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Foreword

Rineke Verbrugge’s brilliant career can be neatly summed up in a sentence from
van Benthem’s contribution, “Rineke Verbrugge has blazed a conspicuous trail
from theory to reality”. Since I too have similarly gone from theory to reality, I
must regard her as a fellow traveler.

Thus her work falls fairly neatly into three phases, loosely chronological.

a) Logic and Modal Logic
b) Computer Science and Al
¢) Cognitive Science and Social Psychology.

Thus the contributions to this volume in her honor also span the three ar-
eas. The contributions from van Benthem, van Ditmarsch, van Eijck, Renardel
de Lavalette, and Visser fall inside Logic although some of these authors are
also sympathetic to her social side. The sole contribution to Computer Science
comes from Dunin-Keplicz and Szatas. The remaining contributions in Cogni-
tive Science and Social Psychology come from van der Post and van der Vaart,
Raijmakers, and from Scholten, Engelen and Hendriks.

In his paper, van Benthem advises us not to fixate on fixed points, but to
love and respect oscillations. Imagine an infinite flower and a man plucking
petals, one at a time and saying, “She loves me”, “She loves me not”. He would
never graduate to a fixed point and if we understand van Benthem, that is
just fine. But I am not sure that van Benthem’s own love of oscillations also
oscillates.

Van Ditmarsch discusses a variety of bisimulations to be used in a variety of
situations running the gamut from epistemic logic to sabotage.

Jan van Eijck considers the relationship between probability and (qualita-
tive) belief, an area of much difficulty as well as interest. He says, “...this is the
stuff that Rineke loves.”

Renardel de Lavalette discusses the issue of strong completeness in hybrid
logics which are not compact. Rineke herself has contributed to this topic as
recently as 2009.

The last paper in this subset is the one by Visser who proves a very inter-
esting and technical result about weak theories of arithmetic, an area in which
Rineke (and also I) have once worked.

For the second (computer science and Al) area, Dunin-Keplicz and Szatas
discuss a logic of goals treating them as first-order objects rather than formulas
as such (the usual convention).

For the last area, van der Post and van der Vaart consider “kill-joy” situa-
tions which arise when a situation which appears to involve social cognition
is “explained away” by computational modeling. Anthropomorphism may be a
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sin, but it is a sin which we humans love to commit! Both Aesop and the Indian
fables in the Panchatantra are a proof of this temptation.

Raijmakers considers the patterns of strategy use by both children and
adults. When children make incorrect judgments, often these misjudgments
are not random, but the result of simplified strategies.

And finally Scholten, Engelen and Hendriks consider the issue of irony,
drawing in part from the foundational work by Wilson and Sperber. Although
Grice is not referenced, I consider this discussion to be Gricean in that context
plays an important role in identifying irony as distinct from a bland and sincere
statement.

This is a rich collection and a tribute to Rineke’s many talents. However, I
feel that her career is only midway, that more contributions by her and by her
colleagues will follow, and we should expect another volume of tributes in a
few years.

— Rohit Parikh



Preface

Factually speaking, the concept of this book got initiated with the following
chat conversation:

Hangout between Sujata Ghosh and Jakub Szymanik
Monday, June 2, 2014 8:03 PM

Sujata Ghosh

hi!

how are you?

Jakub Szymanik

I'm very good! how’re you?

Sujata Ghosh

good.

Jakub Szymanik

what are you up to?

Sujata Ghosh

i had a hunch and then got confirmation that Rineke will be 50 next march.
i was wondering if we can confidentially arrange some celebration :-)

We are both deeply indebted to Rineke Verbrugge for being a great mentor
and we quickly realized that we should take this opportunity to celebrate her
many contributions to science and to the academic environment. So we set
out to organize a workshop and edit a special volume devoted to the areas
of Rineke’s research interests, including papers developing critical work on her
own contributions. After a brief discussion on whether Rineke would like it, we
decided to take the risk. Obviously, we could not handle the task in such a short
time by ourselves, and so we contacted close collaborators of Rineke. We were
overwhelmed by the enthusiastic support we got for the project — this is quite
evident in the subsequent pages of the book. The volume is a product of an
incredible effort on part of Rineke’s teachers, colleagues, students and friends
who have all been won over by her ever-encouraging and positive presence in
academia and also in daily life.

Pertaining to Rineke’s research interests, the book features 9 articles on a
wide range of topics — from theories of arithmetic to a study on autism. The
papers on hybrid logic, formal theories of belief, probability, goals, social net-
works, and bisimulations enrich the logic section of the book while papers on
cognitive strategizing and social cognition bringing up the cognitive perspec-
tive. The themes themselves provide a compelling perception of the vast ex-
panse of Rineke’s academic interests and endeavors. A series of personal com-
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ments, stories, anecdotes, and pictures constitute the latter part of the book,
adding a distinct personal touch to this volume.

We hope that the book shows our appreciation of Rineke’s rich and truly
interdisciplinary scientific interests spanning from mathematical logic through
cognitive science to biology. Rineke is a true role model for how one can suc-
cessfully and with grace move between so diverse research fields. Rineke is also
an amazing group leader: working hard without glorifying the cult of ‘being
busy’ and never forgetting the human element.

As academics we all know how hard it is to finish any project on time. We as
a community have a peculiar habit of missing the deadlines and postponing our
reactions to editors’ requests. Not this time though! While editing this volume
we had a feeling that everyone was inspired by Rineke’s professionalism. We
would like to thank all the people who have made this festschrift volume and
the workshop possible.

We start with thanking the contributors for this volume We would also
like to thank the reviewers who reacted to our request with extremely short
deadline: Katja Abramova, Burcu Arslan, Torben Braiiner, Mihir Chakraborty,
Andrés Corddn Franco, David Gabelaia, Charlotte Hemelrijk, Thomas Icard,
Leszek Kotodziejczyk, Leendert van Maanen, Alexandru Marcoci, Eric Pacuit,
Guiseppe Primiero, R. Ramanujam, Jennifer Spenader, Fernando R. Veldzquez
Quesada, Yanjing Wang, and Marcin Zajenkowski. We express our heartfelt
gratitude to one and all. We gratefully acknowledge Rohit Parikh, who kindly
agreed to write a foreword for this book. We also thank Lambert Schomaker for
the funding and logistics support we are getting from the Institute of Artificial
Inteligence, University of Groningen.

This volume could not have happened without the help of Burcu Arslan,
who has been a problem-solver for us from day one — whenever we faced any
difficulty we depended on her, and Harmen de Weerd who painstakingly for-
matted the whole volume to its final shape, converted some of the contributions
to the BIRX format, and over all has been the ever-dependable one helping out
on numerous occasions. We thank Lina Ghosh for letting us use her decora-
tive designs, Elina Sietsema for being there for all kinds of organizational help,
and we also thank Dov Gabbay, Jane Spurr, and the whole team of College
Publications for the appearance of this volume.

Last but not least we would like to thank Nicole Baars for her constant
support, her help in keeping this project confidential, and yet ensuring the
presence of Rineke Verbrugge for the occasion.

21% of January 2015
Chennai Sujata Ghosh
Amsterdam Jakub Szymanik
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Oscillations, Logic, and Dynamical Systems

Johan van Benthem ! 2

University of Amsterdam & Stanford University
http: //staff. fawi. uva. nl/ j. vanbenthem

Abstract

This is a short note with small observations about big questions. We discuss how fixed-
point logics, modal and first-order, can describe natural and interesting kinds of dy-
namic limit behavior in social networks, not just convergence to one end state. We
explore what new issues arise then, and how fixed-point logics interface with other
mathematical views of dynamical systems. Finally, we discuss how to relate ‘blind’ net-
work dynamics to behavior of conscious agents exercising their freedom.

1 Introduction: Social agency

Rineke Verbrugge has blazed a conspicuous trail from theory to reality (some
recent samples of her road are [14] and [22]), taking dynamic-epistemic logics
or logics of games out of their comfort zone to psychological and computational
experiments, confronting logical fine-structure and precision with the actual
facts of cognition in laboratory situations. But let’s get even more real.

Society itself is one great experiment, where individual rationality is rocked
by the storms of public opinion, and where long-term and large-group pat-
terns keep emerging, far beyond our individual environment. The interface
of individual rationality and statistical large-scale behavior raises difficult, and
sometimes disturbing questions. 3

Now, can the tools of logic play a role in understanding this situation we
find ourselves in, say, by taking a look at comprehensible global reasoning

I Rineke Verbrugge has already created an impressive intellectual trail, from the logical
foundations of mathematics to computational and experimental studies of human agents. While
her topics of research may be variable, her standards of quality are constant, winning the minds
of many colleagues. However, what wins their hearts is Rineke’s character and collegial behavior.
Thus, having been won over twice, I am happy to congratulate Rineke, and write in this book in
her honor.

2 1 thank the audience at the Workshop ‘Trends in Logic’ (Beijing, July 2014) for their responses,
especially, Samson Abramsky, Paolo Galeazzi, and Phokion Kolaitis. I also thank Yu Junhua
(Tsinghua University) for his careful reading of a draft, and Alexandru Baltag for several congenial
responses. Two referees also gave helpful comments. Some further debts on specific points are
acknowledged in the text.

3 Just consider current debates about the basis of morality: is good versus bad a matter of delib-
erative principle, or merely a population equilibrium between predators and prey?
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about long-term behavior of agents in dynamical systems, and if so, how should
we go about this endeavor? After all, this area has long been the preserve of
dynamical system behavior, computational simulation, and evolutionary game
theory. In this brief paper, I will make some observations about ways to go —
and despite their extreme simplicity, try to convince the reader that there may
be something of structure and value here to pursue.

2 Dynamics in networks

In recent work such as [15,2,10], long-term belief and behavior dynamics has
been studied by logical methods in a setting of social networks, where agents’
behavior is determined by that of their neighbors according to a given update
rule stated in some logical language, a rule which is then applied iteratively.
What will happen in the long run?

To develop more concrete intuitions, we look at a few simple cases where a
finite network starts with an initial value for some predicate p of nodes, which
is then updated according to a logical rule of the form

P = ¢(p)

where ¢(p) is a formula (often taken from a simple modal language) whose
universal modality quantifies over all neighbors of the current point in a net-
work. Often p is interpreted as a belief of the agent, but it could stand for any
property or short-term behavior.

Example 2.1 A network with a modal influence rule In any network, the
modal formula Op says that p is currently true at all neighboring nodes. We
will see what happens with different initial predicates p in the following simple
network, driven by the update rule p := Op applied iteratively:

1———2

| ]

35———4

In this dynamics, agents follow what all their neighbors do. Here are some
runs that can easily be computed from the above picture with the given rule:

Case 1: initial p = {1}. The second stage has p = (), and this remains the
outcome ever after.

Case 2: initial p = {2}. The next successive stages are {3}, {4}, {2}, and
from this stage onward, we loop.

Case 3: initial p = {1, 2}. The next stage is {3}, and we get an oscillation as
before in Case 2.

Case 4: initial p = {1,2,3}. We get {1, 3,4}, {2,4}, {2,3}, {1,3,4}, and an
oscillation starts here.

We see how network update dynamics can stabilize in one single state (witness
Case 1), but also oscillate in loops of successive predicates. These oscillations
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come in different forms. Some-times, successive models in the loop are very
similar, in fact isomorphic (Cases 2 and 3 have all irreflexive single points) —
sometimes the loop runs through different non-isomorphic network configura-
tions (this happened in Case 4, with predicates of different sizes).

3 Oscillation and its laws

Let us now look directly at what happens in such update dynamics. For sim-
plicity, we will consider finite models M and w-sequences only. 4

An update rule defines a function F' on the power set of the domain of a
model M like above. On finite sets, such functions all have the same pattern:

Fact 3.1 For any function F on a finite set, there exists a finite family of disjoint
loops, at each point of which there may be incoming disjoint F-sequences or F'-
trees arriving.

Example 3.2 A function on a finite set Here is a simple example of a loop
with incoming arrows:

1\3/4
2/ \5

6

We are especially interested in the structure of the loops, representing system
behavior in the long run. Here 1-loops are fixed-points, a well-known form
of system stability, but larger cycles, too, model natural phenomena that are
stable in a more general sense, such as periodic swings in public opinion.

To describe this, we explore just one very simple notion:

Definition 3.3 Oscillation operator Given any subset (or viewed slightly dif-
ferently, any unary predicate) ¢ in a model M, we define

OSCpe(¢(p),q)

as the subset that is the first F},VI oscillation point starting from ¢. 5
The oscillation operator satisfies natural fixed-point principles.
Fact 3.4 OSCpe (¢o(p),q) <> OSCpe (p(p), OSCp e (p(p),q)) is a valid law.

Further appealing principles of reasoning emerge when we define the following
notion that is independent from the starting point:

OSCp e ¢(p) for ‘occurring in some predicate of an oscillation loop of ¢(p)’.

4 The finiteness restriction is a very serious limitation to our approach in this paper, that should
be overcome eventually. Some pointers as to how can be found in later passages below.
5 Further stages of the loop are then definable from this via successive substitutions into (.
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For instance, we have the following valid ‘pre-fixed-point law’:

p(OSCp e p(p)) = OSCp e p(p)

The preceding observations suggest that there may be a systematic logic to
oscillation, a theme that we will explore below. Moreover, studying oscillations
is not at odds with studying fixed-points.

Discussion. Fixed-points of set functions The oscillation operator relates nat-
urally to well-known notions from the literature on fixed-points. To see this,
consider maps on our models. We call a set X a ‘fixed-point’ for a function F
if F(X) = X. A widely used fact in logic is that, for all inclusion-monotonic
maps F on a power set, there are smallest and greatest fixed-points, as stated
by the well-known Tarski-Knaster Theorem. As with oscillation, we can think
of such F as defined by special predicates ¢(p), this time with p occurring only
positively. Then we get, e.g., the following observation:

Fact 3.5 Smallest fixed-points up.(p) can be defined as follows for formulas (p)
with p occurring only positively: pp.p(p) := OSCpe (p(p), L)

Still, this is just a start, and there is more going on here in terms of valid laws
than may be obvious at a first glance. For instance, with some slight abuse of
notation, smallest fixed-points satisfy the equation

F(up.¢(p)) = pp-o(p) ~ where F(X) ={s € M| M[p:= X],s = ¢(p)}

Now it is interesting to see that, despite initial appearances, the earlier law
OSCpe (¢(p),q) <+ OSCpe (¢o(p),0SCpe(p(p),q)) that we noted for oscilla-
tion is not of this kind. Its underlying approximation procedure rather refers to
a binary function F'(X,Y’) where X is the current stage, and Y the initial stage,
and its format is about replacing the initial Y by some other predicate, not the
running X. The final version of this paper will contain further observations
about this issue of unary versus binary functions, and matching different kinds
of fixed-points — but for now, it is only meant as an appetizer.

More important still is the following issue concerning a natural generalization.

Discussion. From finite to infinite models In infinite models, approximation
can go on beyond the first w steps, and the question then arises how to define
the limit stages. The usual stipulations in fixed-point logics such as taking
unions or intersections seem to make little sense when we allow oscillation,
and we need other ideas. There are interesting analogies here with similar
liftings to the infinite in philosophy, logic, and game theory. ©

6 Some obvious analogies are with the limit steps required in Kripke-style and Gupta-Hertzberger
revision theories of truth [26,18,21], that take lim-sups or lim-infs. Related issues of generalization
arise in game theory with iterative solution concepts on infinite games (e.g., iterated removal of
strictly dominated strategies): cf. [27,9], and for a general analysis [1]. Also related is work on
common knowledge in iterations beyond the ordinal w: cf. [20,8]. As for a more radical logical
treatment, Alexandru Baltag (p.c.) has suggested making the definition of the limit jump itself an
explicit parameter in the language.
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Still, when we are interested in the behavior of dynamical systems, only the
first w evolution steps matter, since there are no further stages in the behavior
of real systems over time. Though this seems at odds with standard logics of
the sort to be discussed now, it generates interesting issues of its own — some
of which are touched upon in Section 6 below. However, we do not pretend to
solve the issue of the proper infinite perspective in this paper.

4 Stability and fixed-point logics

The idea of approximation to reach a stable state of some logically defined
operator on models is not at all new. It underlies well-known logics of fixed-
points in the literature, of which there are two main varieties. We will take
these as role models for an ‘oscillation logic’.

The system LFP(FO) enriches first-order logic with operators for smallest
and greatest fixed-points of monotonic operations, which exist in any model
by the Tarski-Knaster Theorem. These operations are defined syntactically by
formulas ¢(P) of the formal language in which all occurrences of the predicate
P in ¢ are syntactically positive: see [13], while [16] provides broader back-
ground in the theory of infinite computations. Whereas LFP(F'O) is of high
computational complexity (its satisfiability problem is I1}-complete), a modal
version of the same idea gives rise to the well-known decidable system of the
modal p-calculus (cf. [31]) whose syntax works as follows.

A smallest fixed-point formula up.¢(p) (with p occurring only positively in
) denotes the smallest fixed-point of the following operation in the lattice of
all subsets of a given model M:

FAX)={se M |M[p:=X],s = ¢}

One can view smallest fixed points of such a function as the first stage
in a possibly infinite cumulating approximation sequence where applying the
function F' no longer changes the current set:

0, F(0), F2(0),..., F*(0)

where at limit ordinals «, we take the union of all preceding stages.

The modal p-calculus has been axiomatized completely, with proof principles:

o(up-p(p)) < up-p(p) Fixed-point axiom
if Fo¢(a)— «, then + up.p(p) = « Smallest fixed-point rule

Similar laws govern reasoning with dual operators vp.p(p) for greatest fixed-
points, definable as —p(—up.(—p)). In this case, the approximation sequence
starts at the whole universe of the model.

As we have noted, the emphasis in these logics is on reaching fixed-points,
stable stages in the approximation process where the same set returns. How-
ever, this stability can be fragile, even with our special positive syntax. If we
start the approximation sequence in an arbitrary initial predicate, there is no
guarantee that even monotone transformations reach a fixed point.
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Fact 4.1 Monotone set transformations can oscillate forever when the initial in-
put is non-trivial.

A counterexample occurred in Section 2. Just notice that the positive modal
formula Op kept oscillating when started at non-trivial input predicates. ”

Remark 4.2 Extended p-calculus By the preceding fact, our oscillation per-
spective suggests a fresh look at existing logical systems. Alexandru Baltag
(p.c.) has suggested an extended pu-calculus with operators OSCp e (¢(p), q)
in which the formula ¢(p) has only positive occurrences of p. Modulo some
definitional subtleties to be mentioned below, this extension makes sense, and
there is some interesting structure here. For instance, the set of predicates in a
loop forms an anti-chain, as is easy to see.

Going still further, there have been generalizations of fixed-point logics which
can deal with arbitrary formulas that need not induce monotone set trans-
formation, just as in our network dynamics. However, such systems, such as
inflationary fixed-point logic IFP, still enforce cumulative growth of successive
approximations by means of the following stipulation:

Fipp(X) = FM(X)u X?

Basic results about generalized fixed-point logics include the theorem that
IFP(FO) is equal in expressive power to LFP(FO) (cf. [25]) - though there
is still a procedural difference: recursion in the defining formulas runs over
auxiliary predicates with higher arities. '°

From the viewpoint of fixed-point logics, oscillations seem mostly like ‘junk’
or failure in an approximation process. What happens when we add systematic
syntax for them, to get richer logical systems? In the following section, we
explore this line of thought a little bit.

5 Oscillation in logical systems

The oscillation operator OSC' seems a natural addition to the syntax of logical
systems, and we will do so now. But caution is needed, as we have not given
a general definition of OSC on arbitrary infinite models — due to problems at
limit ordinals. ' In what follows, we will stick with our earlier restriction to
finite models. Still, many of the systems to be considered can also define loop
structure in infinite models, in particular, infinitary modal logic. We leave it to
the reader to see which of our observations generalize straightforwardly.

7 Monotonicity only starts producing cumulation thanks to the starting inclusion § C F ().

8 There may be connections here with ‘partial fixed-point logics’ in computer science, [24].

9 We suppress the reference to the defining formula o (p) here for perspicuity of notation.
10However, adding inflationary fixed-points to the less expressive system of the modal y-calculus
does increase the latter system’s expressive power, cf. [12].

HFailing a good transfer convention across limit ordinals, we couldn define a uniform ‘finite-
oscillation operator’ OSCp ® (¢(p), ¢) in all models, saying that the ¢-approximation sequence
starting from g reaches a finite loop at some finite stage. On infinite models, the latter need not
always happen, as the first w-sequence for ¢ might not loop.
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5.1 Modal logic

Many natural cases of network dynamics work with modal update rules. Start-
ing from this simple setting, then, we add an operator OSCp * (¢(p), ) to the
syntax of basic modal logic, with a semantic meaning as given above. The
oscillation operator fits well in a modal setting.

Fact 5.1 Modal logic with an added oscillation operator is invariant for total
bisimulations whose domain and range are the whole models.

Proof. This can be proved by a direct argument, or by noting that the above
truth definition of the oscillation operator can also be written explicitly in an
infinitary modal logic with an added universal modality, a language which is
invariant for total bisimulations. O

This modal character is reinforced by further features. In particular, using the
oscillation operator as shown in Section 4, our oscillation logic extends the
modal p-calculus.

Fact 5.2 Smallest fixed-points pp.p(p) can be defined as OSCp e (o(p), L).
Thus, the logically valid laws of oscillation immediately include the laws for

fixed-points. We suspect that a converse definition is not possible, though we
only have a loosely related observation.

Fact 5.3 The finite-oscillation operator is not definable in the p-calculus.

Proof. The reason is that, when added, the enlarged system loses the finite
model property which the modal p-calculus possesses. Here is a concrete
counter-example in the enlarged language. The formula

pp-Op A—=0OSCpe(Op, 1)

has infinite models, where in fact it forces the ‘well-founded core’ is infinite,
but this formula lacks finite models. ]

These are just simple observations, and open problems abound. In particular,

Question. Is the modal oscillation calculus decidable, or is it at least axiomatiz-
able, on the class of finite models?

Remark 5.4 Inflationary p-calculus Next, we can also embed the inflationary
p-calculus. We can mimic inflationary approximation for arbitrary formulas
©(p) in our network dynamics by means of disjunctive formulas

p:=¢(p)Vp

Formulas OSCp e (¢(p) V p,q) then define smallest inflationary fixed-points,
reached from an initial predicate q. We suspect that a converse still fails, and
that the oscillation operator is undefinable even with inflationary fixed-points.

Discussion. Fine-structure: bisimulation loops One can also pursue new
kinds of issue. As we saw in Section 2, larger loops can be of different kinds.
Sometimes, they are close to fixed-points as all models in the loop are isomor-
phic, like in all our initial examples. More relevant to the modal setting:
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The successive stages in a loop can be bisimilar models. '2

Here, we are not saying that identity is a bisimulation in the loop: individual
points may still behave differently from one stage to another. Nevertheless, at
a certain description level, the models in the loop are indeed the same, having
reached a stable theory modulo bisimulation. 3

On finite models, the models in a bisimulation loop have the same collection
of ‘modal types’, though they may differ in which object exemplifies which type.
Bisimulation loops consist of models with the same theory in the following
syntax. Take the basic modal language with an added universal modality, and
consider only ‘global formulas’, true or false throughout a model. While world-
dependent formulas can still change truth values at the same world in different
models of a bisimulation loop, there is no detectable change in global syntax,
since the set of available modal types does not change in the loop.

Here is one interesting question out of many that arise in this perspective:

Problem 5.5 Is there special syntax for oscillation operators that guarantees gen-
eralized fixed-points in the form of bisimulation loops? 4

The more general point, however, is this:

Oscillation suggests the use of several logical languages, at different levels
of detail, providing different invariants for the network dynamics. %

But one can also focus on the influence of the graph structure, and ask, for
instance, for which graphs all modal formulas stabilize their oscillation loops
when started anywhere.

Conjecture 5.6 The graphs with guaranteed stabilization for all modal update
rules are precisely the finite trees.

Similar questions of oscillation logic arise for update formalisms for richer net-
work update rules, such as ‘graded modal logic’ that counts numbers of neigh-
bors, or modal logics of ‘most’ (cf. [29]). One special extension deserves sepa-
rate attention here, as with fixed-point logics.

5.2 First-order logic

This time, we do not restrict attention to finite models, but take the other
route mentioned in Footnote 11 above. First-order logic plus a finite-oscillation
operator is of high complexity. We merely note two facts.

Fact 5.7 The finite-oscillation operator on arbitrary models is definable in the
infinitary first-order logic L.,

12 Actually, bisimulation also makes sense in non-looping iteration sequences in infinite models, as
a sort of generalized fixed-point. This, too, seems a natural concept.

I3For this stability in higher languages, compare dynamical systems in biology where we consider
a system stable when the percentages of different types of animal no longer change.

4 We can also vary such issues, and ask which syntactic types of formulas guarantee the existence
of 1-loops (i.e., fixed-points) when started at any predicate in any model.

151t may even be true that, at some appropriate higher level of description, in a lattice with other
approximation operators, loops become ordinary monotone fixed-points again.
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Proof. By direct description. For every formula (p) and predicate ¢, one can
define the n-th iteration " for any finite n by successive substitution. Now
one says there is some n and k where for all objects in the model, ©™ holds iff
©™** holds, and then that n is the smallest number with this property. All this
can be formulated in L,q,,. O

Fact 5.8 First-order logic with the oscillation operator is non-axiomatizable.

Proof. Consider the modal pu-calculus formula pp.Op that defines the upward
well-founded part of the accessibility relation on any model for the modality O.
Under the standard translation for modal logic, its modal part Op is first-order.
Without loss of generality, we can think of this modality as looking downward
in the ordering. By an earlier observation, the formula up.Op is definable using
the oscillation operator. Now consider the statement that

“all objects satisfying up.Op satisfy OSCpe (Op, 1)”

This says that every object in the well-founded part is admitted after finitely
many iteration steps. But this can only happen when the upward well-founded
chains are finite. And this property enforces, on models satisfying the first-
order theory of ‘greater than’ on the natural numbers, that the model actually
is a copy of the natural numbers. But then, the validities of the logic encode
arithmetical truth, which is non-axiomatizable — and in fact IT}-complete. O

6 Further logical perspectives

We pursued one straightforward way of adding oscillation operators to stan-
dard languages. However, there are also other natural technical perspectives
on what is going on. We pursue this a little bit to show the broader circle of
ideas that we have entered in this paper.

6.1 Dynamic logic of substitutions

An alternative approach would focus on the basic dynamic act itself that drives
the above network dynamics, which is a predicate substitution

Pnew = W(pold)

One can study dynamic substitutions like this in a system of dynamic-epistemic
logic (cf. [7]) with dynamic modal operators

(p:=w(p))

The valid laws for the basic predicate substitution modality form a simple de-
cidable calculus DEL(subst) whose axioms mirror the usual recursive clauses
for syntactic substitution. 16 In more complex versions, substitution actions
can also be sequentially composed and even finitely iterated. The resulting
system can define the notion of oscillation as defined above.

16We claim no originality for this system. Various dynamic-epistemic logics that deal with substi-
tutions occur in the literature.
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Fact 6.1 The oscillation operator OSCp ® (¢(p), q) is definable in DEL(subst).

Adding step by step sequential composition still leaves this calculus simple. But
adding arbitrary finite iteration of substitutions introduces complexity.

Fact 6.2 DEL(subst*) is non-axiomatizable, and in fact I1}-complete.

Proof. The reason is that, using a simple translation, the logic DEL(subst*)
faithfully embeds the better-known system of public announcement logic with
iterations PAL*, whose complexity is of this sort (cf. [28]). O

Even so, fragments of dynamic substitution logics with iteration might well be
good tools for analyzing network limit dynamics driven by special formulas.
Also relevant is the following observation made by Alexandru Baltag (p.c.):
substitution logic meshes well with oscillation logic.

Fact 6.3
The equivalence {q := 1))OSCp e (¢(p), q) +> OSCpe ({q := ¥)p(p), ) is valid.

6.2 Modal logic of dynamical systems

Fixed point logics are natural candidates for describing dynamical systems —
since their laws are often simple, and yet pack quite a lot of explanatory
power. 17 But there are alternatives. An earlier approach to dynamical sys-
tems is the system DTL [23], with a simple modal language that capture basic
results on dynamical systems such as the Poincaré fixed-point theorem. The
base language is more global than ours, with operators

Oy, Op

These are a temporal operator O for the next state of some continuous op-
erator on the state space, plus a modality O¢p for topological interior. The
handbook chapter [23] surveys the resulting logics on special spaces, as well
as language extensions such as finite iterations of the system dynamic operator
O. This modal zooming out on basic structures in dynamical systems lies at an
abstraction level above our fixed-point or substitution logics in the above.

There is a challenge of how to interface perspectives, since DTL adds impor-
tant structure that we have left out. In particular, our networks with neighbor-
hoods also support DTL'’s topological structure, and this seems important since
limit behavior is definitely influenced by two factors: (a) the logical form of
the update rule, and (b) the network structure that these work on.

For more about interfacing logic and dynamical systems: see Section 7.

6.3 Temporal logic and histories of dynamical systems

Finally, while we have emphasized sparse modal languages in this paper, richer
lines exist. For instance, consider the rich temporal logic of [19] for players in
iterated matrix games responding to observed moves by others in the preced-
ing round. There is a clear intuitive connection with social network evolution,

17For further examples of the surprising power of basic modal fixed-point laws in capturing
essences of results in game theory or social networks, cf. [32,2].
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whose precise statement goes beyond the compass of this paper. '® Right here,
our main point is just one of system choice. Temporal logics from the compu-
tational field of agency explicitly describe properties of countable histories or
runs of a multi-agent process, in the format

M,h,sE ¢ formula ¢ is true at point s on history & in model M.

In the same manner, we could model our network evolution in temporal logic,
and describe the earlier oscillation patterns in such a richer explicit formalism.

Digression. Merging perspectives What the preceding suggests is that we can
use temporal logics as a sort of meta-theory for modal fixed-point logics, and
represent simple notions and proofs in this richer logic. Benchmarks would
be many of the simple observations in earlier sections. More ambitiously, we
can also study mixtures of modal fixed-point logics and temporal logics for
their computation procedures. This combination seems natural since, despite
our earlier problem of defining transfer steps at limit ordinals, histories of the
simplest infinite type w fit fixed-point logics very well, witness the infinite eval-
uation games for the modal p-calculus discussed in [31].

More generally, merged temporal and fixed-point logics may provide a rich
reasoning style for social systems viewed at different levels.

7 Enriching the framework

Our analysis has been confined to basic logical systems that might deal with
limit phenomena in social networks with update rules. We have suggested
that this may be a good high-level perspective for getting qualitative insights
that lie behind results obtained with the numerical models used in dynamical
systems approaches to social phenomena. Of course, much more can be said
about comparing qualitative logical and quantitative mathematical methods in
this area, since the two methods come with different agendas. One striking
difference is that numerical update rules in networks like those of the classic
De Groot [17] tend to ‘smoothen’ values for strength of belief, whereas discrete
logical approaches may create more drastic oscillations. We just note this for
now, but this is obviously a point that needs much more reflection.

Next, as we said right at the start of this paper, the rules we studied are
blind operations on unstructured points. What about the internal nature of the
agents that make up the social network? A richer source of modeling agents
than we have followed here exists in computational logic where notions from
automata theory could enrich our current view (cf. [16]). This connection gets
even richer when we consider the computational games associated with the
logical systems that we have considered here. 19

18This can be spelled out in precise detail, relating network update rules parametrized to individual
points to strategy profiles for players, but we leave this for another occasion.

91n this connection, note also that oscillation patterns are also standard in automata theory, say
with ‘parity automata’ for the modal u-calculus, cf. [31]. Such patterns might be used, say, to
obtain finer denotations and finer intensional notions of formula equivalence.
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But even with automata in place, network dynamics remains austere. It
would not distinguish between update rules for human agents, schools of fish,
or neural networks. An obvious further focus then is actions that make us hu-
man, such as making observations, deliberating and deciding what to do on the
basis of knowledge and beliefs about others, rather than just mechanically fol-
lowing our environment. 2° Moreover, human agents pursue goals connected
to their preferences, while guided by intentions toward reaching these goals.
All of this typically shows in their making choices, less or more rational.

To model real agency, we are not left with empty hands. Current dynamic
epistemic logics are well up to extensions with informational actions, prefer-
ences, and acts of decision making (cf. [4] for a general treatment of logic of
agency in this style — or for specific network examples, [15,11,3]). Moreover,
one can draw on a flourishing literature connecting logic and game theory (cf.
[5] and the references therein), giving agents positioned in networks choices
as to what to do at each stage, with strategy profiles corresponding to update
rules that can be studied for their long-term success in terms of achieving goals.

This richer view of agency is realistic, but pursuing it would take us far be-
yond the scope and intentions stated at the beginning of this note. Moreover,
there is a risk in rushing ahead, of downplaying the virtues of blind rules and
automatic updates. In the cognitive life of human agents, there is a system-
atic switching dynamics between conscious deliberate action and automated
skills or habits — because of limited attention, or for more positive reasons of
saving labor. Likewise, social life would probably be impossible without some
back and forth between relegating beliefs and decisions to an ‘automatic pilot’,
versus returning them to the realm of explicit control. 2! 22

8 Conclusion

The point of this paper is that long-term social behavior supports reasoning
patterns that invite logical analysis. To do so, we must step back from fixed-
points only, and see the logical structure in oscillations: cycles are not junk’,
but regular long-term behavior in its own right. We have noted a few facts and
perspectives that may help us do so — suggesting that existing fixed-point logics,
suitably generalized, and supplemented with dynamic and temporal logics for
system evolution, may apply to many realms of limit behavior over time.
There are several ways of taking what is proposed here, that can be pursued
in tandem. One is exploring new technical views of logical systems and their
connections, for which we have provided a slew of suggestions. Another line
is a richer description of agency, either as logical theory about agents in social

20A real human agent can even decide not to update according to some prevalent update rule in
the network, thereby exercising her freedom.

211 thank Erik Olsson for a stimulating discussion of this point in social agency, and beyond.
22The purely temporal approach in this paper also neglects another dimension of the social world,
that of size: and in particular, the interface between the individual agents and large groups. Group
size in networks poses questions that are far from being exhausted by current studies of games or
group knowledge (cf. [30]).
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settings, or as an account of how agents reason themselves. The way I myself
would like to think about the role of logic here is as providing natural levels
for identifying qualitative reasoning patterns with broad sweep and simplicity.
As we just noted at the end of Section 7, there may be many such levels, from
automated to deliberate. 23

Despite the technicality of this paper, I hope that its topics still connect to
the challenging interface of individual agency and social life that I started with.
I feel that much can be done by logicians today in understanding, and perhaps
even improving, the ‘thin layer’ of deliberate human thinking and acting that
lies so precariously in between the blind dynamics of the social systems above
us and the neural networks inside us.
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Abstract

In this survey we present various recent work proposing adjustments to the standard no-
tion of bisimulation in order to have proper structural correspondents with epistemic, or
epistemically motivated, modalities: contingency bisimulation, awareness bisimulation,
plausibility bisimulation, refinement, and bisimulation for sabotage.

Keywords: Modal logic, bisimulation, multi-agent systems, epistemology

1 Introduction

In modal logics there is often a direct relation between the modality and the
accessibility relation: Oy is true in a state s if o is true in all states ¢ such that
Rst, where O is the modality and R the binary accessibility relation (where we
write Rst for (s,t) € R). In such logics the notion for sameness of structures
with respect to the logical language is bisimulation. For interaction-free multi-
modal modal logics with operators O, for a € A, where A is a set of labels, this
correspondence between O, and R, remains the case and we require that the
bisimulation clauses hold for all R,. In such a logic we then have that bisim-
ilarity implies modal equivalence (of pointed relational structures) and that,
on image-finite (or modally saturated) structures, modal equivalence implies
bisimilarity.

In logics of knowledge, O, stands for ‘agent a knows ’, and there are
many other epistemic notions with corresponding modalities, such as belief, ex-
plicit knowledge, and safe knowledge. Also there are group notions of knowl-
edge such as common and distributed knowledge. And in those epistemic set-
tings there may additionally be other modalities, for change of knowledge, such
as public announcement, private announcement, belief revision, and ontic ac-
tions. The modalities in such epistemic logics often do not directly correspond
to an accessibility relation but are somehow defined using the more primitive
set of O, modalities or, directly as an operation on the set of R, accessibil-
ity relations. The correspondence between modal equivalence and bisimilarity

I We thank the reviewers for their comments. We acknowledge support from ERC project
EPS 313360. Hans is also affiliated to IMSc, Chennai, India, as research associate. Email:
hans.van-ditmarsch@loria.fr.
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may then break down, and in order to reestablish it we may have to adjust the
clauses for bisimulation. This is well-known for group notions of knowledge, as
they are infinitary modalities that are also well-studied in other modal logical
settings, such as PDL. But there are many other cases of interest, even (unlike
the case of infinitary modalities) involving very simple finite structures.

For example, consider the case of contingency logic, also known as the logic
of knowing whether. It has primitive modalities Ay, for ‘p is non-contingent’,
or ‘the agent knows whether ¢’, with semantics that Ay is true in a state s if
and only if ¢ has the same truth value in all accessible states, i.e., for all ¢, u
such that Rst and Rsu, either ¢ is true in ¢ and u or ¢ is false in ¢t and u. Now
consider the following structures M and M’ (the names of states precede the
valuation of propositional variable(s), where p means that p is false):

M M

Sip——t:p sip——t':p

We now have that in M, in all states accessible from s, p has the same value
(namely true, in the unique accessible state t), whereas in M’, in all states
accessible from s, p also has the same value (namely false, in the unique ac-
cessible state t'). In an epistemic setting we would say that the agent knows
whether p, in both s and s’. We also have that p is true in both s and s’, and it is
easy to see that M, and M, are modally equivalent in contingency logic. (For
a pointed model, a pair (M, s) consisting a model M and a designated state s
in its domain, we use notation M,;.) But they are clearly not bisimilar in the
standard sense, as the value of p is different in ¢ and ¢’. We need a weaker (or,
in general, different) notion of bisimulation for contingency logics, contingency
bisimulation, such that M, and M/, are contingency bisimilar. It says that the
forth or back condition need only apply if there are non-bisimilar accessible
states. We think it is a bit funny.

In this survey we present five funny bisimulations, i.e., five adjustments
to the standard notion of bisimulation in order to have proper structural cor-
respondents with epistemic, or epistemically motivated, modalities: contin-
gency bisimulation, awareness bisimulation, plausibility bisimulation, refine-
ment, and bisimulation for sabotage.

2 Basic multi-agent modal logic and standard bisimulation

Let a countably infinite set of propositional variables P = {p,q,...} and a
disjoint finite set of agents A = {a, b, ...} be given.

Definition 2.1 Model A model for A and P is a triple M = (S,R,V) that
consists of a domain S of (propositional) states (or ‘worlds’), an accessibility
function R: A — P(S x S), and a valuation function V : P — P(S). For R(a)
we write R,, and for (s,t) € R, we also write R,st, or t € R,s (or t € R,(s)).
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Accessibility function R can be seen as a set of accessibility relations R,, and
V as a set of valuations V' (p). A pointed model is a pair (M, s), where s € S;
we write this as M. A model M is image finite, if for all s € S there is only a
finite amount of states ¢ € S such that R, st.

Definition 2.2 Bisimulation Let models M = (S, R, V) and M’ = (S, R', V")
be given. A bisimulation is a non-empty relation Z between M and M’ (i.e.,
Z C 8 x 8") such that for all s, s’ € S such that Zss’, and for all a € A:

atoms forallp e P, se V(p)iff s’ € V'(p);
forth if¢ € S and R,st, then there is a t' € S’ such that R/ s't' and Ztt’;
back ift¢ € S’ and R s't/, then there is a ¢t € S such that R, st and Ztt'.

If Zss', we say that pointed models M, and M/, are bisimilar. If there is
a bisimulation linking M and M’ we write M < M’, and between pointed
models we write M & M’,. If Z is that bisimulation we may also write Z :
Me M and Z : M & M., respectively.

Definition 2.3 Language The language £(0) of multi-agent modal logic is in-
ductively defined as

pu=ploe (¢ Ae)|Dap
where p € P and a € A. We employ the usual abbreviations to define T, L, V,
—, <, and the dual modality ¢,. Without the inductive clause for O we get
the language £ of propositional logic.

Definition 2.4 Semantics Let M = (S, R,V) and ¢ € £(0O) be given. Then:

MsEp i peV(s)

M ': P iff M % ®

M E oAy iff My |Epand M, E 9

M, EOup iff M, = pforallt e S such that R, st

If Mg | ¢ for all s € S then we write M = ¢ (¢ is valid on model M). If
M E ¢ for all M (of that class, given P and A) we write |= ¢ (p is valid).
Write [o]m for {s € S | M;s = ¢}. Two pointed models M, and M/, are
modally equivalent if for all ¢ € £(O), M, = ¢ iff M., = .

For more on bisimulation, see e.g. [10], [44], or [12].

3 Contingency bisimulation

A proposition is said to be contingent if it can be both true and false, and
non-contingent if it is necessarily true or necessarily false (i.e., if it is not con-
tingent). This notion has led to the proposal of modal logics of contingency
by Montgomery and Routley [41]. We write Ay for ‘p is non-contingent’ and
Ve for ‘p is contingent’. In logics of knowledge, interpreted on structures with
equivalence relations, Ay stands for ‘the agent knows whether ¢’ and Vi for
‘the agent is ignorant about ¢’. In that setting, contingency logics are known
as logics of ignorance [36].
The language and semantics are as follows.
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Definition 3.1 Language of contingency logic To the inductive definition of
£(0) we add an inductive clause A,y (for any a € A). The resulting language
is £(0, A). The language without O, modalities is £(A). Contingency V¢ is
defined by abbreviation as A, .

In this case the language £(0) is better known as the language (and logic)
of necessity.

Definition 3.2 Semantics of non-contingency Given a model M = (S, R, V),
we define:

M, E Ay iff for all t,u € S such that R,st, Rysu : M, | ¢ iff M, = ¢.

For the continuation of this story we focus on the unlabeled, single-agent case.
It will be clear that Ap + A-¢, so that we also have that Vo + —A-:
contingency is not merely the negation of non-contingency but also its dual.
Non-contingency is definable with necessity as Ay «+» OV O-p. But necessity
cannot always be defined with contingency. In [41] is it proposed to define Oy
as Ap A . However, this definition is only available in the systems containing
the T axiom Oy — ¢ [42, page 128]. As this includes models with equivalence
relations, the logics of ignorance and the logic of knowledge are interdefin-
able, and thus, obvious, equally expressive. No novel notion of bisimulation
is needed here. But for weaker logics, lacking the T axiom, this is no longer
the case. We can always embed £(A) into £(0) employing Ay <> Op V O,
so necessity logic is at least as expressive as contingency logic. It is even more
expressive. This we can easily demonstrate with the example from the intro-
duction, that we recall here once more—and let us add two more also modally
equivalent models M’ and M"’ for good measure.

M M M M
Sip*>t:p S/:p t/iﬁ S”:p t”:p Smip
u i p

The pointed models M, and M, are modally equivalent in £(A) (a state with
at most one successor satisfies Ay for any ). But they are modally different
in £(0O), for example M, = Op and M/, ~ Op. And indeed, as already
mentioned, they are also not standard bisimilar. We want another notion of
bisimilarity, under which M, and M, are bisimilar.

Now consider M”. Pointed model M, is standard bisimilar to M, and
it also satisfies the same £(A) formulas. However, as s” has more than one
successor, it is less obvious that M, also satisfies all Ay formulas. Finally

consider M"”’. Again we have that M/, satisfies p and also all Ay, so this
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pointed model must be bisimilar as well to all previous three. We can swap the
value of p in ¢ and ¢’ at will, it does not matter. But notice that we cannot swap
the value of p in t” at will: if it were false, then M, = Vp and we lose modal
equivalence (and, presumably, bisimilarity) with the other pointed models.

For another example, we want the following models to be bisimilar (in their
roots):

N N7
s:p s'ip
t:p u:p v:p u i p v P

Both N, and WV, satisfy Vp. These pointed models are also standard bisimilar.
If we were to swap the value of p in v or v/, we lose modal equivalence.

Contingency bisimulation was proposed in [25]. In contingency bisimulation
we strengthen the forth and back clauses by adding a requirement that there
are at least two non-bisimilar accessible states. As those are in one of the given
models, it is therefore defined as an autobisimulation.

Definition 3.3 Contingency Bisimulation Let single-agent model M =
(S, R, V) be given. A contingency bisimulation is a non-empty relation Z such
that for all s, s’ € S with Zss’:

atoms forallp e P,s e V(p)iff s' € V(p);
forth  if there are u,v € S such that Zuv does not hold, and

if t € S and Rst, then there is a t' € S’ such that Rs’t’ and Ztt/;
back if there are u,v € S such that Zuv does not hold, and

if t’ € S’ and Rs't/, then there is a t € S such that Rst and Ztt'.

A contingency bisimulation between M and M’ is then a contingency
(auto)bisimulation Z C S x S’ on their direct sum M 4 M’ i.e. with domain
in S and co-domain in S’.

According to this definition, all four models M, M’, M”, and M are
contingency bisimilar. A bisimulation Z establishing this, consists of the reflex-
ive, symmetric and transitive closure of the set of pairs connecting their roots:
{(s,8"),(s",8"),(s",s")}. We also have that N; <N/, which is established by
Z = {(s,¢), (t,u), (u,u’),(v,v')}. This is more work than for the preceding
case, because there are non-bisimilar accessible states from s and from s’: the
valuation of p in ¢ and u, and in v, is different (and similarly for v’ and v").
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Proposition 3.4 [25], Prop. 3.4 A standard bisimulation is a contingency
bisimulation.

This will be clear, as the clauses for forth and back have been weakened in the
latter case (the conditional part in the forth and back clauses is stronger). Not
every contingency bisimulation (between two models) is a standard bisimula-
tion, as the examples demonstrated.

We also have the obvious suspect

Proposition 3.5 [25], Prop. 3.9 Contingency bisimilarity implies modal equiv-
alence, and on image-finite models, modal equivalence implies contingency bisim-
ilarity. 2

A standard bisimulation contraction consists of a domain of equivalence classes
of the maximal bisimulation Z, where the valuation of propositional variables
on a Z equivalence class is that of any state in that Z equivalence class, and
two Z equivalence classes are in the accessibility relation iff they contain states
that are in the accessibility relation. Interestingly, this procedure does not work
for contingency bisimulation! Consider the models M and M’ below: M’ is
computed by this procedure from M ([s]z = {s,¢,u}, and [v]z = {v}). But
M, and M are not contingency bisimilar: M, |= Ap whereas M, = Ap.

t:p v:p vz :D [v]z:D

In a contingency bisimulation contraction the accessibility relation is more con-
strained than in a standard bisimulation contraction (but the domain and the
valuation are defined in the same way).

Definition 3.6 Contingency Bisimulation Contraction Given is a model M =
(S,R,V). Let Z be the maximal contingency bisimulation on M. The
contingency bisimulation contraction of M is the quotient structure [M] =
([S],[R], [V]) defined as

o [S]={[s]z | s € S} where [s]z ={t eS| Zst};

o [R][s][t] iff thereare s’ € [s]z, t' € [t]z such that Rs't/, and
there are u, v such that Rs’u, Rs'v, and not Zuv;

2 The constraint in [25, Prop. 3.9] is modal saturation, not image finiteness. That result is even
stronger.
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s VIp) ={lslz [ s € V(p)}.

Proposition 3.7 [25], Prop. 3.13 The contingency bisimulation contraction of
a pointed model is contingency bisimilar to that model.

With this definition of bisimulation contraction, we have that the examples
M, and [M](,), above are contingency bisimilar. The accessibility relation in
[M][s],, is empty, but the contingency bisimulation is non-empty: it contains
(s,[5]2)-

The bisimulation contraction of an S5 model need not be an S5 model.
For example, take a singleton model where p is true with reflexive access. We
then lose the arrow in the contraction. This can be corrected by always taking
the reflexivity closure of the relation [R] constructed in the second clause of
Def. 3.6 (add ‘or s = ¢’ on the right-hand side).

The results reported in this section are based on joint work by Hans van Dit-
marsch, Jie Fan, and Yanjing Wang reported in [25] and [26]. A crucial role
in these works plays the axiom of ‘almost definability’ (AD) which is

Vip = (Op < Ap ANAW — )

It is a validity of the logic with language £(0,A). Axiom AD states the pre-
cise condition under which, even in frames lacking the T axiom (Op — (),
necessity is definable from contingency. Axiom AD says that necessity is almost
definable by contingency, namely when there is at least one contingent propo-
sition 1. Many results in [25,26] use the axiom AD. Although we restricted
our discussion to the single-agent case, it seems that the bisimulation definition
and results equally apply to the multi-agent case. A striking and truly multi-
agent result is the axiomatization of multi-agent contingency logic on symmetric
frames reported in [26]. Jie Fan is expected to defend his PhD thesis in 2015.

4 Awareness bisimulation

Logics for knowledge and awareness are a way to model bounded rationality
of agents. One approach is that agents are only aware of a subset of the set
of all propositional variables. They are aware of all formulas that only contain
those variables. Then, we can define that an agent knows that a formula is true
in a given state, iff the agent is aware of the formula and the formula is true
in all accessible states. In those accessible states the agent may in principle be
aware of other propositional variables, and other agents may have other levels
of awareness.

Consider this example. Hans arrives at a conference, and, waking up in
the morning and rubbing stardust from his sleepy eyes, Hans realizes what is
lacking: coffee. He starts to wonder if coffee would already be served in the
restaurant below. It is still fairly early. Let proposition p stand for ‘coffee is
served’ that he is uncertain about. This situation can be visualized as:
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M
Csipe——tip D

We can observe the usual things about this structure such as that coffee
is actually not served but that Hans is uncertain whether coffee is served:
M; E —p A —(Op Vv O-p). Now, while on his way to the lower floor, where
the restaurant is located, someone in the elevator mentions that you can’t have
both coffee and orange juice for breakfast. This makes Hans aware that orange
juice is an issue. After this, Hans does not know whether coffee is served and
also does not know whether orange juice is served. But he knows that coffee
and orange juice are not both served. We now get to the following situation.
Unfortunately, Hans has still not found out that the breakfast area is closed.
Actually, there is no coffee and there are no oranges (i.e., neither coffee nor
orange juice is served): M’ = —-p A =g AO=(p A ¢) A —~(Op VvV O-p).

M/

C u:pg

CS:@<—>t:p§D

What is the relation between M and M’? One way to model this, is to see
the former as an abstraction up to the initial level of awareness of Hans of the
latter. In a picture, the model M’ is ‘really’ the following structure, where the
value of the variable ¢ of which Hans is unaware is in bold font:

MN

C " u:pq

$:pg ——1:pq _

The action of ‘Hans becomes aware of orange juice’ then transforms structure
M" into structure M’.

Now it is common to distinguish explicit knowledge from implicit knowl-
edge in such scenarios, where the knowledge we really want to talk about is
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explicit knowledge: the thing that is true in all accessible worlds of which we
are aware. Implicit knowledge is then modal accessibility, and in fact rather a
technical non-intuitive notion. Let us now write Ay for ‘Hans is aware of ¢’
(with the suitable agent-labelled perspective A, ¢, as below), keep O for modal
accessibility, and write KF for explicit knowledge as Ky iff Op A Ap. Then
we can say that Hans is explicitly uncertain about coffee

M s |z ~(KFp v KF=p)
whereas he is unaware of orange juice in that state
M//, S )= ﬂAq

and that he implicitly knows that coffee and orange juice are not both served
(B-(pAq)), although in view of the example it seems to make little sense to call
that implicit knowledge. It is rather something he may find out in the future of
waking up even more. We can also model actions such as become aware of g,
where this action transforms M” into M’, but this would be beyond the scope
of this survey.

In this example, Hans has the same level of awareness in all states of the
model. Either he is aware of p everywhere, or he is aware of ¢ everywhere.
Because of this, the principle Ap — KP Ay is satisfied: he knows what he
is aware of. Of course he does not know what he is unaware of: then the
epistemic operator binds a formula containing an unaware variable, so that
the formula is false. The principle that the level of awareness is the same
in all states that the agent considers possible is called awareness introspection
(it is also contested, by economists). Even with the restriction of awareness
introspection, many meaningful multi-agent scenarios involving awareness can
be enacted. For example, Tim, who is aware of ¢, may be uncertain if Hans is
aware of ¢ or not. Tim can thus explicitly reason about Hans’ awareness and
knowledge.

Without awareness introspection, and without equivalence relations for
agents such as in our example, very simple scenarios already illustrate the need
for a different notion of bisimulation. Consider this:

N N

!

sip t:p u:p sip t':p u:p

In state s, wherein the agent is aware of p, the agent considers state ¢ possible,
wherein the agent is unaware of p. In state ¢, as the agent is unaware of p, the
agent considers u possible wherein p is true. But, as the agent is unaware of p,
the value of p in v does not matter: it is below the level of visibility of the agent!
Therefore, we wish to identify N; and N, from the perspective of the agent.
And therefore, we would also wish to identify N, and N},. Differently said,
we cannot distinguish A, from A, in the logic with as its only modality K.
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As the pointed models N, and N/, are obviously not bisimilar in the standard
sense, we are therefore looking for a different notion of bisimilarity. There is
a relation with dynamics of awareness: after becoming aware of p, the agent
can after all distinguish between the two structures, for example we then have
that K¥KPp is true in the former and false in the latter. So dynamics should
also play a role in the expressivity of such logics.

We now continue to present the formal setup. As said, the only structural
difference is that in every state (and for every agent) there are two types of
propositional variables: aware variables and unaware variables. All the rest
follows from that.

We augment standard epistemic (Kripke) models with a parameter for
awareness, and subsequently introduce a proper notion of bisimilarity for these
structures.

Definition 4.1 Awareness model [24] An awareness model for A and P is a
tuple M = (S,R, A, V) where S, R, and V are as before and where A is an
awareness function A: A — S — P(P). For A(a) we write A,.

The property of awareness introspection [35] holds if the agents know when
they are aware of a proposition: if R,st, then A,(s) = A,(¢).

The required structural similarity is captured in the following notion,
named awareness bisimulation. Informally, given a model and a set Q C P,
another model is a (Q awareness bisimulation if it cannot be distinguished from
the first by formulas built only from propositional variables in @, and only in
the scope of modalities for agents who are aware of those propositional vari-
ables.

Definition 4.2 Awareness bisimulation [19,22] Let awareness models M =
(S,R,A,V)and M’ = (5’ R', A", V') be given, and let @ C P. A Q aware-
ness bisimulation is a function Z from the subsets of () to the binary relations
between M and M’ (for Z(Q) we write Zg), such that for all Q' C @ in the
domain of Z, for all s € S, s’ € S’ such that Zg/ss’, and for all agents a € A:

atoms forallpe @', se V(p)iff s € V'(p);
aware A, (s)NQ =A,(s)NQ’;
forth ift € S and R,st then
there is a t’ € S’ such that R},s't" and Zgin 4, (5)tt’;
back ift' € S’ and R s't' then
there is at € S such that R,st and Zg:nar (oytt'

We also call each Zy a () awareness bisimulation. If there is a () awareness
bisimulation linking M, and M/, via Zgss' we write M < oM.,.

The aware clause can be considered as an additional atoms requirement,
due to the nature of our models where states have more structure than merely
propositional truth. If we were to replace Zgn4,(s) in the back and forth
clauses with Z¢/, we get standard (restricted) bisimulation (restricted to @’).
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Thus every standard bisimulation is an awareness bisimulation. But the in-
tersection makes all the difference: every time we travel further down a path
in the structure, we can only ‘see’ anything all the agents along that path are
aware of, in the states along that path.

If all agents are aware of all propositional variables, the awareness bisimu-
lation is a standard bisimulation. This is what we desire: we then revert to the
standard multi-agent epistemic situation, where awareness plays no role.

Awareness bisimulation is clearly more complex than standard bisimula-
tion, however its motivation is very simple. Two states are () awareness bisimi-
lar if, for any observer aware only of the propositional variables in @, the states
appear identical. It gives us the “Q) perspective” of an awareness model.

For an example illustrating the mechanics of the definition, consider aware-
ness models NV, and NV, above. We show that they are {p} awareness bisimilar.
The single agent is anonymous (i.e., unlabeled relations). Constructively fol-
lowing the steps in the definition of awareness bisimulation, we can see this as
follows:

e M, and M, are () awareness bisimilar, because all four clauses of awareness
bisimulation are trivially satisfied;

e M, and M, are {p} awareness bisimilar, because ¢ and ¢’ coincide in p’s
truth value (namely, it is true) and in the agent’s awareness of p (namely
(), and because (forth) {p} N A,(t) = 0 and M, and M/, are () awareness
bisimilar; similarly for back;

e M, and M/, are {p} awareness bisimilar, because s and s’ coincide in p’s
truth value (namely, it is true) and in a’s awareness of p (namely {p}), and
because (forth) {p} N A,(s) = {p} and epistemic awareness states M, and
M, are {p} awareness bisimilar; similar for back.

Alternatively to the construction above, we could have observed that the set
{Z,, Zy} satisfies the clauses of awareness bisimulation, where (write Z,, for
Zipy)-

Zy ={(s,8"), (t,1')}

Zy = {(u, )}
As usual, there are many bisimulations given two pointed models. Yet another
awareness bisimulation is the following set {Z,,, Z;}. It is maximal. It satis-
fies that Zé - ZIQ. (If @ C Q, then, on the assumption that an awareness
bisimulation exists, one can always find a Z¢ such that Zg C Zg.)

Z; = {(373,)7(t7t/)}
Zé = {(57 5/)7 (tvt/)v (uvu/)}

Definition 4.3 Language The language £(0, K, K9, A) is defined as
=T Ip|-¢leAe 0w | KSp| K¢ | Ay
where p € P and a € A.
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We also use sublanguages of the language £(0, K, K%, A) with fewer in-
ductive constructs. The set v(y) of propositional variables of a formula ¢ in
the logical language is defined in the obvious way:.

Definition 4.4 Semantics Let awareness model M = (S, R, A, V), s € S, and
pecL(OKF K9 A).

M E Ay iff v(p) C Aa(s)
M, = KBy iff M; |= pforalltc S such that R,st and v(p) C A.(s)
M = K7 iff M), = ¢ forallt € S such that R,st and

for all Mj, s.t. M, < 4, (5 My

The logic of implicit knowledge is the one with language £(0, A), the logic of ex-
plicit knowledge is the one with language £(K ¥, A), and the logic of speculative
knowledge is the one with language £(K*°, A). Speculative knowledge is the
ugly duckling in this pond (she still has to grow up into a beautiful swan—or
rather, lest I insult my collaborators, she already is, but not yet noticed by a
crowd). In this survey we will of course neither motivate nor illustrate this
concept in detail. A formula is speculatively known to an agent, if in all ac-
cessible states, in all awareness bisimilar states from the perspective of this
agent, it is true. This modality has aspects of a bisimulation quantifier [37,28].
The logic of explicit knowledge has some nasty charasteristics because of the
syntactic way in which the semantics of the awareness modality is given. For
example we do not have necessitation. But the logic of speculative knowledge
satisfies necessitation. One can speculate over variables of which one is aware,
and thus observe that even for unaware variables, p V —p will always be true.
Formula p V —p is a validity, and K2 (p v —p) is a validity in the logic of specu-
lative knowledge, but KZ(p v —p) is invalid in the logic of explicit knowledge
(namely, it is false if the agent is unaware of p).

On the single-agent example we have already seen, reprinted here, we in-
deed have that N, = K ¥p, but that N, = K€ K¥p, because N; = K ¥p, which
fails because NV; = Ap.

N N’

5:p t:p u:p sip t':p u P

Now consider what were to happen if the agent became aware of p in the other
two states as well. It is easy to model this with a dynamic modality, but we will
refrain from doing so. It is sufficient to say that the result is

NP N/ +p
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Clearly the models N;*? and N"!? are now not bisimilar, and K”KZp is a
distinguishing formula. In the logic of explicit knowledge with dynamics (in-
terpreted as model transforming operations) we can therefore distinguish N
from A”,/. (The distinguishing formula is then (+p) K K ¥p, where (+p) is the
diamond-form of a modality representing ‘becoming aware of p’, interpreted by
adding p to the set A, (s) for all states and all agents.)

For another example, for two agents, also illustrating the modalities, con-
sider Hans (a) again, and Tim (b), and the availability of coffee (p) and orange
juice (q). There are three states s, t, u. In states s and ¢, Hans is aware of p and
unaware of ¢, whereas in state u he is unaware of p and aware of q. We let Tim
be aware of p and ¢ in all states. The valuations and accessibility relations are
as indicated in the figure. The relations are equivalence relations, so it would
suffice to indicate partitions only, but for good measure we have drawn all ar-
rows of the accessibility relation again. Now in principle we cannot as before
simply put the unaware variables in boldfont, as we have to indicate for each
of the two agents of which variables that agent is aware. But in practice we
can and we do: we let it indicate what Hans is unaware of, given that Tim is
aware of both variables in all states.

M a,b

a Q b
a,b (" s:Pq t:pq u:p&Da,b

This model depicts a scenario like the following—Ilet us assume that ¢ is the
actual state. Hans is (as before) uncertain about the availability of coffee but
is unaware of orange juice, Tim is aware of both and knows that there is coffee
but is, instead, uncertain about the availability of orange juice. Also, he cannot
distinguish a state wherein Hans is only aware of p from a state u wherein
Hans is only aware of ¢q. Frustratingly, he knows that Hans can resolve his
uncertainty about ¢ but unfortunately Hans is unaware of that! Some typical
statements to evaluate are

M" tl=—-(KEFpv KFq)  Hans is ignorant about p ...
M" tE KE(KEpv KEq) ...but he knows that Tim knows whether p

M" u = KE—g In state u Hans knows that —¢ . ..

M" t = KPKE—q ...and in ¢ Tim knows that Hans knows that ...
M" tE KPKEKE—q ...but Hans doesn’t! He is unaware of g; ...
Mt EO,KFKE~q ... although he knows it ‘implicitly’.

This scenario allows for some fabulous follow-up conversations, assuming that
questions make the listening agent aware of all the propositional variables oc-
curring in the question. If Hans asks Tim “Do you know if there’s coffee?”, Tim
can truthfully respond “Thanks for asking! Yes, there is. Also, I learnt from
your question that there’s orange juice as well. You might not yet have thought
of that.”
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We conclude with reporting some theoretical results for these logics.
Proposition 4.5 Awareness bisimularity < is an equivalence relation.

Proposition 4.6 Given two image-finite pointed awareness models:

e Awareness bisimilarity corresponds to modal equiv. in the logic of explicit
knowledge;

¢ Awareness bisimilarity corresponds to modal equiv. in the logic of speculative
knowledge;

o Standard bisimilarity corresponds to modal equivalence in the logic of implicit
knowledge.

Subject to an inductively defined translation also involving :

Proposition 4.7 [19] Explicit knowledge implies speculative knowledge, and
speculative knowledge implies implicit knowledge: KFPp — KSp and K5p —
Ogp.

However, on the deeper level of expressivity, we regain correspondence
between explicit knowledge and speculative knowledge:

Proposition 4.8 [22] The logic of explicit knowledge and the logic of speculative
knowledge are equally expressive. The logic of implicit knowledge is (strictly)
more expressive than the logic of explicit knowledge and the logic of speculative
knowledge.

The logics for awareness of propositional variables, including explicit knowledge
and implicit knowledge, and their axiomatizations, were proposed in [24,34].
Motivated by that and by the complete lattice of space in [35], varying com-
binations of authors involving Hans van Ditmarsch, Tim French, Fernando
Veldzquez Quesada, and Yi N. Wang developed the framework reported in
[17,19,21,22]. Although this collaboration did not actually involve PhD work,
it is relevant to mention that Fernando obtained his PhD degree in 2011, just
before his involvement in this collaborative venture, and Yi obtained his (2nd)
PhD degree in 2013, just after starting his involvement in this collaborative
venture.

5 Plausibility bisimulation

In structures with so-called plausibility relations an agent knows something if
it is true in all possible states and an agent believes something if it is true
in the most plausible from these possible states. These structures consist of
equivalence classes encoding knowledge, where in each equivalence class the
states are ordered into more and less plausible states. If s is at least as plausible
as t, we write t > s. Consider the following models N'*, N©, and N'®. An
arrow from s to ¢ in the figure means that s > ¢. (Every state is at least as
plausible as itself.)
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In model A'F we have that ws > wy > wi: the agent finds it most plausible
that p is true, less plausible that p is false, and even less plausible that p is true.
As p is true in the most plausible state, the agent believes p. If we go to slightly
less plausible, the agent is already uncertain about the value of p, it only knows
trivialities such as p V —p. The state w3 does not make the agent even more
uncertain. We can discard it. This is the model A'“. Another trick also works:
Keep state w3, but make it as plausible state as w;. Then we get, modulo
renaming of states, the plausibility model N'* in the figure above, wherein u,
and ugz are equally plausible.

If the arrow were to correspond directly to a modality, the models N'“ and
N would be bisimilar, but A’ would not be bisimilar to the other two. But
in the logic of knowledge and belief interpreted on such plausibility structures,
they are all three plausibility bisimilar. In the single-agent case, the way to
achieve that is easy: identify states with the same valuation. But in the multi-
agent case, this is not so easy. Let us consider such an example of multi-agent
bisimilarity.

ML MC
ab ab ab ab ab
N, 0N .0 noo. 0
W ipe————W2 P ée———Ww3:p V1P ¢—————0V2:Dp
a
b b b

w45?3ab awafﬁﬁ V3D _ Dab

Also here, we’d like to say that the two pictured models are plausibility bisim-
ilar. Clearly, in this case ‘bisimilar’ does not mean ‘having the same valua-
tion’. The a relations in the model M?* correspond to the plausibility order
ws >4 wy >, wi on the a equivalence class {wy, w2, w3}, such that w, should
be the most plausible of the three, and the singleton plausibility order on a
equivalence classes {w,} and {ws}. For agent b, in b class {w;,w,} the more
plausible world is wy, etc. It is a model validity that a believes that b be-
lieves —p. What a believes is what is true in the most plausible worlds. From
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{w1, ws, w3} this is wy, and indeed, agent b there believes (incorrectly) that p is
false. But in the classes {w,4} and {ws} it is also true that b believes —p. We can
repeat his exercise in M¢ and in fact for any other formula. We would like to
say that in M the states w; and w3 are plausibility bisimilar, and the (for ex-
ample) pointed models /\/l{;j,j and /\/lg1 are modally equivalent and plausibility

bisimilar. However, we now leave the multi-agent case alone and in this survey
we focus on the single-agent case only.

We now continue by defining the structures, language, and semantics. The
only structural difference is that instead of an arbitrary relation R we now
require this to be composed of so-called well-preorders >.3 Because of that,
we use infix and not postfix notation: we write s > ¢ instead of Rst.

Definition 5.1 Plausibility model A plausibility model is a model
M= (S,>,V) such that > is a set of mutually disjoint well-preorders
covering S, called the plausibility relation.

If s > ¢ then ¢ is at least as plausible as s, and the >-minimal elements are the
most plausible worlds. For the symmetric closure of > we write ~: this is an
equivalence relation on S called the epistemic relation. If s > ¢ but t 2 s we
write s > t (¢ is more plausible than s).

We now proceed to define plausibility bisimulation. In order for an elegant
definition to emerge, we allow ourselves some a further notational abbrevia-
tion. Let X > Y stand for for allz € X and forally € Y, z > 3. We now
write x > y for Min>{z | V(z) =V (z)} > Min>{w | V(w) =V (y)}.

Definition 5.2 Plausibility Bisimulation [4] Let M = (5,>,V) and M’ =
(8’,>',V') be plausibility models. A bisimulation between M and M’ is a non-
empty relation Z C S x S’ such that for all Zss':

atoms forallpe P,seV(p)iffs € V(p);

forth> ift e Sands > ¢, thereisat’ € Ssuch that s’ > ¢ and Ztt';
back> ift' € Sand s =/, thereisat € S such that s > ¢t and Z¢t’;
forth< ift e Sands <t,thereisat € Ssuchthats’ <t and Ztt';
back< ift' € Sand s’ </, thereisat¢ € S such that s < ¢ and Zt¢'.

This bisimulation relation is non-standard in the back and forth clauses. That
there are two of each of them is not so special. This is as in temporal logics
wherein we also have to look forward and backward along the accessibility
relation. The special aspect is that we use > instead of > and < instead of <.
This means that, instead of comparing s to ¢ (i.e., instead of merely requiring
s > t), we compare the set of objects bisimilar to s (namely the states in a given
~-class that have the same valuation) to the set of objects bisimilar to t. The
relation - is called the normal plausibility relation.

3 A well-preorder is a reflexive and transitive binary relation > such that every non-empty subset
has >-minimal elements; where the set of minimal elements of some subset Y is Min> Y = {y €
Y |y > yforally’ € Y}. As this also holds for a two-element set Y = {y, z}, this entails that
z > yory > z: all elements in the domain are comparable.
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Consider again the models A%, N, and N'. The maximal bisimulation
on Nt is Z = {(w1,w1), (w1, ws), (ws,wr), (ws,ws3), (wa, w2)}. Therefore, al-
though wy < w3, we have that wy > ws: although it appeared that w, is more
plausible than ws, in reality ws is less plausible than ws. If we replace > by the
normal plausibility relation > in N'*, we get the model A%, The bisimulation
contraction is the model A/C.

We now continue with the language and semantics.
Definition 5.3 Logical language Language L£(K,C,D,0) is inductively de-
fined by:
pu=pl-plerp|Ke|B?0|B"p| Oy
where p € P, and n € N.

As usual we also consider sublanguages. The formula K ¢ stands for ‘the agent
knows ¢’ (in this section Oy does not mean that the agent knows ¢), BY¢
stands for ‘the agent believes © on condition v’, B™¢ stands for ‘the agent be-
lieves o to degree n’, and Oy stands in this case for ‘the agent safely believes .
The logic with language L£(K,C) is the logic of conditional belief (with C for
‘conditional’), the logic with language L£(K, D) is the logic of degrees of belief
(with D for ‘degrees of”), and £(K, O) defines the logic of safe belief.

Definition 5.4 Semantics Let now > be the normal plausibility relation given
a plausibility model M = (S, >, V), then we define:

M=Ky iff My |=pforallt € Ssuchthats~t
M | BYp iff M, |= ¢ forall t € Min([¢]m N [s]~)
M, = B ifft M |= g forallt € Minl[s].

M, Dy iff M; |= ¢ forall t with s = ¢

where

Ming [s]l~ = Miny[s]~

a1 [ [s]~ if Minl[s]. = [s]~
Ming™"[s]~ = { Min?[s]. U Miny ([s].. \ Min? [s]..) otherwise.

The logics of conditional belief and safe belief go back to [43] and the logic
of degrees of degrees goes back to, as far as we know, [39,30]. See [9] for an
excellent review of the logics of conditional belief and safe belief interpreted
on plausibility models and [16] for the logic of degrees of belief interpreted on
plausibility models. Unlike the safe belief and degrees of belief logics in [9] and
[16], respectively, the modalities defined above are plausibility bisimulation
preserving. An alternative (and equivalent) bisimulation preserving semantics
for safe belief is M, |= Oy iff M, = B¥¢ for all ¢ such that M, |= 1. See [4]
for details.

For an example of conditional belief, consider again plausibility model NC.
We can observe that N¢ = Bp, N¢ |= BPp, and N¢ = B™P—p (any formula
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of type B¥1 that is true in any point of a model, is always a model validity in
this logic). Also we have that N'¢ |= BBPp (as condition Bp on this model is
satisfied in both worlds), and N¢ |= B~®V=P)(p v —p), i.e., NC = K(pV —p):
the agent knows (and only knows) trivialities. As all three models N'%, NC,
and N7 have the same information content, we can repeat the exercise in the
other two plausibility models.

Concerning degrees of belief, we have that N'¢ |= B%p but not N |= Blp,
and that the maximum degree of belief is 1: N¢ | K¢ <+ B'e (where the
maximum degree n of belief is the smallest n € N such that for all m > n we
have B™¢ <+ B™T1y). This is also true in the other two models, of course.

A typical example of safe belief is that N'C |= Op whereas N % Op. In
world vy, belief in p is safe because p is true in v; and the agent still believes p
in the v; restriction of the model; whereas in v, belief in p is not safe: in the vy
restriction of the model the agent believes that p is false.

Now consider A'F, and the usual definition of safe belief as persistence in
any model restriction (see [9,15]): with that semantics, belief in p is unsafe
in ws: N, & Op, because in the model restriction to {w,,ws} (that includes
the true state of affairs ws, as required), the agent believes —p instead. Only
after the further restriction to ws the agent regains belief in p. But in the above
semantics of safe belief, ./\/1’;43 = Op: we first have to make the plausibility
relation in the model a normal plausibility relation, we then get model N7,
and in N'F, world u, is not more but less plausible than us.

We finish this section with a bisimulation characterization result for single-
agent plausibility bisimulation. Below, a relation is preimage-finite if the con-
verse relation is image-finite.

Proposition 5.5 [4] Given two image-finite and preimage-finite pointed plausi-
bility models. Then plausibility bisimilarity corresponds to modal equivalence in
the logic of conditional belief.

Plausibility models have been used to great effect for modelling belief revision
in dynamic epistemic logic, by, among many other people, Guillaume Aucher;
Alexandru Baltag, Johan van Benthem, Cedric Degrémont, Lorenz Demey, Jan
van Eijck, Willem Labuschagne, Olivier Roy, Sonja Smets. This list could just as
well be five times as long, and we prefer to refrain from proper references. We
skip dynamics here.

Bisimulation for plausibility models has been investigated by Mikkel
Birkegaard Andersen, Thomas Bolander, Lorenz Demey, Hans van Ditmarsch,
and Martin Holm Jensen. More properly said, it was initiated by Lorenz Demey
in [15] and, building on his results, continued by the other four in [4]. Martin
Holm Jensen obtained his PhD degree in 2014 [38] and Mikkel Birkegaard An-
dersen defended his PhD thesis late in 2014, and it will appear in print early in
2015 [3].
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6 Refinement as quantifying over information change

In this section we do not present a different notion of bisimulation, motivated
by a logical language and semantics that requires an adjustment of what ‘sim-
ilar’ is in order to regain correspondence with logical equivalence. Instead,
we present a bisimulation-inspired notion of information change, called re-
finement. It is not supposed to preserve truth, but it is supposed to model
information growth modulo uncertainty among agents about the extent of the
increase. We can then observe that, after all, this notion preserves some truth,
namely that of the positive formulas.

For an example, consider the following pointed models for an unlabeled
relation. We do not need propositional variables for this part of the story, so
we simply let e and o stand for the states, where the o state is the designated
point. We are going to juggle a bit with its arrows. We start with this model
M.

o ] o ° M

E.g., ©OOOL is true in the point. From the point of view of the modal lan-
guage, this structure is (standard) bisimilar to

° ° ° o ° ° ° M

This one also satisfies << 01 and any other modal formula for that matter. A
more radical structural transformation would be to consider submodels, such
as

oO—e ——— @ M

A distinguishing formula between the two is &<O.L, which is true here and
false above. Can we consider other ‘submodel-like’ transformations that are
neither bisimilar structures nor strict submodels? Yes, we can. Consider

] o . . M

The pointed model M is neither a submodel of the initial structure M,, nor
is it bisimilar. It satisfies the formula ¢O1 A OGOOL that is certainly false in
any submodel of M,. This structure is called a refinement (or ‘a refinement
of the initial structure’), and the original structure is a simulation of the latter.
(Such terminology is presented in works like [40,45,2,12]; simulation is a very
well-studied notion in theoretical computer science.) If we consider the three
requirements atoms, forth, and back of a bisimulation, we can see that atoms
and back are satisfied but not forth: for example, consider the last arrow
in the length-three path in the original structure M: it has no image in M"”’,
therefore, forth fails. There seems to be still some ‘submodel-like’ relation with
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the original structure. Look at its bisimilar duplicate M’. The last structure
M is a submodel of that copy. Such a relation always holds: a refinement of
a model always is a submodel of a bisimilar copy of that model. This is mirrored
on the syntactic side: a refinement quantifier is interpreted as refinement, and
it can be seen as composed of a bisimulation quantifier and relativization. We
will make this formal at the end of this section.

Definition 6.1 Refinement Let two models M = (S,R,V) and M’ =
(S’,R', V') be given. Consider the definition of bisimulation (Def. 2.2). Let
B C A. Arelation Zg C S x S’ that satisfies atoms, that satisfies back for all
agents a € B, and that satisfies forth and back for all agents a € A\ B is called
a B refinement (or B refinement relation). If Zpss’ we say that M/, refines M;
for group of agents B, and we write M, =g M,.

We will overload the meaning of refinement and also say that M/, is a refine-
ment of M,. An A-refinement (of the group of all agents) we call a refinement
(plain and simple) and for {a}-refinement we write a-refinement. Dually to B-
refinement, we can similarly define B-simulation. Note that this definition of
simulation then varies slightly from the one in Blackburn et al. [12, p.110],
where only truth of propositional variables is required to be invariant but not
falsity of propositional variables. The dual where only falsity of propositional
variables is preserved, is obviously unsuitable for a logic of information change
wherein propositional variables do not change their value (refinement modal
logic is not a logic of factual change).

An a-refinement needs to satisfy back for that agent, but not forth. Con-
sider a model and a refinement of that model. Take an arrow in that initial
model. This arrow may be missing in the refined model namely when forth is
not satisfied for that arrow. On the other hand, any arrow in the refinement
should be traceable to an arrow in the initial model—the back condition, and
there may be several arrows in the refinement that are traceable to the same
arrow in the initial model. We can see the refined model as a number of copies
of the initial model, knitted together, but with bits and pieces cut off so that
those copies are no longer exact copies (i.e., possibly no longer bisimilar).

A simple example is as follows. Consider again the model M and its refine-
ment M’

lo 20 3e 4e M

-
-
-

I
! -
I

-
-

-
-
-
-
-
I’

He 6o 7vo 8vo M

|

|

|
~

by way of refinement relation Z = {(1,6), (2,5),(2,7),(3,8)}, also depicted.
The arrow (3,4) has no image in the refined model. On the other hand, the
arrow (1,2) has two images, namely (6,5) and (6, 7). These two arrows cannot
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be identified, because 5 and 7 are non-bisimilar, and that is because there is
yet another arrow from 7 but no other arrow from 5: arrow (2, 3) has only one
image in the refined model M"".

The refinement relation is reflexive and transitive and also confluent
(Church-Rosser), and we also have that the composition of refinements for
different (groups of) agents is a refinement for their union, so that for any
pointed models M, =, M’, =, M, iff Mg =, M7,,.

It is maybe curious to observe that two models can be each other’s re-
finement but still not bisimilar. Consider again the introductory example.
We have that Mg’ > MY and MY > ¢', but still we do not have that
My <= M. We obtain M{' = MY via {(6,1),(7,2),(8,3)} and M} = M{
via {(1,6),(2,7),(3,8),(2,5)}.

He 6o Te Se M

lo ——3> 2¢ —— 3e M

On the other hand, given any M, and M.,, the relation M, = M/, defined
by M, = M’, and M/, = M, defines an equivalence. Given that it is not
a bisimulation, what is it? It characterizes invariance of the positive fragment
(u=p|pl-w|eNp| eVe| Ku), or, in other words, that two
structures are only different in resolvable differences in uncertainty but not in
hard facts and necessary information. This result of course also applies to > g,
for the positive formulas involving agents in B. (This observation is used to
great effect in a number of ongoing follow-up studies by James Hales.)

Definition 6.2 Language We get the language £(0,V) of refinement modal
logic by adding an inductive construct ¥,y to £(0O). We write 3,¢ for —V,—p.
For B ={ay,...,a,} we write Vgp for ¥,, ...V, ». We write Vo for V4.

So, formula V¢ does not mean ‘for all formulas ¢’ but it means ‘after any refine-
ment, ¢ (is true)’. Quantifiers usually quantify over variables, as in Vz, Vy, and
in the bisimulation quantifiers Vp. A refinement quantifier can be seen as im-
plicitly quantifying over a variable, namely over a variable that does not occur
in the formula that it binds. We will later present a translation into bisimulation
quantified logic that makes the variable explicit.

Definition 6.3 Semantics of refinement Assume a model M = (S, R, V).

M, EVqp iff forall M, : M, =, M., implies M/, = ¢
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In other words, V,p is true in a pointed model iff ¢ is true in all its a-
refinements. Typical model operations that produce an a-refinement are: blow-
ing up the model (to a bisimilar model) such as adding copies that are indistin-
guishable from the current model and one another, and removing pairs of the
accessibility relation for the agent a (or, alternatively worded: removing states
accessible only to agent a).

We now give a multi-agent example, with a dynamic epistemic flavour.
Anne and Bill are sitting in a café at a table. A messenger comes in, deliv-
ers a letter to Anne, and says to Anne and Bill that it contains the outcome of
the election: we model this as the truth about a propositional variable p. In the
initial situation Anne and Bill therefore commonly know their ignorance about
p. While Bill is away to fetch another drink at the bar, Anne reads the letter.
When Bill is back at the table, he suspects but doesn’t know that Anne has read
the letter (and we assume this is again background knowledge). In dynamic
epistemic logic the informational transition is the one transforming model N
below into model A/, below. For example, in s’ Anne knows that p but Bill
considers it possible that Anne is still uncertain about p (namely in case she
had not opened the letter).

The accessibility relations in the models A" and A/ are all equivalence re-
lations, it concerns knowledge, but for extra clarity we again draw all arrows.
The transformation induced by the informative event in which Anne may have
read the letter, as above, can be expressed as a refinement. In this case it is an
a-refinement.

N //,_——»>s’:p3ab N
//////// b
abCSip/’//‘— \\\}u':pDab
ab ab
abCtip \}t/IﬁDab

On the left, the formula N; & 3,(0up A =0,0,p) is true, because N, =
O,p A —~0,0,p is true on the right. On the right, in the actual state there is
no alternative for agent a (only the actual state itself is considered possible by
a), so O,p is true, whereas agent b also considers another state possible (¢ or
u'), wherein agent a considers it possible that p is false (namely in state ¢/,
accessibly by a from both ¢’ or «’). Therefore, ¢,<,—p, i.e., =0,0,p, is also
true in the actual state s’ on the right.

The model on the right is an a-refinement of the model on the left. The
refinement relation is pictured by the dashed arrows.
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The relation between refinement modal logic and dynamic epistemic logic
is quite strong: a refinement of a (finite) pointed model can also be obtained
by executing an epistemic action. Therefore, we should be able to see the re-
finement in this example as produced by an epistemic action. This is indeed
the case. Let us not introduce action models formally, for that see e.g. [23], but
merely describe the epistemic action of Anne maybe reading a letter. This epis-
temic action N consists of two action points t and p, they can be distinguished
by agent a but not by agent b. What really happens is p; it has precondition p.
Agent b cannot distinguish this from t with precondition T.

N N (5,0):p_ Dab (N@N)=N

abC 2 s:p abCpP:p b (s7t):p3ab

ab (039 b = ab

abt:p abCt:T (tY):P_ Dab

The execution of this action is depicted above. The point of the structure is
action p with precondition p: in fact, a is learning that p, but b is uncertain
between that action and the trivial action t wherein nothing is learnt. The
trivial action can be executed in both states of the initial model. The action
p can only be executed in the state where p is true. Therefore, the resulting
structure is the refinement with three states.

Some results for refinement modal logic are the following.

Proposition 6.4 [18] Action model execution is a refinement, and, on finite
models, every refinement is the execution of an action model.

Proposition 6.5 [20] Refinement modal logic has a complete axiomatization
and is equally expressive as multi-agent modal logic.

The expressivity result is rather surprising, given that arbitrary public an-
nouncement logic [8], that quantifies over all public announcements, is un-
decidable. The gaps filled by refinement modal logic makes the logic decidable
again.

Proposition 6.6 [13] Refinement is bisimulation plus model restriction, and re-
finement quantification is bisimulation quantification followed by relativization.

In a simplifying example: Vi is equivalent to VpyP, where Vp is a bisimulation
quantifier, where p is a fresh atom, and where ? is relativization of ¢ to p. Note
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that this is a translation of refinement modal logic into bisimulation-quantified
modal logic.

Proposition 6.7 [31,33] Refinement epistemic logic has a complete axiomatiza-
tion.

Refinement modal logic is a growing enterprise with contributions by An-
tonis Achilleos, Laura Bogzgzelli Rowan Davies, Hans van Ditmarsch, Tim
French, James Hales, Michael Lampis, Sophie Pinchinat, and Edwin Tay
[18,20,13,14,31,33,32,29] . Results on complexity and succinctness are found
in [13,14,1]. James Hales has results on refinement modal logics for other
model classes (such as refinement epistemic logic), and on action model synthe-
sis [31,33,32,29]. James is expected to defend his PhD thesis in 2015.

7 Bisimulation for sabotage

Sabotage logic was proposed by Johan van Benthem in [11], in the very appeal-
ing context of a traveller desperately trying to get from A to B using a railway
network, while the railway operator purposefully sabotages connections in the
network, thus attempting to prevent the traveller from arriving at B. It con-
tains an operator for what is true after one removes a pair (any pair) from the
accessibility relation. Let M = (S,R,V), s € S. We present the ‘diamond’
version (the dual ‘box’ version will be obvious).

M, = (sbyg iff there aret,u € S such that M ™ |= ¢

where M~ is as M = (S, R, V) except that (let us keep this single-agent)
R~% = R\ {(t,u)}. In this logic we can count arrows and this has the catas-
trophic consequence that the sabotage operation is not bisimulation preserving.
A very elementary example provide the following two models.

M M

—
- Zt:p Cs:p

Observe that M, and M/, are standard bisimilar. However, we have that
M = (sb)OT (remove the pair (¢, s)) so therefore also M, (~ [sb]O.L; whereas
M = [sb]OL (there is only a single arrow to remove, and then the accessibility
relation is empty). Therefore, adding the dynamics destroys bisimilarity.

Again, this can be repaired. In this case we have to strengthen the re-
quirements of bisimulation instead of weakening them. And instead of hav-
ing a bisimulation between M, and M, with models M = (S,R,V) and
M = (SR, V"), as a relation between states containing the pair (s, s), we
have to define a bisimulation as a relation between state-(accessibility)relation
pairs containing the pair ((s, R), (s’, R')). Also, we have to add clauses for the
dynamic sabotage modality. Thus, one defines sabotage bisimilarity. Then, the
above models are not sabotage bisimilar. Sabotage bisimilarity corresponds to
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modal equivalence in this language [6,27]. In this section of the survey we
refrain from full details of the bisimulation.

The interest of mentioning sabotage logic, is that there is a sliding scale
from this logic to logics with epistemic modalities. In [6,7] it is proposed to
have various alternatives to the sabotage operators as employed by Van Ben-
them in [11]: instead of removing any pair from the accessibility relation, one
may only be allowed to remove any pair originating in the actual state. Instead
of removing a pair, one may swap a pair (i.e., replace some Rst by Rts), or one
may add a pair. This then comes with corresponding ‘swap’ and (as it is called
by the authors) ‘bridge’ modalities.

We can also imagine only being allowed to remove a pair (s, t) that satisfies
some logical condition ¢ at s or some logical condition ¢ at ¢. Or, beyond that,
one may instead of removing a single pair, remove all pairs satisfying such
logical conditions. Removing all pairs satisfying — at the beginning or — at
the end is also known as public announcement of the formula ¢ (this amounts
to preserving all pairs satisfying ¢ at the beginning and at the end): we are
back into epistemic logics. Such transitions are indeed proposed in [27,5].
This seems to open up novel frontiers for epistemic logics.

Generalizations of sabotage logic to other relation-changing modalities, includ-
ing generalizations to dynamic epistemic logics, have been investigated by Car-
los Areces, Hans van Ditmarsch, Raul Fervari, Guillaume Hoffmann, Bastien
Maubert, and Frangois Schwargentruber. This was mainly the PhD work of
Raul Fervari. See [6,27,5,7]. Raul Fervari obtained his PhD degree in 2014.

8 Conclusions and further research

We have presented contingency bisimulation, awareness bisimulation, plausi-
bility bisimulation, refinement, and, in lesser detail, bisimulation for sabotage.
Such adjustments of standard bisimulation are required to preserve the usual
correspondence between bisimulation and modal equivalence. All these vari-
ations on bisimulation are inspired by modelling knowledge and belief, and
change of knowledge and belief. The work resulted from recent and ongoing
PhD research in various locations over the globe, and is therefore expected to
strongly develop further in the coming years.
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Abstract

Logical characterizations of goals have been intensively studied in the context of plan-
ning and multiagent systems. However, as we show in this paper, goals require further
attention. First, the current formalizations are not fully satisfactory as they lack an
adequate predictive power, sometimes providing unwanted results. Second, algebras
on goals do not have to be entirely compatible with algebras of the underlying logics.
Third, even though agents typically reason over incomplete and/or inconsistent belief
bases, usually the issues of missing or conflicting information are not directly addressed
in the existing formalizations of goals. Last but not least, current approaches typically
lead to intractable reasoning.

In this paper we investigate the pragmatics of everyday reasoning about goals as mental
attitudes. As human reasoners, we often perceive a new goal as an abstract entity to
be achieved. This mental leap helps us to reason about goals on a meta-level without
immediately considering their, possibly complex, specification. In our formal approach,
we view goals as a sort of abstract objects, further combined with a detailed specification
of how to achieve them. The semantics of goals is specified by means of predicates goal,
achieved and achievable that are embedded in user-defined belief bases. This embedding
requires a new form of reification.

1 Towards Pragmatic Models of Goals

The relationship between knowledge and action has been of interest of re-
searchers form many fields. Some of the related issues concerning goals have

L E-mail: keplicz@mimuw.edu.pl.
2 E-mails: andrzej.szalas@{mimuw.edu.pl, liu.se}.
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been studied mostly in (distributed) artificial intelligence and computer sci-
ence. Next to it, psychologists have studied the relationship between goals and
human creativity. Along this line, a well established psychological theory states
that perfectionism as a virtue does not support human creativity. How is this
related to goals?

In the context of goals this means that very precise and detailed specifi-
cation of goals is threatened in a dynamic and, even worse, unpredictable
situations. At the other end, when goals are approached flexibly, remaining
underspecified until the moment of their realization, we stay open on differ-
ent ways of achieving them. Accordingly, accepting the initial ignorance about
the means of achieving goals, we are prepared to be creative in finding the
proper, in the light of current circumstances, ones. In the presented research
we will share this point of view, studying matters pertaining goals in multia-
gent systems. Such issues, apart from their complexity, are typically caused by
identifying goals with formulas. This way a concept of a goal is combined with
its logical specification. Even though such an approach is tempting by its sim-
plicity, it often leads to undesirable effects when goals naturally inherit some,
not always adequate, behaviors of logical operators and connectives. In order
to solve this problem, we propose a methodology that permits to isolate and
separately analyze goals and their logical specifications.

In principle, we intend to reflect the pragmatics of everyday reasoning
about goals. As human reasoners, most of the time we perceive a new goal
as an abstract entity to be achieved. This mental leap is especially useful in
cases of complicated, perhaps long lasting, goals. People tend to reason about
these goals of potentially complex structures without considering immediately
their precise specification. For example, a person may have goals: “to be a
good programmer”, “to earn a lot”, “to practice freediving” without keeping in
mind what do they really mean. Such goals can be considered to be first-order
objects and denoted by constants. In fact, “to be a good programmer” can mean
“to be fluent in Java and UML” or, in other circumstances, “to be able to formu-
late the required SQL queries”. Thus, goals as mental attitudes should remain
distinguished from their, more or less detailed, specification. Finally, we are
interested in certain properties of goals, like:

* when is a particular goal achieved?
e is a particular goal achievable?
« what are the circumstances blocking its achievement?

This kind of meta-properties may be characterized in terms of possibly complex
formulas. Accordingly, the main idea of this paper amounts to separating goals
as mental attitudes from different conditions specifying both their achievement
as well as their meta-properties.

We need always to remember that in pragmatic applications of intelligent
systems, the key requirement is efficiency of representation and reasoning. This
means that tractability is our prime prerequisite. However, typical real-life en-
vironments are dynamic and unpredictable what, together with the multiplicity
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of information sources, leads to gaps and/or inconsistencies in agents’ beliefs.
Such circumstances call for adequate tools for information completion and dis-
ambiguation. Typically, different forms of nonmonotonic/defeasible reasoning
techniques can serve for these purposes [8,22,26,28]. They, however, usually
violate tractability which can hardly be achieved even in classical propositional
logic, without placing certain restrictions on formulas used in knowledge bases.
In the case of nonmonotonic or multimodal formalisms, especially when used
in their full generality [2,9,16-18,29], the situation is even worse.

Only since recently, in 4QL and 4QL" [23,25,32] such forms of reason-
ing became tractable. In these four-valued query languages tractability is
achieved by restricting formulas to rules and introducing modules, external liter-
als [23,25] and multisource formulas [32]. Both 4QL and 4QL* support a mod-
ular and layered architecture, and provide a tractable framework for many
forms of rule-based reasoning, both monotonic and nonmonotonic. As the un-
derpinning principle, openness of the world is assumed. This may lead to the
lack of information. On the other hand, negation, allowed in premises and con-
clusions of rules, may lead to inconsistencies. To reduce the unknown/incon-
sistent zones, modules and multisource formulas provide means for:

« application-specific disambiguation of inconsistent information;
¢ closing the world locally (thus also globally, whenever needed);
» implementing of various forms of nonmonotonic and defeasible reasoning.

In this research we first indicate some issues with modeling goals. Then we
propose a new approach which, however, is not meant to be a final one. Our
intention is to solve some important issues while enjoying efficient implemen-
tation. Accordingly, we show how to understand goals in a tractable framework
of paraconsistent belief bases, applying 4QL" [32] extended by a belief opera-
tor. Note that paraconsistency has not been a goal of this research, being rather
its unavoidable consequence. However, we deal with quite simple and natural
paraconsistent semantics. For discussions of other paraconsistent approaches,
see [3-6,10].

The paper is structured as follows. In Section 2 we indicate some issues in
modal approaches to representing goals. Then, in Section 3, we outline our
approach to modeling the world. Section 4 is devoted to formalization of goals
and goal structures. In Section 5 we discuss a simple example illustrating our
approach. Section 6 shows how to represent goals in belief bases using the
4QL" language. Finally, Section 7 concludes the paper.

2 Issues in Modeling Goals

Contemporary intelligent and autonomous systems are realized according to
different knowledge representation paradigms. This is especially visible in
multiagent systems, implementing different models of agency. Regardless of
the implementation tools, all these systems are created to realize their design
objectives in the name of their owners. Even though a goal adoption is still
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a relatively difficult matter, goals and an agent’s decision making process are
well developed in belief-desires-intention system (BDI-systems) or belief-goals-
intention systems (BGI systems), when we intend to stress the autonomous role
of goals, in contrast to (a bit unclear) desires. Among logical formalizations of
BGI systems, modal approaches play the prominent role. Such approaches are
summarized, e.g., in [16,27]. In the sequel we indicate some issues related to
the use of modal logics in formalizing goals.

There are many types of goals’ models in agency. The main distinction is
between achievement goals and maintenance goals. In the case of achievement
goals, an agent is required to bring about some state of affairs, typically spec-
ified by a number of so-called goal states. In contrast, maintenance tasks are
about avoiding some situations, characterized as specific states. Typically, such
states may be considered as a sort of danger for an agent well being or violat-
ing its routine activity. As achievement goals are the most commonly studied
goals in Al in the sequel we will deal with them solely.

2.1 Complexity

In order to formalize goals in BDI systems, typically (multi)modal logic K is
used. Satisfiablity and provability in K are PSPACE-complete [20]. The same
holds for its multiagent version K,, [19].

High complexity seems unavoidable in logical formalizations as even the
simplest classical propositional logic is complex (with satisfiability being
NPTIME-complete and tautology checking being coO-NPTIME-complete). How-
ever, we make a shift from reasoning from arbitrary theories to querying be-
lief bases expressed in 4QL". This, on the one hand, allows us to make our
framework tractable (see Theorem 6.4) and, on the other hand, to express all
PTIME-computable queries (see [24,25,32]). Therefore, in the framework we
propose, complexity is no longer a substantial issue.

2.2 Distributing Goal Operator over Conjunction

When modeling goals in real-world applications, some modal properties of
goals represented as modal necessity operators remain undesirable. In par-
ticular, the O operator of (normal) modal logics can be distributed over con-
junction. That is:

goal(a A B) = (goal(a) A goal(3)) (@)}
For example:

goal(‘buy-a-car’ A ‘buy-spare-parts’) =

goal(‘buy-a-car’) A goal(‘buy-spare-parts’). @

The choice of intentions as arbitrary subsets of goals is different when one has
a single goal (‘buy-a-car’ A ‘buy-spare-parts’) and when one has two separate
goals: ‘buy-a-car’ and ‘buy-spare-parts’. This is particularly visible when one
has no resources to buy a car and has resources to buy spare parts. Then
the single goal (‘buy-a-car’ A ‘buy-spare-parts’) is not achievable while the goal
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‘buy-spare-parts’ can be achieved and chosen for realization, yet alone might
not be sensible. From that point of view the equivalence (2) (so (1), too)
is questionable. Therefore, in our solution the distribution law (1) is neither
assumed nor is a consequence of the introduced formalism.

2.3 Inconsistent goals

When goal operator is modeled as a O in a modal logic then, again by (1), we
have:
goal(a) A goal(—a) = goal(a A —ar) = goal(f) 3)

However,

» one might have inconsistent goals without having a goal f being impossible
to achieve;

* goal(f) is satisfied only in worlds with no alternative worlds, which blocks
other, consistent goals;

e goal(f — B) — (goal(f) — goal(s)); by generalization we have goal(t), so
~——"

t
conclude that goal(f) — goal(3). Having goal(f) we then derive goal(3),
where 3 is arbitrary. Thus, having inconsistent goals one has any other goal.

To avoid explosion of conclusions, inconsistencies deserve paraconsistent rea-
soning which is not addressed in (two-valued) modal logics used for formal-
izing goals. Paraconsistent reasoning used in our solution is summarized in
Section 3.

2.4 Incompatibilities between Goal Algebras and Logics

In the tradition of logical formalizations of knowledge or agent systems, goals
as mental attitudes are identified with formulas describing them. An impor-
tant, though not necessarily intended side-effect is that the algebra on goals is
induced by the underlying logic. In particular such natural operators on goals
like their sequential or parallel composition do not have direct counterparts in
logics typically used in the context of goals. For example, if one has a goal first
to eat dinner and later to walk, operators of dynamic logics or temporal log-
ics are to be used. However, such choices seriously affect their semantics and
complexity. Moreover, when formalizing goals we do not force any particular
algebra on goals. Algebraic operations on goals are left for further research.

3 Modeling the World
3.1 The Underlying Four-Valued Logic

We model the world using 4QL" [32], extending 4QL [23,25]. In order to con-
struct belief bases, we deal with the classical first-order language over a given
vocabulary without function symbols. Beliefs are modeled using belief struc-
tures, introduces by Dunin-Keplicz and Szatas in [12-14]. In the following
definitions we assume that Const is a set of constants, Var is a set of variables
and Rel is a set of relation symbols, and denote the resulting set of formulas
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by L.

Definition 3.1 A literal is an expression of the form R(7) or —R(7), with 7
being a sequence of arguments, 7 € (Const U Var)*, where k is the arity of R.
Ground literals over Const, denoted by G(Const), are literals without variables,

i.e., with all arguments in Const. If { = - R(7) then —/ o R(T). <

Remark 3.2 In the rest of the paper we frequently do not specify Const. In such
cases we always assume that Const consists of all and only constants appearing
in considered (sets of) expressions. That is, we apply a form of domain closure
axiom. <

Though we use the classical first-order syntax, the presented semantics sub-
stantially differs from the classical one. Namely,

o truth values t,i,u,f (true, inconsistent, unknown, false) are explicitly
present;

 the semantics is based on sets of ground literals rather than on relational
structures.

This allows one to deal with the lack of information as well as inconsistencies.
As 4QL' is based on the same principles, it can immediately be used as the
implementation tool.

The semantics of propositional connectives is summarized in Table 1.

Table 1. Truth tables for A, V and — (see [23,25,33]).
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Observe that definitions of A and V reflect minimum and maximum w.r.t. the
ordering:

f<u<i<t, ()]

As advocated, e.g., in [1,23,32,33], such a truth ordering appears to be natural
and reflecting intuitions of the classical two-valued logic. For example, a con-
junction is true if all its operands are true, etc. Negation behaves classically on
truth values t and f. If the truth value of a formula is unknown (inconsistent)
then the truth value of its negation is unknown (inconsistent), too. This justi-
fies the semantics of negation. Note that truth tables shown in Table 1, when
restricted to truth values {t,u,f} or {t,i,f}, are those of Lukasiewicz logic L3 as
well as Kleene logic K3 (see [7,30]). For further justification of the assumed
semantics, see [32].



56 A New Perspective on Goals

Let v : Var — Const be a valuation of variables. For a literal ¢, by £(v) we
understand the ground literal obtained from ¢ by substituting each variable
occurring in ¢ by constant v(x).

Definition 3.3 The truth value of a literal ¢ w.r.t. a set of ground literals L and
valuation v, denoted by ¢(L, v), is defined as follows:

t if {(v)e L and (—4(v)) ¢ L;
def ) i if £(v)e L and (—4(v))€L;

wif {(v) ¢ L and (—~4(v)) ¢ L;

f if ¢(v) ¢ L and (—¢(v)) € L.

For a formula a(x) with a free variable = and ¢ € Const, by a(z)* we under-
stand the formula obtained from « by substituting all free occurrences of = by
c. Definition 3.3 is extended to all formulas in Table 2, where a, 8 € £ denote
first-order formulas, v is a valuation of variables, L is a set of ground literals,
and the semantics of propositional connectives appearing at righthand sides of
equivalences is given in Table 1.

Table 2. Semantics of first-order formulas, where min and max are calculated w.r.t.
ordering (4).

e if v is a literal then (L, v) is defined in Definition 3.3;

(ma)(L,v) & ~(a(L,v));

(a0 B)(L,v) 2 (L, v) 0 B(L,v), where o€ {V, A};

(vVa € Const(a(x))) (L, v) & min {(a?)(L,v)};
acConst

e (3zeConst(a(z)))(L,v) & max {(0f)(L,v)}
acConst

Note that the set Const in Vx € Const(...) and 3z € Const(...) (Table 2) is
usually given by considered belief bases, so we will rather write Vz(...) and
Jz(...) whenever Const will be known from context.

3.2 Belief Bases

If S is a set then by FIN(S) we understand the set of all finite subsets of S.

We further assume that Const is always finite and by C of FIN(G(Const)) we
denote the set of all finite sets of ground literals over the set of constants Const.

In what follows, for simplicity, we assume that updates are arbitrary map-
pings transforming belief bases. For requirements on updates see the reach
literature on belief update and belief revision, e.g, [11,21,31].

Definition 3.4

» By a belief base we understand any finite set A of finite sets of ground literals
over a set Const, i.e., any finite set A C C.
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e By an update we mean a mapping transforming a belief base A into a belief
base A’, i.e., a mapping of the sort FIN(C) — FIN(C).

¢ By a plan we understand a finite sequence of updates. The result of ex-
ecuting plan p on A is denoted by p(A). For p = (p1,...,px), p(A) =

el (1 (D). ). a

One may wonder why belief bases are sets of sets of literals rather than a single
set of literals. This follows from two basic reasons:

o each set of ground literals in a belief base may represent a specific view
on the considered reality (e.g., one view as perceived by a single sensor or
a sensor platform, another as perceived by a camera, etc.);

« each set of ground literals in a belief base may represent a possible situation
in a way similar to possible worlds in Kripke models. 3

The following example is intended to illustrate these reasons by dealing with
various views and situations.

Example 3.5 The belief base A consisting of sets:
{hot(a), —hot(b),red(a)},{—big(a), big(b), ~red(a)}
may represent:

» sensor’s and camera’s views on objects a and b;

« descriptions of possible situations: one where hot(a),red(a) are true and
hot(b) is false and the second in which big(b) is true and big(a), red(a) are
false (note that literals not listed in a given set are unknown).

Note also that in the light of Remark 3.2, the set of constants of A is Const =
{a,b}. <
In the context of planning, updates typically result from effects of actions. Since
plans are finite sequences of updates, one can consider plans to be single up-
dates. We do not fix any particular syntax for updates using in examples self-
explanatory “update commands”. Of course, updates are arbitrary transforma-
tions that can remove/add sets of literals, etc. <

Example 3.6 Consider belief base A of Example 3.5 and a sequence of two
updates: the first adding fact —red(a) to the first set in A and the second
replacing fact —big(a) by big(a) in the second set of A. The resulting database
is:

{hot(a), —hot(b), red(a), —red(a)}, {big(a), big(b), ~red(a)}.

These updates can be gathered and considered to be a single update.

By information ordering we understand the ordering on truth values shown in
Figure 1. This ordering reflects the process of gathering and fusing informa-
tion. Starting from the lack of information, in the course of belief acquisition,

3 Note, however, that there are substantial differences between belief bases and and Kripke mod-
els.
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evidences supporting or denying hypotheses are collected. This finally permits
one to decide about the truth value of the hypotheses.

Figure 1. Information ordering.

To express beliefs we allow formulas of the form Bel(«) with the semantics
proposed in [14] and defined as follows. 4

Definition 3.7 Let A be a belief base, v : Var — Const be a valuation of
variables and « be a formula. We define the semantics of the belief operator
by:

(Bel(a))(A, v) < Lus{a(D,v) | D € A},

where LUB denotes the least upper bound wrt the ordering shown in Figure 1.
<

In cases when v is inapplicable, it is frequently omitted.

Example 3.8 Let A be the belief base considered in Example 3.5 and let v(z) =
a and v(y) = b. Then:

(Bel(hot(z))(A,v) =t; (Bel(hot(y))(A,v) =f;
(Bel(red(x))(A,v) =i; (Bel(red(y))(A,v) =u. <

In [12,13] deterministic belief structures and epistemic profiles have been in-
troduced and investigated, and further developed to their indeterministic ver-
sion in [14]. They can be used to model belief and goal formation. In the
current paper, in order to simplify presentation, we abstract from belief/goal
formation process focusing on the already established belief bases. However,
belief structures can be used for a more comprehensive formalization of beliefs
and goals. Their application to reasoning about group belief is investigated
in [15].

4 What are the Goals?

We shall consider goals to be first-order objects, having a separate sort G for
representing them. Further on we assume that sets of constants representing
goals are given and that the set corresponding to G consists of respective con-
stants. Slightly abusing notation we shall then use G to denote the sort of goals
as well as the set of constants representing goals.

4 However, here we consider the case of a single agent only.
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We assume that there are conditions associated with goals indicating when
they are achieved. Such conditions are given by mapping v : G — £ such that
v(g) returns as a result a first-order formula. The intuitive meaning is that the
goal g is achieved in belief bases where formula Bel((g)) is true. When v(g)
has free variables, we want the formula to be true for all respective tuples, that
is, we universally close v(g).

Example 4.1 Consider the belief base A of Example 3.5. Assume that the goal,
say g is to make objects involved not red and hot. That is:

v(g) = (=red(z) A hot(z)). (5)
To verify whether goal g is achieved, we evaluate in A the query:
Bel(Va(—red(x) A hot(x))), (6)

being universally closed v(g). The formula (6) is f since the formula in the
scope of Bel() in (6) is f in the first set of A and u in the second set of A.
On the other hand, the goal ¢’ with:

v(g') = Fz(-red(x) V hot(x))

is achieved in A since y(g’) is true in A. <

In intelligent systems like multiagent or robotics systems, the set of goals is typ-
ically fixed and well-defined. For example, a given robot may be able to clean
surfaces and cut grass but perhaps not be designed for other activities like mov-
ing heavy objects or proving mathematical theorems. All in all, various types
of agents offer a whole spectrum of actions they are able to perform. These
actions are then combined into, possibly social (that is realized cooperatively
by a group of agents) plans. Such plans may be predefined or generated on
demand from the first principle. A fixed library of plans naturally limits appli-
cability of the system, especially in dynamic and unpredictable environments,
but is computationally more effective. Goal structures defined below reflect
this situation. From another viewpoint, goal structures can be considered to
be a snapshot of certain situation. That is, we assume that particular goals are
specified and that there is a library of plans, predefined or generated so far.
However, the existing plans do not necessarily allow to achieve all considered
goals.

Definition 4.2 By a goal structure we mean a triple (P, G, v), where:
» P is a finite set of plans (a library of plans);
e G is a set of constants denoting (all) goals;

* v is a mapping from G to the set of first-order formulas £; intuitively, v(g) is
a formula specifying when goal g is achieved. <

We also introduce predicates:

 goal(g) meaning that g is one of goals;
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* achieved(g) meaning that the goal g is actually achieved;

* achievable(g) meaning that the goal g can be achieved using plans from the
library.

The semantics of the introduced language is defined below.

Definition 4.3 Let P, G, v be as in Definition 4.2, A be a belief base and v be a
valuation of variables into Const. Then:

(P.G,7), A, v |= goal(z) iff v(z) €G;

(P,G,7),A,v = achieved(z) iff (Bel(y(v(2))))(A,v) =t

(P,G,7),A,v |= achievable(x) iff there is p€P such that p(A) = A’
and (P,G,7),A",v = y(v(x)).

For other first-order formulas we add the clause:
(P,G,7), A v =rel(z) iff (Bel(rel(z)))(A,v) =t

The clause is then extended to cover the whole language by analogy with Ta-
ble 2 and Definition 3.7. <

Note that there is a substantial difference between achieved and achievable. The
former is evaluated in the “current” belief base A while achievable is evaluated
in A’ being a result of a suitable plan.

Of course, plans may lead to different outcomes, so “there is p € P” appear-
ing in the third clause of Definition 4.3 is to be understood as an existential
quantifier evaluated according to ordering (4).

All predicates in the language are four-valued, in particular goal, achieved,
achievable. We find this one of the advantages of the proposed approach. Typ-
ically, inconsistency indicates a problem to be solved and, in real life, such
problems can indeed frequently be solved. To illustrate this point consider in-
consistency of achievable(g). For example, g may be a customer’s goal to buy
a car. Buying a car requires certain amount of money. This, in turn, may be
inconsistent with financial abilities of the customer. The intelligent system may
have no means to resolve this inconsistency. It then informs the customer that
achievable (‘buy_a_car’) is inconsistent. However, the customer most probably
knows that, in this case, achieving the goal of buying a car requires finding
additional sources of money, like taking loan, etc. Once the required amount
of money is collected, the inconsistency is solved. In this and similar cases,
solving inconsistency of achievable indeed appears useful. ®

Remark 4.4 Let us emphasize that treating goals as elements of the domain
allows us to add priorities on goals and express their other properties by in-
troducing new relations, like preferred(g:, g2), liked(g), good(g), risky(g), etc.

<

5 In other cases, like involving missing capabilities or resources, one might, e.g., try to find an
agent or agents capable of achieving the goal and delegate the goal.
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5 An Example
Consider the following simple scenario.

I want to drive from town a to town b. I also do not want to be hungry being
in b, so want to have lunch during my trip.

I therefore have goals ‘be_in_b’ and ‘not_hungry_in_b’ for which ~ is specified as
follows:

~v(‘be_in b’) = in(b)
v(‘not_hungry_in b’) = lunch_between(a,b).
A library of plans contains plans reflecting the following sequences of actions:
1. drive(a, ¢); eat_at(c); drive(c, b);
2. drive(a, c); coffee_at(c); drive(c, b);
3. coffee_at(a); drive(a,b).

Since we encode plans as updates, the library of plans IP consists of three plans:
: ‘replace’ in(a) by’ in(c); ‘add’lunch_between(a, b); ‘replace’ in(c) by’ in(b);

drive(a,c) eat_at(c) drive(c,b)
po: ‘replace’ in(a) by’ in(c); ‘make’ thirsty(c) ‘false’; ‘replace’ in(c) by’ in(b);

drive(a,c) coffee_at(c) drive(c,b)
ps: ‘make’ thirsty(a) ‘false’; ‘replace’ in(a) by’ in(b). Assume that the current

coffee_at(a) drive(a,b)
belief base is:

A = {{in(a), thirsty(a)}, {in(a), ~thirsty(a)} }. @)
Plans, when apphed to A, result in:
= {{in(b), thirsty(a), lunch_between(a,b)}, (8
{in(b), ~thirsty(a), lunch_between(a, b)} };
= {{in(b), thirsty(a), ~thirsty(c)}, 9
{in(b), ~thirsty(a), ~thirsty(c)} };
p3(A) = {{in(b), ~thirsty(a)}, (10)
{in(b), ~thirsty(a)} }.

Now:

» goal ‘be_in b’ is satisfied in p; (A), p2(A) and in p3(A);

» goal ‘not_hungry_in_b’ is satisfied in p; (A) but not in p2(A) nor in p3(A).
Therefore, both considered goals are achievable.

6 Representing Goal Structures in 4QL"

To define belief bases we use 4QL", where belief bases are distributed among
modules. It is then relatively easy to allocate goals into a dedicated mod-
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ule, called ‘goals’. As 4QL" allows for multisource first-order formulas in the
premises of rules, it is almost immediate to define goal and achieved predicates.
However, we need the Bel() operator.

Note that 4QL and 4QLt modules can be identified with their well-
supported models being finite sets of ground literals [23,25,32].% A belief
base may then be represented by a finite set of 4QL or 4QL* modules. As the
Bel() operator is evaluated in belief bases, we extend 4QL'" by allowing Bely (),
where M is a set of module names, in the premises of rules. Note that this does
not affect complexity of 4QL" (see also [14]).

Definition 6.1 Let A be a belief base. We say that the set of modules M rep-
resents A iff A = {WsM(m) | m € M}, where WsM(m) denotes the well-
supported model of m. <

Given a valuation v : Var — Const of variables and a set of modules A, the
semantics of Belx () operator is given by:

Bely () (v) ¥ (Bel(a))(Wsm(M), v),
where WsM(M) % {WsmM(m) | m € M} and Bel(a))(WsM(M),v) is defined
in Definition 3.7.

In what follows we often identify modules with their names. We will allow
finite sets of module names to be arguments of relations. Such sets are treated
as constants and do not affect data complexity of the language.

Continuing the example of Section 5, the belief base (7) is represented by
two modules shown in Table 3.

Table 3. Implementation of belief base (7).

module delta_1: module delta_2:
in(a). in(a).
thirsty(a). —thirsty(a).
end. end.

Similarly, belief base (8) can be represented by modules p11, p12, belief base (9)
by modules p21, p22 and belief base (10) — by modules p31, p32.

Relations achieved and achievable are evaluated in belief bases, so we have
to add arguments indicating adequate sets of module names:

e achieved(g, M), meaning that the goal g is achieved in belief base Wsm(M);

* achievable(g, M), meaning that the goal ¢ can be achieved using a plan from
the library, starting from belief base Wsm(M).

We also have to encode plans. Therefore, we use relation:

e plan(P, M, M’), meaning that plan P transforms belief base WsMm(M) into
the belief base Wsm(M").

6 For any 4QL (4QL") module there is a unique well-supported model and it is computable in
deterministic polynomial time w.r.t the size of the domain.
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However, the predicate plan requires database updates to verify whether
a given plan leads from the belief base WsM(M) to WsM(M'). Updates are
not part of 4QL or 4QL" and have to be executed by an external application,
verifying whether a plan transforms WsM(M) to WsM(M’). Note that, for a
given initial belief base represented by modules M, we only have to compute
n facts of the form p1an(p,u,n’), where n is the number of plans in the library.

The relations goal, achieved, achievable and plan are allocated to the module
goal struct provided in Table 4.

Table 4. Implementation of goals considered in Section 5, where p1,p2,p3 are names
of plans considered in Section 5, and delta={delta_1,delta 2} is shown in Table 3.

module goal_struct:

goal(‘be_in b’).

goal(‘not_hungry inb’).

plan(pl,delta,{pil,pi2}).

plan(p2,delta,{p21,p22}).

plan(p3,delta,{p31,p32}).

achieved(‘be_in b’,M):- Bely(in(‘b’)).

—achieved(‘be_in b’ ,M):- —Bely(in(‘b’)).
achieved(‘not_hungry_in_b’,M):- Bely(lunch_between(a,b)).
—achieved(‘not_hungry_in_b’,M):- —Bely(lunch between(a,b)).
achievable(‘be_in b’ ,M):- 3 p€ P(plan(p,M,M’) Aachieved(‘be_in b’ ,M’).
—achievable(‘be_in_b’,M):- =3 pE€ P(plan(p,M,M’) Aachieved(‘be_in_b’,M’).

end.

Using the obtained modules one can ask queries like:

goal _struct. (achievable(‘be_in b’,delta) A
achievable(‘not_hungry_in b’,delta)),

or:
goal struct.(Jp € P (plan(p,delta,M’) A achieved(‘be_inb’,M’) A

achieved(‘not_hungry_in b’,M’)) )
The general construction of modules related to goals is defined below.

Definition 6.2 Let A be a belief base, G = (P, G, ) be a goal structure and let
plans be a set of fresh constants denoting plans in P. By a G-extension of A we
mean a belief base obtained from A by adding:

« a set of 4QL" modules representing A with delta being the set of names of
these modules;

« for each p € plans, module representing p(WsM(delta));

+ a new module containing, for each g € G and p € plans,
- Fact: goal(g).
- Rules:
plan(p,delta,M’). for M’ being a set of 4QL" modules representing
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p(A),
achieved(g,M) :- Bely(y(g)).
—achieved(g,M):- —Bely(v(g)).
achievable(g,M) :- JPEplans(plan(P,M,M’) Aachieved(g,M’)).
—achievable(g,M) :- —JPEplans(plan(P,M,M’) Aachieved(g,M’)). <

When complexity of the approach is concerned, the only problematic predi-
cate is achievable as its complexity depends on updates and plans. Even when
updates and plans are efficiently computable, complexity is also hidden in the
recursive clause for achievable in Definition 4.3. The following example illus-
trates the problem.

Example 6.3 Consider goals g, h, for which we have:

~(g) = achievable(h);
~(h) = achievable(g).

In this case we deal with a loop: to verify whether goal g can be achieved,
we verify whether there is a plan leading to a belief base, where formula
Bel(achievable(h)) is true. This, in turn calls for a similar verification con-
cerning g. <

When predicate achievable does not occur in the results of v, we can replace
the third clause of Definition 4.3 by:

(P,G,v),A,v = achievable(z) iff there is p€P such that p(A) = A’
and (Bel(y(v(2))))(A",v) =t.

In this case we have the following theorem which can be proved using com-
plexity results for 4QL and 4QL" [23,25,32].

Theorem 6.4 Let G = (P,G,~) be a fixed goal structure, " and let A be a G-
extension of a belief base. Assume further that:

e for any p € P and belief base A, p(A) is PTIME-computable w.r.t. the size of A;
o the predicate ‘achievable’ does not occur in results of ~.

Then models for belief bases constructed for G and implemented in 4QL" are
PTIME-computable w.r:t. the size of A. Thus, queries expressed by (multisource)
first-order formulas to such databases can also be computed in PTIME w.r.t. the
size of A. <

7 Conclusions

In this paper we analyzed some matters related to the formalization of goals
in contemporary intelligent systems, like multiagent systems. We have pro-
posed an approach addressing the selected issues, by keeping a clear separa-
tion between a concept of goal (thought here as a mental object), and its actual

7 That is, the cardinality of P and G as well as the length of formulas v(g), for g € G, are
considered to be constant.
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meaning (logical specification). This isolation turned up to be relatively easy
to achieve with the use of reification — a classical Al technique that have been
often exploited in different forms of planning.

Our proposal is not meant to be a final and exhaustive one. We have mainly
investigated how to understand achievement goals in a tractable framework of
paraconsistent belief bases, applying 4QL" with Bel() operators. The four-
valued language used to build a realistic world model, naturally introduces new
cognitive situations when compared with the two-valued world. Therefore, a
natural extension of our framework, including maintenance goals, is postponed
for future investigation.

In future research we also plan:

« to extend the framework to many agents and groups of agents;
¢ to add algebras on goals;

« to extend ontology by including subgoals, delegation, etc.
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Abstract

For reasoning about uncertain situations, we have probability theory, and we have logics
of knowledge and belief. How does elementary probability theory relate to epistemic
logic and the logic of belief? The paper focuses on the notion of betting belief, and
interprets a language for knowledge and belief in two kinds of models: epistemic neigh-
bourhood models and epistemic probability models. It is shown that the first class of
models is more general in the sense that every probability model gives rise to a neigh-
bourhood model, but not vice versa. The basic calculus of knowledge and betting belief
is incomplete for probability models. These formal results were obtained in Van Eijck
and Renne [9].

Keywords: Belief, betting, chance, foundations of subjective probability, Bayesian
conditioning, neighbourhood models.

1 Introduction

Elementary probability theory, in the subjective or Bayesian style, is fascinating
for cognitive scientists, for there is a marked contrast between fast error-prone
assessment of chance and the slow but more accurate calculation of subjec-
tive probabilities using conditioning. Interest is added by the fact that belief
about chance is an important basis of rational decision making and intelligent
interaction. I know from our collaboration in the Games, Actions, and Social
Software Project at NIAS that resulted in [11] and [12], that this is the stuff
that Rineke loves.

Probability theorists like to view the difference between logic and proba-
bility as a difference in subject matter. Logic is the topic of reasoning about
certainty, while probability theory teaches us how to reason about uncertainty.
Guess which discipline has the most relevance to everyday life? Still, the prob-
ability theorists are right: epistemic or Bayesian probability can be viewed as
an extension of propositional logic with hypotheses, i.e., basic propositions
whose truth or falsity is uncertain. But logic has something to say, too, about
reasoning under uncertainty: we have epistemic logic, doxastic logic, default

! Email: jve@cwi.nl
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logic, logic of conditionals, and so on. So it is natural to ask how the per-
spectives of logic and probability theory on knowledge and belief are related.
Frank Ramsey [27] considered the theory of probability as a branch of logic
where arguments can be inconclusive. I wholeheartedly agree. In this paper I
will argue that there is room for logics with a more general interpretation than
probability measures. As an example of those, I explore neighbourhood mod-
els for a language of knowledge and belief as willingness to bet, and compare
them with probabilistic models for the same language. The paper is light on
formal definitions and proofs. For these, the reader is referred to Van Eijck and
Renne [9].

The paper starts with some remarks, in Section 2, on the foundations of
probability theory, as a comment on the views of Christiaan Huygens on proba-
bility. This is connected to the foundations of subjective probability on rational
betting behaviour proposed by Ramsey, de Finetti and Savage, and, in Section
3, to the key role of probability in decision theory, which we owe to Von Neu-
mann and Morgenstern. Section 4 introduces the notion of betting belief and
compares this to some other notions of belief. In Section 5 I show that betting
belief allows for a crisp analysis of the lottery puzzle, at the price of sacrificing
closure of belief under conjunction. Section 6 presents a complete calculus for
epistemic models with belief neighbourhoods, and Section 7 proves an incom-
pleteness result for the calculus of betting belief with respect to probabilistic
models. This shows that the logic of betting belief describes a more general
kind of situation than is covered by probability models. Section 8 concludes.

2 Christiaan Huygens on the foundations of probability

Probability theory was invented by Pierre de Fermat and Blaise Pascal around
1650. The Dutch mathematician, astronomer, physicist and inventor Christi-
aan Huygens (1629-1695) picked up the new ideas during a visit to Paris in
1655. A digest of these was published, in Dutch, as an appendix to a textbook
by a former mathematics teacher of Huygens, Frans van Schooten. This was
the first treatise on probability that ever appeared, in Latin in 1657, and in
Dutch in 1660. Its importance is in the game-theoretic foundation that Huy-
gens proposes for probability, to support the technical results of Fermat and
Pascal.

Huygens starts his essay on how to calculate what non-finished hazard
games are worth and how to calculate winning chances in such games as fol-
lows:

“Ick neeme tot beyder fondament, dat in het speelen de kansse, die yemant
ergens toe heeft, even soo veel weerdt is als het geen, het welck hebbende hy
weder tot deselfde kansse kan geraecken met rechtmatigh spel, dat is, daer
in niemandt verlies geboden werdt. By exempel. So yemandt sonder mijn
weeten in d’eene handt 3 schellingen verbergt, en in d’ander 7 schellingen,
ende my te kiesen geeft welck van beyde ick begeere te hebben, ick segge
dit my even soo veel weerdt te zijn, als of ick 5 schellingen seecker hadde.
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Om dat, als ik 5 schellingen hebbe, ick wederom daer toe kan geraecken,
dat ick gelijcke kans sal hebben, om 3 of 7 schellingen te krijgen, en dat met
rechtmatigh spel: gelijck hier naer sal betoont werden.” [18]

Translation:

“I take as the foundation of both [calculating what non-finished games are
worth, and calculating winning chances] that in playing the chance that
someone has in some matter, is worth just as much as the amount that, if
he possesses it, will give him the same chances in a fair game, that is a game
where no loss is offered to anyone. For instance. Suppose someone without
my knowing hides in one hand 3 shillings, and in the other 7 shillings, and he
offers me the choice between the two hands. Then I would say that this offer
is worth the same as having 5 shillings for sure. Because, if I have 5 shillings,
I can wager them in such manner that I have equal chances of getting 3 or 7
shillings, and that in a fair game, as will be explained hereafter.”

Huygens explains this transformation to a symmetric game by applying it to his
example:

“Indien ick gelijcke kans heb om 3 te hebben of 7, soo is door dit Voorstel
mijn kansse 5 weerdt; ende het is seecker dat ick 5 hebbende weder tot de
selfde kansse kan geraecken. Want speelende om de selve tegen een ander
die daer 5 tegen set, met beding dat de geene die wint den anderen 3 sal
geven; soo is dit rechtmaetig spel, ende het blijckt dat ick gelijcke kans hebbe
om 3 te hebben, te weeten, als ick verlies, of 7 indien ick win; want alsdan
treck ick 10, daer van ick hem 3 geef.”

Translation:

“If I have equal chances to have 3 or 7, then by my Proposal this chance is
worth 5; and it is sure that if I have 5, I will get to the same chance. Because
putting 5 at stake against someone who stakes 5 against it, with condition
that the one who wins will give the other 3, one has a fair game, and it
becomes clear that I have equal chance of getting 3, namely, if I lose, or 7 if
I win; because if I win I draw 10, of which I give 3 to him.”

Thus, Huygens starts out from the expectation of a single individual in a lottery-
like situation. He gives a reconstruction of this in terms of an n-person game,
where n is the number of proposed chances, with equal stakes, and symmetric
roles. Huygens argues that the value of the stakes equals the expectation. If
a stake of value z buys me a ticket for a symmetric game with equal stakes
that has the same outcomes as the lottery-like situation that we started out
with, then it must be that the game and the lottery are worth the same. The
Dutch mathematician Hans Freudenthal, in his review of Huygens’ theory of
probability, remarks that “Equal Chance” is validly defined as free choice for
the player in a symmetric situation [15].

This is remarkably close to the famous Dutch book argument as a founda-
tion of probability, proposed much later by Ramsey [27], de Finetti [14], and
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Savage [29]. A Dutch book is a collection of bets (so it is not a book, and why
it is called Dutch is unclear) that together represent either a sure win or a sure
loss for the person who makes the bets, no matter how the situation turns out.

Take the case of equal chances of getting a and b again. Suppose this is
offered to you as a symmetric game, at a price x that is different from ‘%b Let
G be the game where you get a if you win and b if you lose. Let G’ be the game
where you get b if you win and « if you lose. Then the only difference between
G and G’ is that the roles of the two players are reversed. So we may assume
that you can enter into both games for the same price z. Now if z < 22, what
you should do is invest z in G and z in G’, and play the games simultaneously.
This costs you 2z, and it yields a + b, so this is a Dutch book in your favour.
Ifx > “TJ“”, and you are willing to enter G and G’ for the price z, then your
investment of 2z will get you only a + b, so you are losing no matter what.
There is a Dutch book against you.

Let us be a bit more precise about how Huygens would turn an individ-
ual choice situation with m possibilities sq,..., s, with revenues given by
Ly,..., L, into a stake distribution game G for m players. The stake  would
be the same for every player. The game would match the players with the pos-
sibilities. The utility function would be given by: if player i draws 37 then i

gets L;. Obviously, the expectation for each player in this game is 2o , SO
that should be the value of an individual stake. Also, the game is obv10usly
symmetric, for all players have equal chances of getting each of the “prizes”
Liyeoo Lo

Now replace the revenues by probabilities. Instead of Ly, ..., L,, we have
p 1,---,pm With 7" | p; = 1. Nothing changes. The expectation in the game is

, so this should be the value of an individual stake. Anyone who can get a
stake in the game for less that - can set up a Dutch book, and anyone who is
willing to enter the game for more than - faces a Dutch book against him.

3 Belief and decision making

The following is a model for decision making under uncertainty that is widely
used. An agent faces a choice between a finite number of possible courses of
action, say ag,...,a,. The agent is uncertain about the state of the world.
Say she considers states si, ..., s,, possible. Now suppose there is a table of
consequences ¢, with ¢(s;,a;) giving the consequences of performing action
a; in state s;. How can the agent choose between the available actions in a
rational way?

In the first place we should model the preferences of the agent. Let us
suppose there is a preference ordering R on the consequences, with cR¢ ex-
pressing that either the agent is indifferent between ¢ and ¢/, or the agent
strictly prefers c to ¢’. Assume R is transitive and reflexive. Then define cPc¢’ as
cRc' N\ =’ Re, so that ¢Pc’ expresses that the agent strictly prefers ¢ to ¢. The
relation P is transitive and irreflexive.

A utility function u : C' — R is said to represent R if u satisfies u(c) > u(c’)
iff cRC.
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Von Neumann and Morgenstern [25] showed how to turn this into a tool
for decision making if one adds a probability measure P on the state set. So
assume P(s;) > 0and >_.", P(s;) = 1. Then a utility function u on the conse-
quences induces a utility function U on the actions, by means of

Now it is clear how a rational agent who disposes of (i) a utility function u
representing her preferences and (ii) a probability measure on what she thinks
is possible decides on what to do. Such an agent will perform the action a;
that maximizes U (a;).

This is the reason why expositions of probability theory often make strong
claims about the applicability of their subject. Blitzstein and Hwang [7] list
a number of possible applications of probability, and they close off with the
application to Life in general:

“Life is uncertain, and probability is the logic of uncertainty. While it isn’t
practical to carry out a formal probability calculation for every decision made
in life, thinking hard about probability can help us avert some common fal-
lacies, shed light on coincidences, and make better predictions.”

This cheerful attitude to decision making engenders a particularly straightfor-
ward view of belief. I believe in ¢ if the odds in favour of ¢ are larger than
1: 1. Odds in favour of ¢ are calculated by means of 15(:2)' So I believe in ¢ if
the subjective probability I assign to the truth of ¢ is larger than the subjective
probability I assign to the truth of —. This is in fact the straightforward view
that you should only believe propositions which have a probability greater than
one half. Call this notion of belief betting belief.

4 Betting belief

The notion of betting belief has a number of remarkable properties. It is not
closed under conjunction: it does not follow from the facts that P(¢) > P(—y)
and P(y) > P(—) that P(p A1) > P(—¢ V —p). For suppose p, g, r are three
propositions that are mutually exclusive and have the same probability. Then
P(pVq) > P(—pA—q) and P(qV r) > P(—g A —r). From the fact that p, q,r
are mutually exclusive it follows that (p V ¢) A (¢ V ) is equivalent to ¢. On the
other hand, P((p V q¢) A (¢V r)) = P(q) < P(—q). The following model gives
a picture of this situation. The propositions p, ¢, 7 are mutually exclusive and
have the same probability % It is left to the reader to check in the picture that

P(pVq) =2 P(-pA—-q) =3, Plqvr) =2, P(~gA-r) = 1.
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This model represents probability by means of a weight function that gives each
world the same weight. Note that the model also picture knowledge, which is
represented by the epistemic accessibility relation.

The solid lines represent the epistemic accessibility relation of a single
agent; they indicate that every world is accessible from any world. We will
assume throughout this paper that knowledge accessibility is an equivalence;
in other words, we are interpreting the knowledge operator K as an S5 opera-
tor. In the situation pictured above, the agent knows for instance that at least
one of p, g, r is true. This is expressed by K(p V ¢ V r). The agent also knows
that the propositions p, ¢, r are mutually exclusive. And so on.

Betting belief in ¢ and betting belief in ¢ — 1/ does not entail betting belief
in 9. This is illustrated by the following model.

Again, probability is represented by means of a weight function that gives each
world the same weight. The probability of p (true in w and u) is %, the proba-
bility of p — ¢ (true in v and u) is 2, but the probability of ¢ (true in ) is 3.
Thus, betting belief in p and p — ¢ is justified, but betting belief in ¢ is not.

On the other hand, betting belief in p A ¢ implies betting belief in p and in ¢,
for if the probability of p A ¢ is greater than one half, then the same must hold
for the probabilities of p and of g.

It is well known that people untrained in probability theory have difficulty
with the notion of betting belief. Recall examples like the following. You are
from a population with a statistical chance of 1 in 100 of having disease D. The
initial screening test for this has a false positive rate of 0.2 and a false negative
rate of 0.1. You tested positive; call this test result 7. Should you believe you
have the disease, with ‘believe’ in the sense of betting belief?

You reason: “If I test positive then, given that the test is quite reliable, the
probability that I have D is quite high.” So you tend to believe that you have
D. But now you recall a lesson from your probability class: “True positives are
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often dwarfed by false positives.” You pick up pen and paper and calculate:
T|D)P(D) _ P(T|D)P(D)
P(T) - P(T|\D)P(D)+ P(T|-D)P(-D)’

The first step uses Bayes’ rule, and the second step calculates P(7") by means
of the rule of total probability. Filling in P(T|D) = 0.9, P(D) = 0.01, P(=D) =
0.99, P(T|~D) = 0.2, you arrive at the conclusion that P(D|T) = 5.

As a result of your calculation, you don’t believe anymore you have D but
you agree to further testing. This step from an initial guess that the probability
of D is high to a careful calculation revealing that the probability of D is low
should perhaps be viewed as a switch from thinking fast to thinking slow, in
the sense of Kahneman [21].

In any case, the example shows that qualitative belief judgements can be ut-
terly misleading. Such examples made probability theorists like Richard Jeffrey
urge us to give up qualitative belief altogether in favour of quantitative belief
based on probability calculations [19,20]. In the rest of the paper I will show
that there is room for qualitative belief linked to probability but not derived
from it, after all.

The notion of betting belief introduced above can also be dubbed Bayesian
belief. It is natural to interpret the uncertainties that we face in everyday life
as subjective probabilities, and recalculations of betting belief based on new
information can be viewed as model restrictions. The announcement ¢ in a
model M leads to a new model M|y consisting of all worlds in the old model
that satisfy ¢.

Consider the disease example again. Here is an epistemic probability model
for it. The worlds are all connected, so this is a so-called S5 model. A weight
function L gives the information about the probabilities for the four possible
combinations of d, d with ¢, 7.

poir) = I

w: dt ———u: dt

v:dt——s: dt
L(w) = 0.009, L(v) = 0.001, L(u) = 0.198, L(s) = 0.792

The weights (or probabilities, for the weight function is normalized) were com-
puted by taking the prior probabilities for d, and multiplying with the appropri-
ate error rates for the test. E.g., L(u) is the product of % (the prior probability
of not having the disease) and % (the false positive rate).

An update with the information ¢ changes this model into the following
restricted model, where the worlds where ¢ is false have dropped out. This is
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the public announcement update from Jan Plaza [26].

w: dt ———u: dt
L(w) = 0.009, L(u) = 0.198

Re-normalization of the weight function gives L(w) = 53, L(u) = % So after
the information that the test was positive has been taken into account, the
probability of d has changed from ﬁ to 2—13 The announcement update result
agrees with the application of Bayes’ rule. Bayesian conditionalisation (see
[32]) and announcement update for epistemic probability models coincide.
For further discussion and some qualification of this claim see [5].

Now let us coarsen the model, and replace the weight function by a neigh-
bourhood function that tells us which propositions are believed in the betting
sense. Starting out from epistemic models (Kripke models with equivalence
relations of epistemic accessibility), we add a neighbourhood function for each
epistemic agent. I will assume that within each i-cell, the neighbourhoods that
get assigned to different worlds are the same; this encodes the fact that if an
agent believes ¢ then she knows that she believes .

Truth definition for belief in ¢, in terms of neighbourhoods, is:
M,w = By iff for some X € N(w) forallz € X : M,z |= ¢.

Here N is a function that assigns to each world w a set of neighbourhoods for
w, where each neighbourhood X is a set of worlds. See [9] for a detailed com-
parison of neighbourhood models and epistemic probability models. Epistemic
probability models are epistemic models with a weight function that assigns
positive values to all worlds, and that satisfies the condition that the sum of
the weights over each epistemic partition cell is bounded (but this condition is
only relevant if the number of worlds in some partition cells is infinite).

Here is a neighbourhood version of the above epistemic weight model, with
the neighbourhoods defined from the probabilities by means of: X € N(w) iff
X C [w] and P(X) > P(Jw] — X), where [w] is the epistemic equivalence class
of w.

w: dt ————— u: dt

vidt——s: dt
N(w)=N(v)=N(u) = N(s) =
{{sh {s,up, {s, v}, {s, w},
{s,u,v},{s,v,w}, {s,w,u},{s,u,v,w}}.
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To understand the neighbourhood function, observe first of all that since the
epistemic accessibility relation is universal, the neighbourhoods are the same
for every world. Next, note that that X is a neighbourhood iff s € X. This is
because the probability of world s in the original probability model is higher
than the probability of W — {s}. It is convenient to use 1+ X for {Y C U |
X C Y} (the set of all supersets of X in domain U), where the domain U is
understood from context. Then the neighbourhoods in the model are given by
N(w) = N(v) = N(u) = N(s) =1 {s}.

Now we can see that the neighbourhood function does not give enough
information to calculate a new neighbourhood after information update. After
information update with ¢, betting belief should favour world u over world w.
But no reasonable update rule on neighbourhoods will give this result, for in
the original model, the neighbourhood function is symmetric between w and
u: we have for all neighbourhoods X that w € X iff u € X.

This indicates that instead of a neighbourhood function we need something
more expressive. One option here would be to introduce plausibility relations
[3,4], and no doubt there are other options. The option we will explore here is
modification of the neighbourhood function.

A conditioned neighbourhood functional is a functional 91 : W — P(W) —
PP(W) that assigns to every w a function N, : P(W) — PP(W), where for
each X C W, M, (X) is a set of neighbourhoods of w conditioned by X.

A neighbourhood functional for the disease model would assign to every
world w and every X C W a set of neighbourhoods given by

MNy(X) ={Y CX | P(Y)> P(X —Y)}.

For the disease model, we get the following neighbourhood functional (values
indicated for all sets with size > 1):

{s,u,v,w} — 1 {s}
{s,u,v} — 1{s}
{s,u,w} = 1{s}
{s,v,w} = 1 {s}
{u,v,w} = 1 {u}

{s,u} = 1 {s}
{s,v} — 1 {s}
{s,w} = 1 {s}
{u, v} e T {u}
{u, w} = T {u}
{v,w} = T {w}

Truth definition for belief in ¢, in terms of neighbourhood functionals is (as-
sume [w] gives the partition block of w for the epistemic relation):

M, w |= By iff for some X € 9, ([w]) forallz € X : M,z = ¢.

A reasonable update rule for neighbourhood functionals could now be: restrict
the functional to the new universe U.
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Using this, we see that after update of the neighbourhood functional of the
neighbourhood model with ¢, the agent still believes that —d, as she should.

One of the properties of betting belief is strong commitment. To see what
that means, let us first look at the dual B of B. By is true iff ~B-y is true iff
it is not the case that the probability of — is higher than % This is the case iff
the probability of ~¢ < 1, iff the probability of ¢ is > 1.

Now suppose Egp is true. Then P(y) > % Suppose IA((wp A1) is also true.
Then an accessible world where ¢ is false and 1) true exists. Let us look at the
probability of ¢ V ¢. It must be strictly larger than i, for the world where ¢
is false and v true has positive weight. I have just shown the soundness of the
following axiom of strong commitment (SC):

Bo AK(~¢ Atp) = B(p V). (SC)

Another axiom that we get immediately from the meaning of By is (D) for
determinacy:

By — ﬁnp. (D)

What (D) says is that it follows from that fact that I am willing to bet on ¢ that
I am not willing to bet on —.

If we replace the notion of betting belief by that of threshold belief, by
interpreting belief in ¢ as P(y) > t, for some specific ¢ with % <t <1 (thisis
also known as Lockean belief), then By gets a different meaning. Under this
notion of belief, By is true iff it is not the case that B—y is true, iff it is not the
case that P(—) > t, iff P(—p) < t, iff P(p) > 1—t. Since § < ¢, this certainly
holds. It follows that (D) also is sound for Lockean belief.

For threshold belief with ¢ > %, (SQ) fails, however. This is illustrated by
the following counterexample.

Pw)=1—-t,Plv)=t—1% Pu)=1

Let ¢ > 1. Then P(p) = P(w) = 1 —t, so, as we have seen, Bp is true. Also,

K(—p A q) is true, for there is an accessible world, v, where —p A ¢ is true.
The formula p V ¢ is true in worlds w and v, so P(p V q) = P(w) + P(v) =
l—t+t+4=1<1ts0B(pVyq)is false in the model.

Still another way to interpret (qualitative) belief is as follows: Sy is true iff
it holds for all consistent v that P(p|¢)) > P(—¢|y) (compare Leitgeb [24]).
This uses S¢ for stable belief in . Stable belief can also be defined in terms
of updates: Sy is true in w iff it holds for all ¢ that are true in w that [!¥]Bey,
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where [lt)] Bo expresses that By is true after updating the model with «, and
where By is interpreted as betting belief.

Since neighbourhood models are not expressive enough to model betting
belief update, neighbourhood models cannot provide a reasonable truth defi-
nition for S¢. But if we switch to conditioned neighbourhood models, we have
a means to interpret stable belief, as follows.

M,w |= Sy iff forall X C [w],X #0
it holds for all x € X that M | X,z = Bo.

Here M | X is model M restricted to X, with the neighbourhood functional
restricted accordingly, so B is interpreted with respect to the updated neigh-
bourhood functional. The clause for S¢ expresses that (stable) belief in ¢ is
belief that continues to hold, no matter how we restrict the model.

In fact, Leitgeb’s notion is a special case of this, for Leitgeb’s theory is
phrased in terms of standard Kripke models instead of neighbourhood mod-
els, and standard Kripke models can be viewed as constrained neighbourhood
models.

Strong belief in ¢, yet another notion of qualitive belief, is a bit harder
to link to probability. It is defined for plausibility models, e.g., locally con-
nected preorders. A preorder is a reflexive and transitive relation. A relation
R is weakly connected (terminology of Robert Goldblatt [16]) if the following
holds:

Va,y,z((zRy N xRz) = (yRz Vy = 2V zRy)).

A relation R is locally connected if both R and R" (the converse of R) are
weakly connected. A most plausible possible world is a world that is maximal in
the R ordering. An agent strongly believes in ¢ if ¢ is true in all most plausible
accessible worlds. This yields a KD45 notion of belief (reflexive, euclidean, and
serial). See Baltag & Smets [3,4].

Finally, it is possible to interpret qualitative belief as subjective certainty. An
agent ¢ believes in ¢ without any doubt if P;(¢) = 1. This is used in epistemic
game theory (Aumann [1]), and can easily be expressed in epistemic models,
for this notion coincides with knowledge. If one drops the requirement that
weight functions assign strictly positive values to all worlds then certainty and
knowledge no longer coincide.

5 The lottery puzzle

One of attractions of betting belief lies in the light it sheds on the lottery puzzle.
If Alice believes of each of the tickets 000001 through 111111 that they are not
winning, then this situation is described by the following formula:

111111
B,t.
t=000001
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If her beliefs are closed under conjunction, then this follows:

111111
B, /\ —t.
t=000001

But actually, she believes, of course, that one of the tickets is winning:

111111
B, \/ t.
t=000001

This is a contradiction. Since the lottery puzzle involves three statements, there
are three possible strategies to deal with it.

(i) Deny that Alice believes that her ticket is not winning.

. . 111111 111111

(ii) Block the inference from A, ;0001 Ba™t t0 Ba Ai—o00001 -
(iii) Deny that Alice believes that there is a winning ticket.

A notion of belief for which it holds that Alice does not believe there is a win-
ning ticket will hardly convince anyone, so let us forget about that way out.
This leaves us with two options.

The advantage of (i) is that there is no need to sacrifice closure of belief
under conjunction. A disadvantage is that one has to opt for a severe restriction
of what counts as belief.

An advantage of (ii): no need to artificially restrict what counts as belief.
And true, one has to sacrifice closure of belief under conjunction, but this is
maybe not so bad after all. As I will see below, lots of nice logical properties
remain.

Proponents of (i) are many philosophers, and they are easy to recognize:
they call the lottery puzzle the lottery paradox. But maybe this is a bit harsh
on the philosophers; after all, some have taken the trouble to develop notions
of stable belief where some version of (i) can be saved. Proponents of (ii)
are subjective Probabilists like Jeffrey [20], and decision theorists like Kyburg
[23]. As we will see in the next section, one can side with them without giving
up reasonable notions of qualitative belief.

6 Neighbourhood models and completeness

To drop the closure of belief under conjunction, we need an operator B, that
does not satisfy (Dist).

Bu(¢ — ) = Bap — Batp (Dist-B)

This means: B, is not a normal modal operator. See also [34]. Interpreting
modal operators as accessibility relations between worlds brings the distribu-
tion axiom or K axiom in its wake. In order to drop it we have to switch to
(epistemic) neighbourhood models. Here is a formal definition.
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An Epistemic Doxastic Neighbourhood Model M for set of agents Ag and
set of propositions Prop is a tuple

(W,R,V,N)

where
e W is a non-empty set of worlds.

* R is a function that assigns to every agent a € Ag an equivalence relation ~,
on W. We use [w], for the ~, class of w, i.e., for the set {v € W | w ~, v}.

* V is a valuation function that assigns to every w € W a subset of Prop.

¢ N is a function that assigns to every agent a € Ag and world w € W a
collection N, (w) of sets of worlds—each such set called a neighbourhood of
w—subject to a set of conditions.

The core conditions are as follows:

() VX € Ny(w) : X C [w],. This ensures that agent a does not believe any
propositions X C W that she knows to be false.

() 0 ¢ N,(w). This ensures that no logical falsehood is believed.
(n) [w], € No(w). This ensures that what is known is also believed.

(@) Vv € [w], : Na(v) = Na(w). This ensures that if X is believed, then it is
known that X is believed.

By dropping some of these conditions one can further weaken (or: generalize,
depending on perspective) the notion of belief. But the constraints that the
conditions impose on belief are quite weak, so we will not do so here.

There are three further conditions that may be imposed to further
strengthen the notion of belief.

(m) VX CY C [w]a : if X € Ny(w), thenY € Ny(w). This says that be-
lief is monotonic: if an agent believes X, then she believes all propositions
Y D X that follow from X. This may seem entirely reasonable, but in pro-
posals where neighbourhoods are used to model conflicting and inconclusive
evidence [6] it is dropped.

(d) If X € Ny(w) then [w], — X ¢ N,(w). This corresponds to the axiom (D)
that we discussed above. This condition says that if a believes a proposition
X then a does not believe the negation of that proposition. As we have seen,
this holds for betting belief and threshold belief, for a threshold above 1. For
thresholds below %, it fails, however.

(sc) VX,Y C [w],: if [w], — X ¢ No(w)and X C Y, thenY € N,(w). If the
agent does not believe the complement [w], — X, then she must believe any

strictly weaker Y implied by X. We saw above that this distinguishes betting
belief from threshold beliefs for thresholds above 1.

Epistemic doxastic neighbourhood models can interpret the language of epis-
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temic doxastic logic (henceforth, KB language):

=T |pl-0|(0A@)]| Kap | Batp

The interpretation of K, uses the R relations; the interpretation of B,y uses
the neighbourhoods. Here is the neighbourhood version of the first example
above:

w: pqr u: pqr

In all worlds, K(p V ¢ V r) is true. In all worlds B—p, B—q, B—r are true. In
all worlds B(—p A —q), B(—p A =), B(—g A —r) are false. So the lottery puzzle
is solved in neighbourhood models for belief by non-closure of belief under
conjunction.

Here is a calculus for betting belief that relates belief to a standard S5 notion
of knowledge.

Ax1i0MS
(Taut)  All instances of propositional tautologies
(Dist-K)  Ku(p = ) = Ko — Kot
M Kap = ¢
(PI-K)  Kop = K Kagp
(NI-K)  —Kap — Ko Kap
® =B, 1.
(PI-KB) B,y — K.Bap
(NI-KB) By — K~ Byy
(KB) Kop = Bap
M) Ka(p =) = Bap = Batp
(D) Bap — = Ba—e.
(SC)  Bap AKu(—p A¥) = Balp V1)
RULES

Yo% ¢ 2

(0 Kup

(Nec-K)

This calculus for betting belief is discussed in [9] and [2]. The fact that closes
off this section is proved in [9].
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Fact 6.1 The calculus of betting belief is complete for epistemic doxastic neigh-
bourhood models.

7 Incompleteness for epistemic probability models

The step from neighbourhoods to probabilities is very small, but we will see in
this section that the logic of neighbourhoods and the logic of probabilities are
different.

Epistemic probability models are the result of replacing the neighbour-
hood function of an epistemic doxastic neighbourhood model by a weight func-
tion L. A weight function L assigns to every agent a a function L, : W — QF
(the positive rationals), subject to the constraint that the sum of the L, values
over each epistemic partition cell of a is bounded. If X C W then let L,(X)
be shorthand for ) L.(z). Boundedness can then be expressed as follows:
for each ¢ and w: L, ([w],) < oo.

To illustrate, here is an example from investment banking. Two bankers i, j
consider buying stocks in three firms a, b, ¢ that are involved in a takeover bid.
There are three possible outcomes: « for “a wins”, b for “ b wins”, and ¢ for “c
wins.” ¢ takes the winning chances to be 3 : 2 : 1, j takes them tobe 1: 2 : 1.
In the following picture, the knowledge of i is represented by solid lines, that
of j by dashed lines.

a:(i,3),(j,1) —— b: (i,2), (4, 2)

\ !

c: (4,1),(5,1)

In all worlds, i assigns probability 1 to a, 1 to b and { to ¢, while j assigns
probability % to a and to ¢, and probability 5 to b.

We see that 7 is willing to bet 1 : 1 on a, while j is willing to bet 3 : 1 against
a. It follows that in this model 7 and j have an opportunity to gamble, for, to
put it in Bayesian jargon, they do not have a common prior.

Now consider the possibility that agent j has learnt something. Suppose
that, as a result of this information, agent j (dashed lines) now considers ¢
impossible.

a: (i73)7 (] 1) — b: (i72)7 (J> 2)
c: (4,1),(5,1)

So we suppose that j has foreknowledge about what firm ¢ will do.
The probabilities assigned by ¢ remain as before. The probabilities assigned
by j have changed, as follows. In worlds a and b, j assigns probability  to a
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and % to b. In world ¢, j is sure of c.

We may suppose that this new model results from ; being informed about
the truth value of ¢, while ¢ is aware that j received this information, but
without 7 getting the information herself. So i is aware that j’s subjective
probabilities have changed, and it would be unwise for i to put her beliefs to
the betting test. For although i cannot distinguish the three situations, she
knows that j can distinguish the ¢ situation from the other two. Willingness of
j to bet against a at any odds can be interpreted by ¢ as an indication that c is
true, thus forging an intimate link between action and information update. I
leave further analysis for another occasion.

Here is an example where two agents ¢ (solid lines) and ;j (dashed lines)
are uncertain about the toss of a coin. ¢ holds it possible that the coin is fair
f and that it is biased f, with a bias 2 for heads h. j can distinguish f from
f. The two agents share the same weight (so this is a single weight model, see
[10]), and the weight values are indicated as numbers in the picture.

hf2 hf3

hf 2

hfl

In world hf, i assigns probability 2 to & and probability § to f, and j assigns
probability £ to i and probability 1 to f.

It is possible to normalize this model, but as a result of this each agent will
have to get its own weight, for the weight functions are normalized within the
epistemic accessibility cells.

hf : (Zvi (]7%) - h? (27%)5(]7%)

)
\ /

The rules for interpretation of the KB language in epistemic probability
models are obvious:

M,w | K. iff forallv e [w], : M,v = ¢.
M, w |= By iff

> ALa(v) [v € [wlo, Myv = 0} > D {La(v) | v € [w]a, M, v~}

There is also an obvious way to reduce an epistemic probability model to a
neighbourhood model, while preserving betting belief. Let M = (W, R,V, N)
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be a neighbourhood model and let L be a weigth function for M. Then L
agrees with M if it holds for all agents a and all w € W that

X € Na(w) iff Lo(X) > Lo([w]a — X).

The following theorem may come as a surprise, for it shows that, in a sense, the
class of epistemic doxastic neighbourhood models is more general than that of
probabilistic models. In other words: the principles of betting belief given in
the calculus above do not force a probabilistic interpretation of the B operator.

Theorem 7.1 There exists an epistemic doxastic neighbourhood model M that
has no agreeing weight function.

Proof. The proof of this uses an adaptation of an example from [33, pp. 344-
345]. Let Prop := {a,b,c,d, e, f, g}. Assume a single agent 0. Define:
X :={efg,abg, adf,bde, ace, cdg,bef}.

X' := {abcd, cdef, beeg, acfg, bdf g, abef, adeg}.

Notation: zyz for {z,y, z}.
Vi={Y|3XeX: X <Y <W}

Let M := (W,R,V,N) be defined by W := Prop, Ry = W x W, V(w) =
{w}, and for all w € W, Ny(w) = ). Check that X’ NY = 0. So M is a
neighbourhood model.

Toward a contradiction, suppose there exists a weight function L that
agrees with M. Since each letter p € W occurs in exactly three of the seven
members of X', we have:

> Lo(X) =Y 3 Li({p}).

XeX peEW

Since each letter p € W occurs in exactly four of the seven members of X/, we
have:
D Lo(X) =) 4-Lo({p})
Xex’ peEW

On the other hand, from the fact that Lo(X) > L,(W — X) for all members X
of X we get:

S LX) > > Lo(W—-X)= > LX)

Contradiction. So no such L exists. m|

I conjecture that this is the smallest counterexample, that is, I guess that all
neighbourhood models up to size 6 have an agreeing weight function, but this
needs to be checked.
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Fact 7.2 The calculus of epistemic-doxastic neighbourhood logic is sound for the
class of epistemic probability models. Probabilistic beliefs are neighbourhoods.

Theorem 7.1 shows that the KB calculus is incomplete for the class of epistemic
probability models. In order to get a calculus that fits this class, we have to add
an infinite series of axioms. The idea behind these axioms is from Scott [30].
What the axioms say, intuitively: If agent a knows the number of true y; is less
than or equal to the number of true v;, and if a believes ¢, and the remaining
; are each consistent with her beliefs, then agent a believes one of the ;.

It turns out that this is expressible in the KB language; see Segerberg [31].
Let (o1, ..., ¢mlat1, ...,y ) abbreviate the KB formula expressing that agent
a knows that the number of true ¢; is less than or equal to the number of
true ;. Put another way, (¢;I,4;)", is true if and only if every one of a’s
epistemically accessible worlds satisfies at least as many ; as ;. Using this,
we can express the Scott axioms: R

(Scott)  [(pilathi)f2y A Bapr A N2y Bai] = /ity Bats
Theorem 7.3 Adding the Scott axioms to the KB calculus yields a system that is
sound and complete for epistemic probability models.

For the proof of this I refer to [9]. To say a bit more about the connection
between qualitative belief and quantitative belief we need a more expressive
language for interpretation in epistemic probability models.
Let 7 range over Ag, p over Prop, and q over Q. Then the language of
epistemic probability logic is given by:
pu=T|pl-e|(@Ne)[ta=0]ta=0
to:=q | q- Pyp|te+t, where all indices a are the same.

This is expressive enough to compare subjective probabilities of the same agent.
In particular, we can say things like P,(p) > P,(¢). Truth for this language in
epistemic probability models is defined as follows. Let M = (W, R,V, L) be an
epistemic weight model and let w € W.

M,wET always
M w E piffp € V(w)
M, w = —piff it is not the case that M, w = ¢
M,w E o1 A po iff M, w = 1 and M, w = ¢
M,w = tq > 0iff [t,]2' >0
M,w =ty = 0iff [t, ] = 0.
[dl' =q
[a- Pl == a x Pl ()
[ta +tal3" = [tal' + [ta1"

Mmoo La{u € [wla | Mou = ¢})
Pyu(p) = Lo ([l2)
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Fact 7.4 A sound and complete calculus for the language of epistemic probability
logic, interpreted in epistemic probability models, is given in [10].

See also [13] and [22], where calculi for different epistemic probability model
classes are given.

Notice that every epistemic probability model has an associated neighbour-
hood model. For if M = (W, R,V, L) is an epistemic probability model, then
let M* be the tuple (W, R, V, N) given by replacing the weight function by a
function N, where N is defined as follows, for a € Ag, w € W.

No(w) ={X C [w]y | Lo(X) > Lo ([w]e — X)}

Fact 7.5 For any epistemic weight model M it holds that M® is a neighbourhood
model.

Now let us translate knowledge and belief into probability statements, by in-
terpreting knowledge as certainty and belief as betting belief.

If ¢ is a KB formula, then ¢* is the formula of the language of epistemic
probability logic given by the following instructions:

)

(1 A p2)® =] A
(Kap)® =Pa(p®) =1

(Ba@). = Pa(99.) > Pa(_‘w.)'
Theorem 7.6 For all KB formulas y, for all epistemic probability models M, for
all worlds w of M:

M w = iff Mow = @°.

Proof. Induction on formula structure. O

Theorem 7.7 Let b denote derivability in the neighbourhood calculus for KB. Let
' denote derivability in the calculus of EPL. Then \- ¢ implies H' °.

Proof. Induction on proof structure. a

8 Some Loose Ends

Are there applications where neighbourhoods without agreeing weight func-
tions are natural? Is there a natural interpretation for the incompleteness ex-
ample for {a, b, c,d, e, f, g}? Is the counterexample against completeness of the
KB calculus for probability models the smallest counterexample?
Representation of probabibility information by means of weight functions
was designed with implementation of model checking in mind. Just extend
epistemic model checkers for S5 logics with a weight table for each agent.
Implementations of model checkers for these logics can be found in [8] and in
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[28]. The implementations can deal with Monty Hall style puzzles, urn puzzles,
Bayesian updating by drawing from urns or tossing (possibly biased) coins, and
‘paradoxes’ such as the puzzle of the three prisoners (see, e.g., [20]). Efficiency
was not a goal, but these implementations can be made quite efficient with a
little effort.

Further analysis of the connection between neighbourhood logics and prob-
abilistic logics [9] is in order. This is also connected to work of Wes Holliday
and Thomas Icard [17]. Holliday and Icard investigate a language with a prim-
itive operation ¢ -, 1, for “according to a, ¢ is at least as probable as .”
This is a revival of Segerberg’s modal logic for comparative probability [31].
Interestingly, the qualitative probability Kripke models defined by Segerberg
(and adopted by Holliday and Icard) seem better suited for defining well-
behaved model restriction operations than the neighbourhood models used in
the present paper. But note that the models with conditional neighbourhood
functionals remedy this. Therefore, an obvious next step in the investigation
of the logic of knowledge and qualitative belief is the study of the class of epis-
temic doxastic models with conditional neighbourhood functionals, together
with operations of knowledge and belief update.
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In 2009, Rineke Verbrugge set out a research agenda which proposed to study social
cognition using logic and computational modeling. The hope was that two different
types of simulation might prove useful, namely cognitive models and agent-based mod-
els. Verbrugge’s proposal was to use cognitive models to investigate the limits of ‘higher
order theory of mind’ in humans, and to test different ‘scenarios’ for its evolution using
agent-based models, essentially simulating different hypothesized ‘evolutionary pres-
sures’ and studying the extent to which they select for more complex social cognition.
However, many cognitive and agent-based models actually deliver an opposite message,
that is often experienced as ‘killjoy’ — that what looks like complex social cognition might
not be either social or complex at all! In this paper, we discuss why computational mod-
els tend to deliver such ‘killjoy’ explanations, and what this means for studying the
evolution of social cognition in animals. We conclude that such models incorporate em-
bodiment and embeddedness due to various dynamical feedbacks, and so give rise to
counter-intuitive dynamics. Through these dynamics, seemingly simple behavior rules
can generate seemingly complex behavioral patterns. In principle, such ‘killjoy’ results
enable us to identify ‘false-positives’, i.e. those cases where we have identified (selec-
tion for) social cognition where there is none. However, there is a danger that com-
putational models oversimplify matters leading to false-negatives. In the latter case,
we erroneously discard cognitive explanations. We propose that future research should
address whether oversimplification and false-negatives are a problem, because this will
affect whether we are identifying false-positives appropriately.
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1 Introduction

Broadly speaking, social cognition is the suite of skills animals of all kinds use
to navigate life with their conspecifics. It is a widely studied topic; comparative
researchers study social cognition in other animals [25]; developmental psy-
chologists investigate its emergence in children [60]; neuro-scientists image its
workings in the brain [46].

In 2009, Rineke Verbrugge set out a research agenda which proposed to
study social cognition from another angle [64]: That of logic and computa-
tional modeling. In particular, she argued that such methods might elucidate
the workings of ‘higher order social cognition’, which she uses as a synonym
for ‘higher order theory of mind’. Even without the ‘higher order’ label, ‘theory
of mind’ is often considered the most complex form of social cognition [14];
it is the ability to appreciate what others see, know and want; the ability to
put oneself ‘in another’s shoes’, figuratively speaking [52], and to realize that
another’s perspective on the world may be different from one’s own. ‘Higher
order theory of mind’, then, is the ability to not just think about another’s men-
tal states, but to think about mental states that are themselves about mental
states [21]. In this framework, Sujata having the thought ‘Rineke wants the ba-
nana’ would be an example of first-order ‘theory of mind’, while Jakub thinking
‘Sujata knows that Rineke wants the banana’ would be second-order (see, e.g.,
[43D.

With respect to computational models of ‘higher order theory of mind’, Ver-
brugge’s hope was that two different types of simulation might prove useful
[64]. On the one hand, she argued that cognitive models might shed light on
why both children and adults find ‘higher-order theory of mind’ relatively dif-
ficult. In a cognitive model, the mental operations that underlie behavior are
modeled explicitly, ranging from the processing of visual information to the
learning of new strategies and the retrieval of facts from declarative memory
[57]. Thus, in a cognitive model, it is possible to implement different theories
of how humans solve ‘higher order theory of mind’ tasks and see which best
predict the errors and reaction times of experimental participants.

Verbrugge’s other suggestion was to study the evolution of ‘higher order
theory of mind’ with agent-based models [64]. Agent-based models are like
cognitive models in that they explicitly simulate individuals, but in agent-based
models, the focus is much more on the interaction between different agents and
their environment; the agents themselves, and certainly their cognitive pro-
cesses, are usually represented in a more simplified manner than in cognitive
models. Often, if an agent-based model makes testable predictions, it is at the
group level, showing how a population might change across time or space (see,
e.g., [20] for a review). However, in addition to aiding such extrapolation, an
agent-based model can also produce new insights by generating unexpected,
emergent patterns of behavior [35], as we discuss later. Verbrugge’s proposal
was to use agent-based models to test different ‘scenarios’ for the evolution
of ‘higher order theory of mind’, essentially simulating different hypothesized
‘evolutionary pressures’ and investigating the extent to which they select for
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more complex social cognition.

Existing theories posit that perhaps a need for cooperation [45], or ‘Machi-
avellian manipulation’ [9], or larger group size more generally [22], was the
driving force behind the advanced cognitive abilities of primates and other
large brained creatures, like corvids [24]; Verbrugge [64] adds to this the hy-
pothesis that a requirement for mixed-motive negotiation might have created
the final push towards ‘higher order theory of mind’ in humans, where ‘mixed
motive negotiation’ refers to scenarios where individuals want to work together
while still trying to maximise their own interests. In an agent-based model,
these different scenarios can be ‘played out’ in different artificial worlds, to
assess the plausibility behind each hypothesis.

Since 2009, Verbrugge and co-authors have published a number of pa-
pers simulating complex social cognition in humans [66,65,2,42,41]. However,
many cognitive and agent-based models actually deliver the opposite message,
that is often experienced as ‘killjoy’ [56] - that what looks like complex social
cognition might not be either social or complex at all! In this paper, we will
argue that the insights from such models are highly relevant to Verbrugge’s
proposed ‘scenario testing’. In the rest of this article, we will first discuss why
many computational models often have such ‘killjoy’ messages; then we will
discuss what this means for ‘scenario’ testing more generally, and we conclude
with a number of our own recommendations for future research directions.

2 Why are computational models often ‘killjoy’?

First, let us illustrate our claim that computational models often take the ‘com-
plexity’ out of complex social cognition with a number of examples; explana-
tions for how these models generate the appropriate patterns follow in later
sections. Perhaps most notably, there is the ‘DomWorld’ model, which focuses
on the dominance hierarchies and social relationships of primates. Originally
used to parsimoniously explain the differences between ‘despotic’ and ‘egali-
tarian’ species of macaque [34], its basic setup has now been adapted to in-
vestigate many different primate phenomena, ranging from female dominance
over males [38] to the effect of fleeing on socio-spatial group structure [27].
However, with respect to simulating social cognition, DomWorld’s most rele-
vant iteration is ‘GrooFiWorld’ [37,53], a DomWorld extension that includes
grooming in addition to fighting and fleeing.

In GrooFiWorld, simulated primate-like entities reconcile more often with
valuable partners than with other individuals [37,53], they exchange groom-
ing for support in fights [37], and they predominantly support those who are
of higher rank than their opponents [37]. These are all social behaviors which
have been previously given ‘cognitively complex’ interpretations, such as con-
tingent reciprocity [28,29], emotional book-keeping [55] and ‘triadic aware-
ness’, i.e., the ability to compare the relative strengths of others’ social rela-
tionships [30,12]. However, the agents in GrooFiWorld have no such abilities;
they just group, attack when they think they can win, and groom when they
are anxious [37,53].
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Two other examples come from our own work. The ‘corvid model’ [63,62]
is a cognitive model based on experiments done with Western scrub jays, a
member of the crow family that caches its food for later retrieval, but will
also steal the caches of others when it knows where they are [26]. The scrub
jay has been ascribed ‘theory-of-mind-like’ abilities because it displays a fasci-
nating array of behavioral patterns: (i) it prefers to cache far away [17,16],
behind barriers [16], and in dark areas [15] when it is watched; (ii) it repeat-
edly re-caches items while in the presence of onlookers [17,16]; and (iii) after
onlookers have left, it moves its items to new locations [26,17,16,23]. These
behaviors seem to suggest that the scrub jay is trying to manipulate what oth-
ers see and know; however, the ‘corvid model’ explains most of these patterns
as side-effects of stress and memory errors [62], as we explain below.

Finally, the ‘diet traditions model’ [48,49] investigates the emergence of
diet traditions and cumulative cultural learning. Initially, this model was used
to study why neighboring primate groups might eat different kinds of foods,
despite many of the same resources being available in their home ranges, as
is found, for instance, in white-faced capuchins [11]. Then, the same model
was used to study ‘cumulative culture’, the idea that successive generations
might improve on the innovations of previous generations, with the effect of
achieving behavioral complexity that would otherwise be beyond the learn-
ing abilities of individuals. Such ‘cumulative culture’ is typically thought to
be the explanation for humanity’s technological prowess [54], and is thought
to rely on sophisticated forms of social learning, such as imitation and teach-
ing [58,19]; however, in the ‘diet traditions model’, successive generations of
agents selectively eat ever more nutritious foods, beyond their ability to learn
individually, and this occurs as a side-effect of grouping without any conscious
copying or teaching at all [49].

Now, the question is, why do agent-based models, like DomWorld and the
‘diet traditions’ model, and cognitive models, like the ‘corvid model’, often sug-
gest that behaviors might be ‘less socially complex’ than they at first appear
to be? We suspect that part of the answer has to do with practical consider-
ations: there may be a greater motivation to produce models that challenge
our preconceptions. There is an inherent methodological argument for search-
ing for the simplest explanation of observed patterns of behavioy, if only to be
able to exclude it later. However, an explanation involving relatively sophis-
ticated cognition can turn out to be quite an intuitive explanation (i.e. one
that we easily understand and already expect). In contrast, an explanation
involving relatively unsophisticated cognition can turn out to be quite convo-
luted and/or counter-intuitive (i.e. explanations that are surprising, and/or
difficult to understand). Therefore, cognitively complex explanations are typ-
ically the default, and the burden of proof is on those attempting to illustrate
that simpler cognitive mechanisms suffice. As a result there may be particular
motivation (and bias) to use agent-based models to show that ‘smart looking’
behavior might in fact be generated by simpler cognitive mechanisms, rather
than using agent-based models to show what everyone already thinks anyway.
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For a model to be truly valuable, it must produce some new insight, some fresh
perspective on existing theories or preconceptions.

However, there is more to it than just practical considerations; the main
reason why computational models often present alternative, cognitively simple
hypotheses is because they are uniquely powerful tools for discovering such
hypotheses. In our view, this is because computational models have two very
important properties: They promote embodied, embedded thinking, and they
naturally give rise to feedbacks which are difficult to think through otherwise.

The concept of embodied, embedded thinking has its roots in robotics
research [47,6], philosophy of mind [13] and studies of self-organisation
[35,10]. A full discussion of its intricacies is outside the scope of this paper,
but for our purposes, it is sufficient to summarize it like this: It is important to
realise that individuals do not have to solve all their problems by explicit cognitive
processing. Instead, the solutions to some problems arise naturally from other as-
pects of their own physical instantiation — they are embodied — or their interaction
with the outside world — they are embedded (or ‘situated’). This kind of thinking
is naturally fostered by agent-based models, and to a lesser degree by cognitive
models, if only because they often try to simulate a fully functioning organism,
no matter how simplified, in some kind of virtual environment, no matter how
abstract.

Further, because both agent-based and cognitive models are relatively richly
implemented, either in terms of their interactions or in terms of their internal
mechanisms, feedback processes can occur, causing self-reinforcing loops and
stabilising effects. The patterns arising in these models are therefore not end-
products, but have a further impact on dynamics. Feedback is one of the central
principles of self-organisation [10], and it is as important to models of social
cognition as it is to subjects with which it is more directly associated, such as
task division in insects [3] and collective movement in fish and birds [36].

In the rest of this section, we illustrate how embodied, embedded thinking
and feedbacks explain the alternative hypotheses generated by DomWorld, the
‘corvid model’, and the ‘diet traditions’ model. Then, we will return to the
question of what such ‘killjoy’ insights mean for Verbrugge’s ‘scenario-testing’
research agenda with respect to the evolution of complex social cognition.

2.1 Computational models are embodied and embedded

The agents in agent-based models, in particular, are naturally embedded in the
sense of ‘physically located in a social or environmental context’; in fact, one
could argue that this ‘embeddedness’ is what defines an agent-based model in
the first place. Both DomWorld and ‘diet tradition’ agents are embedded in
their groups; in addition, ‘diet tradition’ agents are embedded in the distribu-
tion of available food. This allows them to use the outside world as a kind of
external ‘memory’. In particular, if an individual’s location is not independent
of preceding behavioral processes, then its position relative to other individ-
uals, or to other features in the environment, can encode a lot of relevant
information.
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One example of this occurs in GrooFiWorld. In GrooFiWorld, individuals
engage in dominance interactions, and flee if they lose a fight. Individuals are
risk-averse, and only attack if they think they can win; this is why dominants
often jointly attack subordinates. But the result of fleeing is that subordinate
individuals end up on the periphery of the group, while dominant ones end
up in the center. Thus, the spatial positioning of individuals in GrooFiWorld
causes individuals of similar dominance to interact relatively often. This is true
for both fighting and grooming, explaining why individuals appear to exchange
grooming for support in fights [37].

The fact of being embedded is also at the core of how information can be
transmitted in groups indirectly [48,50], via the grouping process itself, rather
than via direct forms of social learning, such as stimulus enhancement, where
individuals observe what others are doing and how they perform the behavior
[39]. This is what explains the diet traditions and cumulative culture in the
‘diet traditions model’ [49]: Young, inexperienced individuals learn what to
eat from their group mates, not because they are actively imitating their group
mates’ behavior, but because their group mates are stopping to eat in areas
that contain familiar foods. Then, because the inexperienced individuals want
to stay close to their group mates, they end up eating and learning about the
same foods. As a result preferences for certain types of food are inherited,
leading to ‘diet traditions’ via trial-and-error learning in groups.

Trial-and-error learning in groups can even be sufficient for cumulative cul-
tural processes, even though the latter are typically considered to rely on cog-
nitively sophisticated forms of social learning. In the diet model, experienced
foragers do not have perfect information: They may be eating suboptimal foods
simply because they are unaware of more profitable foods. A young, inexperi-
enced forager is less prone to these biases; if a food is too low quality compared
to other foods it already knows about, an inexperienced forager will not stop
unless its group mates do, and instead looks for new, better foods. Moreover,
it will only stop to eat food its group does not eat if those foods are better than
food types it is already eating. This is how diet quality can improve cumu-
latively across generations. Thus, indirect group-level information processing
can help cognitively simplistic individuals achieve more than they could on
their own [49,50], and this can even be a reason for grouping to evolve [50].

Embodiment arises less naturally in agent-based models; because individ-
ual agents are often represented quite simply, they do not usually have much
of a ‘body’ to generate alternate explanations with; however, if one expands
‘embodiment’ to mean ‘incorporation of other physiological processes beyond
explicit deliberative reasoning’ (similar to [18]), then GrooFiWorld counts
as an example: In GrooFiWorld, agents groom when they are anxious, and
they become anxious when participating in fights, or when they have not
been groomed for a long time; in contrast, grooming itself reduces anxiety.
This is based on observations of real primates, and represents a type of ‘non-
deliberative’ embodied physiological process that is crucial to producing the
suite of primate-like behavioral patterns exhibited by GrooFiWorld. For in-
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stance, this mechanism explains why individuals appear to ‘reconcile’; they are
tense after fighting, and tend to be closer to their former opponents than to
any other individuals.

In cognitive models, both embeddedness and embodiment are often less
obvious. Early cognitively models consisted almost exclusively of internal rep-
resentations, and even now, in studies of human cognition, the ‘environment’
is usually reduced to a computer screen [61], and ‘the body’ to eyesight and
fingers to type with. However, even so, because the computer screen itself is
also simulated, and a cognitive model must explicitly shift its ‘attention’ to the
visual stimuli presented there, a cognitive model is automatically more embed-
ded and embodied than many verbal theories are. This is illustrated by the fact
that cognitive models have been used to study how memory can be offloaded
into the environment [4], and by variants which are adapted to run on robots
and interact with reality [61]. In the ‘corvid model’, both embeddedness and
embodiment also play a role; cache distributions and stress are important as-
pects of its ‘killjoy’ explanation. However, the ‘corvid model’ is perhaps best
understood as an example of the power of feedback, as will be explained in the
following section.

2.2 Computational models exhibit feedbacks

Social Onlooker
cognition Present

abilities *
* Stress —N
Realise onlooker
knows where food is Cache

Retrieval -or-
* Errors Recache
if nothing
to cache
Re-cache food k Memory 7
to confuse Errors
onlooker

Figure 2. Illustration of the ‘theory of mind’ and ‘stress’ hypotheses for scrub
re-caching. The ‘theory of mind’ hypothesis (left) is the one tested in the experiment
by [26], while the ‘stress hypothesis’ (right) is the one featured in [63]. Notice how the
‘theory of mind’ hypothesis is essentially ‘linear’, directly linking intentions to actions,
while the ‘stress’ hypothesis includes unintentional feedbacks - feedbacks only revealed
through the use of a computational model.

The ‘corvid model’ generates the seemingly ‘theory-of-mind-like’ behavior
of scrub jays through a series of simple behavioral rules and feedbacks. It
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assumes that virtual jays cache their food, and that they remember where they
have cached it. However, there is some error on this memory. In addition, it is
assumed that virtual jays want to cache more when they are stressed, and that
both the presence of an onlooker and not finding food where it was expected
cause stress. If such a virtual jay is put through the experimental protocol
used with scrub jays, it generates patterns of caching and re-caching that are
remarkably similar to those of the real jays [63]. However, the virtual jay is not
attempting to deceive the onlooker, nor is it aware of the onlooker’s knowledge
or mental state.

What happens instead is that, while a conspecific is watching, the virtual
jay is stressed because it is being watched, and re-caches because it has no
other food left to cache other than what it has previously buried. However,
this digging up and moving of items then confuses its memory, so that later,
once it is alone, it again becomes stressed because some of its items seem to
be missing. This additional stress then again causes it to want to cache more,
which it can only do by re-burying the items it has just recovered. Thus, one
could claim that in the model the observed behavior has very little to do with
sociality at all, given that any form of stress should generate the result (in
reality, this does not seem to be the case [59], as will be discussed later).

This explanation for the scrub jays’ behavior contrasts with the ‘theory of
mind hypothesis’ that is typically given for their re-caching acts: That the
cachers realise that their onlookers can see them, and that, therefore, they
should move their items, so that other birds will no longer know where they
are. The two explanations differ not only in the cognitive sophistication that
they require of scrub jays, but in their basic structure: In the ‘theory of mind
hypothesis’, what we see the birds do (move their items) is directly, or ‘lin-
early’, explained by what they are trying to do (make sure their conspecifics
don’t know where their items are). In contrast, in the ‘stress hypothesis’, the
observable behavior is the result of an unintentional feedback loop between
stress and memory errors (Figure 2).

Of course, there is no reason that hypotheses conceived without the help
of computational models cannot contain feedbacks - but it is very difficult to
think through such feedbacks without the help of a running computer pro-
gramme. In contrast, in a cognitive or agent-based model, such feedbacks arise
almost automatically. This is, in part, due to the fact that computational mod-
els encourage us to include more (and different) ‘variables’ than are typically
considered in the original ‘mental’ or ‘intuitive’ hypotheses.

3 So what does this mean for ‘scenario testing’?

What GrooFiWorld, the ‘diet traditions’ model, and the ‘corvid model’ all sug-
gest is that complex cognition is unnecessary to generate specific sets of smart-
looking behavior. However, both primates and corvids have unusually large
brains [24], with high energy requirements; this investment must come with
some enhancement in information processing (i.e. cognition). If computa-
tional models keep showing that this ‘enhanced information processing’ does
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not seem to be necessary in the social realm, then we are left with two main
implications: (1) Either the large brains of primates and corvids primarily serve
some other, non-social purpose, or (2) computational models are oversimplify-
ing things. Below we consider these and other implications of ‘killjoy’ results
in more detail:

3.1 Big brains are not social

If we assume that the computational models are right, then perhaps we should
conclude that the ‘complex cognition’ of humans and other big-brained crea-
tures evolved primarily to solve some non-social problem, like tracking the
availability of food sources [44,40], or mastering the technical tricks necessary
to obtain them [8,7]. If this is true, then studying the evolution of social cog-
nition in isolation is not likely to mirror reality in any meaningful way. We
return to this possibility, and what it implies for future modeling efforts, in the
following section. Of course, the computational models might not be right — a
new study testing the predictions of the ‘corvid model’ [59], for instance, fails
to confirm them - showing that a model’s ability to replicate a given set of
patterns does not mean that the underlying explanation itself is correct.

3.2 False-positives in comparative analyses

A more nuanced view is that computational models point to the possibility that
some (but not necessarily all) of the cases where we have identified complex
social cognition in animals may be false-positives. If so, we may need to re-
assess the overall phylogenetic patterns of complex social cognition. In turn,
this will affect our assessment of which scenarios to focus on with respect to
promising candidate scenarios in which social cognition could evolve.

For instance, if GrooFiWorld’s explanations for primate social patterns are
the whole story — if macaques can reconcile, trade favors, and form coalitions
without any complex social cognition at all — then hypothetical evolutionary
‘scenarios’ based on the challenges of primate social life are unlikely to lead
to any great insights. (Of course, it is also possible that GrooFiWorld’s ex-
planations are not the whole story, as even GrooFiWorld’s creators explicitly
acknowledge — but we will return to this possibility later).

3.3 False-positives in theoretical analyses

‘Killjoy’ models highlight that embodiment and embeddedness are important.
They are what allow for the generation of feedbacks and self-reinforcing ef-
fects; without them, behavior can often seem to require more complex cog-
nition than it might otherwise need. In our view, this means that simulating
the evolution of any kind of cognition in ‘a vacuum’ is prone to result in false-
positives. Yet, when simulating very complex behavior — such as mixed-motive
negotiation — this is often what has to happen: The only aspect of the agent
that is simulated is that which is directly necessary to accomplish the ‘chal-
lenge’ it is set, and the environment itself is reduced to that ‘challenge’ alone —
see, for instance, de Weerd, Verbrugge and Verheij’s studies on the usefulness
of ‘higher order theory of mind’ [66,65] or Arbilly et al.’s [1] simulations of
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the ‘cognitive arms race’ that may arise in species of cachers and pilferers, like
corvids. When both the agents and the world are ‘streamlined’ to this degree, a
given evolutionary ‘scenario’ may seem to favor the evolution of complex social
cognition, when in fact embodiment and embeddedness could generate similar
outcomes, if given a chance.

3.4 False-negatives due to over-simplification

On the other hand, if computational models are oversimplifying matters — for
instance, if complex social cognition does play a role in primate social life, de-
spite GrooFiWorld’s ability to replicate many of the patterns typically taken as
evidence that such complexity exists — then the question is: Why does oversim-
plification enable the models to generate patterns that should only arise with
complex cognition?

Of course, simplifications are unavoidable and desirable when formulat-
ing models. However, when it comes to simulating the cognitive abilities of
animals, simplifications can have important ramifications, in particular with
respect to the ‘frame problem’. The frame problem is essentially an artificial in-
telligence concept, which defines a problem in terms of its frame of reference,
or the number of variables (and the combinatorial impact this has) that needs
to be dealt with in order to solve it. The essential weakness of both computa-
tional models and experimental designs is that they alter the frame of reference
(e.g. the salience of key aspects of a task), and therewith the complexity of the
problem to be solved. Probably, given sufficient simplification, basic associative
learning can solve any problem, given that it is fed the problem piece-meal, or
the problem is reduced to some minimal core cause-effect component.

Take, for example, Harrison et al.’s [33] cognitive model of gaze following
in chimpanzees. This simulation is based on an experiment [31] attempting to
assess what chimpanzees understand about seeing; it pits a subordinate against
a dominant chimpanzee in a competition for two pieces of food, one of which
is visible to the subordinate only, and one of which both chimpanzees can see.
It turns out that across a variety of setups [31,5,32] the subordinate chooses to
first go to the food only it can see. This has been interpreted as evidence that
the subordinate has some understanding of the dominant’s visual perspective.
But in Harrison et al.’s [33] cognitive model, the subordinate simply performs
a visual search between the food and the dominant, and prefers to go to food
where it finds an obstruction along the way. Thus, it is considering the situation
only from its own perspective, not that of its competitor.

The ‘virtual chimpanzee’ acquires this strategy through reinforcement learn-
ing. This reinforcement learning takes place during ten full replicates of the ex-
periment itself, where this built-in strategy becomes more and more preferred
over a simpler, ‘grab-and-go’ alternative. This is supposed to mimic the expe-
rience that real chimpanzees get during their daily lives [33]. Although this
is a convenient simplification, it effectively ‘solves’ the frame problem for the
‘virtual chimpanzee’. A real chimpanzee would have to learn this strategy in
a much less structured environment, while simultaneously filtering out all the
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other things that were occurring at the same time and irrelevant to its food
finding success. Thus, what looks like a simple learning problem in the ‘com-
petitive model’ might in fact be a complex learning problem in real life, and
therefore underestimate the added value of more complex social cognition.

The oversimplification of scenarios can therefore lead to an underestima-
tion of the cognition that is required in different situations. This generates a
problem of false-negatives with respect to the cognition employed by animals
in cognitive tests, as well as with respect to assessing how cognition can be
adaptive in various settings. The conundrum we are left with is therefore:
Computational models point to the problem of false-positives, but potentially suf-
fer from the problem of false-negatives in terms of the cognitive sophistication
required to navigate life’s challenges.

4 Future directions

So, can computational models help us understand the evolution of ‘complex
social cognition’, as Verbrugge [64] proposes? Our answer is a resounding ‘yes’!
However, while computational models are clearly powerful tools for analysing
complex systems, we should be aware of their limitations. Below we recap why
computational models are useful, and propose two main ways with which to
resolve the conundrum of false-positives and false-negatives.

4.1 The power of computational models

The main insight coming from computational models is that interactions be-
tween a multitude of variables and entities can generate unexpected patterns
and dynamics via complex feedbacks. These dynamics can easily generate
novel causal explanations for patterns that were previously interpreted ‘lin-
early’. This is a general feature of computational models, above and beyond
the specific explanations generated in response to specific research questions.
Thus, we posit that, for any observed behavior, there is probably a computa-
tional model that can offer a different causal explanation than the linear one
that seems self-evident. Clearly, science progresses by comparing alternative
causal explanations, and without computational models, many possible causal
explanations would be missed; for this reason alone, computational models are
indispensable tools in studies of social cognition.

4.2 Allowing for side-effects to avoid false-positives

However, the unexpected patterns and dynamics that arise in computational
models also suggest the danger of ‘false-positives’ in evolutionary ‘scenario test-
ing’. For example, if big brains did not evolve for social cognition, i.e. if we
take the ‘killjoy’ lessons to heart, then social cognition could be part of more
general purpose cognition. For example, if such cognition evolved for reasons
other than sociality, then social cognition could be an evolutionary side-effect.
In that case there may not be anything special about social learning, and it is
just domain-general mechanisms functioning in social situations.

Allowing for ‘side-effects’ in evolutionary models is actually surprisingly dif-
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ficult. First of all it requires multiple traits that are inter-related, so that if
there is selection on one trait, as a side-effect this will cause another trait to
change as well. Secondly, for side-effects to arise, they need to emerge via self-
organization. The traits therefore cannot be directly implemented, but must be
the product of a set of lower-level features that are built into the agents or the
environment. Thirdly, one would probably wish to compare at least two kinds
of selection pressure: one that leads to direct selection of social cognition, and
one that allows social cognition to evolve as a side-effect. To achieve this re-
quires sufficient environmental detail — true embeddedness, in other words.

The inter-relation of multiple traits, their emergence from lower-level fea-
tures, and the existence of environmental detail will cause the model to be
much more complex than models that focus on a particular predefined ‘single-
challenge’ scenario. As a result of this increased complexity, models which
allow for evolutionary side-effects tend to be agent-based models, where the
agents themselves are relatively unsophisticated. What the models show, how-
ever, is that different kinds of behavior (foraging, grouping, movement) are
intricately related, and their relationships are dependent on the cognition of
individuals [51]. Cognition is therefore involved in most patterns of behavior
(i.e. multiple higher-level traits). Changes in cognition are therefore expected
to alter multiple patterns, and these may all affect whether the changes would
be selected. These results suggest that social cognition may well be the result of
selection pressures for general purpose cognition, and we should build models
that allow for such a possibility.

4.3 Taking the frame problem seriously and addressing false-negatives

In order to deal with false-negatives due to oversimplification, we propose to
build computational models that explicitly implement perception, motor skills,
learning and attention-selection procedures. This is currently the domain of
cognitive models. The challenge for the future is to embed such cognitive
models more fully in more detailed simulated environments, where feedbacks
and self-organisation can more easily emerge - essentially, to ‘bridge the gap’
between cognitive and agent-based models. In addition, as Verbrugge [64]
suggests, it would be useful to generate theory about how to explicitly define
the complexity of problems in computational models and experiments (e.g.
via formal logics), and what performance on these problems therefore implies
about an agent’s cognitive abilities. Our prediction is that if oversimplification
has lead to false-negatives, then explicit incorporation of perception, motor
skills, learning and attention-selection procedures should also lead to more
sophisticated cognition being necessary for computational agents to solve a
given task.

5 Conclusion

We conclude that Verbrugge’s proposed plan for tackling the evolution of
higher-order social cognition has born fruit, but of a surprising, yet thought
provoking flavor. It seems that one of the most useful properties of compu-
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tational models lies in their ability to be ‘killjoy’, i.e. to explain cognitively-
complex looking behavior as a side-effect of embodiment, embeddedness, and
feedbacks; however, this may only be possible because the computational mod-
els simplify the world, and the cognition of agents in that world, to an unac-
ceptable degree. The challenge for the future is to find out whether and when
we are oversimplifying. This is true for models of cognitive experiments, mod-
els of social processes, as well as evolutionary models and is more generally rel-
evant. Our proposal is to focus on evolutionary models with co-evolving traits
and the potential for side-effects, as well as a more detailed and explicit im-
plementation of the perception, motor skills, learning and attention-selection
procedures that are necessary to solve problems in the real world.
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The Importance of Accounting for
Heterogeneity of Strategy Use

Maartje Raijmakers
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1 Introduction

Research in cognitive development traditionally has a strong focus on higher-
order reasoning, compared to adult research. One of the important questions
in developmental research is the level of reasoning that children of different
ages have. That is, an important subject of study is whether children apply in-
creasingly complex strategies in solving problems. I will argue that the analysis
of heterogeneity of behavioral data in terms of categorically different strategies
is important for adult cognitive science as well.

Jean Piaget, as a founder of cognitive developmental research, introduced
the importance of specific, diagnostic tests to assess children’s level of reason-
ing [38]. At the time he was registering IQ-tests in the lab of Binetin Paris
(1919-1921) he noticed that the errors children made in IQ-tests were very
specific, different from adults, and not just a random choice other than the cor-
rect answer. This observation led to the hypothesis that children, when they do
not have a correct strategy to solve problems, use an alternative, sub-optimal
strategy. That is, children have their own logic in reasoning.

The idea that error-patterns in responses are diagnostic of a reasoning strat-
egy was a very fruitful idea. Robert Siegler [36] was one of the first researchers
who has been taken this idea further by developing a methodology to assess
children’s reasoning strategies based on error patterns for a carefully designed
series of items, the rule-assessment methodology (RAM). To illustrate the im-
portance of accounting for heterogeneity in strategy use, I will first explain
RAM and mention a few cognitive domains for which strategies were detected.
Subsequently, I will discuss pitfalls of RAM and the alternative of latent variable
techniques.

2 Strategies in cognition

Children importantly improve their reasoning abilities from toddlerhood to
adolescence. For some reasoning domains this improvement appears to consist
of the application of increasingly complex strategies. Henceforth I will use the
general definition of strategy by Rickard (2004, p. 65):

“the term strategy is used merely to denote a unique series of mental steps
toward a solution and does not necessarily have direct implications regarding
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intention or awareness”.

A benchmark domain for cognitive strategies in development, is reasoning
about torque (or moment of force) as measured with the balance scale task
[17]. The balance scale task tests for the understanding of the way two phys-
ical variables, weight of the blocks placed at both sides of a balance and their
distance to the fulcrum, relate to the balance of the balance scale. Children
typically develop a more advanced understanding of a balance scale during
childhood, before they are explicitly taught the rule of torque. At first, children
only consider weights at both sides of the balance to be important. At a later
stage, children do take distance of blocks into account but only when weights
are equal at both sides. At a next stage children combine the variables, weight
and distance in more complex ways when reasoning about torque [39]. These
reasoning strategies are defined as a series of mental steps and are categor-
ically different. That is, children do rarely show behavior in between these
strategies.

The balance scale is a benchmark task, but strategy detection was done
for many more cognitive developmental domains. Below, I will give a list (very
much inexhaustive because it is mostly but not exclusively related to our lab) of
cognitive domains for which age-related increasingly complex strategies were
detected: proportional reasoning tasks, such as the balance scale task [39,18],
the shadow-size task [33], and the buoyancy task [35,10], mental models of
physical and biological phenomena [41,11,8], causal reasoning [32], recursive
reasoning [29], free classification [26], card sorting [47,2], analogical rea-
soning [14], working memory [19], transitive reasoning [3], decision making
[16], and category learning [34,43].

In addition to cross-sectional studies, the literature shows that heterogene-
ity in strategy use is also present for many domains within young adulthood.
The cognitive domains for which strategy-use was found include (again a list
which is very much inexhaustive and mostly but not exclusively related to our
lab): working memory [31], category learning [22,40,29], feedback learning
[1,24], phoneme perception [46], and artificial grammar learning [44].

So, in a wide range of cognitive domains heterogeneity of performance is
best described as age-related strategy use. This finding is not limited to wide
age ranges, or to strategies that can be expressed verbally [44,46].

3 Strategies and brain activity

A popular way of studying human cognition is searching for the brain areas
that show task-specific activity. In these studies, cognitive behavior is related
to specific brain areas by functional MRI (magnetic resonance imaging) stud-
ies. The most common way to look at the brain-behavior relation is to contrast
brain activity during different events. For example, in a study with a simple
feedback-learning task, brain activity after positive feedback is subtracted from
brain activity after negative feedback to detect areas that are specifically ac-
tive after negative feedback [6]. Individual differences in the brain-behavior
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relation are mostly studied by correlating performance (e.g., the number of
successful learning events) with specific activity (e.g., negative feedback re-
lated activity) for specific brain areas or the whole brain [6]. A different, less
common approach of studying individual differences is by analyzing single-trial
brain activity over time (e.g., [7]).

In developmental research one typically studies whether task-related activ-
ity in specific brain areas is related to age. The suggestion is that maturation
of these areas explains improvement of performance with development. For
example, Crone et al. [6] conclude:

“These findings demonstrate that changes in separable neural systems un-
derlie developmental differences in flexible performance adjustment.”

A different way of analyzing these brain behavior data is by applying strat-
egy analysis to the behavioral data first before relating behavior to imaging
data. For example, we performed a strategy analysis of the trial-by-trial re-
sponses of a simple feedback-learning task in participants between 8 and 25
years old [24]. It appeared that we could distinguish four different strategies,
with different levels of efficiency in feedback learning. Strikingly, strategies
were distributed over age groups, such that adults were part of the three most
advanced strategy groups and children were part of the three less advanced
strategy groups. Although performance was strongly related to age, there was
thus a great overlap between children, adolescents and adults in strategy use.
The next step in the analysis was relating strategy use to task-related brain
activity in specific areas. A mediation analysis showed that for specific brain
areas, for example the dorsal lateral prefrontal cortex, the strong correlations
between age and activity were largely mediated by strategy use.

This type of studies highlights that if one is interested in the direct rela-
tion between performance and neural activity studying individual differences
in terms of strategy use is important (see also [5]).

4 How to detect latent strategies?

The data from which strategies need to be detected are typically responses to
a series of multiple-choice items. To this end, Siegler [36] defined the Rule
Assessment Methodology (RAM). RAM starts with defining the strategies that
participants are expected to use (Step 1). Next, a set of items is constructed
that optimally discriminates between those expected strategies (Step 2). Fi-
nally, the data are matched with the expected response patterns (Step 3). For
each observed response pattern the strategy with the best match is selected
provided that observed and expected response patterns match sufficiently. The
criterion for a sufficient match is laid down arbitrarily, independent of the data.
For example, the general idea that Siegler and Chen [37] used to attribute a
rule to a child is that at least 78% of the observed responses (i.e., for 7 out of 9
items), is consistent with a rule. Unfortunately, there are several drawbacks of
this method that are nicely illustrated in [21]. First, RAM does not provide sta-
tistical grounds to decide whether the data should be regarded as a continuous
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variation in responses or a limited number of categorically different response
patterns. This appeared to be an issue when analyzing responses of a compu-
tational model of learning the balance scale task [27,25]. Applying RAM, it
was wrongly concluded that the behavior of the computational model agrees
with applying increasingly complex strategies. Second, unexpected strategies
cannot be detected with RAM, because strategies need to be defined before
they can be detected. For the balance scale task, for example, more advanced
statistical techniques made it possible to detect the so-called sum strategy or
buggy rule, that is, comparing the sum of weight and distance at both sides
of the balance scale, instead of the product [18]. Unexpected strategies were
also found for the shadow size task [33]. Third, the criterion for a match be-
tween an observed response pattern and a strategy is chosen arbitrarily in RAM
and independent of the data. If strategies are applied with very little error (by
adults, for example), the criterion should be very strict for an optimal assign-
ment of strategies. However, young children might apply strategies with many
mistakes. In this case a strict criterion would result in a suboptimal assignment
of strategies and thus unnecessary many misclassifications. With simulation
studies Van der Maas and Straatemeier [21] illustrate this issue.

A first indication of the presence of strategies is given by the frequency dis-
tribution of the data, such as the sum scores of a homogeneous subset of items.
If the distribution shows multiple modes instead of one single mode, the pres-
ence of categorically different response patterns is very likely. Latent variable
techniques provide a statistically grounded alternative to pattern matching to
detect strategies [18]. Model selection techniques aid to decide on the number
of present strategies and whether strategies are present at all. Based on a la-
tent variable model that fits the data, observed response data are assigned to
categorically different strategies.

Different types of latent variable models are available for different types of
data. In the case the data consist of responses to a series of multiple-choice
items, latent class analysis [23] is the technique to apply. But additional tech-
niques are available for more complex data. For example, if the data consist
of repeated measurements with the same set of items, latent Markov analysis
could also estimate the transitions between strategies over time. In this way
one could detect strategy changes during learning [29]. If the application of
multiple strategies is mixed within individuals during the course of a task the
detecting of strategies is even more challenging. Van Maanen, De Jong, and
Van Rijn [20] provide an interesting approach for this situation by modeling
reaction time distributions. In case the items have an internal structure that is
supposed to be important, for example items of a task for floating and sinking
systematically differ in weight and volume [10,44], latent regression analy-
sis [15] could be used to detect strategies. Finally, there are also techniques
available to analyze continuous instead of nominal responses. The package of
depmixS4 [45] is available in the R-computing environment to use these latent
variable techniques, but there are other packages available as well (e.g., [42]).
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Figure 3. A first order-reasoning item from the traveling game, which is based on
Flobbe et al. [9]. While seeing items like this, the child is told that it travels with a
lizard in a car to collect marbles. The goal is to collect as many marbles as possible.
However, at each cross, either the child or the lizard (as indicated) could choose which
way to go. The lizard is very smart and plays as good as possible accounting for smart
choices made by the child. (from [28]).

5 An example: Strategies in zero, first and second-order
reasoning !

In a developmental study we were interested in how children advanced in play-
ing strategic games. The strategic game we adapted for this reason was first
used by Hedden and Zhang [13] and was later studied in a developmental
context by Flobbe et al. [9]. Here, by way of illustration, I will only present
the methodology for detecting strategies for solving first-order reasoning items.
Figure 1 explains our implementation of the game. The methodology for de-
tecting latent strategies consists of 3 steps: 1) Proposing plausible strategies
(possibly we find additional strategies); 2) designing diagnostic items; 3) ana-
lyzing children’s response patterns.

5.1 Step 1: Defining possible strategies

S1: The optimal strategy for playing first-order items like displayed in Figure 1
is to account for the optimal choices of the lizard, which results in a choice
for going right at the first junction.

When considering relevant weaknesses of children’s cognitive abilities or
wrong interpretations of the task one could expect alternative, suboptimal
strategies.

1 Adapted from from [28].
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Strategy Priors Conditional Probabilities
I1 12 13

S1: Optimal .38 94 94 94

S2: 0-order .19 96 .04 .96

S4: Go right .04 .03 .97 .03

Guess .39 .79 47 .62

Table 5. Latent class model of responses to first-order items. The table shows the
estimated parameters of the latent class model of responses to first-order items from 129
children (5—12 years of age). Priors indicate the class size; conditional probabilities
indicate the accuracy of an item type given that one belongs to a specific class. The
left-most column shows a possible interpretation of the strategy.

S2: A zero-order strategy. In Figure 1 this would results in choice for going
left at the first junction, because this road leads to the largest number of
marbles if not accounting for the lizard’s choice.

S3: As Flobbe et al. [9] found, one could also make a choice to get the
largest relative gain (number of marbles divided by the sum of marbles
and leaves) instead of the absolute gain (number of marbles). In the case
of Figure 1 this would result in a choice for going right.

S4: One could also avoid uncertainties and thus always choose the site that
directly leads to the marbles (avoiding a choice by the lizard). That is,
going right in the case of Figure 1.

Actually, more strategies were predicted but these unnecessarily complicate the
example (see [28], for more details).

5.2 Step 2: Designing diagnostic items

The item displayed in Figure 1 is diagnostic for S2, but S1, S3, and S4 predict
the same response, that is, “go right”. Hence, items with different characteris-
tics need to be designed in order to distinguish all strategies. To this end, we
designed three item types:

I1: Items that are solvable by zero-order strategies and the correct response is
going left.

12: items with the correct choice to the right, while the largest number of mar-
bles is at the left side, as in Figure 1.

I3: Items that are correctly answered by choosing the absolute gain and go-

ing left, but that would be incorrectly answered if one would choose the
relative gain instead of the absolute gain.

5.3 Step 3: Latent Class Analysis

Latent class analysis was applied to the sum scores of item types I1, 12 and I3.
The model displayed in Table 1 is the resulting best fitting, most parsimonious
model. Four different classes were found, from which three are consistent with
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one of the expected strategies, S1, S2, and S4. The consistency of applying one
of these strategies was very high (at least .94). S3, optimizing the relative gain
was not found in our version of the strategic game. In addition to the expected
strategies, we found one response pattern that was not easy to interpret but
could be guessing. In conclusion, this example shows how one could construct
test items that are diagnostic to the expected strategies and with this test one
could even detect a subgroup that was not anticipated.

6 Conclusion

The conclusion from this line of research on strategies use is that humans apply
categorically different strategies to perform on the same cognitive task. This is
the case for higher order tasks, such as playing strategic games, proportional
reasoning, feedback learning, rule-application, etc. For these tasks, participants
are mostly able to express their strategy in words. Remarkably, categorically
different strategies were also detected for tasks that are believed to involve
implicit memory, such as implicit learning tasks, and phoneme perception.

Most research involving strategy detection concerns developmental studies,
and hence age-related application of strategies. Hence, age-performance rela-
tions are largely explained by strategy use. Nevertheless, individual differences
within age groups are large. The most advanced strategies that are applied by
a sub group of six-years old children also exist among twelve-years olds. The
same counts for twelve-years old children and young adults. Moreover, studies
with adults only show that also among adults individual differences in behavior
are sometimes best described as strategies.

What is the consequence of this observation for research on cognition?
Most importantly, the average behavior might give a wrong representation of
what individual participants actually do. A typical developmental question is
whether children of a certain age are able to solve problems of a certain diffi-
culty. For example, are toddlers able to do causal reasoning [12] or can chil-
dren do second-order recursive reasoning [9]? Group averages of scores above
chance are taken as evidence that children are able to perform the reasoning.
However, there are at least two reasons to be cautious with this conclusion.
First, if children within the group apply different strategies, maybe a small
subgroup of children is able to perform the reasoning and the rest are applying
different strategies. This was found for the case of causal reasoning in two
years old children [32]. Second, (a subgroup of) children may apply a strategy
that results in above chance performance, which is nevertheless qualitatively
different from the expected reasoning strategy. For example, latent class analy-
sis of balance scale data showed that many children use a sum strategy instead
of applying the torque principle in solving balance scale problems [18]. Hence,
if one is interested in the performance on cognitive tasks a careful strategy
analysis of behavior is important.

Two specific types of studies once more illustrate the importance of strategy
analysis. First, the performance on a behavioral task is an important issue in
relating behavior to brain activity. After all, the idea of drawing this relation is
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that the brain activity reflects the mental steps that are executed by the indi-
viduals. Therefore, in comparing brain activity and behavior one would like to
compare homogeneous strategy groups [4]. Second, also for comparing sim-
ulation models with human behavior, the strategy analysis of human behavior
might be important [30]. The idea of defining a cognitive model is that per-
formance of individuals is modeled, and not only that average behavior of the
model agrees with average human behavior. Hence, the level of latent strate-
gies is also an important level of analysis in comparing models and human
behavior.

Therefore, I would conclude that the analysis of heterogeneity of behavioral
data in terms of categorically different strategies is important for cognitive
science in general.
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Abstract

This short note is about hybrid logic with infinitary rules, interpreted in named models.
It is shown that there is a rule x such that the property ‘entails «’ is not Lindelof: if
some collection of rules R entails , then there is not always a countable subset of R
that entails .

Keywords: Hybrid logic, infinitary rules, named models, Lindel6f.

1 Introduction

This paper is a modest contribution to the theory of hybrid logic. It grew from
the collaboration of Rineke Verbrugge, Barteld Kooi and the present author
investigating strong completeness (the property I' = ¢ = T F ¢) for non-
compact logics. Recall that, in compact logics where I' |= ¢ implies that T'y = ¢
for some finite 'y C T, strong completeness directly follows from ordinary
completeness, where I' is empty. This collaboration led to the publications
[5] and [6] on infinitary propositional dynamic logic, and [2], [3] on Khyb,,,
infinitary hybrid logic. In [3] we demonstrate that any extension of Khyb, , with
R, a countable collection of infinitary rules, is strongly complete. Our methods
and results are inspired by those in [7], [12]. With this general result, we
obtained strong completeness for several non-compact hybrid logics: ancestral
logic, reachability logic, cycle logic and BCC (bounded chain condition) logic.

Then we tried to extend our result to hybrid provability logic, which is char-
acterized by conversely wellfounded frames (a definition is given in Section 4).
These frames can be characterized by an uncountable collection of rules. We
found no way to extend the strong completeness result to uncountable sets of
rules, so we wondered whether there might be a countable set of rules that
characterizes conversely wellfounded frames. We have not found such a set,
but we discovered the following property:

there are a rule x and a collection of rules R such that R " &, an
but there is no countable subset Ry C R with Ry =" «.

1 Email: g.r.renardel.de.lavalette@rug.nl
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Here =" denotes entailment in named models. We shall prove (11) in Sec-
tion 5.

Observe that (11) looks like a compactness property where ‘finite’ is re-
placed by ‘countable’. In topology, this weakening of the compactness property
(every open cover has a finite subcover) is called the Lindelo6f property, named
after the Finnish mathematician Ernst Leonard Lindelof (1870 - 1946). A well-
known example of a Lindelof space is R, the real line. We generalize this as
follows. A property P of sets X is called Lindeléf whenever P(X) implies
P(Xy) for some countable subset X, C X. Now we may paraphrase (11) by:
in Khyb,,, the property R =" « of rule sets R is not Lindel6f.

A short overview of hybrid logic is given in Section 2. In Section 3 we
define the language, semantics and proof system of Khyb,,, hybrid logic with
infinitary rules. Section 4 contains several results about the characterization of
conversely wellfounded models and frames, which lead to the main result in
Section 5. We end with a concluding remark in Section 6.

2 What is hybrid logic?

Hybrid logic is an extension of modal logic with propositional variables called
nominals i that refer to possible worlds. As an atomic formula, i is true in
exactly one possible world. Moreover, a nominal i and a formula ¢ can be
combined with the satisfaction operator to form the formula i : ¢ with the
intended meaning “p holds at the world named i”. Nowadays, this is written as
@;p using the at-operator @. This extension was elaborated for the first time in
the context of tense logic by Arthur Prior in the late 1960s: see [11]. Almost 20
years later, hybrid logic was reinvented by Solomon Passy and Tinko Tinchev
in their paper [10] on Propositional Dynamic Logic. Another ten years later,
Valentin Goranko introduced in [8] the nominal binder |i that binds i to the
actual world: Jip means “p holds when i is interpreted as the actual world”.

Hybrid logic is an active area of research. See [1] for an overview, and [4]
for more information about its proof theory.

3 Khyb,, hybrid logic with infinitary rules

Given a countable set of propositional variables p € P, and a countably infinite
set of nominals i € I, we define the language of hybrid logic by

pu= L |p|il-p|@rApa | Op | Qo |lip

In Jip, |i binds all free occurrences of nominal i in . fnom(y) denotes the
collection of free nominals in .

We extend the language with rules. A rule is an expression of the form I'/¢p,
where T is a (possibly infinite) collection of formulas and ¢ is a formula. We
use R to range over sets of rules.

3.1 Semantics

A model M for hybrid logic is a model for modal logic extended with a valu-
ation for the nominals. So M = (W, R, V, A), with possible worlds in W # 0,
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accessibility relation R C W x W, propositional valuation V : P — (W)
and nominal valuation A : | — W. (W, R) is called the frame of M. A named
model is a model where every world has a name, i.e. the nominal valuation A
is surjective. We write MOD for the class of models, and NMOD for the class of
named models.

The interpretation of formulae is defined as follows:

)

(M,w) =p  iff weV(p)

(M,w) i iff w = A(i)

(M, w) |z~ iff (M,w) [~ ¢

(M,w) E oA iff (M,w) E ¢and (M,w) E 1
(M,w) EDOyp iff (M,v) = ¢ for all v with (w,v) € R
EMJU; E Qe iff (M, A() Ee

M,w) = lip iff (M[i:=w],w)E=¢

Here M]i := w] is M with nominal valuation A replaced by A[i := w] which
sends i to w and other nominals j # i to A(j).
We extend the definition of the entailment relation |~ as follows:

(M,w) ET = (M,w)Egpforallpel

MET/p = (M,w)ET = (M,w) Epforallw e Wy
(W,R) =T/ = M =T/ for all models M = (W, R,V, A)
FEe = M ET/pforall M € MOD

MER =MET/pforalll/p e R

RET/e =MER = MET/pforal M € MOD
RE"T/¢p =MER = ME=T/pforall M e NMOD

3.2 Proof system

The proof system Khyb , is based on sequents of the form I" - ¢. The axioms
and rules are

Taut ¢ if ¢ is an instance of a propositional tautology
MP v, o =P EY (modus ponens)
Kn FO(p = ¢) — (Op — OY) (distribution)
Ko FQi(e = ¥) = (Qip — Qit) (distribution)
SDa FQip — Q- (self-dual)

Intr Finp— Qp (introduction)
Te F @i (reflexivity)
Agree F @Qjp < Qp (agree)

Back FOQip — @Qip (back)

DA iFljp < el =] (downarrow)
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Name FH|i@p — ¢ provided i € fnom(yp) (name)

BG i+ 0O }j@;¢j provided i # j (bounded generalization)
SNecg ifT'F ¢, then OT' F Op (strong necessitation)
SNecq ifT'F ¢then QT F @;p (strong necessitation)
SNec, ifI'F ¢ then Jil' Hlip (strong necessitation)

InfCut ifI’'AandI',AF ¢thenI, IV ¢ (infinitary cut)
Ded if, oy thenT' o — 9 (deduction)

For R arule set, Khyb,, + R is defined straightforwardly as the extension of the
proof system given above with sequents A + ¢ for all A/ € R. We say that
I' Fr ¢ holds if T % ¢ is derivable in this extended proof system. In [3], we
showed that Khyb,, is sound, i.e. that I - ¢ implies I" = . Soundness easily
transfers to all extensions of Khyb , with rule sets. We also proved that, for
countable rule sets R, we have strong completeness:

every (Khyb,, + R)-consistent set of formulas is satisfiable in a named model
in which R is valid.

Combining this with soundness, we have for all countable rule sets R
F}—R(p =4 F'ZRQO = F)Z?ztp

4 Conversely wellfounded relations

Recall that a relation R on a set X is conversely wellfounded iff it has no infinite
ascending paths:

Ve X"Im (f(m), f(m+1)) ¢ R

The next lemma shows that, for infinite X, XV in this definition cannot be
replaced by a countable collection of functions.

Lemma 4.1 Let {f,, | n € N} C N, Then there are a relation R C N? and a
function g € NN such that Vn3Im (f,(m), fu(m + 1)) € R, but Ym (g(m), g(m +
1)) € R. So R is not conversely well-founded.

Proof. First we define

R admits f iffVn (f(n),f(n+1)) € R
R blocks f iff f does not admit R, ie. In (f(n), f(n+1)) € R

We will construct an injection g € N¥and R = R, = {(g9(m), g(m+1)) | m € N}
such that R admits g and blocks all f,,, which proves the lemma.

It is evident that R, admits g by definition. We observe that the injectivity of ¢
entails that

R, admits f iff IkVm f(m) = g(m + k)
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So to realize that R, blocks all f,, it suffices to have VnVk3Im f,(m) # g(m+k)
or equivalently
VnVk3p > k fu(p — k) # 9(p) (12)

Let a : N2 — N be defined by a(n, k) = ((n + k)2 + 3n + k)/2. It is easily
verified that « is a bijection, so there are inverses ,y with Vnk(a((n),vy(n)) =
n A (a(n, k)) = n Avy(a(n, k)) = k). Moreover, we have Vnk a(n, k) > k, which
implies Vn y(n) < n. Define g by

g(p) = min(N — {g(k) | k < p} = {fsem® —7(®)})

Then g is injective and Vp fg(,) (p — () # 9(p), s0 VnVk fn(a(n, k) — k) #
g(a(n,k)). Together with Vnk a(n,k) > k this implies (12). This ends the
proof. a

We define rules p(f), for every f € IN:

and the rule k(p):
#(p) ={0"(0Op — p) [ n € N}/p

The next lemma indicates to what extent conversely wellfounded models and
frames can be characterized by these rules. We shall use the Axiom of Depen-
dent Choice:

X #£0&Ve e Xy € XA(z,y) — 3f € X"Wn A(f(n), f(n+1))  (13)
This axiom follows from the Axiom of Choice, and it implies the Axiom of
Countable Choice.

Lemma 4.2 (i) {p(f) | f € N} characterizes conversely wellfounded named

models, i.e. for named models M

M= {p(f) | f € M} & Ry, is conversely wellfounded
(ii) No countable subset of {p(f) | f € '} characterizes conversely wellfounded

named models.

(iii) (p) characterizes conversely wellfounded frames, i.e.
(W, R) E k(p) & R is conversely wellfounded

(iv) x(p) does not characterize conversely wellfounded named models.
Proof.

(i) Let M = (W, R,V, A) be a named model, so A is surjective. Then {A o f |
f e =wN and also M = p(f) & 3Im (A(f(m)),A(f(m+1))) € R.
So M = {p(f) | f € N}Yiff g € WNIm(g(m),g(m + 1)) & R, i.e.iff R
conversely wellfounded.
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(i)

(iii)

(@iv)
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L]

Figure 4. A not conversely wellfounded frame where «(_L) holds.

Let F C IN be countable, and let A : | — N be bijective. Then there is a
countable G C NN with F = {A='og | g € G}. By Lemma 4.1, there is
an R C N? that is not conversely wellfounded and blocks all g € G. Then
M = (N, R,V, A) with arbitrary V : P — p(N) is a named model that is
not conversely wellfounded such that M = p(f) for all f € F.

We prove both directions of the equivalence via contraposition.

=: assume that R is not conversely wellfounded, so there is an f € WY
with Vn (f(n),f(n + 1)) € R. Let M be a model (W, R,V, A) with
V(p) = W —rg(f). Now (M, f(0)) E O™(dp — p) evaluates to
Yo € rg(f)((f(0),v) € R* — Ju € rg(f) (v,u) € R), and this is true
for all n. However, (M, f(0)) #~ p. So there is a model M with frame
(W, R) where k(p) does not hold, hence (W, R) }~ x(p).

<: assume there is a model M = (W, R,V, A) with M [~ x(p). Then
there is a w € W with (M, w) | O0"(0p — p) for all n, and (M, w) [~ p.
This evaluates to Vv € X3u € X (v,u) € Rwith X = {v | (w,v) €
R* & v ¢ V(p)},and w ¢ V(p), which implies X = (). Here R* is, as usual,
the reflexive transitive closure of R, i.e. the least relation that contains R
and that is reflexive and transitive. Applying the Axiom of Dependent
Choice (13) now yields an f € XN with Vo (f(n), f(n +1)) € R, so R is
not conversely wellfounded.

Consider the named model M = (Z,R,V, Ay with R = {(k,k+1) | k >
0yU{(k,—k) | k >0}, V(p) =0 and A : | - W surjective. See Figure 4. It
is clear that R is not conversely wellfounded, for there is an infinite chain
0,1,2,... of R-steps. We shall show that M |= x(L), using that x(_L) is
equivalent to the rule {0"<¢T | n € N}/ L. One easily verifies

ifw < 0 thenw £ OT(=0%T)
if w =0 then Vn w £ O"F20T
if w > 0 then Vn w £ O"H1OT

So for all w € Z there is a n with (M, w) £ O"CT. This implies M =
k(L), hence M = x(p) (for V(p) = 0).
O
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5 The main result
Now the announced result is within reach.
Theorem 5.1 The following hold:

{p(f) | f €™} E" 5(p) e
{p(f) | f € F}Y " k(p) if F CIN countable (15)
So the property R =" k(p) of rule sets R is not Lindelof.

Proof. By Lemma 4.2.(i) we have that M |= {p(f) | f € IN} iff M is conversely
wellfounded. By Lemma 4.2.(iii) we have that all conversely wellfounded mod-
els entail x(p). This proves (14).

By Lemma 4.2.(ii) there is a named model M = (W, R, V, A) with M = {p(f) |
f € F} and R not conversely wellfounded. By Lemma 4.2.(iii) there is a model
M = (W,R,V' A’) with frame (W, R) such that M’ }~ k(p). Now define
M" = (W,R,V’, A). This is a named model, for A is surjective. We observe
M" = {p(f) | f € F}, for the rules p(f) contain no propositional variables,
and M, M" only differ in the propositional valuation. Moreover, we have
M" = k(p), for the rule k(p) contains no nominals and M’, M" only differ in
the nominal valuation. This proves (15). O

6 Concluding remarks

We established a mildly surprising property: when going from finite hybrid
logic to the infinitary system Khyb,,, we do not only lose the compactness prop-
erty but also the weaker Lindel6f property. Thus fails our second attempt to
prove strong completeness for infinitary hybrid provability logic, i.e. Khyb, +
the following uncountable collection of rules:

{{@;, Cipy1 | n € N}/L |ig,i1,... asequence of nominals} (16)

As was mentioned in [3], the first naive attempt to prove this collapsed on
the observation that there is no countable set of rules containing finitely many
nominals that characterizes converse wellfoundedness. This observation fol-
lows from the embedding of Khyb , in L,,,,, predicate logic with countably infi-
nite conjunctions and disjunctions, and from the undefinability of wellordering
in L, (a consequence of Lopez-Escobar’s undefinability result in [9]).

So we still do not know whether Khyb,, + (16) is strongly complete with
respect to named conversely wellfounded models. A third attempt to prove
this would be: extend the main result of [3] to arbitrary sets of rules, not only
countable sets. In other words: prove that any extension of Khyb , with a (pos-
sibly uncountable) collection R of rules is strongly complete. We conjecture
that this is true, but up to now we have not been able to find a proof.
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Understanding Irony in Autism:
The Role of Context and Prosody

Iris Scholten, Eerin Engelen & Petra Hendriks

University of Groningen

1 Introduction

Irony is a figure of speech that can be used to express the opposite of what
is literally said. For example, the sentence “That was fun!” implies that the
speaker had a great time, but when intended ironically (such as after a boring
party) the same sentence expresses the exact opposite. The point of irony is to
indicate that a proposition that a speaker may normally endorse is in fact not
endorsed by the speaker, for example because it is false or might be unlikely
given the situation [25]. To make sure the hearer will understand the ironic
intention of the speaker, speakers can use cues to get their intention across.
For example, they can use a specific facial expression or body language. In this
study, we will focus on two linguistic cues: context and prosody.

The context in which something is said is considered to be one of the most
important cues for the recognition of irony [15,7,10]. Context can set up a
particular expectation, which is in conflict with the content of the ironic state-
ment. This conflict can help the hearer to recognize the ironic intention of the
statement. As an example, consider the following situation: John is on holi-
day. He discovers that his bags have gotten lost at the airport and the hotel
he booked is full. When he says to Mary: “This must be my lucky day!,” this
utterance is so obviously in conflict with the context that Mary should normally
be able to recognize the irony.

A second important cue is the prosody used in the ironically intended ex-
pression. According to [6], there is a typical prosody that implies the intention
of irony and therefore could invite the recognition of irony by hearers. This typ-
ical prosody in ironic expressions involves two high peaks: one peak around the
second word (usually the verb, in languages such as English and Dutch) and
one peak at the end of the expression. There may be other prosodic features
that are associated with an ironic intention, such as an exaggerated mono-
tone intonation or overly enthusiastic exclamations, but these features might
be harder to recognize [27].

An important factor in the use of irony is the ambiguity of the ironically
intended expression. Even though context and prosody can provide very clear
cues for the ironic interpretation, it is still possible that the hearer does not pick
up on the ironic intention and instead interprets the expression literally. The
clearer the discrepancy between the speaker’s description of the situation and
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the actual state of affairs, the easier it is to recognize the irony [25]. The same
may be true for prosody: when the intonational pattern described above is
used, it might become easier to recognize the ironic intention. If prosody is in-
deed a clear indicator for irony, context might not even be needed to recognize
irony and prosody may be enough to understand the speaker’s intention.

Understanding irony is a skill that seems particularly difficult for individuals
with Autism Spectrum Disorder (ASD). ASD is a congenital neural developmen-
tal disorder that is characterized by qualitative deficits in social interaction and
communication and by limited, repetitive or stereotypical behaviors, interests
or activity patterns [2], ranging from mild to severe [3]. It is claimed that
individuals with ASD do not have difficulties with language per se, but rather
with the pragmatic functions of language [4,14,20,18]. As a consequence,
they may have problems in taking advantage of the contextual cues that indi-
cate indirect, figurative or ironic language use. Furthermore, they may have
difficulties grasping the suprasegmental aspects of language, such as prosody,
rhythm and accents [22]. These aspects of language are very important for
the understanding of irony, since contextual and intonational cues contribute
to the recognition of irony. A deficit in understanding these cues may therefore
lead to problems in recognizing ironic intentions.

Various studies have shown difficulties in the understanding of irony in
children and adults with ASD in comparison to typically developing peers
[16,1,17,18,24]. According to [16], children with ASD are unable to recognize
the ironic intention of the speaker when being asked about why someone says
something. [17] found that children with ASD, when being asked for some-
one’s true reason for saying something like “Great job!”, often give a literal
meaning or merely rephrase the expression produced.

Several explanations have been proposed for the difficulties children and
adults with ASD have in recognizing irony. For example, these difficulties may
be due to a deficit in Theory of Mind [5]. Theory of Mind (ToM) is the ability
to understand and predict behavior based on one’s own beliefs and the beliefs
of others [26,21]. To understand irony, it is important that the hearer is able to
apply higher-order ToM reasoning. First-order ToM reasoning (ToM-1) is the
ability to attribute beliefs, thoughts and desires to someone else and to under-
stand that these beliefs, thoughts and desires influence this person’s behavior.
For example, John is able to apply first-order ToM reasoning if he understands
that Mary utters the sentence “That was fun!” when talking about a party be-
cause Mary believes the party was great. Higher-order reasoning (ToM-2 and
further) involves the beliefs someone else has about another person and their
predictions about this other person. For example, Mary is able to apply higher-
order ToM reasoning if she understands that John believes that she believes the
party was great. Thus, ToM-2 is needed to be aware of the fact that someone
else has beliefs about you [23]. Crucially, the beliefs of this other person might
be different from your own beliefs. That is, while John may believe that Mary
believes the party was great, Mary might in fact have found the party quite bor-
ing. Understanding irony requires the ability to apply higher-order ToM reason-
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ing because it requires understanding a thought about an attributed thought
[11]. When Mary ironically says “That was fun!”, she mentions a thought and
at the same time expresses her attitude towards this thought. Understanding
the irony in this utterance requires that the listener not only understands the
thought, but also understands the speaker’s attitude towards this thought.

Studies that tested children on a ToM-2 task and a separate irony task con-
firm the suggestion that the understanding of an ironic intention and ToM-2
reasoning are closely related [28,11,9]: children who fail on a ToM-2 task are
also less capable of understanding ironic expressions. It is well-established that
children with ASD have more difficulty with ToM reasoning than typically de-
veloping children (e.g., [5,11-13,4,9,19]). Therefore, their poor performance
in understanding irony could be caused by their difficulties with ToM. Alterna-
tively, their difficulties in understanding irony may also be due to their prob-
lems in understanding the cues for irony.

In contrast to children’s understanding of irony, not much is known about
adolescents’ understanding of irony. Adolescents with ASD are expected to
be linguistically more advanced than children with ASD. Does this mean that
they are fully capable of using linguistic cues such as context and prosody to
recognize the ironic intention of the speaker?

The present study aims to investigate whether adolescents with ASD are
able to recognize and understand irony in the same way as their typically de-
veloping peers. In particular, we wish to find out whether they use the linguistic
cues of context and prosody in the same way. To this end, we carried out an
irony recognition task with a group of Dutch-speaking adolescents with ASD
and a control group of typically developing adolescents, in which we manipu-
lated context and prosody.

2 Methods

2.1 Participants

Thirteen adolescents with Autism Spectrum Disorders (mean age 15.5, age
range 14-20, 10 male) were recruited from Scholengemeenschap De Ambelt
in Zwolle (a school for secondary special education, cluster 4). The inclusion
criteria for the sample were based on parental information about the clinical
diagnosis, that was confirmed by the participants. One additional adolescent
was tested but later excluded from the analysis because of lack of confirmation
of the clinical diagnosis. There were no participants with a double diagnosis,
such as the combination of ASD and ADHD. The control group consisted of
fourteen typically developing adolescents (mean age 14.4, age range 11-20, 5
male); twelve of these adolescents were recruited through Scouting Group Don
Bosco in Geldrop and two others were recruited through the researchers’ per-
sonal network. All parents and/or caretakers of the participants gave written
informed consent for their participation in this study.
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2.2 Design and materials

The experiment manipulated two factors: context (inviting an ironic versus a
non-ironic interpretation) and prosody (inviting an ironic versus a non-ironic
interpretation), yielding a design with four conditions (see Table 1). There
were eight items per condition, resulting in 32 items in total. From these
items, four counterbalanced randomized lists were constructed. Each partic-
ipant heard 16 items in total and 4 items per condition.

The 32 items consisted of short stories followed by three test questions.
Each story started with an introductory sentence, followed by a concrete event
that further specified the situation, and concluded with an evaluative state-
ment. The experiment tested these items in four conditions: the neutral con-
dition, the prosody condition, the context condition, and the combination con-
dition. In the neutral condition, neither the story context nor the prosody of
the evaluative statement invited an ironic interpretation of the evaluative state-
ment. In the prosody condition, the evaluative statement had a prosody that
invited an ironic interpretation, while the story context was compatible with a
non-ironic interpretation of the evaluative statement. In the context condition,
the story context invited an ironic interpretation of the evaluative statement,
while the prosody of the evaluative statement was neutral. In the combina-
tion condition, finally, both the story context and the prosody of the evaluative
statement invited an ironic interpretation of the evaluative statement.

Prosody was manipulated by distinguishing between two patterns of pro-
nunciation for the evaluative statement at the end of the stories. In one pat-
tern, the sentence was uttered with a typical ironic intonation in which there

— Context

+ Context

John’s long-time wish is to get a

Sara has a job interview at the lo-

& scooter. Today is his birthday. cal grocery store today. She feels
Q When he enters the garage, he relaxed and responds to the ques-
E sees a brand new, shiny scooter. tions very well. She gets hired.
| He says to his parents: “What a When she comes home, she says to

great gift.” her father: “It went very badly.”

Tim spends the entire summer Peter promises his wife to clean
& working in a clothing store. The the house. When he tries to dust
@  customers constantly muddle the the mantelpiece he accidentally
E clothes and there is never a mo- knocks over the favorite vase of his
+ ment of relaxation. When his girl-  wife. It shatters into a thousand

Table 6. Design of the experiment, with a sample item for each condition (translated

friend stops by he says to her:
“This is the worst job ever.”

from Dutch)

pieces as it hits the floor. His wife
hears the noise and says: “Great,
well done.”
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were two high peaks: one around the second word and one at the end of the
sentence (see [6]). In the other pattern, the sentence was uttered with neutral
intonation. The intonation patterns were verified using Praat, a computer soft-
ware package to analyse speech, and were pre-tested with seven typically de-
veloping adults, who listened to the statements out of context and rated these
statements on a five-point-scale for level of irony. Statements that were rated
as not clearly ironic or not clearly non-ironic (with average ratings between 1
and 4) were recorded again with a more distinct pronunciation.

Context was manipulated by distinguishing between stories that are consis-
tent with the subsequent evaluative statement (e.g., the story at the top left in
Table 6) and stories that are inconsistent with the evaluative statement (e.g.,
the story at the top right in Table 6, in which the positive expectation of the
story is inconsistent with the negative value of the evaluative statement). The
second type of story invites an ironic interpretation of the evaluative state-
ment, whereas the first type of story does not. We pre-tested these stories with
six typically developing adult participants, who listened to the stories without
evaluative statements and were asked to indicate which emoticon matched best
with the main character of the story. Stories for which not at least five out of
the six participants chose the target emoticon were adapted. We thus made
sure that the stories in our experiment were all unambiguously interpreted as
either positive or negative.

All stories were followed by three questions: a question about the emotion
of the main character in the story, a first-order ToM question (ToM-1) about
the emotion of the main character and a second-order ToM question (ToM-
2) about the belief of the secondary character about the emotion of the main
character. For example, after the story at the bottom left in Table 6 about Tim,
the following three questions were asked:

(i) Which emoticon do you think matches best with Tim?
(i) Do you think Tim thinks this is the worst job ever?

(iii) Does Tim’s girlfriend think that Tim thinks this is the worst job ever?

Participants were instructed to answer the first question by pointing to one of
four emoticons, which were presented on a piece of paper. These emoticons
were selected on the basis of a pre-test: an online questionnaire. In this pre-
test, the respondents (n = 93, all different from the participants in the present
study) were presented with three emoticons and one emotion and were in-
structed to select the emoticon that they thought represented the emotion most
accurately. A sample question (translated from Dutch) was: Which emoticon
expresses the emotion ANGRY best, according to you? The participant had to
choose between three emoticons from the Emoji of smartphones that can be
used to indicate the emotion mentioned, in this case angry. For the present
study, the four emoticons were chosen that — according to the results of the
pre-test — best represented the four emotions used in the test: happy, angry,
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scared and sad (see Figure 5 for the black and white versions of the colored
emoticons).

A A
< -

({’ S ’o. o

Figure 5. Emoticons that were used in the test, from left to right: happy, angry, scared
and sad.

The answer to the two ToM questions, illustrated by (ii) and (iii) above,
could be yes or no. Participants’ responses to each of the three question types
(i.e., the choice of emoticon and the yes/no answers) were scored as either
ironic or not ironic. For example, if the participant chose the sad, angry or
scared emoticon in response to the statement “This is the worst job ever” in
the context in Table 6, that would be scored as not ironic. On the other hand,
if the participant chose the happy emoticon, that would be scored as ironic.
Likewise, if the participant answered yes on the ToM-1 question in (ii) or the
ToM-2 question in (iii), that would be scored as not ironic, and if they answered
no, that would be scored as an ironic response. The responses per condition
and per question type were analysed separately. This resulted in a mixed design
with 12 variables. Performance on these variables was based on 4 items each
and was converted into percentages of ironic responses.

In typically developing adolescents, we expect the combination condition
to lead to more ironic responses than the other three conditions, because two
cues that are important for recognizing and interpreting irony are present in
this condition. If adolescents with ASD ignore contextual cues, prosodic cues,
or both, when listening to utterances that are intended ironically, as is sug-
gested by the literature, we expect them to give fewer ironic responses in the
condition employing these cues than their typically developing peers. For both
groups, least ironic responses are expected on the neutral condition, because
this condition provides no cues for an ironic interpretation. As context is con-
sidered a stronger cue than prosody, both groups are also expected to give more
ironic responses in the context condition than in the prosody condition. If con-
text is a prerequisite for an ironic interpretation, the prosody condition may in
fact not invite any ironic responses at all.

2.3 Procedure

All stories were recorded using Adobe Audition and played during test sessions
using iTunes on a laptop with speakers. The participants listened to 2 practice
stories and 16 experimental stories in a quiet room; the students of De Ambelt
were tested in a room at school and the scouting youth was tested in a room in
the scouting building. Two researchers were present during the test sessions.
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Emotion ToM-1 ToM-2
Mean SD Mean SD Mean SD

Neutral 0 0 3.9 9.4 3.9 9.4
Prosody 173 23.7 346 26.1 269 239
Context 75.0 17.7 769 16.0 61.5 242

Combination 57.7 158 654 28.0 654 28.0

Table 7. Mean percentages of ironic responses and standard deviations for the ASD
group (n = 13) per condition (Neutral, Prosody, Context, Combination) and question
type (Emotion, ToM-1, ToM-2).

Emotion ToM-1 ToM-2
Mean SD Mean SD Mean SD

Neutral 0 0 3.6 9.1 5.4 10.6
Prosody 179 228 268 26.8 25.0 259
Context 80.4 17.5 821 153 554 244

Combination 80.4 14.4 87.5 19.0 75.0 25.9

Table 8. Mean percentages of ironic responses and standard deviations for the control
group (n = 14) per condition (Neutral, Prosody, Context, Combination) and question
type (Emotion, ToM-1, ToM-2).

One of the researchers made notes on the scoring forms and operated the lap-
top and the voice recorder. All sessions were recorded with a voice recorder.
We started with a pre-test assessing whether the participants were familiar with
the emoticons used in the test. Next, participants listened to the pre-recorded
stories while looking at pictures. The pictures did not display any of the charac-
ters in the stories, that could be associated with emotions, but merely showed
emotion-neutral objects mentioned in the story to help the participants focus
on the task. Test sessions took approximately 12 minutes.

3 Results

Table 2 and Table 3 list the means and standard deviations on the four condi-
tions and three question types for adolescents with ASD and the control group
of adolescents without ASD. The results are also shown graphically in Figure 2
and Figure 3 below.

A mixed ANOVA was performed with Group (ASD, control) as the between-
subjects factor, and Condition (neutral, prosody, context, combination) and
Question Type (emotion, ToM-1, ToM-2) as within-subjects factors. There were
significant main effects for Condition (F(3,75) = 186,p < .001,7* = .881) and
Question Type (F(2,50) = 5.81,p = .005,77> = .188) on the mean percentages
of ironic responses. There were significant interactions between Condition and
Question Type (F(3.8,94.9) = 6.15,p < .001,1?> = .197) (Greenhouse-Geisser
corrected) and between Condition and Group (F(3,75) = 3.45,p = .021,7? =
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Figure 6. Mean percentages of ironic responses and standard deviations for the ASD
group (n = 13) per condition (Neutral, Prosody, Context, Combination) and question
type (Emotion, ToM-1, ToM-2).
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Figure 7. Mean percentages of ironic responses and standard deviations for the control
group (n = 14) per condition (Neutral, Prosody, Context, Combination) and question
type (Emotion, ToM-1, ToM-2).
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.121). Both groups interpreted utterances that were accompanied by contextual
cues or a combination of contextual and prosodic cues as more ironic than ut-
terances that were not accompanied by any of these cues or were accompanied
by prosodic cues only. Furthermore, for all four conditions, both groups had
more ironic responses on the ToM-1 questions than on the ToM-2 questions.

To further inspect the interaction effect of Group with Condition, four one-
way MANOVAs [8] were run separately for each condition with Group as the
fixed factor and the three question types as dependent variables. There was
a significant difference in ironic responses based on the participant’s diagnosis
for the combination condition (F(3,23) = 4.69,p = .011; Wilk’s A = .621,7° =
.379). The group with ASD gave significantly less ironic responses on the
combination condition than the control group. Follow-up tests on the Com-
bination Condition furthermore revealed that Group had a significant effect on
the emotion question (F'(1,25) = 15.18,p = .001,n2 = .378) (Bonferroni cor-
rected). Post hoc tests revealed that the group with ASD gave significantly
less ironic responses on the emotion question in the combination condition
(M = 57.7,SD = 15.8) than the control group (M = 80.4,SD = 14.5). From
this we can conclude that for adolescent with ASD the presence of both con-
textual and prosodic cues leads to significantly less ironic interpretations than
for adolescent without ASD, especially on the emotion question.

4 Discussion

In this study, we investigated whether adolescents with ASD have difficulty
understanding irony. Hypothesizing that individuals with ASD are less capable
of recognizing and interpreting irony than their typically developing peers, we
furthermore wanted to find out in what way their recognition of irony depends
on linguistic factors. To investigate this, we compared adolescents with ASD
and typically developing adolescents on their interpretation of short stories in
which prosodic and contextual cues for irony were manipulated.

If young individuals with ASD have difficulty understanding irony, we ex-
pect them to recognize the ironic intention in our stories less well than their
typically developing peers. We found that, overall, the adolescents with ASD
did not recognize the ironic intention less often than their typically develop-
ing peers. However, they did so when the ironic intention was indicated by
both prosody and context. In that case, they gave fewer ironic responses on
the emotion question than typically developing adolescents. Thus, adolescents
with ASD have more difficulty than their typically developing peers to recog-
nize the ironic intention of a statement that has an ironic prosody and at the
same time is preceded by a context that is inconsistent with the positive or
negative value of the statement.

Could the observed lower performance by the adolescents with ASD be at-
tributed to their suboptimal use of prosodic or contextual cues? Both the ado-
lescents with ASD and their typically developing peers interpreted stories in
which the only cue to the speaker’s ironic intention was the prosodic struc-
ture of the sentence differently than they did stories without any cues. The
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presence of prosodic cues led to more ironic interpretations than the absence
of any linguistic cues. Although we did not expect the prosody of a sentence
alone to lead to an ironic interpretation, we found that prosody can invite an
ironic interpretation. Furthermore, we found that adolescents with ASD, like
their typically developing peers, use such prosodic cues in their interpretation
of irony.

Also the presence of contextual cues was found to lead to more ironic in-
terpretations compared to when there were no cues, both for adolescents with
ASD and for typically developing adolescents. In both groups, the percentage
of ironic interpretations was much larger when irony was signalled by context
than when it was signalled by prosody. In fact, for both groups the combination
of prosodic and contextual cues did not lead to more ironic interpretations than
the presence of only contextual cues. This suggests that for adolescents with
ASD as well as for adolescents without ASD the most important cue for rec-
ognizing irony is context. Thus, the difference between adolescents with ASD
and their typically developing peers in the recognition of an ironic intention of
a statement does not seem to be due to their insensitivity to prosody or con-
text, which are the two most important linguistic cues for irony. Despite their
sensitivity to prosodic and contextual cues for irony, it is possible that adoles-
cents with ASD are less efficient in using these cues or perhaps have difficulty
integrating two different cues.

Even in the conditions with the highest percentages of ironic interpreta-
tions, the adolescents’ ironic interpretations generally did not rise above 80%.
An exception are the responses by the typically developing adolescents on the
ToM-1 questions in the context condition and the combination condition. Our
study did not include an adult group, so we cannot be certain whether ado-
lescents in general are not adult-like yet in their recognition of irony and their
use of linguistic cues, or whether their performance with irony is adult-like.
However, it is quite likely that adults are not perfect in their recognition of the
ironic intentions of a speaker either.

When both prosodic and contextual cues were present, adolescents with
ASD gave fewer ironic responses than their typically developing peers on emo-
tion questions, but not on ToM-1 or ToM-2 questions. This does not mean that
adolescents with ASD have no difficulty with ToM reasoning. In our study,
the responses to the two ToM questions are dependent on the response on the
emotion question. Therefore, our study did not test participants’ ToM reasoning
independently of their recognition of irony. To further investigate the relation
between the recognition of irony and ToM reasoning, participants should be
tested on an irony task as well as a separate ToM task. We leave this for further
research.
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Abstract

In the context of Elementary Arithmetic (EA) we know that already an extremely weak
arithmetical theory like R proves every true X;-sentence. Thus, it would seem that
adding the true 3;-sentences to the axiom set of a given theory adds nothing. However,
Elementary Arithmetic cannot prove this ‘obvious fact’. We show that under the assump-
tion of the negation of X;-collection, the weak theory PA™ plus the true X;-sentences
is inconsistent.

It follows that, in EA plus the negation of 2;-collection, any consistent extension U of
PA~ is not closed under finite conjunctions: there is a conjunction of theorems of U
such that U plus that conjunction is inconsistent.

A corollary of our main insight is that X;-collection is, over Elementary Arithmetic,
equivalent to the restricted consistency of PA™ plus the true X;-sentences.

In Appendix C, we prove slightly modified results for the weaker theory R. A conse-
quence of these results is that, over EA, X -collection is equivalent to the consistency of
the theory axiomatized by the theorems of R.

In Appendix A, we provide a lay person’s summary of the results of the paper.

Keywords: collection principles, reflection principles, completeness principles,
elementary arithmetic

1 Introduction

It is told of a German monk who came back to tell his friend about heaven
that he only spoke the words totaliter aliter. The worlds of metamathematics
in which we start from the negation of a cherished assumption are also fairly
aliter. Fortunately, in their case, we are often able to say much more than just
affirming their alterity. The study of such a world is beneficial since it gives
us a better feeling of where the cherished assumption is needed. In this paper,
we study one such world: a world in which we start from the negation of
Y -collection.

In the paper we will consider the connection between X:;-collection and
provability with an oracle for X;-truth in the context of EA or Elementary

L T am grateful to Zofia Adamowicz, Lev Beklemishev, Emil Jetabek, Joost Joosten and Leszek
Kolodziejczyk for helpful comments, corrections and additional insights. I thank the two
anonymous referees for their insightful comments.
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Arithmetic. It is well known that, in the context of EA, all theories extending
the very weak arithmetic R prove all true X -sentences. So, it would seem that
adding these sentences to the axiom set of a given theory is a harmless addition
that could only result in speeding up some proofs. However, the verification of
this ‘obvious fact’ essentially depends on the presence of X -collection. We will
show that the ‘obvious fact’ fails as badly as possible if we add the negation
of ¥;-collection to EA. Under these assumptions, the weak theory PA™ plus all
true X;-sentences becomes inconsistent.

We note that it follows that, in EA plus the negation of X -collection, consis-
tent extensions U of PA™ are not closed under finite conjunctions of theorems:
there is a finite conjunction of theorems such that adding it to the theory makes
it inconsistent. In other words: the theory axiomatized by the set of theorems
of U is inconsistent.

The methods of the paper allow us to see that, over EA, ¥;-collection is
equivalent with the restricted consistency of PA™ plus all true 3;-sentences.

Remark 1.1 There is a great and beautiful open problem in the global area of this paper: is
the theory IAg + —Exp 4+ — X1-coll consistent? See [14] and [2]. Regrettably, I do not see any
relevance of the results of the present paper for this problem.

Remark 1.2 The present paper is, in a sense, a sequel of Section 5 of my paper [10].

In Appendix A we give a description for the lay person of some salient results
of the paper.

2 Basics

In Appendix B we will give a bit more detail on the various theories discussed
in the paper. The reader is referred to [4] for more details and more discussion.

2.1 Theories

The theories we study in this paper are extensions of the weak arithmetic R of
[9] in (definitional extensions of) the arithmetical language. See Appendix B
for the axioms of R. See also [12] for discussion and further references on R.

Remark 2.1 Since we will work in Elementary Arithmetic as our ambient meta-theory, we have
the luxury of the totality of exponentiation available. This means that we do not have to worry
about the big disjunctions in the axiom set that Tarski, Mostowski and Robinson call 4 (R4 of
Appendix B). If we would work in the context of S} these disjunctions would be too big. There it
would be better to replace Q24 by the axioms:

z<0z=0andz<n+lc (z<nVz=n+1).

Our theories are given by arithmetical predicates that define the axiom set. We
allow axiom sets defined by more complex formulas than e.g. A%. Suppose e.g.
the theory U is axiomatized by a(z) and a set X of sentences is given by §(z).
Then, U + X is the theory given by a(x) vV 8(x). We implicitly assume that
the formulas defining the axioms sets of familiar theories are chosen in some
obvious way.
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A salient theory in the paper is PA™, the theory of discretely ordered com-
mutative semirings with a least element. This theory is mutually interpretable
with Robinson’s Arithmetic Q. However, PA™ has the additional good property
that it is sequential as was shown in [5]. In Appendix B, we give the axioms of
PA™. We refer the reader to [6] and [5] for information on PA™.

A second salient theory is S1, the theory of p-time computability introduced
in [3]. In Appendix B, we give a bit more detail concerning Si. See also [4].

A third salient theory is Elementary Arithmetic EA, i.e. 1A, + Exp. Har-
vey Friedman calls this theory EFA, for: Elementary Function Arithmetic. We
describe this theory in Appendix B.

Since we are going to enter a world in which X;-collection fails, we will
also be interested in two theories that are, in the real world, extensionally the
same as a given theory U but which might be extensionally different in that
other world. The first theory is the theory U + &, where

G :={S € Xy-sent | true(S)}

and true is the arithmetized X;-truth predicate. It is well known that the el-
ementary properties of this truth predicate are verifiable in EA. We note that
the axiom set of U + & is given by a ¥;-formula. The second theory is the
theory thm(U), which is the theory axiomatized by the theorems of U. We
note that the axiom set of thm(U) is also given by a X;-formula. We will show
that, according to EA, the theories U + & and thm(U) prove the same theo-
rems. It follows, in EA, that thm is a closure operation (modulo sameness of
the theorem set).

We will use modal notation O for (formalized) provability. We employ the
dot notation for variables occurring freely inside boxes. For example, Oy P(z)
means: the number resulting by substituting the Godel number of the numeral
of x for v in "P(v)™" has the property prov;;. More formally, this could be
written as:

Oy P(z) 4> provy (sub(num(z), v, " P(v)7)).

2.2 Formula Classes
We define the following formula classes in the arithmetical language.
e A is the class of formulas in which all quantifiers are bounded.

e 3y := X is the class of formulas of the form 3z Sy(x,y), where Sy is in
Ap.

* 3 n+1 is the class of formulas of the form 3z Vy < t So(x, y, z), where S is
¥ . Here the bounded quantification is subject to the usual restriction that
the quantified variable y does not occur in the bounding term.

¢ X  is the union of the 3 ,,.

We define II, ,, analogously. Our main interesest in the present paper will be
in these classes for n < 2.
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2.3 Collection
The X;-Collection Principle, ¥ -coll, is:
e FVz <adySzyz — IbVr < ady < bSxyz, where Sxyz is ¥;.

The principle X;-coll follows from the special case that S is in Ag. Suppose
Sxyz is of the form is Jw Sywxyz with Sy € Ag. Now consider the formula
Sfzyz ¢« Jw,u < ySowzuz. It is easy to see that collection for S follows
from collection for S in PA™.

We show that, in EA, ¥;-Collection can be compressed to a single sentence.
In EA, we have a ¥;-satisfaction predicate sat(o,s). Here o stands for a se-
quence of numbers and s represents a ¥;-formula. This satisfaction predicate
has the form 3w saty(w, o, s), where sat is in Ag. The usual construction yields
that the witness for s (given o) is below w, since w contains this witness as a
component. We consider the following principle:

(1) Vz < aJwsatg(w, (z) * 0,5) — FIbVr < aFJw < bsatg(w, (x) * 7, 5).

Consider any ¥;-formula Sxyz. Let S'zz := Jy Szryz. Assuming (}), we find:

EA - Vz < a3y Sxyz — Vo < a Jwsate(w, (z) * (z),787)
— Ve < aTw < bsatg(w, (z) * (z),7.57)
— 3bVe < ady < bSxyz

The last step uses that y is bounded by w. We note that our reduction uses
the presence of parameters. It was shown in [7] that, over EA, parameter-free
Y1 -collection cannot be finitely axiomatized. Hence the use of parameters is
essential here.

In [1], it is shown that the 3;-collection principle is II; ;. We give a proof
here. Let Sy € ¥y. We consider the following properties. (We suppress the
parameters and the dependence of the P on Sj.)

Py(a) Vo < a3y Sory — IbVe < a3y < bSyzy.
Pi(a) Fu < aVo (Souv — Vo < aJy < v Spxy).
Lemma 2.2 We have:

a. PA™ F Pi(a) = Py(a).

b. IAg F Py(a) — Pi(a).

Proof. We prove (a). Reason in PA™. Suppose P, (a) and Vx < a3y Spxy. Pick
u as promised by P (a). By our second assumption, there is a v such that Souv.
Thus, by P;(a), we get the conclusion of Py(a) with b := v.

We prove (b). Reason in IAj. Assume Py(a). In case Iz < aVy— Syzy,
we immediately have P;(a). So suppose Vz < a3y Spxy. By Py(a), we have,
for some b, that Vo < a3y < bSpry. By the Ap-minimum principle, there is
a minimum such b, say b*. If we had Vo < a3y < b* Spzy, then we would
have Vo < a3y < b* — 1 Spzy, contradicting the minimality of b*. So, we get
Jr < aVy < b* = Sgzy. Let u* < a be such that Vy < b* - Spu*y. Consider any
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v and suppose Spu*v. It follows that v > b*. Since, for any = < a there is a
y < b* with Syxy, there also is a y < v such that Syzy. So, we find Pi(a). O

Since Py is II; ; it follows that X;-collection is II; ; in IAy. The following
lemma will be used in the proof of our main result Theorem 4.1. We remind
the reader that a virtual class is progressive if it contains 0 and is closed under
successor.

Lemma 2.3 Both P, and P, are progressive in PA™.

Proof. We leave the proof for P, to the reader. We prove the claim for P;. We
remind the reader of the definition of P;:

Pi(a) ¢+ Fu < aVo (Souv — Vo < aJy < vSpxy).

We reason in PA™. Clearly we have P;(0). Suppose Pj(a). Let b be the
promised witness and suppose Spbv. In case we have (i) Jy < v Sp(a + 1)y,
we easily find that b < (a + 1) and Vo < (a+ 1)3Jy < v Spzy. So b is also a
witness for P;(a + 1). Suppose (ii) Yy < v—.Sp(a + 1)y. We claim that, in this
case, a+ 1 is a witness for P;(a+1). Clearly a+1 < a+ 1. Suppose Sp(a+1)w.
Then, by (ii) w > v. So Va < a3Jy < wSpaxy. Moreover, Jy < w Sy(a + 1)y,
since this is witnessed by w itself. So, in both cases, we have a witness for
Pi(a+1). O

For more information about the 3, ,, classes and 3;-collection, see e.g. [11].

3 Completeness

A central component of the proof of our main result is the ¥; ;-completeness
of extensions of R plus the true ¥;-sentences. In this section we will treat some
basic facts concerning both ¥; o-completeness and ¥ ;-completeness.

We can distinguish three versions of 3;-completeness (X; o-completeness)
for a theory U.

e Local or sentential X31-completeness: for all X1 -sentences S, we have:
S — OyS.

e Uniform X1-completeness: for all ¥;-formulas Sz, we have:
F Ve (Sx — Oy Sz).

* Global %, -completeness: - VS € sent(X;) (true(S) — OpS).
Note that for global X;-completeness, we need an ambient theory like EA in
order to provide the basic facts concerning the relevant ;-truth predicate.

As is well known, all three versions hold over EA when U is EA-verifiably an
extension of R. In this paper we zoom in on uniform ¥;-completeness and
uniform ¥, ;-completeness. Of course, uniform ¥, ;-completeness is defined
just like uniform ¥, o-completeness. Undoubtedly more could be said about
global ¥, ;-completeness too, but developing this would distract us too much
from the main line of the paper. We will use simply ‘;-completeness’ for
uniform X,-completeness.
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Our first order of business is to provide a counter example for EA-verifiable
Y1 1-completeness. Our counter example is also a counter example to senten-
tial ¥, ;-completeness. The method used is due to Paris and Kirby. See [8] or

[6].
Theorem 3.1 For some sentence S in ¥ 1, we have: EAF S — OgaS.

Proof. We remind the reader that we can transform any ¥;-formula S(z) into
a Xy -formula S°(x) that has the following properties:

L A{z|S°@@)} C{z | S()},
ii. if {« | S(z)} is non-empty, then so is {z | S°(z)},
iii. {z | S°(x)} has at most one element.
Suppose S(z) is Jy So(y, ), where Sy is Ag. We take:
e S1(z) =y <z(z={(z,y)ASo(y,x)).
o S°(x) > 2 (S1(2) AVw < 2= S1(w) A (2)o = ).
Thus, we can work with X;-definitions of elements which have the normal
form S° without worrying about the uniqueness clause. Using the ¥;-truth

predicate true, we can construct a ;-predicate def, where def(s, x) codes: s is
a Y -definition of z. Let:

S* := Fp (proofpa(p, L) A Vg < p—proofpa(gq, L) AVe < pIs < p def(s, z)).

We note that 5* is 3 1.

Consider any model AV of PA + incon(PA). Let M be the submodel given by
the X, -definable elements of A/. By the results of [8] (see also [6]), we have:
M = EA. Moreover, clearly, M | S*.

To prove our theorem it suffices to show that M [~ OgaS*. We note that if
M | OgaS*, then N |= OgaS*. Since N is a model of PA and since PA proves
reflection for EA, we have /' = S*. Quod non, since PA proves the relevant
version of the Pigeon Hole Principle. a

Remark 3.2 The above proof is a variation of a proof in Section 5 of [10].

We show that EA does prove uniform X, ;-completeness for Orys and, ipso
facto for all EA-verifiable extensions of R + &.

We can describe an R + &-proof p as follows. It is a preproof, i.e. a proof
from R plus assumptions that are ¥;-sentences such that its assumptions, say
the elements of ass(p), are all 3 -true.

Theorem 3.3 We have, for all 3, 1-formulas Sz, EA - V& (Sx — OryeST).

Proof. We give our proof for the case that the initial blocks of quantifiers con-
sist of just one quantifier. The more general case is similar. Let Sz be a formula
of the form 3y Vz < t(y, ) So(z,y, ), where Sy is 1 0.

We reason in EA. Suppose Sa. Find b such that we have:

() Vz <t(b,a)So(z,b,a).



Albert Visser 139

We can easily construct an R-preproof p of Vz < t(b, @) So(z,b,a) from as-
sumptions Sy(0,b,a), ..., So(t(b,a)—1,b,a). By (1) all these assumptions are
>, -true. O

We can refine Theorem 3.3 a bit. Let p be the complexity measure depth of
quantifier alternations. Inspecting the proof of Theorem 3.3, we see that, for a
fixed Sz, the p-complexity of the formulas in the R+ &-proof of Sz is bounded
by a fixed standard number depending only on the p-complexity of Sz. The
same holds when we exchange R+ & for e.g. PA™ + &, since in this last theory
the verifications of the axioms of R are of a fixed restricted complexity.

We write Oy, for provability in U from axioms bounded by n with a proof
only involving formulas of p-complexity below n. By the above considerations,
we find:

Theorem 3.4 Consider a ¥, 1-formula Sx. We can find a standard n such that
EA F Vx (S — OryenSE). Similarly, for U + &, for a theory U in which the
verifications of the axioms of R are EA-verifiably of standardly bounded complex-
ity, like all theories containing PA™.
Remark 3.5 Note that in the witnesses of Oy A only ¥;-sentences with complexity less
than n will be used. So we could as well write something like Oy, A.

Instead of restricted provability we could as well have used cut-free provability, tableaux prov-
ability or Herbrand provability.

4 Oracle Provability and Collection
In this section we study provability with a ¥;-oracle in the context of EA.
Theorem 4.1 EAF —3-coll = Opp- &L

Proof. We reason in EA. Suppose — X;-coll. Thus, for some a and s, we have
= Py(a,s). Here s appears in the role of an appropriate parameter. It fol-
lows that - P;(a,s) (Lemma 2.2). Since —Pi(a,s) is 31,1, it follows that
Opa- e Pi(a, $) (Theorem 3.3). Since {« | Pi(z,s)} is progressive in PA™
(Lemma 2.3), it follows by induction that Vx Ops- P (%, $). To make the in-
duction work in EA we show that the witnessing proofs can be given an
multi-exponential bound. Thus, we find: Ops- Pi(a, ). A fortiori we have
Opa- 1o P1(a, $). Hence, Opp- L. O

Remark 4.2 with a bit more care we can prove the analogue of Theorem 4.1 also for Q + &.

Theorem 4.1 allows us to characterize provability with a 3;-oracle for exten-
sions of PA™.

Theorem 4.3 Suppose U is, EA-verifiably, an extension of PA~. We have:
EAFVA (DU+6A 4 (" ¥-coll v DUA)).

Proof. We reason in EA.

Left to Right. Suppose OyigA. If we have —X;-coll, we are done. So,
suppose Xj-coll. In this case we can transform any U + &-proof p into an
U-proof g, by inserting proofs of the X;-sentences occurring as axioms in p.
By X -coll, the witnesses of these sentences are all bounded by some number
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r. Moreover, a proof of a ¥;-sentence witnessed by a number below r, is
bounded by 22". Thus, the transformation from p to ¢ exists given the presence
of exponentiation.

Right to Left. If = %-coll, then Ops-, &L, and, hence, Oy s L and, a for-
tiori, Oy s A. Moreover, if Oy A, then, trivially, Oy s A. O

Problem 4.4 What is the combined provability logic of Oga and Oga s ? And a slight variation:
what is the combined provability logic of Oga and Ogat with a constant for ¥1-coll?

We formulate an immediate corollary of Theorem 4.1. Clearly, in EA, we have,
for all A, if Opp- | g4, then Oy, pa-)A. It follows that:

Corollary 4.5 EA I = X;-coll = Oyyopa-yL-
From this, we easily derive:

Theorem 4.6 Suppose U is, EA-verifiably, an extension of PA™. We have:
EA b VA (Qumn A ¢ (- Si-coll vV Oy A)).
It follows that EA = VA (Ogpmu)A < OutsA).

Inspecting the proofs of Theorems 4.1 and 4.3 (replacing the application of
Theorem 3.3 by Theorem 3.4), we find:

Theorem 4.7 Suppose U is, EA-verifiably, an extension of PA~. We have, for a
sufficiently large number n:
EA VA € sent, (Oyyend < (0X1-coll vV Oy, A)).

We remind the reader that, for any n, EA + con,(PA™). (This follows e.g.
from the results of [13], noting the fact that restricted provability and tableaux
provability are multi-exponentially connected and the mutual interpretability
of Q and PA™). If we take U := PA™ and A := 1 in Theorem 4.7, we obtain:

EA DPA—JFG’TLJ_ <~ (_‘ El'CO” V DPA7,71,J-)’
And, hence, EAF Opp- 1 g , L ¢+ = X;-coll. Thus, we may conclude:

Theorem 4.8 We have, for sufficiently large n, EA +- con,,(PA™ + &) + X;-coll.

It is not difficult to see that we may replace PA™ in the statement of the theo-
rem by e.g. Q or S.. Thus, we have found that 3 -coll is EA-provably equivalent
to a reasonably non-contrived consistency statement. We note that in the state-
ment of the theorem con,, can also be replaced by cut-free consistency, tableaux
consistency or Herbrand consistency.

In the appendix we will sketch a proof that shows that with minor differ-
ences in formulation we can replace PA™ by R.

Remark 4.9 As referee I points out our results show the non-verifiability of Craig’s trick in EA.
(See e.g. [4],Theorem 2.29, Chapter III.) This is clear since Craig’s trick allows the transformation
of a recursively enumerable axiom set to a elementarily decidable one. One easily sees that Craig’s
trick is verifiable in EA + X1 -coll.

Theorems 4.8 and C.4 constitute positive answers of sorts for n = 1 to Problem
5 of the section on Reflection Principles of Lev Beklemishev’s list of questions
on http://www.mi.ras.ru/~bekl/problems.html:
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Are the collection principles BY,, equivalent to some form of reflection over
EA?

It seems reasonably hopeful to extend the results to n > 1 using adaptations of
the methods employed above. However, I did not try this.

As pointed out by referee I, the above answers to Beklemishev’s question
are not fully satisfactory, since con,(PA™ + &) is the restricted consistency
statement of a theory that is not axiomatized by an elementarily decidable set
of axioms as is usually the case in Beklemishev’s work.

Of course, we can recast con,(PA™ + &) more in the style of a reflection
principle by noting that:

EA | con,,(PA™ + &) «» VX C II;-sent (Opa- \/X — 3P € X true*(P)).

Here X ranges over finite sets and true* is the IT; -truth predicate. In the recast
version, reflection takes more the form of a combination of reflection and a
disjunction property, so again one could take exception to this form of the
result as providing an answer to Beklemishev’s question. Referee I suggests
the following theorem as giving an unobjectionable answer. We publish it here
with his/her kind permission.

Theorem 4.10 i. EA + con(PA™) I Rfnyp, , (PA™) < Xi-coll.

ii. EAF Rfn,m, ,qr,(PA7) < ¥i-coll, for sufficiently large n. Here T'y, is the
class of formulas with depth of quantifier alternations less than or equal to n.
Here:
* Rfnp, , (PA™) is the scheme Va (Ops- P(2) — P(x)),
where P € I1; ;.
* Rfn, g1, ,(PA7) is the scheme Vx (Opp- ,, P(2) — P(x)),
where P € II; ; NI',,. Here I',, is the set of formulas with depth of quantifier
alternations less than or equal to n.
Proof. We prove (i). Reason in EA + con(PA™). Suppose RFNp, ,(PA7).
Since, {y | Pi(y,x)} is progressive in y in PA~ (Lemma 2.3), we have
Yy, x Opp- P1 (g, & ). Since 11, is II; 1, by reflection, we find Vy, x P, (y, ), and,
hence, we have X;-coll.
In the other direction, suppose X;-coll and, for some @, Opp— P(&). Suppose
- P(z). We rewrite - P(x), using only predicate logic, to a sentence of the
form:
Jy Vz <t Ju S°(y,z,u, x).

Here S° is Ag. By X -coll, we find:
Jy,wVz <t Ju < wS°(y, z,u,x).
It follows that:

Opa-Jy, wVz <t Ju < wS°(y, z,u, &).
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Hence, Opp- L. Quod non. We may conclude that P(x).
The proof of (ii) is similar. O

Problem 4.11 Let PrLy, be predicate logic in signature . Can we give a perspicuous axiomati-
zation of X := {A € sents | EA + - X1-coll k- Oym(priy,)A}? We note, for example, that for any
translation T of the language of arithmetic in Ly, we have that = (\ PA™)7 is in X. So, X strictly
extends PrLs. On the other hand X should be contained in PrLf", the principles valid in all finite
models of signature Y. Consider any finite model M of signature Y. We can think of the theory of M
as axiomatized by a standardly finite model description A. The theory EA can verify that proofs from
A can be replaced by a proofs with an elementary bound. Hence thm(A) will EA-verifiably prove the
same theorems as A. It follows, externally, that X is contained in the set of sentences that are true in
M.
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Appendix
A Lay Person’s Summary

In this section, we briefly explain in somewhat simpler terms what this paper is
about. The paper is a study of features of certain subsystems of the strong sys-
tem Peano Arithmetic PA.? Given the fact that we can do nearly all numerical
reasoning we can think of in Peano Arithmetic, why look at weaker systems at
all? The reason is that a lot of the fine structure of reasoning cannot be explic-
itly studied when we just consider a strong system like PA. Take, for example,
the version of the Pigeon Hole Principle that says that if we put k objects in
n boxes and k > m, then some box will contain more than one object. This
principle can be proven by induction. However, this reduction does not well re-
flect the fundamental character of the principle in finite combinatorics, where
it appears as a basic principle of thought. It is therefore interesting to study the
status of the Pigeon Hole Principle in the context of weaker theories where it
can function as a basic axiom.

A second reason to study weaker systems is that we may be interested in
extracting algorithmic information from proofs. A proof in a weaker system
will usually yield a better algorithm.

In the present paper we study a version of the (finite) Collection Principle.
Suppose we have a function f from a finite set X to the natural numbers. In
that case the values of the function are bounded by some natural number n.
We study a special case of this principle, to wit X;-collection. It says that if we
have a computable function g on the set of numbers < k, then the values of g
have a bound n.

To get the study of the X;-collection Principle off the ground, we have to
work in an meta-theory that is weaker than the strong theory Peano Arithmetic
PA. After all, PA proves X;-collection, so we are barred from inspection what
happens if it fails, but for the uninteresting observation that such failure leads
to a contradiction over PA. For this reason we work over the weaker theory
Elementary Arithmetic EA. 2 There are many reasons why EA is a good choice.
One such reason is that we have a rather simple model construction due to
Paris and Kirby that gives us models of EA plus the negation of X;-collection.
Another reason is that over EA the principle X -collection is finitely axiomatiz-
able.

The X;-collection Principle is almost everywhere present in our numerical
reasoning. It is so obvious that most of the time we do not notice we are
using it. One of the examples that the present paper zooms in on is as follows.
Suppose we have an effectively axiomatized theory U and a finite set of X of
theorems of U. Let U + X be the theory axiomatized by the axioms of U plus
the elements of X. Then, U and U + X prove the same theorems. Clearly, this
insight is the basis of our use of already proven theorems to prove new ones.

2 See Appendix B for a description of PA.
3 See Appendix B for a description of EA.
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Let’s call this insight the Lemma Principle.

In the paper we show that without ¥;-collection we cannot derive the
Lemma Principle over our chosen ambient theory EA. Here is some intuition:
suppose we have an (U + X)-proof p* of A. How do we convert this into a
U-proof? Well, we take, for every B in X, a U-proof pg of B and we add pp
above the assumption B in p*. But what if the pp could grow arbitrarily large
so that no finite proof would result of this construction? To ensure that the pp
do not get out of hand, we need X -collection.

In fact, for a wide range of theories U, we can prove something strange: if
we assume the negation of ¥1-collection, then we can find a finite set of theorems
X of U such that U + X is inconsistent. Among the theories within the range
of this result are such familiar, trusted theories as EA and PA. Hence, if ¥;-
collection fails, a theory and its finite extension with some theorems can be
very different in their consequences.

An important program in current metamathematics if Reverse Mathemat-
ics: over a given basic theory we show that different salient principles are
equivalent. In the present paper we prove a result of this form: under the as-
sumption of the consistency of U, we can prove that the Lemma Principle for
U is equivalent to ¥;-collection. 4

B Axioms of Important Systems

The system R was introduced in [9]. It is a very weak system that is essentially
undecidable. A theory is essentially undecidable if every consistent extension
of it is undecidable. The language of R is the language of arithmetic with 0, S
(successor), + and -. We write

nx

n:= mo
The theory R is axiomatized as follows.
Rl.Fn+m=n+m
R2. Fn-m=n-m
R3. Fn # m, forn#m
R&. Fz<n—-V, c,z=m
R5. Fx#nvn< ;
One easily shows that R is not finitely axiomatizable. For more information on
R we refer the reader to [12].

The system Q was introduced in [9]. It is a weak finitely axiomatized theory in
the language of arithmetic that extends R (and, hence, is essentially undecid-
able). The theory Q is axiomatized as follows.

4 In Appendix C we provide examples of theories U such that this results holds for U and such
that EA proves the consistency of U.
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Ql. FSz=Sy—z=y

Q2. FSz #0

Q3. Fx=0Vv3yz =Sy
Q4. Fx+0==x

Q5. Fz+Sy=S(z+y)
Q6. Fx-0=0

Q7. Fx-Sy=z-y+x

A slightly stronger theory than Q is PA™. This theory has the advantage that it
has better metamathematical properties than Q and that is has a more math-
ematical feel’ to it. It is the preferred basic theory of researchers in the area
of non-standard models of arithmetic. PA™ is the theory of theory of discretely
ordered commutative semirings with a least element. It is given in the arith-
metical language plus the relation symbol <. The theory PA™ is given by the
following axioms.

PATl. Fz+0==x
PAT2. bz +y=y+=x
PAT3. F(z+y)+z=x+(y+2)
PAT4. Fz-1==x
PA™5. Fz-y=y- -z
PAT6. F(z-y) - z=z-(y-2)
PA™7. bz (y+2)=z-y+z-2
PA™8. Fz <yVvVy<uz
PATO. F(z<yAy<z)—z<z
PAT10. Fz+1Lx
PAT1l. Fz<y—= (z=yVz+1<y)
PAT12. Fz<y—zx+2<y+=z
PAT13. Fz<y—x-2<y-z
PAT14. Fo<y—Fzax+z=y
Emil Jetabek in his paper [5] employs a version without the subtraction axiom
(PAT14).

The theory Si was first given in [3]. It was tailored for the study of p-time
computability. It is an ideal theory for the arithmetization of syntax. It would
take us too far afield to give a full description of Si. I just will give some salient
features. We start with the arithmetical language including < and add two new
function symbols | - | and #. Here |z| is the length of the binary representation
of z and #, the smash function, is z,y — 2/#I'¥|. This function grows faster
than multiplication but slower than exponentiation. We have a basic arithmetic
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like PA™ plus suitable axioms for | - | and #. Moreover, we have an induction
axiom of the form:

(A0 AV (Az — (A(22 + 1) A A2z + 2))).

Here A is ¥t which means that it is of the form Jy < ¢ Agxy, where A, is AS.
A formula is A} if all its quantifiers are sharply bounded, i.e. they are of the
form Vz < |u| or 3z < |u|. An important feature of S} is the fact that the theory
is finitely axiomazable.

The theory Elementary Arithmetic or EA or EFA or 1Ay +exp is given as follows.
It is a theory in the arithmetical language with axioms (Q1,2,4,5,6,7) plus Ag-
induction, where a formula is A, if all its quantifiers are bounded. We can
show that the graph of exponentiation can be written as a Ajp-formula. We
have as final axiom exp which states that exponentiation is total. An important
feature of EA is the fact that the theory is finitely axiomazable.

Finally, Peano Arithmetic or PA is the theory in the language of arithmetic
axiomatized by (Q1,2,4,5,6,7) plus full induction.

C Downtuning our Results to R

We first prove the desired result for the theory NSN. This is the theory of a
non-standard number. Here are the axioms of NSN.

NSN1. Sz #0

NSN2. Sz =Sy — (x =y V Sz =¢)

NSN3. FSc=¢

NSN4. Fc#n

NSN5. Fxz+0==x

NSN6. -z + Sy = S(z + y)

NSN7. Fzx0=0

NSN8. Fax xSy=xxy+x

NSN9. F (A0 AVz (Az — ASx)) — Vo Ax
The theory NSN is locally finite. This means that every finitely axiomatized sub-
theory of NSN has a finite model. We can easily verify that the usual ordering
linearly orders the NSN-numbers with minimum 0 and maximum c. Addition
and Multiplication are like ordinary addition and multiplication — only they
are cut off at c.

Let P (a, s) be the formula given above Lemma 2.2 for the instance of ¥;-
collection that implies all other instances. We have NSN F VsVa P;(a,s). We
can see this in two ways. First, trivially, we have NSN + VsVa Py(a,s). It
follows by the reasoning of the proof of Lemma 2.2 that NSN F VsVa P (a, s).

Alternatively, we verify as in Lemma 2.3 that P; is progressive in a and prove
the desired result by induction.
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If we work in EA plus the negation of X;-collection, we find
OnsnVsVa Pi(a, s). Also, since — Py(a, s), for some a and s, and since NSN
contains R, we find that Onsyie— Pi(a, ). It follows that Oysnte L. Thus, we
have:

Theorem C.1 i EAF —X;-coll —» Onsnye L.

ii. EAF Onsnygd < (“ ¥q-coll vV DNSNA)-

iii. EAF Dthm(NSN)A — (ﬁ Yq-coll v DNSNA)-
We can use the fact that EA verifies that NSN is locally finite, to prove that
EA I con(NSN). It follows that:
Theorem C.2 i. EAF con(NSN + &) + X;-coll.

ii. EAF con(thm(NSN)) « 3;-coll.
We turn to the treatment of R. We refer the reader to our paper [12] for back-
ground on R. By the main result of [12] it follows that R interprets NSN, say
via an interpretation K. Clearly, NSN extends R. Since EA verifies that NSN is
locally finite, we can verify the correctness of the construction of K in EA. This
can be seen by inspecting the construction in [12]. A consequence is that we
can find a multi-exponential bound on the transformation of an NSN-proof of
A into an R-proof of AX.

We work in EA. Consider a proof p of L in NSN + &. We can transform p
into a proof p* of | in R + &X, where &% := {S¥ | true(9)}, using the fact
that we have multi-exponential bounds for the R-proofs of AX, where A is an
axiom of NSN. Thus we find:

Theorem C.3 EAF - ¥;-coll - Ogyex L.
It follows that:
Theorem C.4 EA F con(thm(R)) <> X;-coll.

We note the important difference with Theorem 4.5: we can work here with or-
dinary consistency instead of restricted consistency.






