operating in the environment.
Therefore, the model should get updated in real-time in an open-ended manner
without completely retraining the model. Local-HDP can handle this problem
by making a specific local model for each category of object and incrementally
updating the model with new incoming data.

Object parts segmentation is one of the challenging problems in 3D shape
analysis. Data-driven part-segmentation methods typically outperform tradi-
tional geometrical methods. In recent years, deep learning approaches have
been widely exploited among researchers in this field. Although these tech-
niques show promising results in some applications, they are not well-suited
for open-ended learning scenarios where the number of object categories and
part segments are not predefined and can be extended over time.

The majority of existing models for 3D shape segmentation have the follow-
ing five limitations when they are used in open-ended dynamic environments.
First, most of these models are trained with a fixed set of labels, which greatly
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limits their flexibility and adaptivity. For instance, a model trained to segment
a table into three parts cannot be used to correctly segment a table with four
parts. Second, using a fixed set of labels limits the number of object categories
that the model can segment. For example, a model which previously learned
how to segment a cup and a table cannot learn to segment a new object such
as an airplane unless the model is retrained. Third, for state-of-the-art tech-
niques, good accuracy requires a long training time. This prevents the model
from quickly adapting to the changes in an open-ended dynamic environment.
Fourth, the object parts segmentation and object category recognition meth-
ods in the literature typically use a large training set, while learning with
a lower number of learning instances is required for quick adaptation of the
model to changes. Fifth, 3D object category recognition techniques are typ-
ically not robust to a high degree of occlusion while encountering occluded
objects is common in real-world dynamic environments.

These limitations motivated us to design Local-HDP, an open-ended 3D
object parts segmentation model which can learn with higher accuracy and a
lower number of learning instances than state-of-the-art methods.

Finally, we have utilized Local-HDP for the task of object part segmenta-
tion in combination with AABL to achieve an interpretable model to explain
why a certain 3D object belongs to a certain category. The explanations of this
model tell a user that a certain object has specific object parts that look like
a set of the typical parts of certain categories. For example, one explanation
can tell a user that a certain 3D point cloud of an object belongs to the mug
category because it has a handle like a mug and a body like a mug. Moreover,
integrating AABL and Local-HDP leads to a model that can handle a high
degree of occlusion. For example, if a mug object is partially visible and only
the handle of it would be visible, the model can detect the object category
since it has a handle that pretty much looks like a typical handle of a mug.

Proposing the aforementioned technique, we now have models that can
learn in an open-ended online incremental manner with a small number of
learning instances that can be used for the classification of tabular data, cat-
egory recognition of 3D objects, and 3D object part segmentation. These
methods are explainable and their combination can handle a high degree of
occlusion for 3D objects.





Samenvatting

Samenvatting

In dit proefschrift hebben we nieuwe technieken geïntroduceerd voor de prob-
lemen van open-einde-leren, online incrementeel leren, en verklaarbaar leren.
Deze methoden hebben toepassingen in de classificatie van tabulaire data,
herkenning van 3D-objectcategorieën en segmentatie van 3D-objectsegmentatie.
Wij hebben argumentatietheorie en kansrekening gebruikt om deze methoden
te ontwikkelen.

Levenslang open leren vereist dat modellen in staat zijn te leren gedurende
de gehele levensduur van het model, waarbij voortdurend nieuwe informatie
moet worden verworven en verwerkt in het bestaande model om de taakprestaties
te optimaliseren en bij te werken. In deze omstandigheden kan een doorlopende
gegevensbron een niet-stationaire verdeling hebben. Om met deze variatie om
te gaan, moet het gewenste model in staat zijn zich voortdurend op incre-
mentele wijze aan te passen aan de stroom data. Dit model moet een groot
aantal taken aankunnen met een beperkte reken en geheugencapaciteit. Open-
einde machinale leertechnieken zijn niet beperkt tot het leren van een vast
aantal klassenlabels en kunnen een groeiend aantal klassenlabels in runtime
aan.

Machine-leermethoden worden gebruikt om de verzamelde gegevens te door-
zoeken op relevante informatie en toekomstige resultaten te voorspellen aan de
hand van gegenereerde modellen. Echter, klassieke machine-leerbenaderingen
waarbij alle gegevens tegelijkertijd worden toegankelijk zijn, voldoen niet aan
de eisen wanneer de gegevens geleidelijk worden verzameld. Ook moeten de
systemen kunnen werken op basis van een kleine verzameling op het moment
zelf verzamelde gegevens. Bovendien integreren deze modellen niet voort-
durend nieuwe informatie in reeds opgestelde modellen. In plaats daarvan
worden regelmatig nieuwe modellen vanaf nul opgebouwd. Dergelijke om-
standigheden brengen niet alleen zeer tijdrovende taken met zich mee, maar
leiden ook tot mogelijk verouderde modellen wanneer een noodzakelijke recon-
structie vertraging oploopt. Het overwinnen van dergelijke beperkingen vereist
een paradigmaverschuiving naar sequentiële gegevensverwerking in een stream-
ing schema. Dit maakt het niet alleen mogelijk informatie te gebruiken zodra
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deze beschikbaar is om up-to-date modellen te garanderen, maar vermindert
ook de kosten voor gegevensopslag en onderhoud.

Het doel van online incrementele machineleertechnieken is om voortdurend
nieuwe taken te leren van nieuwe gegevens met behoud van de kennis die geleerd
is van eerder geleerde taken. Incrementele en online algoritmen passen van
nature in dit schema omdat zij voortdurend informatie in hun model opnemen,
en traditioneel streven naar minimale verwerkingstijd en ruimte.

De eerste voorgestelde open online incrementele leerbenadering is Argumentation-
Based online incremental Learning (ABL). ABL werkt met gegevens in tabelvorm
en kan leren met een klein aantal leerinstanties met behulp van een abstract
argumentatieraamwerk en een bipolair argumentatieraamwerk. Het heeft een
hogere leersnelheid dan state-of-the-art online incrementele technieken, maar
een hoge computationele complexiteit. Wij hebben dit probleem aangepakt
door Accelerated Argumentation-Based Learning (AABL) te introduceren.
AABL gebruikt alleen een abstract argumentatieraamwerken en gebruikt twee
strategieën om het leerproces te versnellen en de complexiteit te verminderen.
In tegenstelling tot ABL begint AABL met het extraheren van deelverzamelin-
gen van kenmerkwaarden met lengte één en vergroot de deelverzameling indien
nodig. Bovendien verwijdert AABL onnodige ondersteunende knooppunten.
Zowel ABL als AABL zijn beperkt tot discrete kenmerkwaarden en kunnen
niet overweg met hoogdimensionale continue kenmerken.

De tweede voorgestelde open online incrementele leerbenadering is het
Local Hierarchical Dirichlet Process (Local-HDP). Local-HDP richt zich op
twee problemen: categorieherkenning van 3D-objecten en segmentatie van 3D-
objectdelen. Het onderwerp van categorieherkenning en classificatie van 3D-
objecten kreeg de laatste jaren steeds meer belangstelling sinds 3D-sensoren
populair werden en verschillende 3D-objectdatasets publiek beschikbaar wer-
den. Deze methoden hebben verschillende toepassingen in de robotica, namelijk
in robotmanipulatie, navigatie en beveiliging, bijvoorbeeld voor het detecteren
van gevaarlijke objecten.

Gewoonlijk moet het aantal objectcategorieën (klasse-labels) bij geavanceerde
methoden vooraf worden bepaald. In sommige real-time robotscenario’s kan
een agent echter te maken krijgen met nieuwe objectcategorieën terwijl hij in de
omgeving opereert. Daarom moet het model in real-time op een open manier
worden bijgewerkt zonder het model volledig te hertrainen. Local-HDP kan
dit probleem aanpakken door een specifiek lokaal model te maken voor elke
objectcategorie en het model incrementeel bij te werken met nieuwe inkomende
gegevens.

Segmentatie van objectdelen is één van de uitdagende problemen bij 3D-
vormanalyse. Datagestuurde segmentatiemethoden presteren doorgaans beter
dan traditionele geometrische methoden. In de afgelopen jaren hebben onder-



Samenvatting 181

zoekers op dit gebied veel gebruik gemaakt van deep learning-benaderingen.
Hoewel deze technieken veelbelovende resultaten laten zien in sommige toepassin-
gen, zijn ze niet goed geschikt voor open leerscenario’s waarbij het aantal ob-
jectcategorieën en deelsegmenten niet vooraf bepaald is en in de loop van de
tijd kan worden uitgebreid.

De meeste bestaande modellen voor 3D-vormsegmentatie hebben de vol-
gende vijf beperkingen bij gebruik in open dynamische omgevingen. Ten eerste
worden de meeste van deze modellen getraind met een vaste verzameling labels,
wat hun flexibiliteit en aanpassingsvermogen sterk beperkt. Zo kan een model
dat is getraind om een tafel in drie delen te segmenteren, niet worden gebruikt
om een tafel met vier delen correct te segmenteren. Ten tweede beperkt het
gebruik van een vaste reeks labels het aantal objectcategorieën dat het model
kan segmenteren. Zo kan een model dat eerder heeft geleerd hoe een kopje
en een tafel te segmenteren, niet leren een nieuw object zoals een vliegtuig te
segmenteren, tenzij het model opnieuw wordt getraind. Ten derde vereist een
goede nauwkeurigheid voor geavanceerde technieken een lange trainingstijd.
Hierdoor kan het model zich niet snel aanpassen aan de veranderingen in een
open dynamische omgeving. Ten vierde gebruiken de methoden voor object-
deelsegmentatie en objectcategorieherkenning in de literatuur doorgaans een
grote trainingsset, terwijl leren met een lager aantal leerinstanties nodig is
voor een snelle aanpassing van het model aan veranderingen. Ten vijfde zijn
3D objectcategorieherkenningstechnieken meestal niet robuust tegen een hoge
mate van bedekking van een object door een ander object, terwijl dat vaak
voorkomt in dynamische omgevingen.

Deze beperkingen motiveerden ons om Local-HDP te ontwerpen, een open
3D objectsegmentatiemodel dat kan leren met een hogere nauwkeurigheid en
een lager aantal leerinstanties dan state-of-the-art methoden.

Ten slotte hebben wij Local-HDP in combinatie met AABL gebruikt voor
de taak van objectdeelsegmentatie om te komen tot een interpreteerbaar model
om uit te leggen waarom een bepaald 3D-object tot een bepaalde categorie
behoort. De uitleg van dit model vertelt een gebruiker dat een bepaald ob-
ject specifieke objectonderdelen heeft die lijken op een verzameling van de
typische onderdelen van bepaalde categorieën. Een uitleg kan een gebruiker
bijvoorbeeld vertellen dat een bepaalde 3D-puntenwolk van een object tot de
categorie mokken behoort omdat het een handvat heeft als een mok en een
romp als een mok. Bovendien leidt de combinatie van AABL en Local-HDP
tot een model dat een hoge mate van bedekking aankan. Als bijvoorbeeld een
mokobject gedeeltelijk zichtbaar is en alleen het handvat ervan zichtbaar is,
kan het model de objectcategorie detecteren omdat het een handvat heeft dat
vrij veel lijkt op een typisch handvat van een mok.

Door de bovengenoemde techniek voor te stellen, beschikken we nu over
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modellen die op een open online incrementele manier kunnen leren met een
klein aantal leerinstanties die kunnen worden gebruikt voor de classificatie van
tabelgegevens, categorieherkenning van 3D-objecten en segmentatie van 3D-
objectdelen. Deze methoden zijn verklaarbaar en hun combinatie kan een hoge
mate van bedekking voor 3D-objecten aan.
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